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Abstract:  There are many situations where two interacting individuals can benefit from 
coordinating their actions.  We examine the endogenous choice of partners in such social 
coordination games and the implications for resulting play. We model the interaction pattern as a 
network where individuals periodically have the discretion to add or sever links to other players. 
With such endogenous interaction patterns we see multiple stochastically stable states of play, 
including some that involve play of equilibria in the coordination game that are neither efficient 
nor risk dominant.   Thus the endogenous network structure not only has implications for the 
interaction pattern that emerges, but it also has a significant impact on the play in the 
coordination game relative to what would arise if the same interaction network were exogenous. 
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1.  Introduction 
 
There are many situations where two interacting individuals can benefit from coordinating their 
actions.  Examples where coordination is important include research and development 
partnerships, joint production, political and trade alliances, as well as the choice of compatible 
technologies or conventions such as the choice of a software or language. 2  For instance, a 
person may select a long distance service or internet provider keeping in mind which is best at 
facilitating communication with friends and family.  Often there is an advantage to having 
individuals coordinate on selecting the same or compatible systems, with examples including 
long distance telephone service with MCI’s friends and family plan and internet service with 
AOL’s buddy list system. In many such situations, individuals select a strategy (e.g., technology) 
that they then use in interactions with many other individuals. Such situations are often 
characterized by multiple equilibria corresponding to coordination on different technologies or 
strategies, where the equilibria may be Pareto ranked.  The welfare implications of such a 
ranking provide an obvious importance to understanding what behavior might be predicted and 
which factors determine whether efficient coordination is attained. 
 
In the context of symmetric 2x2 coordination games, Kandori, Mailath and Rob (1993) and 
Young (1993) have shown that populations of individuals, who are subjected to small random 
perturbations in their strategy choices, tend in the long run to coordinate on risk-dominant 
strategies as defined by Harsanyi and Selten (1988).  Thus the risk-dominant equilibrium is 
selected from among the set of strict Nash equilibria, even if the risk dominant equilibrium is the 
inefficient equilibrium.  This result has a natural and simple intuition: the basin of attraction of 
the risk-dominant equilibrium is larger than that of the non risk-dominant equilibrium.  In 
particular, more than half of the population must be playing the non-risk dominant strategy 
(which may be the efficient strategy) for that strategy to be a best response.  So, if everyone 
initially plays the risk dominant strategy, then more than half the population must randomly 
change to the efficient strategy for the dynamics to move towards the efficient equilibrium, while 
if everyone initially plays the efficient strategy, then less than half the population needs to 
randomly change to the risk dominant strategy for the dynamics to move to the risk dominant 
solution.  In the long run this leads to a higher probability that in any given period players will 
be playing the risk dominant equilibrium, and the risk dominant solution is the stochastically 
stable convention, in the sense coined by Foster and Young (1990).   
 
In the Kandori, Mailath, and Rob (1993) and Young (1993) models each player plays against 
every other player in the population (or equivalently faces each other player with an equal 
probability).  While this is plausible in some contexts, many situations where social coordination 
is an issue involve more specific interaction patterns.  These results have been shown to hold for 
some alternative interaction structures, for instance where individuals interact according to 
certain fixed neighborhood structures as shown by Ellison (1993) (see also Young (1998)).  This 
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leads to the somewhat pessimistic result that a society can expect in the long run3 to coordinate 
on the risk-dominant equilibrium, even in cases where it is inefficient and not in society’s 
common interest. 
 
In this paper we take a broader look at the role of the interaction pattern, and find that the results 
above change in this broader analysis.  First, we show that the previous analysis depended on the 
interaction patterns that were considered.  In particular, we demonstrate an example of a very 
simple network structure, yet different from those analyzed previously, that results in multiple 
stochastically stable states with some involving play of equilibria that are not risk dominant.  
This example points out the important role of the particular network structure in determining 
stochastic stability.   This example also motivates our main analysis, which treats the network of 
interactions as endogenous.  
 
