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Outline

Formulate a Local Stable Manifold Theorem for stochastic
differential equations (SDE’s).

Theorem holds for Stratonovich and 1t6 SDE’s driven
by spatial Kunita-type semimartingales with station-

ary ergodic increments.
Start with the existence of a stochastic flow for SDE.

Concept of a hyperbolic stationary trajectory. The
stationary trajectory is a solution of the forward /back-
ward anticipating SDE for all time (Stratonovich case).

Existence of a stationary random family of asymptot-
ically invariant stable and unstable manifolds within
a stationary neighborhood of the hyperbolic station-
ary solution.

The stable and unstable manifolds are dynamically
characterized using forward and backward solutions
of anticipating versions of the (Stratonovich) SDE.

Proof based on Ruelle-Oseledec (non-linear) multi-
plicative ergodic theory and anticipating stochastic

calculus.



Formulation of The Theorem

Stratonovich SDE

dz(t) = dt+Zgz ) o dWi(t), (I)

on R? driven by m-dimensional Brownian motion W :=
(Wi, -, Wn).

(2, F, (F))ier, P) := canonical filtered Wiener space.

Q) := space of all continuous paths w: R — R™, w(0) = 0,
in FEuclidean space R™, with compact open topology;

F := Borel o-field of Q;

F; := sub-o-field of F generated by the evaluations
w—w(u), ut, teR.

P := Wiener measure on ).

h,g; - R — R4 1 <i<m, vector fields on R¢. For some
k>1,6 € (0,1), h is CF°, viz. h has all derivatives D7h,1 <
j < k, continuous and globally bounded, D*» Holder con-

tinuous with exponent 4.
g9i, 1 <i <m, globally bounded and in ¢*'°.

0:R xQ— Qis the (ergodic) Brownian shift

O(t,w)(s) =w(t+s)—w(t), tseR,wel.



Let ¢ : RxR4xQ — RY be the stochastic flow generated
by (I) (¢(t,-,w) = [¢(—t,-,0(t,w))] "1, < 0). Then ¢ is a perfect
cocycle:

¢(t + S, ',W) - ¢(t7 " 9(8,&))) © ¢(37 'aw)a
for all s,t € R and all w € Q ([I-W], [A-S], [A]).

Figure illustrates the cocycle property. Vertical solid
lines represent random fibers consisting of copies of R<.
(¢,0) is a “random vector-bundle morphism” over the “base”
probability space Q.



The Cocycle

¢(t17 '7w) ¢(t27 '70(t17w)>
T~~~ T
RY RY RY
x
¢(tlax7w)
d(t1 + t2, z,,w)
0(ts, ) 0(ts, )

W 0(t1,w) O(t1 + ta,w)
t=0 t =1 t =11 +1to



Definition

The SDE (I) has a stationary trajectory if there exists
an F-measurable random variable Y : Q@ — R? such that

ot Y (w),w) =Y(0(t,w)) (1)

for all t € R and every w € Q. Denote stationary trajectory
(1) by ¢(t,Y) = Y((6(1)).

If (1) holds on a sure event Q, that may depend on ¢,
then there are “perfect” versions of the stationary random
variable Y and of the flow ¢ such that (1) and the cocycle
property hold for all w € Q ([Sc]).

Let ¢(t,Y) be a stationary solution of (I). Cocycle
property of ¢ implies that the linearization

(D29(t, Y (w),w), 0(t, w))

along the stationary solution is also a d x d-matrix-valued
cocycle. Using Kolmogorov’s theorem, the random vari-

ables
Dyo(t
Sup M, fy > 0’
vera (1+[z]7)



have moments of all orders. If Elog™ |Y| < oo, then
Elog" |Dy¢p(1,Y)| < co. Apply Oseledec’s Theorem to get a

non-random finite Lyapunov spectrum:

lim ~log | Dad(n, Y (w),w)(v(w)), v e LQ,RY).

)
Spectrum takes finitely many values {\;}?_, with non-random
multiplicities ¢;, 1 < < p, and i% = d ([Ru.1], Theorem
L.6). -

Definition

Stationary trajectory é(t,Y) of (I) is hyperbolic if
FElog® |Y(+)] < oo, and if the linearized cocycle
(D¢ (n,Y (w),w),f(n,w)) has a non-vanishing Lyapunov spec-

trum
{)‘p<”'</\io+1<)"i0<0<)‘io—1<"'<)‘2<)‘1}

i.e. \; A0 for all 1 <i<p.

