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ABSTRACT. Let G be a finite group. vVc classify G-cquivariant
flow equivalence of nontrivial irreducible shifts of finite type in
terms of (1) elementary equivalence of matrices over ZG and (ii)
the conjugacy clthSS in ZG of the group of G-weights of cycles bthScd

at a fixed vertex. In the CthSC G = 2/2, we have the clthSSificatioIl
for twistwisc flow eq'uivulence. vVc include some algebraic results
and examples related to the determination of E(ZG) equivalence,
which involves K] (;EO).
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Let G denote a finite group. In this paper, by a G shift of finite
type (G-8FTl we will mean an 8FT together with a continuous G­
action which commutes with the shift, where in addition the action is
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free and the SFT is irreducible and is nontrivial (contains more than
one orbit). 'lYe will classify these systems up to G-flow equivalence.
This equivalence relation can be described in terms of G-SFTs, skew
products or suspension flows (Sec 2). For example, two G-SFTs are
G-flow equivalent if and only if there exists an orientation preserving
homeomorphism between their mapping tori which commutes with the
induced G actions.

A G-SFT can be presented by a finite square matrix A over Z+G, the
positive cone of the integral group ring ZG [30J. Let (I - A)oo denote
the :Pi x :Pi matrix whose upper left corner is I - A and which otherwise
equals the infinite identity matrix. Let E(ZG) be the group of:Pi x :Pi
matrices generated by basic elementary matrices (those which differ
from I in at most one entry, which must be off-diagonal) over ZG. Let
W(A) denote the weight cia.,., of A (4.1): the conjugacy class in G of the
group of weights of loops based at a fixed vertex. 'lYe show the weight
class is an invariant of G-flow equivalence. When W(A) = W(B) = G,
we will show that G-SFTs presented by matrices A and Bare G-flow
equivalent if and only if there are matrices U, V in E(ZG) such that
UtI - A)ooV = (I - B)oo (Thm. 6.1). The complete classification up
to G-flow equivalence, which allows the possibility W(A) ~ G, has a
more complicated statement (Thm. 6.4).

In the case that G is trivial, our classification reduces to the fa­
miliar classification of F\'anks [15J by cokernel group and determinant.
'When G is nontrivial, the classification up to E(ZG) is much more dif­
ficult and interesting, and remains an open problem. 'lYe consider these
algebraic issues in Sections 8 and 9. In Section 8, we give the mod­
est requisite K-theory terminology and background, and for the case
G = Z/2 we give a constructive partial result (Theorem 8.1) and some
very concrete illustrative examples (8.6, 8.7) which indicate how the
ZG equivalence problem becomes more difficult when G is nontrivial
(i.e. ZG f Z). In Section 9, we consider E(ZG) equivalence ofinjective
matrices. In this case, GL(ZG) equivalence amounts to isomorphism
of cokernel modules, and the refinement to E(ZG) equivalence is clas­
sified by K I(ZG)/H for an associated subgroup H of SKI (ZG). As one
consequence, if G is abelian and det(I - A) is not a zero divisor in ZG,
then det(I - A) determines the G-flow equivalence class up to finitely
many possibilities (Theorem 6.5). Some of the algebra here works more
generally and in particular has a consequence for invariants of SFTs
with Markov measures (9.10,9.11).

Algebraic invariants over Z for isomorphism and flow equivalence
of SFTs are paralleled by the algebraic invariants over ZG for G­
equivariant isomorphism and flow equivalence of G-SFTs. The first
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key step, classification of G-SFTs by strong shift equivalence over 7l+G
of defining matrices, is due to Parry (Prop. 2.7.1). 'lYe use a system­
atic conversion [9, Thm. 7.2J from the realm of strong shift equiva­
lence to the realm of "positive K-theory" to establish necessary matrix
conditions for G-flow equivalence. 'lYe generalize existing positive K­
theory constructions [7J to establish sufficient conditions in the case
W(A) = W(E) = G. To understand the reduction to this case, we
draw on ideas of Holt, Parry and Schmidt [29, 31, 36J.

Among motivations for studying G-SFTs, we mention three. First,
there are two systematic frameworks for classifying systems related
to SFTs: the ideas around strong shift equivalence growing out of
Williams paper [42]' and the ideas of positive K-theory growing out
of the Kim-Roush-Wagoner papers [22J. (See [5, 6, 9J.) The G-FE
classification fills in another piece of both frameworks. Second, in the
study of "symmetric chaos" [12]' G-SFTs arise as important tools for
the study of equivariant basic sets [11,13], and can equal such sets. ('We
emphasize that we are not addressing the important but quite different
case of nonfree actions.) Finally (and in fact our initial motivation), we
are interested in tW'/8tW'/8e flow eq'U'/voJence, which arose [37, 38, 39J in
the study of basic sets of Smale flows on 3-manifolds. Twistwise flow
equivalence amounts to equivariant flow equivalence of G-SFTs with
G = 7l/2, so our results include a classification up to twistwise flow
equivalence, along with constructive techniques resolving some open
questions (Sec. 7).

We thank Bob Guralnick, Bob Fitzgerald, Bill Parry (especially, see
2.7.1 and 9.10), Jonathan Rosenberg (especially, see 9.7) and Klaus
Schmidt for extremely helpful discussions. 'lYe are also grateful to the
anonymous referee for many detailed comments which improved the
exposition.

2. G-FLOW EQUIVALENCE AND SFTs

In this section we give background for flow equivalence, G-flows and
G-SFTs.

2.1. Notational conventions. Except in part of Section 9, G denotes
a finite group. All our G actions are assumed to be continuous (each g
acts by a homeomorphism), from the right ((x,g) f-1 xg), and free (if
g fixes any x then g is the identity in G). Here are other notations.

• Let x = L9EG ngg be an element of 7lG. 'lYe define 1Ih(X) =
Xh = nh for each II, E G. If x g > 0, we say g is a 8wnuwnd of x .

• Fm' a and b in 7lG we say a» b if 1Ig(a) > 1Ig(b) for each g E G,
and a > b if 1Ig(a) ;:0: 1Ig(b) for each g E G and 1Ig(a) > 1Ig(b) for



4 BOYLE AND SULLIVAN

at least one g E G. 'lYe define « and < similarly and extend
these notations to matrices if they hold entry-by-entry.

• Let A be matrix over 7lG. We say A is veTy p08'it'ive if A » 0
and A is 8trtetly p08'it'ive if A > O.

• The o/ugmentat'ion map n: 7lG -t 7l sends an element I:: ngg to
I:: ng • Applying n entry-wise to a matrix A with entries in 7lG
produces a matrix n(A) with entries in 7l.

• In this paper, a ring means a ring with 1. Let R be a ring. Then
E(R) has already been defined; E(n, R) is defined likewise, for
71 x 71 rather than N x N matrices. See the beginning of Section
8 for more.

2.2. Flows and sections. Let Y be a compact metrizable space. In
this paper, a flow on Y will be an JR-action on Y, given by a continuous
map T JR x Y -t Y, where '/ is locally injective (the flow has no rest
points). Two flows are topolog'ically eor(j'Ugate, or eor(j'Ugate, if there is a
homeomorphism intertwining their JR-actions. Two flows are cq'U'ivoJent
if there is a homeomorphism between their domains taking JR-orbits to
JR-orbits and preserving orientation (i.e. respecting the direction of the
flow).

A compact subset C of Y is a eT088 8eet'ion of the flow if the restriction
of '/ to JR x C is a smjective local homeomorphism. (In this case, the
return map to C is a well defined homeomorphism R : C -t C; the
return time I' is a continuous function on C; and the given flow is
topologically conjugate to the "flow under the function" built from R
and 1'.) 'lYe say that R is a 8eet'ion to the flow. Two homeomorphisms
are .flow eq'U'ivoJent if they are topologically conjugate to sections of
a common flow. (Homeomorphisms f, g are topologically conjugate if
there is a homeomorphism II, such that hf = gh.) Sections of two flows
are flow equivalent if and only if the flows are equivalent.

In the case that T, and T2 are homeomorphisms of zero dimensional
compact metrizable spaces, Parry and Sullivan [32J showed that T, and
T2 are flow equivalent if and only if there is a third homeomorphism
T such that there are discrete towers T{ and T~ over T which are
topologically conjugate respectively to T, and T2 • (A discrete tower
is a homeomorphism (Xl, T l) built from (X, T) by partitioning X into
finitely many closed open sets Ci, picking for each 'i a positive integer
ni, making Xl the disjoint union of the sets Ci x {i}, 1 S; .i S; ni, and
for x E Ci setting Tl(x,k) = (x,k + 1) when k < ni, and Tl(x,ni) =
(Tx, 1). Here (X, T) is called the ba8c of the toweL)

2.3. G-flows and G-sections. By a G-.flow we mean a flow together
with a continuous free right G-action which commutes with the flow
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(t(yg) = (ty)g). Bya O-horneornorphi.orl! we mean a homeomorphism
together with a continuous free right G-action with which it com­
mutes. Two G-f1ows are G-cor(j'Uyate if the flows are topologically
conjugate by a map which intertwines the G-actions. Two G-f1ows
are O-eq'UivoJent if the flows are equivalent by a map which intertwines
the G-actions (I(xg) = (lx)g). A 0-cr088 8ection to a G-f1ow is a
cross section C which is G-invariant. Then there is an induced G­
action on C with which R becomes a G-homeomorphism, and we say
the G-homeomorphism R is a 0-8ection to the G-f1ow. A discrete
G-tower (X', T') over a G-homeomorphism (X, T) is a discrete tower
over (X, T), together with a G-action (x ,.i) f-1 (xg,.1) (in the notation
above) induced by the G action x f-1 xg for (X, T).

The standard theory carries over to the G setting. \Ve call two G­
homeomorphisms O-flow eq'UivoJent if they are conjugate to G-sections
of the same G-f1ow. G-sections of two G-f1ows are G-f1ow equivalent if
and only if the flows are G-equivalent. In the case that T 1 and T2 are
G-homeomorphisms of zero dimensional compact metrizable spaces,
T 1 and T2 are G-f1ow equivalent if and only if there is a third G­
homeomorphism T such that there are discrete G-towers T{ and T~

over T which are G-conjugate respectively to T 1 and T2 •

2.4. Skew products. Let T : X -t X be a homeomorphism, with X
zero dimensional. Let 7 be a continuous map from X into the finite
group G. Define a homeomorphism 8: X x G -t X x G by the rule
(x, h) f-1 (T(X),7(X)h). With the natural right G-action on X x G,
g: (x, h) f-1 (x, hg), 8 is a G-homeomorphism. 8 is T 1>(7 G, the 8kew
[Jrod'Uct over T built from the 8kewiny function 7.