Ours is not the first analysis to endogenize interaction patterns.  However, it is quite different in 
terms of the manner in which individuals choose with whom they interact.   Ely (1998) (see also 
Mailath, Samuelson, and Shaked (1997)) considers models where the interaction structure is 
endogenized by locational choices.  Individuals select a location at which to reside and then 
interact according to a pattern governed by that location and the location of other individuals. 
Conditions are given under which the efficient equilibrium is the one that is reached by a society 
even when it is not risk dominant.  In the model of Ely (1998) if some individual randomly 
moves to an unoccupied location and plays the efficient strategy, then other individuals would 
like to move to that location and play the efficient strategy rather than staying at a location where 
they play the inefficient strategy.  This leads to efficient play.  While this result is encouraging in 
showing how endogenizing the interaction pattern can lead to efficiency, this result depends on 
the locational aspect of the interaction patterns.4    In particular, in changing locations agents can 
sever all old ties, form new ties, and switch technologies simultaneously.  While there are 
situations where location is the major factor in determining with whom an individual interacts, in 
many applications individuals choose with whom they interact in a more discretionary manner, 
not having to completely uproot to form new relationships.  
 
Our model is not a location model, but rather one where players choose their interaction patterns 
on an individual-by-individual basis.   We bring ideas from the recent literature on the formation 
of networks to bear on this problem of social coordination.   We model the interaction pattern as 
a network where individuals periodically have the discretion to add or sever links to other 
players.   Players choose whether to add or sever links based on their (prospective) partner’s past 
behavior.  With such endogenous interaction patterns there exists multiple stochastically stable 
states of play, including some that involve play of equilibria in the coordination game that are 
neither efficient nor risk dominant.  Thus, it is possible to have inefficient play be stochastically 
stable even when the efficient strategy is risk dominant, in a model where individuals completely 
                                                 
3 Ellison (1993) and Young (1998) also present interesting results on how the time associated 
with the ``long run’’ varies depending on the network structure. 
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can isolate themselves from others in order to obtain efficiency.  In their model, individuals 
cannot necessarily escape being matched with undesired opponents, and the ability to isolate is 
important in determining whether efficiency is attained.  



control with whom they interact.   This differs significantly from the previous literature 
(including the locational models mentioned above).   
 
The main insight into how endogenizing the network can affect stochastically stable play is as 
follows.  Consider a situation where there is some cost to at least some players for maintaining a 
link to another player who is not coordinating on the same action.   With an exogenous network 
structure, a player’s choice of action only depends on what actions other players are playing. It 
may take many changes (trembles or mistakes) by other players in order to get the system to 
change from one equilibrium to another.  With an endogenous network, the process works 
differently as follows.  Consider player i.  If some player j that i is linked with changes strategies 
so that i and j no longer coordinate and if there is a cost to the link between i and j, then player i 
may wish to sever that link.   This can then lead to a new network pattern, and j can form new 
links to other players who are already playing the strategy j is, or who change to do so.  In such a 
situation, adjustments in the network make it easier for changes in play to build up and persist.  
This has profound impacts on the way that play changes from one strategy to another, and thus 
leads to different results from those in the previous models. 
 
Thus the main message is that network endogeneity can have a significant impact on play in the 
game, even relative to what would happen if the network were fixed at the one that arises 
endogenously.  However, the precise dynamics and the set of networks and play that emerge as 
stochastically stable depend on the particulars, such as the relative benefits of the play of 
different actions, the structure of the costs to links, and the number of players in the society.  We 
examine these in some detail in what follows.    
 
2.  Network Interactions and Stochastic Stability 
 
Networks 
 
The set N={1,...,n} is a finite set of individual players.  These may be people, firms, computers, 
countries, or other relevant participants.  We assume that n>2, as networks among two players 
are easily handled. 
 
The network relations among these individuals are represented by a graph whose nodes or 
vertices are the individuals, and whose links or edges are connections between the individuals.  
The complete network or graph, denoted gN, is the set of all subsets of N of size 2.  The set of all 
possible networks on N is {g g⊂gN}.5  Let ij denote the subset of N containing i and j and is 
referred to as the link ij.  The interpretation of ij∈g is that in the network g, individuals i and j 
are linked. 
 
Note that i is linked to j if and only if j is linked to i, so that we study non-directed networks 
where interaction requires mutual consent.   
                                                 
5There are many ways in which graphs may be encoded (with a standard one being in a matrix).  
This notation proves to be convenient for the study of individual incentives in network 
formation. 
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Costs of Links 
 
We will consider cases where links are costly.  In particular, player i pays a cost k(ni) for 
maintaining each link that i is involved in, leading to a total cost of nik(ni) for i.  This cost is a 
function of ni, the number of direct links agent i has.   We discuss how the structure of this cost 
function matters in determining behavior.  
 
Before endogenizing the network, let us first discuss how interaction occurs given a fixed 
network. 
 