Define );, := max{)\; : \; < 0} if at least one \; < 0.
If all \; > 0, set \;, = —oco. (This implies that \;,_; is
the smallest positive Lyapunov exponent of the linearized
flow, if at least one )\; > 0; in case all \; are negative, set

>‘io—1 = OO)



Let pc Rt, z € R4
B(z,p) := open ball in R?, center  and radius p;
B(z, p) := corresponding closed ball;
C(R?) := the class of all non-empty compact subsets of R¢
with Hausdorff metric d*:
d*(Ay, Ag) == sup{d(z, Ay) : x € Ay} Vsup{d(y, A2) : y € A;} where
Ay, Ay € C(RY);
d(z,A;) = inf{|lz —y|:y€ A}, z € R% i =1,2;
B(C(R%)) := Borel o-algebra on C(R9) with respect to the

metric d*.



Theorem 1 (The Stable Manifold Theorem) (M.+ Scheut-
zow, 1997)

Assume that the coefficients of SDE (I) satisfy the given hy-
potheses. Suppose ¢(t,Y) is a hyperbolic stationary trajectory of (I)
with Elog™ |Y]| < oo.

Fix e; € (0,—\;,) and €2 € (0, \;,—1). Then there exist

(i) a sure event Q* € F with 6(t,-)(Q*) = Q* for all t € R,

(ii) F-measurable random variables p;, 3; : Q* — [0,00), B; > p; >
0, ¢« = 1,2, such that for each w € Q*, the following is true:

There are C*€ (e € (0,6)) submanifolds S(w), U(w) of
B(Y (w), p1(w)) and B(Y (w), p2(w)) (resp.) with the following prop-

erties:

(a) S(w) is the set of all z € B(Y (w), p1(w)) such that
[p(n, z,w) = Y (B(n,w))| < fi(w) ePioter)n
for all integers n > 0. Furthermore,

lim sup + log [9(t, 7, w) — Y (8(t, )] < Ay 2)

t—o00 t

for all z € S(w). Each stable subspace S(w) of the linearized
flow Dy¢ is tangent at Y(w) to the submanifold S(w), viz.
Ty(w)S(W) = S(w). In particular, dim S(w) = dim S(w) and

is non-random.



(b) hmsup log[ sup {|§b(t,l’1,W) _ ¢(t,$2,(ﬂ)| }] < )‘io'

t—o0 T1FT2 |LC1 _332‘
zy,w2 €S (w)

(c) (Cocycle-invariance of the stable manifolds):

There exists 71 (w) > 0 such that
Oty ,w0)(SW)) CSO(tw)), t>7(w). (3)
Also
Dy¢(t,Y (w),w)(S(w)) = S(0(t,w)), t=0. (4)
(d) U(w) is the set of all z € B(Y (w), p2(w)) with the property that
[B(=n,2,0) = Y (B(—n,w))| < fa(w) e NomrFen(5)
for all integers n > 0. Also

fimsup 108 [¢(~,7,w) ~ Y (B(~,0)| < Ay 1. (6)

t—o0

for all * € U(w). Furthermore, the unstable subspace U(w) of
Dy¢ is the tangent space to U(w) at Y (w), viz. Ty(w)l;{(w) =
U(w). In particular, dim U(w) = dim U(w) and is non-random.

(e) hmsup%log[ sup {|¢( txl? )_¢<—t,$2,u))|}] < _>\i0—1'

t—o0 @] Fwg |331 _332‘
rq,x0€U(wW)

10



(f) (Cocycle-invariance of the unstable manifolds):

There exists T2(w) > 0 such that
$(—t, - w)UW)) CUB(—t,w)), t>T2(w). (7)
Also
Dag(—t,Y (w),w)U(w)) = U(0(-t,w)), t=0. (8)
(g) The submanifolds U(w) and S(w) are transversal, viz.

R = Ty (,)U(w) @ Ty (1) S(w). (9)

(h) The mappings

are (F, B(C(R%)))-measurable.

Assume, further, that h,g;, 1 <i < m, are Cy° Then the local

stable and unstable manifolds S(w), U(w) are C.

11



(b(ta '7w)

t> 7'1(&))

A picture is worth a 1000 words!
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t> TQ(CU)
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Remarks

(i)

(i)

(iii)

In Stratonovich SDE (I), replace global boundedness
on g's by requiring

Rd9x+—>g gqu?)g{(:c)eR,lgz‘,jgd
=1 J

to be in C})°.