Conversely, suppose 8 : X -t X is a G-homeomorphism, with X
zero dimensional. Let q : X -t X be the map onto the quotient space
of G-orbits, and let T be the homeomorphism induced by 8 on X.
Because X is zero dimensional and the G action is free, we can find a
closed open subset C of X such that {Cg: g E G} is a partition of X.
Using the homeomorphism qlC, identify X with C. Using the maps
Cg -t C x G (xg f-1 (x,g)), identify X with C x G. In this notation,
q is the standard projection C x G -t C, and the G action on C x G
is h: (x,g) f-1 (x,gh). To display the skew product structure, define
7: C -t G by setting 7(X) = g if 8(x) E Cg. It follows for x E C that
8: (x,e) f-1 (T(X),7(x)e). Because 8 commutes with the G action, we
conclude that for any (x,g) we have 8: (x,g) -t (T(X),7(X)g). So, up
to G-conjugacy, every G-homeomorphism of a zero dimensional space
is a skew product.
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Finally, suppose we have a G-homeomorphism T. The given G-action
induces a natural G action on the mapping torus Y of T, with respect
to which the natural flow on Y is a G-flow, and T is conjugate to the
obvious G-section of this flow.

2.5. Cocycles. Let T : X -t X be a homeomorphism. \Ve may regard
a continuous skewing function .,-: X -t G as defining a cocycle for
T. \Ve say two such skewing functions .,- and pare cohomolofJo'U.s if
there is another continuous function h from X into G such that for
all x in X, .,-(x) = [h(x)t'p(x)h(Tx). Such a function h is called a
tran.5jcr function. It is an easy exercise to verify that two skew products
T, I>( T G and T2 I>( p G are G-conjugate if and only if there is a topological
conjugacy,;) of T, and T2 such that .,- 0 ';) is cohomologous to p.

2.6. Shifts of finite type and matrices over Z+. Here we give
minimal background for shifts of finite type (SFTs). See the texts
[23, 24J for an introduction to SFTs.

In this subsection, all matrices will be N x N with entries in Z+ and
(except for the identity matrix I) with all but finitely many entries
equal to zero. (In particular, det (I - A) is well defined as a limit of the
determinants of the principal {I, 2, ... ,n} x {I, 2, ... ,n} submatrices.)
Given such a matrix A, let gA be the directed graph with vertex set
N and with exactly AU, j) edges from i to j. Let £ be the edge set
and define EA to be the subset of ZE realized by bi-infinite paths in
gAo With the natural topology, EA is a zero dimensional compact
metrizable space. Let CTA : EA -t EA be the .shift mop, (CTA(8))i = 8i+"

The homeomorphism CTA is the edge SFT induced by A. Every SFT is
topologically conjugate to some edge SFT.

Matrices A and B over a semiring n are strong shift equivalent
(SSE) over n if they are connected by a string of elementary moves
of the following sort: there are Rand 8 over n such that A = R8
and B = 8 R. A fundamental result in symbolic dynamics is that CTA

is topologically conjugate to CTlJ if and only if A is SSE over Z+ to B
[42J. Refined computable invariants of SSE are known, but it is still
not known even if SSE over Z+ is decidable.

If A = (Ai)) and

() All A'n
1 () ()

B= () .12, A2n

() An' Ann
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then we say A and B are connected by a Parry-Sullivan move or a PS
Illove.

It follows from the Parry-Sullivan result described above that SFTs
CTA and CTlJ are flow equivalent if and only if the matrices A and B can be
connected by SSE and Parry-Sullivan moves [32J. (The Parry-Sullivan
moves allow for building the discrete towers.)

An SFT CTA is 'irrednc'ible if for any edges c and f which appear in
points of EA , there is a path in gA beginning with c and ending with
f. 'When CTA and CTlJ are irreducible and nontrivial (not just a single
periodic orbit), they are flow equivalent if and only if the matrices
1 - A and 1 - Bare SL(Z)-equivalent. This equivalence is determined
by two simple invariants: the Parry-Sullivan number det(l - A) and
the isomorphism class of the Bowen-Franks group cok(1 - A) [32, 4, 15J.
The Huang classification of reducible SFTs up to flow equivalence is
much more complicated. (Huang's original arguments are developed in
[17, 18, 19, 20J and an almost complete unpublished manuscript, "The
K-web invariant and flow equivalence of reducible shifts of finite type."
A complete alternate development is contained in [6, 8J.) In this paper,
we only address G-flow equivalence of irreducible SFTs.

2.7. Skew products, G-SFTs and matrices over Z+G. By a G­
SFT we mean an SFT together with a free G-action with which it
commutes. (Usually "G-SFT' is not restricted to free actions [11,
12, 13J; we adopt the restriction only for this paper, where we only
consider free actions.) In this subsection, we'll consider presentations
of G-SFTs.

Let A be an Nx N matrix with entries in Z+G and with all but finitely
many entries equal to zero. Such a matrix A determines a weighted
directed graph gA as follows. As an unweighted graph, it is the graph
gn(A). Recall (l is the augmentation map (2.1). If A (i, j) = I:: ngg then
exactly ng of the edges from 'i to j are weighted g. Let f(c) denote the
weight on an edge c. Define a locally constant function "TA: En (A) -t G
by the rule x >-t f(xo). This function then defines a skew product
over CTn(A)' This skew product can be presented as an edge SFT with
the graph 9 constructed as follows. Let the vertex set of 9 be the
product of G and the vertex set of gn(A). Fm' each edge c from 'i to
j in gn(A), for each g in G draw an edge from (g, i) to (f(c)g, j). We
write SA = CTn(A) I>( "TA. To make SA a G-SFT, for each pair of vertices
v, v' of g, we choose an ordering of the edges from v to v', and then let
g in G act by the one block map given by the unique automorphism
of 9 which acts on the vertex set 9 by (II" j) >-t (hg, j) and which is
order-preserving on edges.
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It is not difficult to see that for any locally constant function into
G from a SFT Cf, there is a matrix A over 7l+G and a topological
conjugacy from Cf to Cfn(A) which takes the given function to 7A, and
therefore any G skew product over an SFT can be presented as some
SA. Moreover, a G-SFT can be presented as a skew product (Sec. 2.4
our assumption of freeness is necessary for this), and it is not difficult
to see that the base map for this skew product must be SFT in order
for the skew product to be SFT. Thus all G-SFTs are G-conjugate to
those arising by this construction of SA.

Proposition 2.7.1. [30J Let G be a .finde gro'Up. The following are
eq'Uivolent for rrwtrtCe8 A and B over 7l+G and their a880ciated 8kew
prod'Uct 8;tj8tern8 SA and S/J.

(1) A and B are SSE over 7l+G.
(2) There i8 a topological cor,j'Ugac;tj :p: Cfn(A) -t Cfn(ll) 8'Uch that

7.4. '"V 7B 0 tp.

(3) The G-SFT8 SA and S/J are G-cor,j'Ugate.

Proof. We will prove (2) ==? (1). As shown by Parry [28], the given
conjugacy :p can be given as a string of state splittings from ettA) to
some C followed by the reversal of a string of state splittings from et(B)
to C. The SSE's over 7l+ which give the splittings are easily adapted
to SSE's over 7l+G which reflect the corresponding lifting of edge label­
ings (we give an example following the proof). In this way, we produce
7l+G matrices A', B' such that et(A') = C = et(B'), the skewing func­
tions derived from A' and B' are the functions lifted from the skewing
functions defined from A and B, and they are cohomologous. If h is a
continuous transfer function giving the cohomology of these functions,
then in fact h(x) is determined by the initial vertex of Xo ([29, Lemma
9.1J proves this for irreducible SFTs, and the essential ideas of that
proof can be extracted to prove the general case). Therefore there is
a diagonal matrix D with D(i,i) =!/i E G, such that DA'D- I = B'.
The 7l+G strong shift equivalence from A' to DA'D- I is given by the
pair (A'D- I

, D). 0

Above, in restricting to 7lG with G finite, we have not given the most
general statement of Parry's results.

Example 2.7.2. Here is the example promised in the preceding proof.

Let A = ('1 k ~ t) over some 7l+G. Consider the row splitting of
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n(A) defined by the elementary SSE

n(A) = GD

h )
k+t

.1= (g
}

(~ ~ ;) Gn
(i i~ i) = (i i~) (~ ~ ;)
012 01

Then the 7l+G SSE which captures the label lifting is simply

( g 0 h.) (i i~)
O.1k+t 01

= (i i~) (g 0 h)
01 0 .1k+t(~i~ ;:)

o } k+t

Remark 2.7.3. The equivalence of (1) and (2) in Prop. 2.7.1, estab­
lished by Parry following the related innovation of Parry and Tun­
cel for Markov chains [28, 33], is a key step to a proper algebraic
approach to G-SFTs. Otherwise, the facts and constructions above
are at most minor variations of well known results (see e.g. [13, Sec.
3.2]'[11, 1, 28, 29]). We also remark that [21J gives a realization result
for G-SFTs which employs the positive K-theory technique introduced
in [22J.

3. POSITIVE EQUIVALENCE

Below, we allow a square matrix to be n x n or N x N. Infinite
matrices A, B are nonzero in only finitely many entries. Thus infinite
matrices I - A, 1- B equal the infinite identity matrix except in finitely
Inany entries.

Definition 3.1. A square matrix ,V! over 7l or 7lG is irredncible if its
entries are nonnegative (i.e. in 7l+ or 7l+G) and for each index pair
(I, j) there is an k > 0 with ,V!k (I, j) > O. The matrix ,V! is e88entiolly
irredncible if it has a unique principal submatrix that is irreducible and
that is contained in no larger irreducible principal submatrix. Such a
submatrix is called the irredncible core of ,V!.

\Ve consider matrices over 7lG. A ba8ic elementary rrwtrix is a matrix
of the form Eij(x), which denotes a matrix equal to the identity except
for perhaps the off-diagonal ij entry (so, i f j), which is equal to
x. Suppose g E G, E = E ij (g) and A is a square matrix over 7l+G
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This bijection of orbits does not arise from a bijection of points for the
SFTs, but it does correspond to a homeomorphism of their mapping
tori (after changing time by a factor of 2 over the c!open sets {x :
Xo = ref]}, the new flow is conjugate to the old one), which lifts to a
G-equivariant equivalence of the mapping tori flows for the respective
skew products.

The bijection of orbits above respects finiteness of orbits and the in­
duced homeomorphism of mapping tori above respects respects density
of orbits. Consequently, positive equivalence respects essential irre­
ducibility and nontriviality (infinite number of orbits). Positive equiv­
alence need not respect the size of the irreducible core of a presenting
matrix.

Theorem 3.3. Let G be a .finde gro'Up. and let A and B be 8q'Uare
rrwtr'ice8 over 7l+G. Then I - A .t I - B 'if and only 'if SA and S/J arc
G-flow eq'U'ivalent.

Proof. We explained above that I - A .t I - B implies the G-f1ow
equivalence of SA and S/J. Now suppose SA and S/J are G-f1ow equiv­
alent.