Coordination Games played on a Fixed Network 
 
Consider the following situation as described by Young (1998).  A population of n players plays 
a game repeatedly.  Players are located on a fixed network g.  In each period t, a player i chooses 
an action at

i ∈{A,B}, and then receives a payoff which is  
                                 ui(g;at

1,...,at
n) = π∑

≠ ji
ij(g)[vi(at

i,at
j) - k(ni)]                                             (1) 

where vi(at
i,at

j) is a payoff that depends on the actions chosen, and πij(g)=1 if ij∈g and πij(g)=0 if 
ij ∉ g.  Thus, each player interacts only with the players that he is directly linked to under g.  
 
The following matrix describes the payoff function vi.  The matrix lists only the payoff to player 
i, with the payoff to player j being symmetrically determined. 
 
     Player j 
 
     A B 
 
    A a c 
  Player i 
    B d b 
 
Let a>d and b>c, so that the game is a coordination game, with two pure strategy equilibria, A,A 
and B,B.  Let (a-d)>(b-c), so that A,A is the risk-dominant equilibrium in the sense of Harsanyi 
and Selten (1988).   This equilibrium has the property that each player is choosing a strategy that 
is also a best response to the other player mixing 50/50.  Thus, A is the strategy that is a best 
response to the largest set of beliefs over possible plays of the opponent, and so the risk 
dominant equilibrium is the pure strategy equilibrium with a larger basin of attraction than the 
other pure strategy equilibrium.  Specifically, playing A is a player’s best response if the fraction 
of his opponents who play A is greater than or equal to (b-c)/(a-d+b-c) < 1/2.  Thus if a=3, b=1, 
and c=d=0, then playing A is a best response if ¼ or more of a player’s opponents play A. 

In the case where n is even, assume that A is the best response to a mixture of (n-2)/[2(n-1)] on 
A and  n/[2(n-1)] on B.  So, for instance, if n=10 then A is a best response for a player who is 
playing against 4 other players who play A and 5 who play B.  This assumption ensures an 
asymmetry among strategies, so that our results of multiple stochastically stable states are not 
 5 



artificial. 

The dynamic process is described as follows.  Each period one player is chosen at random (say 
with equal probability across players, although that is not important) to update his strategy.  A 
player updates his strategy myopically, best responding to what the other players with whom he 
interacts did in the previous period. There is also a probability 1>ε>0 that a player trembles, and 
chooses a strategy that he did not intend to.  Thus, with probability 1-ε the strategy chosen is at

i 
= argmaxai ui(ai,at-1

-i) and with probability ε the strategy is  at
i ≠ argmaxai ui(ai,at-1

-i).6  The 
probabilities of trembles are identical and independent across players, strategies, and periods.7  
These trembles can be thought of as mistakes made by players or exogenous factors that 
influence players' choices.  Once initial strategies are specified, the above process leads to a 
well-defined Markov chain where the state is the vector of actions, at, that are played in period t.  
The Markov chain has a unique stationary distribution, denoted µε(a).  Thus, for any given initial 
strategies, µε(a) describes the probability that a will be the state in some period (arbitrarily) far in 
the future.  Let µ = limε 

                                                

µε.  Following the terminology of Foster and Young (1990), a given 
state a is stochastically stable if it is in the support of µ.  Thus, a state is stochastically stable if 
there is a probability bounded away from zero that the system will be in that state according to 
the steady state distribution, for arbitrarily small probabilities of trembles. 

Let us consider a specific example that illustrates the importance of the network configuration in 
determining the stochastically stable states.  Let n=4 and for all ni let a-k(ni) =3, b-k(ni) =1, and 
c-k(ni) = d-k(ni) = 0.  This is a coordination game where A,A is both the efficient and risk 
dominant equilibrium and the cost per link is constant.  In this situation, for either the complete 
network or circle networks the unique stochastically stable state is all players playing A; but, for 
the star network there are two stochastically stable states:  all players playing A and all players 
playing B.   
 
Example - The Complete Network 
 
First, consider the case where players are located on the complete graph, gN.  Recall that πij=1 
for each ij∈g.  Thus for the graph gN, each player plays once against every other player in a 
period (or equivalently faces each other player with an equal probability). The stochastically 
stable state in this case is for all players to play A, as shown in Kandori, Mailath, and Rob (1993) 
and Young (1993).    
 