Conjecture: The the global boundedness condition is
not needed. This conjecture is not hard to check if
the vector fields ¢;, 1 < i < m are C® and generate

a finite-dimensional solvable Lie algebra. See [Kul,
Theorem 4.9.10, p. 212.

Theorem holds for the Ito SDE
da(t) = h(z(t) dt + ) _ gi(x(t) dWi(t), (1)
1=1

with 7,g; : R - R4 1 <i <m, in C°.

Replace the stationary random variable Y by its in-
variant distribution u, then formulate result with re-
spect to the product measure p® P and the underlying

skew-product flow. This would give stable and unsta-
ble manifolds that are defined a.e.(u® P); cf. [C] for

14



the globally asymptotically stable case on a compact
manifold.

Replace the SDE (I) with Kunita-type SDE

do(t) = Fodt, (1)), t> s}

where F is a spatial semimartingale helix (i.e. with
stationary ergodic increments) and with local charac-
teristics of class (B’ B"°) and the function

c R

Yy=x

d .
da(t,x,y)
d )
[0,00) x R 2 (t,x) — g oz,

J=1

belongs to BY’. In the Itd case, last condition is not
needed.

o

F(t,z) =V(t,x) + M(t,x)
a“(t,x,y) = % < M'(-,z), M7 (-,y) > (t)

. d .
bi(t,z) := EV@(lt,:z;), z,ye R,1<4,5<d

15



Sketch of Proof

Linearization and Substitution

Assume regularity conditions on the coefficients h, g;.
By the Substitution Rule, ¢(t,Y (w),w) is a stationary solution
of the anticipating Stratonovich SDE

do(t,Y) = h(¢(t,Y)) dt + i G (6, Y)) 0 dWi(t), t>0

pt (I1)

»(0,Y) =Y.
(IN-FJ).
Linearize the SDE (I) along the stationary trajectory.
By substitution, match the solution of the linearized equa-

tion with the linearized cocycle D.¢(t,Y (w),w). Hence
Dyé(t,Y (w),w), t > 0, solves the SDE:

dD2¢(t,Y) = Dh(¢(t,Y))D29(t,Y) dt )

+ ) Dgi(¢(t,Y))Dagp(t,Y) 0 dWi(t), t>03
=1

J

(117)
Dy, D denotes spatial (Fréchet) derivatives.

Similarly, the backward trajectories

¢(t7y)7 D2¢(t,Y), < 07

16



solve the corresponding backward Stratonovich SDE’s:

\

dMLY):—hwaﬂﬂﬂﬁ—E:%@MuY»oﬁ%@L t<0

»(0,Y)=Y. J
(117)
dD2¢(t,Y) = —Dh($(t,Y)) Daor(t,Y) dt ~

—E:D% (t,Y))Dagp(t,Y) o dWi(t), t<0%

(I11)
Above SDE’s (II)-(IIT)~ give dynamic characteriza-
tions of the stable and unstable manifolds.

The following lemma is used to construct the shift-
invariant sure event appearing in the statement of the lo-
cal stable manifold theorem. Gives “perfect versions” of
the ergodic theorem and Kingman’s subadditive ergodic
theorem.

Lemma 1

(i) Let h : Q — R*' be F-measurable and such that

/ sup h(0(u,w))dP(w) < oc.
Q

0<u<1

17



Then there is a sure event )3 € F such that 6(t,-)(£21) =
for allt € R, and

lim ~A(0(¢,w)) = 0

t— o0
for all w € €.

(ii) Suppose f : Rt x @ — R U {—oco} is a measurable process on

(Q, F, P) satisfying the following conditions

(a) E sup fT(u) <oco, E sup fT(1—u,0(u)) < oo

0<u<1 0<u<l1
(b) f(t1 +t2,w) < f(t1,w) + f(ta,0(t1,w)) for all t1,t2 > 0 and all
w e .

Then there is sure event )y € F such that 6(t,-)(2y) = 2y for
allt € R, and a fixed number f* € RU{—o0} such that

lim (1) = f°

t—o0

for all w € Q5.