First suppose SA and S/J are G-conjugate. Then by Proposition
2.7.1, B and A are SSE over 7l+G. In the polynomial setting of [9],
the G-weighted SFTs defined by A, B can be presented by polynomial
matrices 1- tA, 1- tB, and any SSE over 7l+G from A to B gives rise
to a composition of polynomial positive equivalences via the polynom'ial
8trong 8h'ift eq'U'ivalence eq'Uat'ion8 [9, Theorem 7.2J. These equivalences,
after setting the variable t equal to 1, produce a positive equivalence
from I - A to I-B.

In the polynomial setting of [9], a matrix I - tA as above can be
positively equivalent to a matrix 1- B(t), where the entries of B(t)
may involve higher powers of the variable t. A matrix B(t) over t71+G[tJ
presents a discrete G-tower whose base is obtained by setting every tm

to t, and up to G-conjugacy every discrete G-tower over a G-SFT
arises in this way. Changing tn to tm does not change the image under
t~l. 0

Remark 3.4. There is a more complicated way to handle the preceding
proof, along the lines of [7, pp. 296-297J (which was the case 7lG = 7l).
One can provide a decomposition of a state-splitting SSE move into
positive equivalences, and provide a separate decomposition for an SSE
which for some 'i corresponds to multiplying row 'i by g and column 'i by
g-I. Such moves generate SSE over 7l+G. Lastly one can decompose
a PS move into a finite string of basic positive equivalences.
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4. THE WEIGHT CLASS

Suppose A is a matrix over 7l+G, with 7A the associated labeling of
edges. The we'ight of a path e of edges el e2 ... ek from vertex 'I to j
is defined to be 7(e) = 7A(el)7A(e2)" '7A(ek)' (So, g is the weight of
some path from 'I to j if and only if 119 (An (i, j)) > () for some n E N.)

Definition 4.1. Suppose G is a finite group, A is an essentially ir­
reducible matrix over 7l+G and 'I is a vertex indexing a row of the
irreducible core of A. Then Wi(A) is the subgroup of G which is the
set of weights of paths from 'I to 'I, and the weight class of A, W(A),
is the conjugacy class of vV;(A) in G. A member of W(A) is a we'ight8
gro'Up for A; if vV(A) contains one element, then it is the weights group
for A.

Let us verify two implicit claims of the definition. First, Wi(A) is
a group because it is a semigroup and G is finite. Second, we check
given 'I f j that Wi and Wj are conjugate subgroups in G. Appealing
to irreducibility, let x be the weight of some path from 'I to j and let
y be the weight of some path from j to 'i. Because G is finite, we may
assume y = X-I (if necessary after replacing y with y(xy)k for suitable
k). Then xvVjx- 1 = vVi , because

Wi::) xWjx- 1
::) X(X-IWiX)X- 1 = Wi .

If G is abelian, then there is only one group in the weight class of A,
and it is the union of the Wi(A). If G is not abelian, then UiWi(A) can
generate a group strictly containing each vVi(A), and this larger group
will not be the right group for our analysis.

Proposition 4.2. S'Uppo8e A '18 an 'irred'Uc'ible rrwtrtx over 7l+G. and
there '18 a p08'it'ive 7l+G eq'U'ivolence from I - A to I-B. Then W(A) =
W(B).

Proof. From the description in Section 3, it is clear that when there
is a basic positive equivalence from I - A to I - B, there must be a
vertex 'I, indexing a row in the irreducible core of A and also in the
irreducible core of B, such that Wi(A) and Wi(B) are equal.

Example 4.3. Suppose G is any nontrivial finite group. Let g be an
element of G not equal to the identity e. In the ring 7lG, the formal
element e is the multiplicative identity 1. Consider the matrices over
7l+G,

and



EQUIVARIANT FLOW EQUIVALENCE 13

The weight class W(B) is trivial while W(A) is not, so by Proposition
4.2 there cannot be a positive ZG-equivalence from I - A to I-B.
However, there is an E(ZG)-equivalence:

(~ ~g) (I-A) = (~ ~g) C-=-/ ~n = (~1 ~n = I-B. 0
Example 4.3 shows that positive ZG-equivalence of nontrivial irre­

ducible 8A does not follow from E(ZG)-equivalence. This issue is clar­
ified in the positive K-theory framework [6, Sec. 8J.

\Ve will use the next lemma to pass from a matrix A over Z+G
to a matrix over Z+H, when H is in the weight class. The lemma
is modeled on the Parry-Schmidt argument [31J for presentations of
Markov chains. Recall (l denotes the augmentation map (2.1).

Proposition 4.4. Sn[J[J08e A i8 an irredncible rrwtrix over Z+G, and
H i8 a gron[J in the 'Weight cla88 of A. Then there i8 a diagonal rrwtrix
Dover Z+G 'Wdh each diagonal entry in G (i.e., (l(D) = Id) .mch that
every entry of DAD- i he8 in Z+H.

Proof. First consider H = lY,(A) , where t is some vertex of A. f(Jr
each j pick a path from t to j and let the j-th diagonal element dj of
D be the G-weight of this path. Let bj be the G-weight of a path from
j back to t. Now, if AU, j) has h as a summand, then diluI; i is the
corresponding summand in DAD- i (I, j). 'Write

(4.5) dilui;i = (dihbj)(djbj)-i.

Let k be the order of djbj in G. Then the right hand side of (4.5) is
(dihb j )(djb j )k-i, a product of weights from t to t.

Finally, if H = gW,(A)g-i, then replace D above with gD. 0

The following example is extracted from an example of Derek Holt
analyzed by Parry [29, Sec. 10], and shows that cohomology over G
does not imply cohomology over a group in the weight class.

Example 4.6. Let G = 84 , the group of permutations of {I, 2, 3, 4}.
Define permutations a = (12)(34), b = (13)(24), I' = (14)(23). Let H
be the subgroup {e, a, b, c} '" Z/2 9 Z/2. Consider two 1 x 1 matrices
over Z+H, A = (a+b) and B = (0,+1'). Let dbe the transposition (12),
so dad- i = a and dbd- i = c. Then dAd- i = B and there is a positive
ZG equivalence from I - A to I-B. On the other hand, if we consider
A and B as matrices over Z+G, we see that {H} is the weight class of
A and B (H is a normal subgroup of G), but the matrices I - A and
1- B are not even SL(ZH) equivalent: the determinant is defined for
matrices over the commutative ring ZH, and det(I - A) f det(I - B).
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Fortunately, the passage from G to the weight class is no worse than
indicated by the previous example.

Theorem 4.7. Let A and B be e88ent'iolly 'irred'Uc'ible rrwtrtCe8 over
7l+H. 8'Uch that H 'i8 a we'ight., gro'Up for A and B. and H 'i8 a 8'Ubgro'Up
of the .finde gro'Up G. Then there 'i8 a p08d'ive 7l+G eq'U'ivolence from
I - A to I - B 'if and only 'if there ex'i8t8 an element '/ of G 8'Uch that

• '/H,/-I = H. and
• there 'i8 a p08d'ive 7l+H eq'U'ivolence from I - A to 1- ,/-1 B'j.

Proof. 'lYe will prove the nontrivial direction ("only if"). The assumed
positive 7lG-equivalence from I - A to I - B involves time changes as
well as conjugacies, and we refine the discussion of the proof of Propo­
sition 2.7.1 to incorporate these time changes; they can be captured
by including with the splittings from A to C a set of Parry-Sullivan
moves, which can like the splittings be mirrored in the positive equiva­
lence framework using only matrices over 7l+H. Thus, as in the proof
of Proposition 2.7.1, we end up with n(A') = C = n(B'); a diagonal
D with D(i, i) = gi E G such that DA'D- I = B'; a positive 7l+H
equivalence from I - A to I - A'; and another from 1- B to 1- B'.

Let 7A and 7lJ denote the edge-labeling functions defined by A' and
B'. Then for any path e = ele2'" ek of edges from vertex 'i to vertex
j, we have

(4.8)

Because H is a weights group for A and B and all entries of A and B
are in 7l+H, it holds for each pair of vertices 'i,j in the irreducible core
that every element of H arises as 7A (e) for some path e from 'i to j.
Because the right side of (4.8) lies in H, we have giH(gj)-1 C H. We
conclude for every 'i, j that giH(gj) -I = H. Let '/ = fl!. For each j,

H H -I -I( H -I) -IH=!Jj ~t . = !J/Y . ~t ~t . = !J/Y .

and therefore for some hj E H we have gj = hj '/. Now D = (D'hI,
where D'(.i, j) = hj, and therefore

,/-1 B"/ = b- I D"/ )A'b- I D"/ )-1

The entries of ,/-1 D"/ lie in 7l+H. 'lYe have now a 7l+H SSE from
A' to ,/-1 B' '/. The 7l+H SSE from B' to B yields a 7l+H SSE from
,/-IB"/ to ,/-IB'/, by replacement of each elementary SSE (R,8) with
,/-1 R'/, ,/-1 Eh. Thus we have a 7l+H SSE from A' to '/- IB'/, and
there is a positive 7l+H equivalence from I - A' to I - ,/-1 B'/, and by
composition from I - A to I - ,/-1 B'/. 0
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Theorem 4.7 is reminiscent of a similar reduction of Parry and Schmidt
in their extension of Livsic theory to nonabelian cocycles [29, Theorems
6.4, 9.5], [36J. They were particularly concerned with deducing coho­
mology of certain G-valued functions given conjugate weights on each
periodic orbit. This is a much stronger assumption than we use, and
yields a correspondingly stronger conclusion.

5. EQUIVALENCE THROUGH VERY POSITIVE MATRICES

In this section we give the heart of the proofs of our main results.
Throughout this section k denotes a positive integer greater than 1 and
all matrices will be k x k. Let 9n+ denote the set of k x k very positive
matrices over 7lG ("very positive" was defined in (2.1)). 'lYe sayan
equivalence (U, V) is a ba8'ic elementary eq'U'ivoJence if one of U, V is I
and the other has the form Eij(g) or Eij (-g).

Definition 5.1. An equivalence (U, V) ; B -t B' is a p08'it'ive eq'U'iva­
/£ence thro'Ugh 9n+ if it can be given as a composition of basic elementary
equivalences over 7lG,

B = Bo -t B I -t B2 ... -t Bn = B' ,

such that every B i is in 9n+.

Lemma 5.2. S'Upp08e (U, V) ; A - I -t A' - I 'i8 a p08'it'ive eq'U'ivoJence
thro'Ugh 9n+. Then (U, V) ; I - A -t I - A' 'i8 a p08'it'ive eq'U'ivoJence.

Proof. It suffices to consider the case that (U, V) is a basic elementary
equivalence, and this case is clear. 0

The lemma explains our interest in the following theorem.

Theorem 5.3. S'Upp08e U and V arc 'in E(k,71G) and UBV = B'.
w'ith Band B' rrwtrtCe8 'in 9n+. S'Upp08e 01.,0 that there arc rrwtrtCe8
X and Ytn E(k, 7lG) 8'Uch that XBY = D. where D IW8 block d'iagonal
form h SF.