Let us briefly go over the intuition behind this example and the Kandori, Mailath, and Rob 
(1993) and Young (1993), as this will be useful later on.   If at least one of the other players 
played A last period, then a player who is updating her strategy will choose to play A.  A player 
who is updating her strategy will choose to play B only if all of the other players played B last 

 
6Assume that argmaxai ui(ai,at-1

-i) is single valued, which is true generically in choices of the 
payoff matrix. 
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discuss this shortly. 



period.   So, consider a situation where all players are playing A.  If due to an ε-error some 
player switches to B, the other players when called on to update will not choose to switch and 
will continue to play A.  This situation will update back to the situation where all players play A.  
It takes three trembles on three different players in order to have the remaining player choose to 
switch to B.  So, the process takes at least three trembles (without any intermediate updating by 
those players) to switch the process from all playing A to all playing B.  If all players are playing 
B, then if one player switches to playing A the other players when called on to update will 
choose to switch to A.  Thus, with only one tremble the process can lead from all playing B to all 
playing A.  While this is not a complete description of the stochastic process it outlines why it is 
relatively easier (by orders of magnitude in the number of trembles needed) to move from social 
coordination on B to coordination on A than the other way around.  
 
Example - Circle Networks 
 
Next consider the case where players are located on a circle, as for instance in the network 
g={12,23,34,41}.  The unique stochastically stable state will be all players playing A as shown 
by Ellison (1993), and as he shows this result also holds for some more general neighborhood 
structures on circles.  
 
The intuition behind this example is similar to that of complete networks.  Here, each player only 
cares about what his or her two neighbors are playing.  Again, as long as one neighbor is playing 
A, an updating player will choose to play A.  Thus it takes both neighbors switching to B in 
order to have a player want to switch from playing A to playing B, while it only takes one 
neighbor switching to A to get a player to want to switch from playing B to playing A.  
 
Example - Star Networks 
 
Lastly, consider the situation where players are located on a star such as g={12,13,14}.  The 
dynamics associated with this network differ in important ways from those described around the 
previous two examples.  With a star network there are two stochastically stable states: one where 
all players play A and the other where all players play B.   
 
To see the intuition behind this example note that now players 2, 3 and 4 care only about what 
player 1 is playing, and they will update to play whatever 1 played last period when called on to 
update.  Player 1, in contrast, cares about what all the players are doing. Thus one tremble by 
player 1 can lead from a network where all play A to one where all play B.  Alternatively, any 
tremble of any player changing from B to A can lead from a situation where all play B to one 
where all play A.  Thus starting from either equilibrium of all play A or all play B, we need only 
one tremble to have updating lead naturally to the other equilibrium.  As the relative number of 
trembles is the important factor in determining the set of stochastically stable states, both of 
these states are stochastically stable.  
 
Note that the relative probability in the limiting distribution of the state where all play A is 
higher than that of the state where all play B.  This follows from the fact that any single tremble 
can lead to a transition from the state where all play B to the state where all play A, while a 
specific tremble is needed to lead to a transition from the state where all play B to that where all 
 7 



play A.  Nevertheless, the state where all play the inefficient and non-risk dominant equilibrium 
still receives positive probability in the limit distribution and is stochastically stable. 
 
The star example shows that it is possible for a network of individuals to have multiple 
stochastically stable states in the coordination game, including some where the inefficient and 
non risk-dominant strategy is selected.   This result is in contrast with the previous literature 
(e.g., Kandori, Mailath and Rob (1993), Young (1993), and Ellison (1993 and 2000)) where the 
risk dominant equilibrium is always selected.8  This result has seemingly negative implications, 
as  there may be inefficient play.  On the other hand, the result can also have positive 
implications in the case where the risk dominant equilibrium A, A is inefficient.  For instance, if 
a-c>b-d but b>a, then the analysis of the above examples still holds, and under the complete or 
circle networks only play of the inefficient equilibrium A,A is stochastically stable, while on the 
star network play of the efficient equilibrium B,B is also stochastically stable. 
 