Proof

[Mo.1], Lemma 7. O

18



Theorem 2 ([O], 1968)
Let (2, F, P) be a probability space and 6 : RT x Q — Q

a measurable family of ergodic P-preserving transformations. Let
T : Rt x Q — L(R?) be measurable, such that (T,0) is an L(R%)-
valued cocycle. Suppose that

E sup log* |T(t,)|| < oo, FE sup log™ |T(1—1t,0(t,-))] < co.
0<t<1 0<t<1

Then there is a set )y € F of full P-measure such that

0(t,-)(Qo) C Qg for all t € R, and for each w € Qq, the limit

lim [T(t,w)* o T(t,w)]/ 2 .= A(w)

n—aoo

exists in the uniform operator norm. Each A(w) has a discrete non-

random spectrum
eM > e > et s s et

where the \;’s are distinct. Each e has a fixed non-random multi-

plicity m; and eigen-space F;(w), with m; := dimF;(w). Define

G— 1 .
By (w):=R% FEijw):= [@jzlle(w)} , 1<i<np.



1
1tlim 7 log |[T(t,w)z|| = \i(w), if z€ Ej(w)\Fit1(w),
and
T(t,w)(E;(w)) C E;(0(t,w))
forall t >0, 1 <i<p.

Proof.

Based on the discrete version of Oseledec’s multiplica-
tive ergodic theorem and Lemma 1. ([Ru.1], I.H.E.S Pub-
lications, 1979, pp. 303-304; cf. Furstenberg & Kesten
(1960), [Mo.1]), “perfect” infinite-dimensional version and
application to SFDE’s. O

20



Spectral Theorem

/@_m

T Ex(0(t,w))

T(t w)

\

/

T E3(0(t,w))

N

21



Apply Theorem 2 with T(t,w) := Dy¢(t,Y (w),w). Then
linearized cocycle has random invariant stable and unsta-
ble subspaces {S(w),U(w) : w € Q}:

Dag(t, Y (w), w)(S(w))
D2¢(_ta Y(w)7 w)(u<w))

S(0(t,w)),
UB(—t,w)), t>0.

[Mo.1].
Sw)— st
U(w) ~ U6t w))
o(t, )
T i
{2 w Q(tiw)

22



Estimates on the non-linear cocycle

Theorem 3 (M. + Scheutzow [M-S.2])

There exists a jointly measurable modification of the trajectory
random field of (I), denoted by {¢s(z) : —00 < s,t < 00, x € R4},
with the following properties:

Define ¢ : R x R% x Q — RY by
o(t, r,w) := dpo¢(r,w), =cRYwetecR.

Then the following is true for all w € §:
(i) For each x € R%, and s,t € R, ¢, (7, w) = ¢t — s,7,0(s,w)).
(ii) (¢,0) is a perfect cocycle:

¢(t + S, '7w) - ¢(tv ) H(S,w)) © ¢(57 '7‘*‘))7

for all s,t € R.
(iii) For eacht € R, ¢(t,-,w) : R? — R? is a C* diffeomorphism.
(iv) The mapping R? 3 (s,t) — ¢, (-,w) € Diff*(R%) is continuous,
where Diff*(R%) denotes the group of all C* diffeomorphisms of
RY, given the C*-topology.

(v) For every € € (0,9),v,p,T >0, and 1 < |a| < k, the quantities

|¢s.t(@, W) | Dz st (2, w)|
sup - , sup ,
0<s,t<T, [1 + |x|(log ‘x‘)V] 0<s,t<T, (1 =+ ]w|’Y)
meRd meRd
D> x,w) — DY x',w
o DEOu@w) = DEOu )]
o P 2 — 21+ |al)7

0<la/—z|<p

are finite. The random variables defined by the above expres-
sions have p-th moments for all p > 1.

23



Proof

Cocycle property (ii): approximate the flow using he-
lix mollifiers of Brownian motion:

t 0
WF(t) =k W(s)ds —k W(s)ds.
t—1/k —1/k

WF(ta, 0(t1,w)) = Wty + to,w) — WF(t1,w), k>1
([I-W], cf. [Mo.1], [Mo.2] for linear infinite-dimensional

case).

(iii) and (iv) are well-known to hold for a.a. w e Q
([Ku], Theorem 4.6.5).

A perfect version of ¢, satisfying (i)-(iv) for all w €
Q, is obtained in [A-S] by perfection techniques and the

diffeomorphism theorem for flows ([Ku], Theorem 4.6.5;
cf. also [M-S.1)).