Then (U, V) ; B -t B' 'i8 a p08'it'ive eq'U'ivoJence thro'Ugh 9n+.

The rest of this section is devoted to the proof of Theorem 5.3, which
generalizes the arguments of [7, Sec. 5J. 'lYe begin with a definition.

Definition 5.4. A 8'igned tmn8p08'it'ion rrwtrtx is the matrix of a trans­
position, but with one of the off-diagonal1's replaced by -1. A 8'igned
perrrwtat'ion rrwtrtx is any product of signed transposition matrices.

It is not difficult to verify that the matrix of any even permutation
is a signed permutation matrix.

Recall that n(A) is the matrix obtained by applying the augmenta­
tion map n to A entrywise.
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Lemma 5.5. Snpp08e B E 9Jl+ and E = Eij(g) or E = Eij (-g) where
g E G. Snpp08e the ith row of n(EB) i8 not the zero row. Then in
E(k, ZG) there i8 a nonnegative rrwtrtx (J and a 8igned perrrwtation
rrwtrtx 8 8neh that (8E, (J): B -t 8EB(J i8 a p08dive eqnivoJenee
throngh 9Jl+.

Proof. If E(i, j) = g, then let (J = 1 = 8. Now, suppose E(i, j) = -g.

Select I such that n(B(i,/) - gB(.i,/)) ie 0, and set x = B(i,I)­

gB(.i, I), that is x = (EB)(i, I). Let g = LhEG h E ZG. Then
xg = L(LXj)h, where x = Lxtf, with all sums over G. Thus
all coefficients (xg)h of xg are the same nonzero number.

Case I: xy »0. Here we may repeatedly add g times column I of
B to the other columns, until we have a matrix B' with B' (i, Tn) »
B'(.i, Tn) for all Tn = 1, ... , k. This B' is B(J for some (J which is a prod­
uct of nonnegative basic elementary matrices, and (E, (J): B -t EB(J
is the composition of positive equivalences through 9Jl+, (l, (J): B -t
B(J followed by (E,I): B(J -t EB(J. Let 8 = l.

Case II: xy «0. f(Jr concreteness of notation, let (i,j) = (1,2).
Let jHt denote (in this proof only) row I of a matrix jH. \Ve can choose
a suitable (J, in the manner of Case I, to obtain (J nonnegative such
that (B(Jh » (B(Jh and (gB(Jh » (B(Jh and (l, (J): B -t B(J is a
positive equivalence in 9Jl+. For simplicity of notation, we now write
B(J as B and we restrict what we write to rows 1 and 2, e.g.

(
0

Let 8 = -1

E = (~ -;g)

~). Then

(
0

(8E)B = -1

(
0
-1

and

Write 8E as the product

(1 0) (1 0) (1 1) (1 0)8E=E,E2ECjE4 = -1 1 g 1 01 -1 1
·Write the equivalence 8E : B -t 8EB as the composition of left
multiplications by E" E 2 , E;J, E4 :
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This finishes the proof.
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Lemma 5.6. Sn[J[J08e B '/8 a k x k rrwtrtx oveT 7lG and n(B) IW8
Tank at Im8t 2. Sn[J[J08e U E E(k,71G), and no TOW of n(B) aT n(UB)
'/8 the zeTa TOW. Then U '/8 the [JTodnct of ba8'/C elernento:ry rrwtrtCe8,
U = En" ·EI , .Inch that faT 1 S;.i S; n the rrwtrtx n(EjEj _, ·· ·E,B)
doe8 not have a zeTa TOW.

PTOOf. Without loss of generality, assume U f I. The proof is clear
for k = 2, since n(B) will have full rank. Let k ;:,. 3. (The reader may
wish to work through the proof for k = 3 on a first reading.)

Let £ (i) denote the set of 7lG matrices which equal I both on the
diagonal and outside of row '/. Let U be the set of factorizations U =
Un ... UI such that for 1 S; II. S; n, the matrix [h is not the identity and
there is an index '/h such that [h E £(ih). Given such a factorization
U = Un ... UI, let

z = #{h: 1 S; II. S; n and row '/h of n([h'" U,B) is the zero row}.

Step 1. \Ye will produce an element of U for which z = O.
By induction, it suffices to begin with a factorization U = Un ... UI

from U for which z > 0, and produce another factorization from U
with reduced z. Pick" minimal such that row '/" of n(U,,' .. U,B) is
zero, and let t be minimal such that t > " and '/t = '/". (This t exists
because row '/" of n(UB) is nonzero.) \Ye will change the factorization
by replacing the subword Ut ··· U" with a suitable word U~.,·· U:, to
be defined recursively; T will either be t or t - 1.

First pick j" f '/" such that row j" of n(U,,_I ... UIB) is nonzero
(U,,_I ... UIB just denotes B in the case that " = 1). Choose F" an
elementary matrix which acts to add a multiple of row j" to row '/", such
that (to avoid re-indexing) F,-'U" f I. Define U: = F,-'U" E £(i,,).
Now Ut ··· U" = Ut ··· U,,+,FJJ.: and row '/" of n(U:U,,_1 ... U,B) is not
zero.

Now we give the recursive step. Suppose" < m = l' + 1 S; t and we
have produced Ut ... UT+ I Fm- IU; ... U: = Ut ... U" (and consequently,
Fm - 1u;· .. U,~ = Um - 1 ... U8 ) such that there is a nonzero integer (1n-l

and an index .im-I f '/." such that Fm - I (i." .im-I) = (;,,-1 and otherwise
Fm- I = I. \Ye will replace UmFm- 1 with new terms. There are three
cases.

Case 1: m < t and jm-l f i m • Set Fm = Fm- I and U;+I =
F,~'UmFm' For example, if k = 3 and (i.,,'/m,.im-I) = (1,2,3), then
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we would have for some 11, Ii, C that

C) (1(J 11

1 (J

C) (1(J 11

1 (J

Now U:+ 1 E EUrn), and FnJJ:+1 = UrnFrn-l' and row iTa of Urn··· [JIB
equals row 1m of U;+ IU; ... U:U8- 1 ••• UIB.

Case 2: m < t and jm-l = im • Choose an index .im such that
.im if: {lm,18} and row.im of n(U;··· U:U8- 1 ••• U,B) is not zero. This
is possible because rows 18 and .im-I of n(U; ... U:U8- 1 ••• UIB) are
linearly dependent, (since row 18 of FmU;··· U:U8- 1 ••• UIB equals row
18 of Um '" UIB which is the zero row under n) and rank(n(B)) ;:,. 2.
Pick Fm with Fm(l8' .im) = 1 and otherwise Fm = I. Set U;+I =
F1;;IFrn _ 1 and U:+2 = Fl;;IUrnFrw Now

• FmU;+2U:+I = Fn~(F;;;IUn~FTn)(F;;;IFTn_d = UrnFrn-h
• U;+I E £(18) and row 18 of n(U;+1 ... U:U8- 1 ••• U,B) is not

zero,
• U;+2 E £(lm) and row 1m of U;+2'" U:U8- 1 ••• UIB equals row

1m of Um ' .. UIB.

Case 3: m = t. If UtFt- 1 f I, then set U;. = U;+I = UtFt- 1 E
£(18): row 18 is the same in the matrices u~.,·· U:U8- 1 ••• UIB and
Um ... UIB. If UtFt- 1 = I, then simply delete UtFt- I, so U~. = U;.

The new factorization has z reduced. This concludes Step 1.
Step 2. Suppose we have the factorization from U with z = (J,

U = Un'" UI, with lh E £(lh)' For 1 S; II. S; n, we will replace lh with
a suitable product of elementary matrices in £(ih)' The argument will
be clear from the case II. = 1. For notational simplicity, suppose I I = 1.
'Write UI as a product UI = Ek , ... E I of basic elementary matrices
which agree with I outside row 1. Now, choose a row I > 1 of B such
that row I of n(B) is not a rational multiple of row 1 of n(UIB) (such a
row I exists because rank(n(B)) > 1). Let Eo be the elementary matrix
which adds row I to row 1: if 8 > (J, then n((Eo)8B) has row 1 not zero.
Choose a nonnegative integer nt large enough that for 1 S; .i S; k l , row
1 of n([Ej · .. E I(Eo)mJB) is nonzero. Then for (J S; 8 S; nt,

[E~j-8][Ek ... EdB

[E~j-8JUIB
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and therefore row 1 of n([Eo"][Ekl ... E\ (Eo)mJB) cannot be zero. (Since
each E i , for i = 0, ... ,k\, affects only row 1, they all commute with
each other.) Thus the factorization U\ = (Eo)-mEkl .. ·E\(Eo)m has
the required properties. 0

Lemma 5.7. S'Uppo8e Band B' are in 9Jl+; n(B) and n(B') have
rank;:" 2; U and Ware in E(k,ZG); the rrwtrtx n(UB) ha8 at lea8t
one 8trtctly p08dive entry; and UB = B'W. Then the eq'Uivolence
(U, W - \); B -+ B' i8 a p08dive eq'Uivolence thro'Ugh 9Jl+.

Proof. We divide the proof into four steps.
Step 1: Reduction to the case n(UB) has all entries posi-

tive. Consider an entry n ((UB) (i, j)) > O. We can repeatedly add

column j to other columns until row i of n(UB) has all entries strictly
positive. This corresponds to multiplying from the right by a nonneg­
ative matrix q in E(k,Z) c E(k,ZG), giving UBq = B'Wq. Then
we can repeatedly add row i of UBq to other rows until all entries of
n(UBq) are positive. This corresponds to multiplying from the left by
a matrix P in E(k, Z), resulting in a matrix (PU)(Bq) = (PB')(Wq)
whose augmentation has all entries positive. Also, there are positive
equivalences in 9Jl+ given by

(I,q); B -+ Bq, (P,I); B' -+ PB' .

Therefore, after replacing (U, B, B', W) with (PU, Bq, PB', wq), we
may assume without loss of generality that n(UB) has all entries pos­
itive.

Step 2: Factoring U and B -+ SUBQ through 9Jl+. By Lemma 5.6,
we can write U as a product of basic elementary matrices, U = E t ... E\,
such that for 1 S; j S; I, the matrix n(Ej ... E\ B) has no zero row. By
Lemma 5.5 and Step 1, given the pair (E\, B), there is a nonnegative
q\ in E(k, ZG) and a signed permutation matrix 8\ such that

(8\E\, q\); B -+ 8\E\Bq\

is a positive equivalence in 9Jl+. \Ve observe that

UBq\ = 8,\[S\Et8'\J··· [S\E28,\][S\EdBq\

Now, for 2 S; j S; I, the matrix 8\Ej 8,\ is again a basic elementary
matrix Ej, and the matrix n(Ej··· E~U:';\E\Bq\)) has no zero rows.