This example seems to contradict Theorem 6.1 (and Corollary 6.1) in Young (1998).  Young’s 
result states that for any fixed network structure the unique stochastically stable state in a 
symmetric coordination game is for all players to coordinate on the risk dominant strategy.  
However, there is no contradiction between the results as the perturbation structure is different in 
the two analyses.   We assume that the probability of a player trembling (i.e., a perturbation or 
mistake) from A to B when A is the best response is the same as the probability of a player 
trembling from B to A when B is the best response.  In contrast, Young (1998) assumes that 
updating takes place according to a distribution that is proportional to a factor that is log-linear 
in payoff.  In particular, as ε goes to 0 in the Young (1998) framework, the probability of any 
player trembling from A to B when others are playing A becomes infinitely less likely than the 
probability of trembling from B to A when the others are playing B.  Such an error structure is 
very tractable and powerful in its predictions (e.g., see Blume (1993) and Young (1998)), and 
reflects the belief that errors should be less relatively likely when they are more costly.  
However, such an error structure is extreme in that very small differences in relative payoff 
comparisons across strategies, lead to infinite differences in limiting perturbation probability.   If 
an error reflects exogenous factors or limits in a player’s calculation ability, then there is no 
reason to assume that such an error should become infinitely more likely for some strategies 
versus others.  While we work with the other extreme assumption of equal probabilities of 
trembles, the results we present here would still hold if the probabilities of single errors vary 
across strategy choices as long as the ratio of these error probabilities does not become infinite.   
 
Note that the star example is different from results found in Morris (2000).  Morris (2000) gives 
conditions on the network structure (the structure must be low growth which roughly means that 
my neighbor’s neighbors are likely to be my neighbors) and payoffs a,b,c,d that allow different 
players to take different actions in a non-stochastic equilibrium (equilibrium in the absence of 
trembles).  For instance if players are on a line and if a=b=1 and c=d=0 then it is possible in a 
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are identical trembles resulting in multiple stochastically stable states, one of which may be 
neither risk dominant nor efficient, and instead it is the network structure that matters.   



non-stochastic equilibrium for half the players to play A and the other half to play B.  However 
our star example is quite different since it shows that in the presence of trembles it is possible for 
two equilibrium to exist:  one where all play A and the other where all play B.  Note that in the 
absence of trembles it is not possible in the star to get the Morris result where in a non-stochastic 
equilibrium some play A and others play B.   
 
Given that the set of stochastically stable states varies with the network structure, we now turn to 
the question of which networks arise endogenously if the network structure is at the players’ 
discretion.  If players choose both with whom they interact as well as what strategies they play, 
then which networks should we expect to see?  This is the question we address next. 
 
3. Endogenous Networks and Stochastic Stability 
 
The following outlines an approach for endogenizing the network.  It is a simple variation on the 
process discussed above. 
 
A Dynamic Process 
 
Let gt-1 denote the network at the end of period t-1 and at-1 denote the action profile at the end of 
period t-1. In an arbitrary period t three things occur. 
 
1. First, one link ij is chosen at random according to the fixed probability distribution {pij } 

where pij   >0 for each ij.  This is the only link that can be formed or severed at time t.  
Players decide whether to add or sever the link, and make this choice based on the 
assumption that players (including themselves) will play the same strategy as in the 
previous period.  If the link is not in the network then it is added if at least one player’s 
utility increases and the other player’s does not decrease.  If the link is already in the 
network then it is severed if either player would benefit from its removal.  After the 
choice is made, with probability 1>γ>0 the choice is reversed by a tremble.  This process 
determines a network gt according to well-defined probabilities.9 

 
2. Second, one player i is randomly selected to adjust their strategy according to the fixed 

probability distribution {qi} where qi >0 for each i.  This player chooses the strategy that 
is a best response to the current network gt and to the previous periods’ play 
configuration at-1.10  After the choice is made, with probability 1>ε>0 it is reversed by a 

                                                 
9 So, conditional on ij being selected the process is as follows:  If ij∈gt and  u i(gt-1 -ij, at-1 )>u i(gt-

1 , at-1 ) or uj(gt-1 -ij, at-1 )>u j(gt-1 , at-1 ) then gt = gt-1 -ij with probability (1-γ) and gt-1 with 
probability γ.  If ij∈gt and  u i(gt-1 -ij, at-1 )≤u i(gt-1 , at-1 ) and  uj(gt-1 -ij, at-1 )≤u j(gt-1 , at-1 ) then gt 
= gt-1  with probability (1-γ) and gt-1-ij with probability γ.   If ij∉gt and  u i(gt-1 -ij, at-1 )≥u i(gt-1 , 
at-1 ) and uj(gt-1 -ij, at-1 )≥u j(gt-1 , at-1 ) with one inequality strict, then gt = gt-1 +ij with probability 
(1-γ) and gt-1 with probability γ. Otherwise, gt = gt-1  with probability (1-γ) and gt = gt-1+ij with 
probability γ.   Taking probabilities across ij according to pij leads to a distribution over gt as a 
function of gt-1.    
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10 Again, assume that the ai   that maximizes ui (gt , ai, at-1
-i  ) is unique for every gt,at-1

-i. 



tremble. All trembles and random selections are independent. This determines a strategy 
profile at according to well defined probabilities.11 

 
3. Lastly, players play the coordination game with the other players that they are directly 

connected to in the network and receive the payoff u i(gt , at ), as defined in equation (1) 
where πij(gt )=1 if ij∈gt, and πij(gt )=0 if ij∉gt. 