By known estimates (or GRR) ([M-S.2]), the random
variables

X1:= sup ‘Qbs’t(x:r‘)‘ ,
ozazizr, [1+ [o|(log™ [2])]
zeR4
|z
Xo:= sup
oozizr, [L+ (@, ) (log™ [a])]

have p-th moments for all p > 1. It is sufficient to show
that the random variable

Xl = sup |¢t,s($7’)|

o<s<t<t, [1 4 ’$|(10g+ |z])7]
mGRd

24



has p-th moments for all p > 1. Assume (without loss of
generality) that v € (0,1). From the definition of X,,

ly| < Xa[l + |ds,¢(y, )| (log™ [y])7]
for all 0 <s<t< T,y e R% Use the substitution
Y= bys(z,w) = b5, (7,0), dsi(y,w)=2,0<s<t<T,weENxc RY,

s,t

to rewrite above inequality as
[yl < Xa2[1+ |z[(log™ |y[)7].
Solve above inequality (by taking log™) for log™ |y|. There-

fore, there exists a non-random constant K; := K;(y) > 0
such that

|yl < K1 X1+ [el{1 + (log™ [ Xa|)7 + (log™* )7}).

Since X, has moments of all orders, the above inequality
implies that X; also has p-th moments for all p > 1.

Complete proof by [Ku|, [M-S.2] and GRR. O

25



ke = CP-norm on C*¢ mappings B(0,p) — RY.

Lemma 2

Assume that log™ |V (+)| is integrable. Then the cocycle ¢ satis-
fies

/Qlog+ sup [|p(t2, Y (0(t1,w)) + (), 0(t1,w))[k,c dP(w) < 00

—T'<t1,to<T
(10)

for any fixed 0 < T,p < oo and any € € (0,9). Furthermore, the
linearized flow (Dap(t,Y (w),w),0(t,w)), t > 0, is an L(R?%)-valued
perfect cocycle and

/10g+ sup || D2¢(t2, Y (0(t1,w)), 0(t1,w)) || L(rey dP(w) < o0
Q —T<t1,t2<T
(11)

for any fixed 0 <T' < co. The forward cocycle
(D2¢p(t,Y (w),w),0(t,w),t > 0) has a non-random finite Lyapunov
spectrum {A,, < -+ < Ajp1 < \; < --- < A\g < \1}. Each Lyapunov

exponent \; has a non-random multiplicity ¢;, 1 <1 < m, and Z qi =

=1
d. The backward linearized cocycle (Dy¢(t,Y (w),w),8(t,w),t < 0),
admits a “backward” non-random finite Lyapunov spectrum:

Jim_ o [Dao(1,Y (@),@) (u(w))], v € LU, R,

taking values in {—\;}I".; with non-random multiplicities q;, 1 < i <
m

m, and Zqi =d.

1=1

26



Proof of Lemma 2

We first prove (11). Start with the perfect cocycle
property for (¢,6):

¢(t1 + 12, '7w) - ¢(t27 '70(t1aw)) © ¢(t17 '7("}) (12)

for all t;,t, € R and all w € Q. Cocycle property for
(Dygp(t,Y (w),w),0(t,w)) follows directly by taking Fréchet deriva-
tives at Y (w) on both sides of (12); viz.

Dag(t1 +t2,Y (w),w)
— D2¢<t27 ¢(t17 Y<w)7 w)v e(tlv w)) © D2¢(t17 Y<w>> w)

= ngb(tz, Y(H(tl, w) 5 9(151, w)) o ngb(tl, Y(w), w)
(13)

for all w € Qg,t1,t2 € R. Existence of a fixed discrete spec-
trum for Dy¢(t,Y) follows from [Mo.1] and [M-S.1], using
the integrability property (11) and the ergodicity of 6.
((11) follows from (13) and Theorem 3 (v)). But (10)
implies (11)! Therefore it is sufficient to prove (10).

In view of (1) and the identity
¢t1,t1+t2 (w,w) = ¢(t2,$,9(t1,0¢))), T € Rdat17t2 € R7

(Theorem 3(i)), (10) (for ¢ =0) will follow from

/ logt sup  |DSesi(dos(Y(w),w)+a’,w)|dP(w) < oo, 0<l|a| <k,
0O 0<s,t<T,
|z |<p

(14)

27



Denote random “constants” by K;,i =1,2,3,4. Each K, :=
Ki(p,T),i = 1,2,3,4, has p-th moments for all p > 1. The
following inequalities follow easily from Theorem 3 (v).