Again using Lemma 5.5, for the pair ([S\E28,\], [S\E\Bqd) choose
a signed permutation matrix 82 and nonnegative q2 producing a pos­
itive equivalence in 9Jl+
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so that we get a positive equivalence in 9Jl+

([S2S\E2S,'][S,Ed, Q, (2): B --t [,'hS,E2E,BQ,Q2]

and we observe that

UBQ,Q2 = S,'Si'[S2S,EtS,'Si']··· [S2S\E j S,' Si'][S2S\E2S,'][S,Ed B Q,Q2 .

Continue this, to obtain a signed permutation matrix S = St· .. S, and
nonnegative Q = Q, ... Qt such that

UBQ = S-'[St··· S,EtS,'··· Si~\]'" [S2S\E2S,'][S\EdBQ

= S-'(SUBQ)

and (SU, Q): B --t SUBQ is a positive equivalence in 9Jl+.
Step 3: Realizing the permutation. We continue from Step 2.

It remains to show that

(S,J): UBQ --t SUBQ

is a positive equivalence in 9Jl+. Since S is a product of signed transpo­
sition matrices, it may be described as a permutation matrix in which
some rows have been multiplied by -1. Since UBQ and SUBQ are
strictly positive, it must be that S is a permutation matrix. Also,
det(S) = 1, so if Sf I then S is the matrix of a permutation which is
a product of 3-cycles. So it is enough to realize the positive equivalence
in 9Jl+ in the case that S is the matrix of a 3-cycle. For this we write
the matrix

(
010)

C= 0 0 1100
as the following product CoC, ... Co:

(1 0 0) (1 00) (1 ° -1) (1o 1 0 -1 10 01 0 0
o -1 1 0 01 00 1 0

10) (1 00) (1 0100100101 101 00
0)1 .
1

For 0 s: i s: 5, the matrix CiCi+' ... Co is nonnegative. Therefore
the equivalence (C, I) : A --t CA is a positive equivalence through 9Jl+
whenever A E 9Jl+.

Step 4. Conclusion. \Ve now have several positive equivalences
through 9Jl+, namely (SU,Q) : B --t SUBQ, U:;-',J) : SUBQ --t
UBQ, and (I,Q-'): UBQ --t UB. By composition, (U,J) is a positive
equivalence through 9Jl+ from B to UB = B'vV. By a similar argument
(invoking corollaries to Lemmas 5.5 and 5.6 for multiplications on the
right), we can show (I, VV) is a positive equivalence through 9Jl+ from
B to B'W. This proves Lemma 5.7. 0
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Proof of Theorem 5.S. \Ve will use Lemma 5.7 twice: first to give a
positive equivalence from B to itself, and then to give another from B
to B'. The inverse of the first followed by the second will equal (U, V)
and thus establish that (U, V) is a positive equivalence.

Notation: f(Jr a 2 x 2 matrix Hand mEN let L = Lm (H) =

C~! ~)1) H 9 h-2. For a matrix q let q{12; *} denote the submatrix

consisting of the first two rows of q.
By assumption, there are matrices X and Y in E(k,71G) such that

XBY = D, where D has block diagonal form h 9 F.
Step 1. We will show that for a suitable 2 x 2 matrix H and integer

m large enough the self equivalence (X-'LX, YL-'Y- ' ) : B --t B
is a positive equivalence. The matrix n(XBY){12; *} = n(D){12; *}
has rank two, so n(XB){12; *} has rank two, and thus there exists an
HE 8L(2,71) such that the first row R of H[n(XB){12; *}] has both
a positive and a negative entry.

Let C be the first column of n(X- I) = n(X)-I. Since C is not the
zero vector the k x k matrix CR has a positive and a negative entry.

Now, if m is sufficiently large, then the corresponding entries of
n(X- ILXB) and C R will have the same sign provided the correspond­
ing entry of C R is not zero.

We now apply Lemma 5.7 to see that (X- I LX, Y L -I y- I
) is a pos­

itive equivalence from B to itself.
Step 2. For large enough m the entries of n(UX-'LXB) agree

in sign with the corresponding nonzero entries of n(U)CR. Since
n(U) is nonsingular, the matrix n(U)CR is nonzero and so contains
positive and negative entries, because R does. Thus, by Lemma 5.7
(UX-'LX,YL-'Y-'V) is a positive equivalence form B to B'. This
concludes the proof. 0

6. THE MAIN RESULTS

Given an n x n matrix A, we define (I - A)oo to be the N x N matrix
equal to I - A in its n x n upper left-hand corner and equal to the
infinite identity outside this block. The next theorem is our central
result.

Theorem 6.1. Let G be a .finde fjro'Up, and let A and B be nontriv'ial
e88ent'iolly 'irred'Uc'ible rrwtrice8 over 7l+G 8'Uch that W(A) = W(B) =
G. If (U, V) : (I - A)oo --t (I - B)oo 'i8 an E(71G)-eq'U'ivolence, then d
'18 a p08d'ive 7lG eq'U'ivolence.
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Proof. First, we may assume that that A and B have a common size k
with only zero entries outside the upper left k - 2 x k - 2 corner (ex­
panding a matrix A to a larger matrix with zero entries does not affect
(I - .1)00)' and consequently the 2 x 2 identity matrix is a summand
of I - A and of I-B. By Lemma 6.6 (which we defer to the end of
this section), after replacing I - A and 1- B with matrices positively
equivalent over 7lG, we may assume that A - I is very positive and
likewise that B-1» O. By Lemma 5.2, (U, V) : I - A -t I - B is a
positive equivalence if (U, V) : A - I -t B-1 is a positive equivalence
through 9Jl+ (Definition 5.1). By Theorem 5.3, (U, V) : A - I -t B-1
is indeed a positive equivalence through 9Jl+. 0

Remark 6.2. Note, in Theorem 6.1 we not only showed a positive
equivalence exists, in addition we showed every equivalence is a positive
equivalence. In the case G is trivial, this additional information proves
[7, Sec. 7] sUljectivity of a certain homomorphism to Aut(cok(I - A))
from the mapping class group of the mapping torus of an irreducible
nontrivial SFT SA. (For this homomorphism, the action of a basic flow
equivalence is multiplication by the corresponding basic elementary
matrix.) In the case G is nontrivial, our map goes from an equivariant
mapping class group to the 7lG module cok(I - A), and from Theo­
rem 6.1 we similarly know the range in Aut(cok(I - A)) is the set of
automorphisms induced by E(7lG) self equivalences of (I - A).

Remark 6.3. Suppose in Theorem 6.1 that (I - .1)00' (I - B)oo, U
and V equal I outside their upper left 71 x 71 corners. Then the proof of
Theorem 6.1 shows that the factorization of (U, V) into basic positive
equivalences can be achieved using only matrices which equal I outside
their upper left (71 + 2) x (71 + 2) corners.

Theorem 6.4 (Classification Theorem). Let G be a .finde gro'Up. and
let A and B be e88entiolly irred'Ucible nontrtvial rrwtrtCe8 over 7l+G.
For SA and S/J to be G-ftow eq'Utvolent. d i8 nece88ary that W(A) =
W(B). Now 8'Upp08e W(A) = W(B) and H i8 a gro'Up in thi8 weight
cla88. Let A and B be rrwtrtCe8 over 7lH which are p08divcly 7lG eq'Uiv­
alent to A and B. re8pectivcly. (A and B exi8t by Propo8dion 4.4).
Then the following are eq'Uivolent:

(1) SA and S/J are G -.flow eq'Uivolent.
(2) There exi8t8 'I E G .mch that 'IH'I- 1 = H and there i8 an

E(7lH) eq'Uivolence from (I - .1)00 to (I - 'IB'I- 1)00'

Proof. The necessity of W(A) = W(B) was Proposition 4.2. The impli­
cation (1) ==? (2) follows from Theorems 3.3 and 4.7. The implication
(2) ==? (1) follows from Theorem 6.1. 0
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Theorem 6.4 reduces the G-f1ow equivalence classification to the
problem of classifying matrices up to E(ZG) equivalence, which we
discuss in Sections 8 and 9. The positivity constraints on the matrices
I - A we study does not lead to a smaller E(ZG) equivalence problem,
because for any finitely supported B over ZG there is an E(ZG) equiv­
alence from I - B to a matrix I - A where A is essentially irreducible
and nontrivial with weight class {G} (Proposition 8.8). We extract
now one consequence of Theorem 6.4 and the algebra. SK I(ZG) IS

discussed in Section 8.

Theorem 6.5. S'Upp08e G 'i8 a .finde abel'ian gro'Up and A '/8 a 8q'Uare
'irred'Uc'ible rrwtrix over Z+G 8'Uch that I - A 'i8 'ir(ject'ive (i.e. det(I - A)
'i8 not a zero d'iv'i80r 'in ZG). Then the follow'ing hold.

(1) The rwmber of d'i8t'inct G-.flow eq'U'ivolence ela88e8 de.fined by
rrwtrice8 B .mch that det(I - B) = det(I - A) 'i8.finde.

(2) IfSK,(ZG) 'i8 triv'iol and det(I - B) = det(I - A), then A and
B determ'ine the .lame G-.flow eq'U'ivolence ela88 'if and only 'if
they have the .lome we'ight ela88 and the ZG mod'Ule8 cok(I - A)
and cok(I - B) are 'i80morph'ic.

Proof. (1) When I - A is injective, cok(I - A) is finite. Therefore
(crudely) only finitely many isomorphism classes of cokernel module are
possible. The conclusion now follows from the Classification Theorem
6.4, Corollary 9.9, and the finiteness of SKI (ZG) [27J. (2) This follows
from the Classification Theorem 6.4 and Proposition 9.5. 0

\Ve finish this section with the (somewhat tedious) proof for the
reduction to very positive matrices.

Lemma 6.6 (Very Positive Presentation). Let A be an e88ent'iol'y 'ir­
red'Uc'ible m x m rrwtrix over Z+G. m ;:,. 2, .mch that Wi(A) = G for
1 s: 'i s: m and ettA) IW8 more than one cyele. Then there 'i8 a p08­
d'ive eq'U'ivolence over ZG from I - A to a rrwtrix I - B .mch that
119 ((B - I) (i,.1)) > 0 for every g 'in G and every entry 'index (i,.1). 'i. e.•
B - I» O.

Proof. \Ve sequentially adjust the matrix A without renaming it each
time. Let A be n x n, where n changes as A does. \Ve relabel so that
the irreducible core submatrix is in the upper left-hand corner.

Step 0: Diagonalizing cycles. First we describe a certain cycle­
shortening construction. Let 'i = 'io, 'i I, ... ,'ik = 'i be a finite sequence
of indices corresponding to a cycle (cyclic path of edges) C = el e2 ... ek
with weight g, where et runs from 'i t- I to 'it and has weight gt (so
glg2'" gk = g). \Ve require that some intermediate index 'iT is not 'i.
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We will construct a positive equivalence (I - A) -t (I - B) for which
we claim AU, i) ;::> B(i, i) +!I and also A(t, t) ;::> B(t, t) for all t. The
latter part of this claim will be clear because the construction will be
a composition of forward basic positive equivalences.

First suppose the path length k satisfies k > 2. Let I: denote the
edge Cr -

(1) If r < k - 1, then produce a new matrix I - A' by applying
the basic positive equivalence (Ei"i'+l (!IT+I), I). The A-cycle C
gives rise to an A'-cycle C', which looks like C except that any
1:,,1:,,+ I for which 1:" = I: is replaced by an edge from i"_1 = iT to
i,,+ I with weight !h!h+ I, The cycle C' is still a cycle from i to
i, it still passes through an index other than i, and it has the
same weight as C.

(2) If we do not have r < k - 1, then r = k - 1 ;::> 2, and we may
similarly apply the basic positive equivalence (I, Ei'_l ,i, (!IT)) to
shorten the cycle.

Repeating the moves above, we reach the case of path length k = 2.
Apply the basic positive equivalence (Eio,il (!II), I). We have shortened
the cycle to a cycle from i to i with the same weight. This completes
the proof of the claim.

Given A, let A" denote the irreducible core of A, its maximal irre­
ducible principal submatrix.

Step 1: Nonzero trace. If A has zero trace, then diagonalize a
cycle as in the previous step to achieve nonzero trace.

Step 2: Trim. Suppose row j of A is zero and some entry A(i, j) f
O. Let A(i,j) = !II + ... + !lk and set E = Eij(!l1 + ... + !lk), so
E = Eij(!lI) ... Eij(r/k). Then E(I - A) = (I - B) where B = A except
for the entry B(i, j) = 0, and (E,I) ; (I - A) -t (I - B) is a positive
equivalence. After if necessary applying such positive equivalences, and
analogous equivalences (E, I), we may assume that AU, j) = 0 unless
both i and j are indices for A".

Step 3: Core at least 2 x 2. Suppose the irreducible core A" is
1 x 1, say A" = (A(I, 1)). Because there is more than one cycle, we can
write A(I, 1) =!I + Ii where !I E G and 0 f Ii E 7l+G. Subtract !I times
row 2 of (I - A) from row 1; then subtract column 2 from column 1.

The result of these two positive equivalences is a matrix with (~ g)
as the irreducible core.

Step 4: Very positive core diagonal. At this point we have A"
at least 2 x 2 in size and with an index i such that A"(i, i) f O. Pick
an index j f i for A". Every element of G is the weight of some cycle
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from i to i, so it follows by irreducibility of A" that every element of
G is the weight of some cycle from j to j which runs through i. This
statement remains true after we diagonalize a cycle from j to j as in
Step 0, because i and j must remain in the irreducible core, because
the if and jj entries are nonzero and do not decrease. Consequently
we can diagonalize cycles until A"(t, t) » 0 for every diagonal entry of
4"

Step 5: A=core. If 1 S; t S;m and t is not an index for A": pick an
index 8 for A"; subtract row t of A from row 8; then subtract column
t from column 8. This positive equivalence I - A -t I - C produces
C whose irreducible core has an index set enlarged by {t}. Apply Step
4 again to the tt and 88 entries as needed to get all diagonal entries of
C' »0. Repeat until A = A" with very positive diagonal.

Step 6: Very positive A. Suppose i ie j, g E G and A"U,j) - g ;:,.

O. HJllowing Step 3, (Eij(g),I) : (I - A) -t (I - C) is a basic positive
equivalence; CU, j) » 0; and C ;:,. A. So, we may apply basic positive
equivalences to arrive at A" on an unchanged index set with A" » O.

7. TWISTWISE FLOW EQUIVALENCE

As noted in the Introduction, when G = 7l/2 the equivalence relation
of G-flow equivalence is called twistwise flow equivalence. Let t denote
the generator of 7l/2, so t 2 = 1. We write A(t) for a matrix over 7l+G
and let A (1) and A (-1) denote the matrices over 7l obtained from
setting t to 1 and -1.

Suppose A(t) is given. We define the ribbon .let R to be a flow on
a fiber bundle with fiber (-1,1) over the one-dimension suspension
flow (B, 'I)) of A(I), associated to A(t) as follows. We can pass to a
higher block presentation so that we may assume A(t) has only l's,
O's and t's as entries. Then there is an oriented Markov partition
1) = {D" ... ,Dd on a cross section of F that induces A(I). Let
B ij = {x E B Ix E '1)t(V),V E Di, and '1)r(y) (V) E D j forO S; t S; r(v)},
where r is the first return time map for 1). Let Rij = Bij X (-1,1).
Attach the nonempty Ri/s so that the core is F and the gluing of the
edge fibers (end points of the Bij crossed with the fiber (-1,1)) are the
identity if Aij = 1 and multiplication by -1 if Aij = t. Call this set R.
\Ve place a flow on R that agrees with 'I) on the core B and so that all
other orbits are forward asymptotic to B and exit R in reverse time.
Two matrices are twistwise flow equivalent if and only if they have
topologically equivalent ribbon sets. Ribbon sets are realized naturally
as stable bundles of basic sets of Smale flows [37J.
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\Ye now define the invariants of twistwise flow equivalence established

in [37, 38, 39J. Let T = (~ ~). If A(t) is k x k define A(T) to

be the 2k x 2k matrix over Z+ obtained by converting each a + lit

(
a Ii) .entry of A(t) to the block aI + liT = Ii a . The deterrlllnants of

the three matrices I - A(I),! - A(-I),! - A(T) were established as
invariants of twistwise flow equivalence, as were the isomorphism classes
of their cokernel groups. (We remark that the group cok(I - A(T)) is
isomorphic to the group obtained from the ZZ!2 module cok(I - A(t))
by forgetting the module structure.) The orientability of the ribbon
set was determined by checking the diagonal entries of Ai(t) for i =
1, ... , k for t's. The ribbon set is orientable if t appears in none of these
entries, and is nonorientable otherwise. Orientability is an invariant
independent of the others; in the setting of this paper, orientability is
triviality of the weight class.

From the results of this paper, it is easy to see that the previously
known invariants were not complete. For example, none of those in­
variants distinguish a matrix and its transpose, so Example 8.6 and
Proposition 8.8 can be used to produce a pair which agree on the pre­
viously known invariants but are not twistwise flow equivalent. The
methods and results of this paper are also useful for establishing twist­
wise flow equivalence when it holds.

Example 7.1. Let A = (~ ~). B = G~). and E = (~ i).
Then E(I - A) = I - B, so by Theorem 6.4, A and Bare twistwise
flow equivalent. This answers a question in [39, page 9J. Here E does
not give a basic positive equivalence. However, following the philosophy

of the proof of Theorem 6.1, if we let (JI = Gnand (J2 = (~ n
then (I,(JI), (I,(J2), (E,!) , (I,(J2 1

), (I,(Jjl) is a sequence of basic
positive equivalences taking I - A to I-B. 0

In [38J Table 2 lists some 3 x 3 matrices. Several pairs have identical
invariants: counting down, 1 & 5, 2 & 7, 4 & 13, and 17 & 18. It was
unknown if they were twistwise flow equivalent. \Ye can now report
that simple hand calculations show that the matrices corresponding
to these pairs are twistwise flow equivalent. Section 8 includes some
additional results on twistwise flow equivalence.
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8. E(ZG)-EQUIVALENCE

In this section, we'll give some general background on E(ZG)-equivalence,
with some results and examples for the case G = Z/2. Recall our con­
vention (2.1) that in this paper a ring means a ring with 1.

Let R be a ring. E(n, R) denotes the group of n x n elementary
matrices over R, the subgroup of GL(n, R) generated by basic elemen­
tary matrices. Similarly, we let E(R) denote the subgroup of GL(R)
generated by the basic elementary matrices. The group GL(R)/E(R)
is the abelian group K I(R) studied in algebraic K-theory [34J. When R
is commutative (so SL(R) can be defined as the group ofinvertible ma­
trices with determinant 1), the quotient group SL(R) /E(R) is denoted
SKI (R). If G is a finite group, then SKI (ZG) denotes the kernel of the
map K I(ZG) -t K I(iQG) (the definitions agree if G is abelian). If Gis
finite, then SKI (ZG) is finite. If R is Z, or R = ZG with G = Z/2,
then every element of SL(R) is a product of basic elementary matrices,
and SKI (R) is trivial. In general, though, SKI (ZG) is not trivial when
G is a finite group. For example, SKI (ZG) is not trivial if G = (Z/p)n
with p an odd prime and n ;:,. 3. See [27J for the characterization of
the finite abelian G with trivial SKI (ZG) and other background on
SKI (ZG).

'lYe will sayan n x n matrix Dover Z is a Smdh non/wi form if D is a
diagonal matrix diag(iii, li2 , ••• , lin) satisfying the following conditions:
lii+ I divides Iii whenever 1 < i s: nand lii+ I ie 0; lii+ I = 0 implies Iii =
0; and Iii ;:,. 0 if i > 1. (Our notation here is slightly unconventional.)
It is well known that any n x n matrix over Z is SL(n, Z) equivalent to
a unique Smith normal form. Because E(n, Z) = SL(n, Z), the Smith
normal form also gives a complete invariant of E(n, Z)-equivalence.

This classification extends to :Pi x :Pi matrices. 'lYe will say a Smith
normal form is a matrix whose upper left corner is a finite Smith normal
form and which otherwise equals the infinite identity matrix. If A is
an n x n square matrix over Z, then (I - A)oo is E(Z)-equivalent to
a unique Smith normal form, and this form is the matrix whose upper
left corner is the Smith normal form of In - A, and which equals I
elsewhere. (It is to make this last statement that we reversed the
usual order of diagonal elements in our definition of Smith normal
form.) So in the Z case, we have everything: a good normal form; a
good algorithm for generating it; a decision procedure for determining
whether two matrices are equivalent; an equivalence classification given
by the classification of the cokernel group (Z-module) with a little more
information (sign of the determinant) to reflect the refinement of GL(Z)
equivalence by E(Z) equivalence; and immediate stabilization (i.e., if
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A and Bare 71 x 71 and (I - A)oo and (I - B)oo are E(Z) equivalent,
then (I - A) and (I - B) are E(n, Z) equivalent).

Given G a finite group, the results of this paper obviously lead one
to ask similarly for a classification of matrices over ZG up to E(ZG)­
equivalence, when the matrices are 71 x 71, or equal I except in finitely
many entries. This very natural algebraic problem is far more difficult
than in the Z case. In particular, there is nothing so nice as the Smith
normal form; even for G = Z/2, a matrix might not be equivalent
over GL(ZG) to any triangular matrix (8.7), or to its transpose (8.6).
The problem even of GL(ZG) equivalence seems not to have been ad­
dressed directly in the algebra literature, although there are powerful
results [16J in a more general setting which point the way to substantial
progress. In the rest of this section, we make no attempt to address
the general problem, but we do give some illustrative concrete results
and examples in the case G = Z/2.