log™ sup [Dg¢s,(¢o,s(Y(w),w) +a',w)

s,t€[0,T],
|2/ |<p

<log™" ESEépT]{Kl (W)L =+ (p+ |¢o,s(Y(w),w)])*]}

< log" Ka(w) + log* [1 +20° + Ks(w)(1 + ¥ ()|
<logt K4(w) +log[1 + 2p%] + 4log™ |V (w)] (15)

for all w € Q. (15)+ integrability hypothesis on Y imply
(14). O

The Awuxiliary Cocycle

To apply Ruelle’s discrete non-linear ergodic theorem
([Ru.1], Theorem 5.1, p. 292), introduce the following
auxiliary cocycle Z : R x R¢ x Q — R4. This a “centering”
of the flow ¢ about the stationary solution:

Z(t,r,w):=ot,x+Y(w),w) —Y(0(t,w)) (16)

forte R,z e R4, we .

Lemma 3

(Z,0) is a perfect cocycle on R% and Z(t,0,w) = 0 for allt € R,
and all w € ).
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Proof of Lemma 3

Let t;,to e R,w € Q, 2 € RY.

Z(te,Z(t1,x,w),0(t1,w))
= ¢(ta, Z(t1,z,w) + Y(0(t1,w)),0(t1,w)) — Y(0(t2,0(t1,w)))
= ¢(t2, ¢(t1, 2 + Y (w),w),0(t1,w)) =Y (0(t2 + t1,w))
= Z(t; + ta,z,w), t1,t2 € R,w € O,z € R™.

Z(t,0,w) = 0 by definition of Z and stationary solution. O

The proof of the local stable-manifold theorem (The-
orem 1) uses a discretization argument that requires the
following lemma.

Lemma 4

Suppose that log™ |Y (-)| is integrable. Then there is a sure event
Q3 € F with the following properties:

(i) 0(t,-)(Q3) = Q3 for all t € R,
(ii) For every w € Q3 and any x € RY, the statement

1
lim sup — log | Z(n,z,w)| < 0 (17)
n

n—aoo

implies

1 1
lim sup n log |Z(t, z,w)| = lim sup - log|Z(n,z,w)|.  (18)

t— o0 n—oo
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Proof

The integrability condition (10) of Lemma 2 implies
that

/ log™  sup |D2Z(t1, 2", 0(t2,w))| L(re) dP(w) < oo.  (19)
(9] 0<t7,t2<1,
z*e€B(0,1)

Therefore by (the perfect version of) the ergodic theo-
rem (Lemma 1(i)), there is a sure event Q3 € F such that
0(t,-)(Q3) = Q3 for all t € R, and

1
lim ~log™ sup |[D2Z(u,z*,0(t,w))|Lwma) =0 (20)
t—oo 0<u<l,

z*€B(0,1)

for all w € Q5.

Let w € Q3 and suppose = € R? satisfies (17). Then
(17) implies that there exists a positive integer Ny(z,w)
such that Z(n,z,w) € B(0,1) for all n > Ny. Let n <t <
n+1, n > Ny. Then by the cocycle property for (Z,6) and
the Mean Value Theorem:

1
sup —log|Z(t,z,w)|

n<t<n41

< Liogt | D22 (u, 2%, 0(n,0)) | ey + — 2 ~log | Z(n, z,w)|
—lo su u,r ,0(n,w —lo n,r,w)|.

= 5 g 0§u£1, 2 L(R?) (n+1) n g

x*€B(0,1)

Take limsup in the above relation and use (20) to get

n—oo

1 1
lim sup n log |Z(t,z,w)| <limsup — log |Z(n, z,w)|.

t— 00 n—oo TN
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The inequality
. 1 , 1
lim sup — log | Z (n, z,w)| < lim sup n log | Z(t, x,w)],

n—oo t—o0

is obvious. Hence (18) holds. O
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Ruelle’s Non-linear Ergodic Theorem

Theorem 4 ([Ru.1], 1979)

Let Q) >5— F, € Ck"s(Rd,O;Rd,O) be measurable such that
Elog™ |[F.|B(0,1)]| < co. Set F™(w) := Fp(y_1.) 0 0 Fp(1..) © Fl.
Suppose A < 0 is not in the spectrum of the cocycle (DF'(0),0(n,w)).
Then there is a sure event )y € F such that 0(1,-)(Qy) C Qo, and
measurable functions B(w) > a(w) > 0,7v(w) > 1 with the following
properties:

(a) If w € Qq, the set
VY i={z € B(0,a(w)) : |F*(z)| < Blw)e™ for all n. > 0}

is a C*9 submanifold of B(0, a(w)).
(b) If z1,29 € V), then

1FD (1) = F (22)]| < y(w)[lar — 2ale™
for all integers n > 0. If X < X and [\, \] is disjoint from the
spectrum of (DF(0),6(n,w)), then there exists a measurable
v'(w) > 1 such that

1FS (21) = F () ]| <2 (w)ll21 — 2ale™

for all x1, x5 € Vuf‘ and all integers n > 0.