From here until Proposition 8.8, G = Z/2. 'lYe write elements of ZG
in the form a + tb, where a, b are integers and t 2 = 1. 'lYe will use the
well known [34, Sec. 2.4J embedding of ZG into Z2, 8: a + tb >-t (a +
b, a - b). One easily checks that 8 is a ring monomorphism whose image
is {(e, d) : e == d mod 2}. If we write a matrix over ZG in the form
A+tB (A and B over Z), then applying 8 entrywise gives an embedding
of matrix rings (also called 8), A + tB >-t (A + B, A - B). Under this
embedding, the image of SL(ZG) is {(C, D) E SL(Z) x SL(Z) : C ==
D mod 2}. We will say that a matrix ,VI over ZG is a Smith normal
form if 8(},!) = (C, D) where C and D are Smith normal forms for
Z. In this case, ,VI is diagonal over ZG and its diagonal entries satisfy
the divisibility and zero conditions we gave above for the Z form; the
nonnegativity condition is replaced by the corresponding nonnegativity
of the image under 8. Clearly, ,VI can be E(ZG) equivalent to at most
one Smith normal form.

Theorem 8.1 (Normal F<mn). Let G = Z/2. Let ,VI be an 71 x 71

7Iwtr'ix over ZG. Write ,VI = A + Bt wdh A and B 71 X 71 7Iwtriee8
over Z. If det(A + B) '18 odd, then ,VI '18 E(ZG)-eq'U'ivolent to a Smdh
nomwl form. Th'i8 '18 the form eorre8pond'ing to (C, D), where C and
D arc the Smdh normal form8 for A + B and A - B.

The theorem follows immediately from a more general lemma.

Lemma 8.2. Let G = Z/2. Let ,VI be an 71 x 71 7Iwtrix over ZG and
let (C, D) = 8(}'!)' S'Upp08e the mod-2 rank of C '18 k. Then ,VI '18
E(n, ZG)-eq'U'ivolent to a 7Iwtrix AJ' 8'Ueh that 8UVF) = (C, D f

) where
the bottom right k x k eorner8 of C f and D f arc Smdh nor7lwl form8
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(eq'Uol to the bottom right comer" of the Smdh norrrwi form" for C and
D) and the other entrie" 'in the la"t k row" and colwnn" are zero.

Proof. Multiplication of ,H by a matrix in E(n, ZG) corresponds to
multiplication of (C, D) from the same side by a pair of matrices in
E(n, Z) x E(n, Z) which are equal mod 2. So, an equivalence ,H -t
U,HV corresponds to an E(n,Z) = SL(n,Z) equivalence (C,D) -t
(UICVI, [hDV2 ) where UI - [h and VI - V2 are zero mod 2. We will
act on the given pair (C, D) with such equivalences. Note the condition
C == D mod 2 persists under this action.

Let (UI , VI) be an E(n, Z) equivalence putting C into the Smith
normal form for Z. Apply this along with ([h, V2 ) = (UI , VI). The
mod-2 rank assumption tells us that the last k diagonal entries of C
are now odd and the other entries of C are even. The same is true
of D. From here we will use equivalences with (U I , VI) = (I, VI), to
achieve the required form for D without disturbing the form for C.
That is, we will act on D with the even elemento:ry rrwtrice,,: matrices
in E(n, Z) equal mod 2 to the identity. In particular we may freely add
even multiples of rows and columns to other rows and columns.

\Ve claim that such even elementary operations may be used to put
D into a form such that the all entries of the last row and column are
zero except for the diagonal entry, which is the gcd of the entries of D.
·Without loss of generality, we suppose n > 1.

Step 1. Consider the bottom row of C, row n. The last entry is odd
and the rest are even. Pick j such that D(n, j) = a is a nonzero entry
of smallest magnitude in row n. Add even multiples of column j to
other columns to produce the condition that every entry in row n lies
in the interval [-10,1, lalJ. If any nonzero entry b of row n now satisfies
Ibl < 10,1, then again add even multiples of columns to others until all
entries lie in [-Ibl, IbIJ. Continue until there is some nonzero entry a
such that all entries of row n lie in the set {-Ial, 0, lal}. This number
10,1 must be the gcd of the original entries of row n. Consequently 10,1 is
odd. Since the entries of row 1 were never changed mod n, the diagonal
entry of row n must be a and the others then must be o.

Step 2. Apply the Step 1 idea to column n, putting it into the form
[0· . ·OaJt (a may have decreased).

If row n is no longer in the form [0···00,], then re-apply Step 1.
Repeat Steps 1 and 2 as needed until both row 1 and column 1 are zero
except for the odd entry on the diagonal. Call this "the process" .

If 10,1 is not the gcd of all the matrix entries, then there is some
higher row 'i containing an element not divisible by a. Add twice row 'i
to row n. Now row n has a gcd smaller than 10,1. Apply "the process"
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again. The one nonzero entry in row 71 or column 71, on the diagonal, has
decreased in magnitude. Finitely many iterations therefore produce the
diagonal entry a such that lal is the gcd of the matrix entries. Finally,
if necessary after multiplying the last row and a higher row both by
-1 (this corresponds to multiplying by a determinant 1 matrix which
equals I mod 2), we can assume a > O. This finishes the proof of the
claim.

Repeat this procedure on successive submatrices until a matrix is
produced which satisfies the statement of the theorem. If k = 71, then
at the final step there will not be a "higher row" and there will not
be freedom to adjust the sign of the diagonal entry it must equal the
sign of the determinant.

Remark 8.3. The lemma shows that Theorem 8.1 is true under the
weaker assumption that at most one entry of the Smith form for A + B
is even, because in this case the algorithm of the lemma produces a
matrix which is equivalent to A - B and which must be a Smith normal
form.

Corollary 8.4. Let G = 'll/2. If ,V! = A+tB where A and Bare 8qMre
integral rrwtrlce8 with det(A + B) odd, then ,V! '18 E('llG)-eq-uivoJent to
its tran8[Jo8e.

Remark 8.5. Equivalence to the transpose gives rise to an interpreta­
tion of G-flow equivalence to the time-reversed flow as in [15J. Because
irreducible matrices over'll are equivalent to diagonal matrices, Fl'anks
could include that the mapping torus flows of irreducible shifts of fi­
nite type are flow equivalent to their time-reversed flows. For G-flow
equivalence with G nontrivial, this holds in some cases (e.g. Cor. 8.4)
but not in general, as the next example shows.

Example 8.6. For G = 'll/2, there is a matrix ,V! over 'llG which is
not GL('llG)-equivalent to its transpose.

Proof. We will give a 2 x 2 example ,V!. (It is not difficult to verify
for this example that ,V! 9 I, where I is the infinite identity matrix,
is also not equivalent GL('llG)-equivalent to its transpose.) Define ,V!,
and consequently il(},!) = 2(C, D), as follows:

(11) (1 -1),V! = 0 2 + t 0 2 ' (10)
C= 0 2 ' (01)D= 0 0 .

To show ,V! is not equivalent to its transpose, we suppose there are
GL('ll) matrices UI, [h, VI, V2 such that UI == [h mod 2, VI == V2 mod
2, UI CVI = C and [hDV2 = Dt, and then find a contradiction. First
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consider the equivalence C = UI CVI :

mod 2 ,V = (1 0)
1*1and

(10) (11 Ii) (1 0) (n 8) = (11....(..1+ 2/rj 11...!.3 + 2lil~)o 2 = c d 0 2 '/8 I'll + 2d'/ c(J + 2dl)

\Ve see that 11 and n must be odd, and then also that c and (J must be
even, and then because the determinants of UI and VI are odd that d
and 8 must be odd. So we have

UI = (~ ~) mod 2

with * indicating an entry which is not specified mod 2. Consequently,
mod 2 we have

[ ' DF [' DF (1 *) (0 1) (1 0) (* 1) -L Dt)2 V2 =)1 VI = 0 1 0 0 * 1 = 0 0' .

This contradiction finishes the proof. o
Example 8.7. Let G = 7l/2. There is a matrix lV! over 7lG such that
lV! is not GL(71G)-equivalent to a triangular matrix. In particular, lV!
is not equivalent to a Smith normal form.

Proof. We will give a 2 x 2 example lV!. (It is not difficult to verify for
this example that lV! 9 I, where I is the infinite identity matrix, is also
not equivalent to a triangular matrix.) Set

M = GD+ t (~1 ~n

so that 8(},I) = 2(1, D) where D = (~ i). Suppose 1\'1' is upper

triangular and GL(71G)-equivalent to lV!. Then 8(},!') = 2(0', D') for
some matrices C', D' over 7l which are upper triangular. Here C' must
be GL(71)-equivalent to I, so its diagonal entries must be ±1. Let U
be a matrix which acts to add a multiple of row 2 to row 1, such that
UO' is diagonal. Let W be a diagonal matrix with diagonal entries
from {I, -I} such that WUO' = I. Note WUD' is upper triangular.
Replace (O',D') with (WUO', WUD'). At this point we have 2(1,D)
equivalent to some 2(1, D U

) where D U is upper triangular. So, there
are GL(2,71) matrices UI == [h mod 2 and VI == V2 mod 2 such that
UI(2I)VI = 21 and [h(2DU )V2 = 2D. Now VI must equal (UI)-1 and
therefore mod 2 we have D similar to a triangular matrix. This is
impossible because the characteristic polynomial of D considered over
the field 7l/2 is irreducible. 0

\Ve finish with the proposition mentioned in Section 6.
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Proposition 8.8. S'Upp08e G '/8 a finde gro'Up. and B '/8 a find ely
8'Upported N x N rrwtrtx over ZG. Then I - B '/8 E(ZG) eq'U'/volent to
.lome rrwtrtx (I - A)oo over Z+G. where A IW8 we'/ght ela88 {G} and
A» O.

Proof. Suppose B is zero outside its upper left n x n corner. Let y
denote the sum of all elements in G and let m be a positive integer.
Subtract my times row n + 1 from the rows 1,2, ... , n. Then add
column n + 1 to the columns 1,2, ... , n. Finally, add row 1 to row
n + 1. If m is sufficiently large, we get a matrix I - C for which C is
zero except in the upper left (n + 1) x (n + 1) corner, where every entry
of C is greater than y. Let A be the upper left (n + 1) x (n + 1) corner
clC. 0

9. E(ZG)-EQUIVALENCE OF INJECTIVE MATRICES

Recall, if C is an n x n matrix, then Coo denotes the N x N matrix
whose upper left corner is C and which otherwise is equal to the infinite
identity matrix. \Ve begin with an easy application of a theorem of
Fitting [14J. Recall our convention (2.1) that in this paper a ring
means a ring with 1.

Lemma 9.1. S'Upp08e R '/8 a rtng. and C and Dare '/nject'/ve 8q'Uo:re
rrwtrtCe8 over R. Then the JOllo'Oftng are eq'U'/volent.

(1) There eX'/8t V E E(R) and U E GL(R) ,mch that UCooV = D oo .
(2) The R-rnod'Ule8 cok(C) and cok(D) are '/80rnorph'/c.

Proof. We will prove the nontrivial implication, which is (2) ==? (1).
Let matrices act on row vectors. Suppose C and Dare m x m and n x n,
respectively. Let e.g. In denote the n x n identity matrix. Because C
and D have isomorphic cokernels, there is an invertible matrix VI such
that the matrices

(9.2) (c 0) V ando 1m I (
In 0)
o D

have the same image. Fm' this claim we refer to \Varfield's modern
(and English) presentation [41, p.1816J of Fitting's result; it is evident
from the proof that the matrix VI can be chosen from E(m + n, R).

Because the displayed matrices are injective with equal image, obvi­
ously [14, 41J there exists an invertible matrix UI such that

[T (C 0) V = (In 0)
"I () I I () D .

m
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Finally, let E be a matrix in E(m + n, R) such that

E-' (In 0) E = (D 0)o D 0 In

and set U = (EU,)oo and V = (V,E-' )00'

Remark 9.3. [41, p.1823J For a certain finite group G (the generalized
quaternion group of order 32), Swan [40, p.57J found an ideal P, not
free as a 7lG module, but still with module isomorphisms 7lG 9 7lG '"
P 9 P '" 7lG 9 P. This yields 2 x 2 matrices over 7lG with isomorphic
cokernels but nonisomorphic kernels. Therefore Lemma 9.1 would be
false without the hypothesis of injectivity.

Remark 9.4. An imperfection of Fitting's general result is that the
size of the identity summands in (9.2) depends on the matrices C, D.
However, if d is a positive integer in the stable range (defined below)
of the ring R, then those summands 1m , In can be chosen with m =
n = d, and under some additional conditions on R (for example if R is
commutative) this bound can be lowered to d - 1 [41, pp.1822-1823J.
When G is a finite group, the Krull dimension (see [26, eh. 6J for the
definition for a not necessarily commutative ring) of the Noetherian
ring 7lG is 1 [26, Prop. 6.5.5, p. 211], and consequently 2 is in (and is
then easily seen to be the minimum integer in) the stable range of 7lG
[26, Thm. 6.7.3, p. 220J.

To define stable range, say a row vector (a" ... ,an) over R is a right
nnirnodnlar row if there are elements Xi E R, 1 S; i S; n, with Li aiXi =
1. The 8table range of R is the set of positive integers d such that for
any right unimodular row (a" ... , an) with n > d, there exist elements
bi E R, 1 S; i S; n-1, such that the row (a, +anlh, ... ,an-, +anbn-,)
is again right unimodular.

\Ve pause to isolate for later use a particularly simple statement.

Proposition 9.5. Snppo8e R i8 a cornrrmtative ring; SKI (R) i8 trivial;
C and Dare .finde 8qnare rrwtrice8 over R; and C i8 injective. Then
the following are eqnivolent.

(1) There exi8t U, V in E(R) .Inch that UCoo V = Doo .

(2) det(C) = det(D) and the R-rnodnle8 cok(C) and cok(D) are
i8ornorphic.

Proof. We check the nontrivial implication, (2) ==? (1). By Lemma
9.1, we have matrices U, V such that UCoo V = D oo with V E E(R).
Because det(V) = 1 and det(D) = det(C) f 0, we have also det(U) =
1. Because SKI (R) is trivial, it follows that U and V are in E(R). 0
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Now we want to observe that injective matrices with a given coker­
nel isomorphism class are classified up to elementary equivalence by a
quotient of K I,

Proposition 9.6. Let R be a ring. Let C be the .let of all 8q'Uare
ir,jective rrwtrice8 over R wdh cokernel mod'Ule i80morphic to that of
a given 8q'Uare ir,jective rrwtrix over R. Let £ (C) be the partdion of C
8'Uch that C and D are in the .lame element of £(C) 'if Coo and Doo are
E(R) eq'UivoJent. Then there i8 a 8'Ubgro'Up H of K 1(R) 8'Uch that the
following hold.

(1) For any C and Din C. 'if (U, V) i8 a GL(R) eq'UivoJence from
Coo to Doo • i.e. UCoo V = Doo • then there exi8t8 an elementary
eq'UivoJence from Coo to Doo 'if and only 'if [UV] E H.

(2) For any C E C. the map GL(R) -t C defined by U f-1 UCoo
ind'Uce8 a well defined b'ijection (K 1(R)) IH -t £ (C).

(3) If R i8 comrrwtative. or 'if R = 7lG 'ilfith G .finde. then H c
SK1(R)

Proof. 'lYe write C ~ D if there is an elementary equivalence from
C to D. If U is in GL(n, R), then it is well known that the matrix

(u ..0) is in E(2n R) and therefore that for anv n x n matrix Co [/-1' " ... , . •

over R

(
UC 0) ~ (U-

1 0.) (UC 0) (U .0) ~ (CU 0)o IOU 0 I 0 U- 1 0 I .

'lYe will use this simple fact repeatedly. From here, we suppress the
subscript 00 and consider all matrices infinite. U and V will denote
elements of GL(R). Note, if C ~ D, then CU ~ DU and UC ~

UD, and in particular U(CV) ~ U(VC). Also, U(VC) ~ U(CV) =
(UC)V ~ V(UC). Thus UVC ~ VUC and similarly CUV ~ CVU.

Choose a matrix C in C and define He to be the set of U in GL(R)
such that UC ~ C (or equivalently CU ~ C). If UC ~ C and VC ~ C
then U(VC) ~ U(C) ~ C, and similarly U-1(C) ~ U-1(UC) = C.
Therefore He is a group. We claim UCV ~ C if and only if UV E He.
If UV E He, then UCV ~ UVC ~ C. Conversely, if UCV ~ C, then
C ~ UCV ~ UVC and thus UV E He.

Next suppose that D is another element of C. 'lYe claim He = HI).
Suppose UDV ~ D. By Lemma 9.1 there are X, Y in GL(R) such
that D = XCY. Thus XCY ~ UXCYV ~ XUCVY, so UCV ~ C
and UV E He. Similarly, UV E He implies UDV ~ D. Thus shows
the group He does not depend on the choice of C from C.
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Notice He contains the commutator of GL(R), since UVCU-' V-I ~
VUCU-' V-I ~ C. The commutator is the kernel of the map GL(R) -t
K, (R). Define H as the image of He in K, (R). It follows that
[UJ E H .;=? U E He. This proves (1). It then follows that in
(2) we have a well defined injection (K,(R))/H -t E(C), which is sur­
jective by Lemma 9.1.

To prove (3), suppose [UJ E H. Perhaps after passing to another
representative of [U], we have E E E(R) such that UC = CEo If R is
commutative, the injectivity ofC forces det(U) = 1, i.e., [UJ E SKI (R).
Suppose now that R = 7lG with G finite. Let U, C, E denote the
images of U, C, E under the map induced by the inclusion 7lG -t QG.
The injectivity of C implies that C is invertible. Now (C)-'UC = E,
which implies that U and E are E(QG) equivalent. In other words,
[UJ is in the kernel of the induced map K, (71G) -t K, (QG), and [UJ E
SK]~). 0

Remark 9.7. In the case of 7lG with G not abelian, we thank Jonathan
Rosenberg [35J for the statement and proof of part (3) of Proposition
9.6,

Remark 9.8. In Proposition 9.6, if C contains an element of GL(R),
then clearly the group H is trivial. \Ve do not know whether it is
possible for H to be nontrivial.

Our main interest in the next result is the case R = 7lG, where
G is finite (so, SKI (71G) is finite [27]) and abelian. In this case, it is
straightforward to check whether a square matrix Cover 7lG is injective
(examine the matrix for the regular representation or equivalently check
whether det(C) is a zero divisor in 7lG). Also in this case, the 7lG
module cok(C) is finite if and only if C is injective.

Corollary 9.9. S'Uppo8e R 'i8 a comrrmtat'ive ring and SK, (R) 'i8.finde.
S'Uppo8e D" . .. ,Dk aTe .finde 8q'UaTe rrwtrice8 oveT R 8'Uch that

(1) The mod'Ule8 cok(Dil aTe'i8omorlJh'ic;
(2) the deteTm'irwnt8 det(Di ) aTe eq'Uol and aTe not eq'Uol to a zeTO

d'iV'i80T 'in R; and
(3) fOT'i f.i, theTe 'i8 no E(R) eq'U'ivolence from (Di)oo to (Dj)oo'

Then k s: ISK, (R) I. 0

Remark 9.10. Let G be a subgroup of the positive reals under mul­
tiplication, and let A be a finite square matrix A with entries in 7l+G,
with ettA) irreducible. Then A presents the shift of finite type CTn(A)

together with an invariant Markov measure, ItA [25, 33J. Let B be
another such matrix, and (after the normalizations described in [25]),
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suppose that I - A and I - B have equal determinant, and that G
is the common group of weights over periodic cycles for ItA and II/J'
Then [25, 31, 33J there is a measure preserving topological conjugacy
(CTn(A), ItA) --t (CTn(lJ),II/J) ifand only if A and B are strong shift equiv­
alent over 7l+G, if and only if (by [9, Theorem 7.2]) there is a positive
equivalence of polynomial matrices from I - tA to I - tB. In this
case (after setting t = 1), we get matrices U, V in E(7lG) such that
UtI - A)ooV = (I - B)oo' (In fact, this elementary equivalence class of
I - A is also an invariant of 8toclw8tic flow eq'Uivolence [2J.) Bill Parry
[30J has asked if the cokernel module of (I - A) is a complete invariant
of equivalence over 7lG when det(I - A) is nonzero. The next result,
which follows immediately from Proposition 9.5, answers this question
in the affirmative.

Proposition 9.11. S'Uppo8e R = 7lG where G ~ tln and A, Bare
.finde 8q'Uare rrwtrtCe8 over Rand det(I - A) i8 nonzero. The following
arc eq'Uivolent.

(1) There exi8t U, V in E(R) 8'Uch that UtI - A)ooV = (I - B)oo'
(2) det(I - A) = det(I - B) and the R-rnod'Ule8 cok(I - A) and

cok(I - B) arc i8ornoTphic.

Proof. For any commutative ring R, the units group R' of R is a direct
summand of K I (R). The projection from K I (R) to R' is given by det,
and the complementary summand is SKI (R). Let G = 7ln , and let U
denote the set of "obvious" units of 7lG, U = {±g : g E G}. Then
the det map on K I (7lG) is an isomorphism to (7lG)" and moreover
(7lG)' = U [3J. (The statement of the relevant Corollary in [3, p. 63J
shows K I (7lG) ~ 7l/2 9 7ln . Because U ~ 7l/2 9 7ln , it follows here
that det is injective. That (7lG)' = U follows from the construction of
the isomorphism proving the Corollary.) Because SK I (7lG) is trivial,
Prop. 9.11 follows from Prop. 9.5. 0
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