Proof
[Ru.1], Theorem 5.1, p. 292.
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Construction of the Stable/Unstable Manifolds

Assume the hypotheses of Theorem 1.

Consider the auxiliary cocycle (Z,0). Define the fam-
ily of maps F, : RY — RY by F,(z) := Z(1,z,w) for all
weQand r € RY. Let 7:=6(1,)) : Q — Q. Define F" :=
Frn-1(y) 00 Fy)oF,. Then cocycle property for Z gives
F" = Z(n,-,w) for each n > 1. F, is C**(e € (0,6)) and
(DE,)(0) = D2¢(1,Y (w),w). By measurability of the flow ¢,
the map w — (DF,)(0) is F-measurable. By (11) of Lemma
2, the map w +— log™ | D2¢(1,Y (w),w)||(re) is integrable. The
discrete cocycle ((DF™)(0),0(n,w),n > 0) has a non-random
Lyapunov spectrum which coincides with that of the lin-
earized continuous cocycle (Dy¢(t,Y (w),w),8(t,w),t > 0), Viz.
DA < - < Xig1 < A\ < -+ < Ay < M}, where each )\; has
fixed multiplicity ¢;, 1 <i <m (Lemma 2). If \; > 0 for all
1 <i < m, then take S(w) := {Y(w)} for all w € Q. Theorem
is trivial in this case. Suppose that at least one \; < 0.

Use discrete non-linear ergodic theorem of Ruelle (The-
orem 4) and its proof to obtain a sure event Q; € F such
that 9(¢,)(Q7) = Qf for all t € R, F-measurable positive
random variables p;, 31 : QF — (0,00), p1 < 31, and a random
family of C*< (e € (0,4)) submanifolds of B(0, p;(w)) denoted
by Si(w), w € Qf, and satisfying the following properties for
each w € Q3:

Si(w) = {z € B(0,p1(w)) : | Z(n,z,w)| < fi(w)ePoten for alln e Z*}.
(21)
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Sq(w) is tangent at 0 to the stable subspace S(w) of the lin-
earized flow D,¢, viz. TpSy(w) = S(w). Therefore dim Sy(w)
is non-random by ergodicity of 6. Also

Z —Z
limsup_log SU.p | (nax]_)(a‘)) (n,xz,w)‘

xr1,T9Q Esd(w)

<A

10

(22)

The 0(t,-)-invariant sure event Qi € F is constructed
using the ideas in Ruelle’s proof (of Theorem 5.1 in [Ru.1],
p. 293), combined with the estimate (10) of Lemma 2 and

the subadditive ergodic theorem (Lemma 1 (ii)).

For each w € Qf, let S(w) be the set defined in part (a)
of the theorem. Then by definition of S;(w) and Z:

S(w) = Sy(w) + Y (w). (23)

Since S;(w) is a C*< (e € (0,6)) submanifold of B(0, p;(w)),
then S(w) is a C* (e € (0,6)) submanifold of B(Y (w), p1(w)).
Furthermore Ty (S (w) = ToSa(w) = S(w). Hence dim S(w) =

dim S(w Z ¢i, and is non-random.

7,10

Now (22) implies that

lim sup — log\Z(n z,w)| < A, (24)

n—oo

for all w in Qf and all z € Sy(w). Therefore by Lemma 4,
there is a sure event Qi C Q% such that 6(¢,-)(Q3) = Q3 for
all t € R, and

1
lim sup n log |Z(t,z,w)| < A, (25)

t—o00
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for all w e Q3 and all z € Sy(w). Therefore (2) holds.

To prove (b), let w € Q3. By (22), there is a positive
integer Ny := Ny(w) (independent of z € S;(w)) such that
Z(n,z,w) € B(0,1) for all n > Ny. Let Q := Q3 N Q3, where
Q3 is the shift-invariant sure event defined in the proof of
Lemma 4. Then Qf is a sure event and 4(¢,-)(2) = Q for
all t € R. By cocycle property, Mean-Value theorem and
the ergodic theorem (Lemma 1(i)), we get (b).

To prove the invariance property (4), apply the Os-
eledec theorem to the linearized cocycle (D2¢(t,Y (w),w), 8(t,w))
([Mo.1], Theorem 4, Corollary 2). This gives a sure 6(t,-)-
invariant event, also denoted by Q%, such that
Dod(t, Y (w),w)(S(w)) C S(O(t,w)) for all ¢+ > 0 and all w €
Qi. Equality holds because D,¢(t,Y (w),w) is injective and
dim S(w) = dim S(4(t,w)) for all ¢+ >0 and all w € QF.

To prove the asymptotic invariance property (3), use
the ideas in the proofs of Theorems 5.1 and 4.1 in [Ru.1],
pp. 285-297, to pick random variables p;,3; and a sure
event (also denoted by) Q3 such that 0(¢,-)(Q;) = Q; for all
t € R, and with the property that for any e € (0,¢;) and
every w € Qf, there exists a positive K¢(w) for which the
inequalities

pr(0(t,w)) > Kf(w)pr(w)ePiot 80t w)) > Kf(w) B (w)erio T
(26)
hold for all + > 0. Use (b) to obtain a sure event Q3 C Q;
such that 0(¢,-)(92:) = Q: for all t € R, and for any 0 < e < ¢;
and w € Q, there exists p¢(w) > 0 (independent of z) with

[B(t,2,w) = Y (6(t,w))| < B (w)elrio ) (27)
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for all z € S(w),t>0. Fix t >0, w e Qf and z € S(w). Let n
be a non-negative integer. Then the cocycle property and
(27) imply that

[o(n, (t, z,w), 0(t, w)) =Y (6(n, 0(t,w)))|
=lp(n+t,z,w) —Y(0(n+tw))]
< Be(w)e(AiO +e)(n+t)
< 56(W)6(>\i0+€)t6()\i0+61)n. (28)

If w e Qf, then it follows from (26),(27), (28) and the
definition of S(6(t,w)) that there exists 7 (w) > 0 such that
o(t, z,w) € S(O(t,w)) for all t > r (w). This proves asymptotic
invariance.

We prove (d), regarding the existence of the local
unstable manifolds #(w), by running both the flow ¢ and
the shift # backward in time:

o(t,z,w) = d(—t,z,w), Z(t,x,w) = Z(—t,z,w), 0(t,w) = 0(—t,w)

for all t >0 and all w € Q. (Z(¢t,-,w),0(t,w),t > 0) is a smooth
cocycle, with Z(¢,0,w) = 0 for all ¢ > 0. The linearized
flow (Dy¢(t,Y (w),w),0(t,w),t > 0) is an L(R%)-valued per-
fect cocycle with a non-random finite Lyapunov spectrum
{—>\1 <A < << A < < —)\m} where {>\m <
e < Xig1 < A < oo < Ay < A} is the Lyapunov spectrum
of the forward linearized flow (D2¢(t,Y (w),w),0(t,w), t > 0).
Apply first part of the proof to get stable manifolds for the
backward flow ¢ satisfying assertions (a), (b), (¢). This
translates into the existence of unstable manifolds for the
original flow ¢, and (d), (e), (f) automatically hold. Hence
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there is a sure event Q € F such that 6(—¢,-)(Qf) = Qf for
all t € R, and (d), (e) and (f) hold for all w € Q.

Define the sure event Q* := Q;NQE. Then (¢, -)(Q*) = Q*
for all t € R. Assertions (a)-(f) hold for all w € Q*.

Measurability of the stable manifolds follows from

S(w) =Y (W) + Sa(w) (29)

Sy(w) = lim B(0, p1(w)) N ﬂfl W 0,1)) (30)

m—0o0

fo(z,w) = ﬁl(w)_le_(AiOJrq)” Z(n,z,w), zeRY we,

for all integers n > 0. (Above limit is taken in the metric a*
on C(R%).) Use joint continuity of translation and measur-
ability of Y, fi, p1, finite intersections and the continuity
of the maps

R* 57— B(0,r) € C(RY).

Hom(R%) s f — f~1(B(0,1)) € C(RY).

When h,g; are in Cp°, adapt above argument to give
a sure event in F, also denoted by Q* such that S(w), U(w)
are O for all w e Q*. O
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