 
Assume that disconnected players, when identified in step 2, choose a best response to being 
uniformly randomly matched with any other player and to the previous period’s play 
configuration at-1. As before, the process determines a finite state, irreducible, aperiodic Markov 
chain, and thus has a unique stationary distribution µγ, ε over states, where states are now 
network/strategy configurations.   
 
A network/strategy configuration g,a is stochastically stable if it is in the support of µ = 
limγ=kε→0 µγ,ε,  where we take γ and ε to zero at the same rate; so γ = fε for some f>0.   12 
 
In the above process, players adjust their links and strategies independently.   Players do not 
consider the possibility of changing their strategy when adding or severing a link and the 
possible implications that this might have for the future evolution of play.  This sort of 
consideration may be important when there are relatively small numbers of forward-looking 
players who are well-informed about the network, strategies played, and the motivation of 
others.  However, in larger networks and situations where players’ information might be local 
and limited, or in situations where players significantly discount the future, myopic behavior is a 
more natural assumption. 
 
Constant Costs of Maintaining Links  
 
Recall from equation 1 that agents must pay a cost for maintaining a link.  First we consider the 
case where every player pays a constant cost k for each direct link that he maintains in graph g, 
independent of the number of links maintained.  Thus, k(ni )=k for any ni (and the total cost of 
links paid by i is ni k).    
 
In the following proposition we only consider cases where at least one of (a-k) and (b-k) is 
strictly greater than 0.  The other case is trivial as then no links will ever form. 
 
Proposition 1:  Let k(ni )=k for all ni. 
 
(i) If either (a-k)>0 and (b-k)<0 or (a-k)<0 and (b-k)>0, then the unique stochastically 

stable state is the fully connected network with all players playing A or B, respectively; 
                                                 
11 Conditional on i being selected, at

-i =at-1
-i and at

i   =argmax ui (gt , ai, at-1
-i  ) with probability 1-ε 

and at
i   ≠argmax ui (gt , ai, at-1

-i  ) with probability ε.  Taking probabilities across i according to qi 
leads to a distribution over at as a function of at-1. 
12We do not have to worry about cycles or mixed strategies given this “one at a time” process 
and the structure of the payoffs. 
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except when (b-c)/(a-d+b-c) ≤ 1/(n-1) and (a-k)<0 and (b-k)>0 in which case having all                           
players disconnected and playing A is also stochastically stable. 

(ii) If (c-k)>0 and (d-k)>0, then the unique stochastically stable state is the fully connected 
network with all playing A. 

(iii) If (c-k)<0 and/or (d-k)<0, and (a-k)>0 and (b-k)>0, then  if (b-c)/(a-d+b-c) > 1/(n-1),  
there are two stochastically stable states, a fully connected network with all players 
playing A and a fully connected network with all players playing B; while if                   
(b-c)/(a-d+b-c) ≤ 1/(n-1) then the fully connected network with all playing A is the 
unique stochastically stable state.  

 
Note that the cases are exhaustive except for allowing some of the terms to be equal to 0, which 
allows for hybrids of the cases. The proof of Proposition 1 is in the appendix.  Let us outline the 
intuition here. 
 
Case (i) of Proposition 1 is relatively straightforward.  Here there is only one possible action that 
can lead to a positive payoff, and so players coordinate on the action associated with the positive 
payoff.  Given that everyone plays this action, the payoff from forming a link is always positive 
and all links will form.   The only potential exception is that if nobody is playing this action to 
begin with and so all players stay disconnected.   In such cases, it takes at most two players to 
tremble to start the formation of links, and so such states are relatively unstable.  The exception 
is the case were (b-c)/(a-d+b-c) ≤ 1/(n-1),  (a-k)<0, and (b-k)>0.  Here it takes only two trembles 
to leave the fully connected network with all players playing B and so both this state and the 
state where all play A and are disconnected are stochastically stable. 
 
Case (ii) of Proposition 1 states that if the payoff to mis-coordination is positive, then the unique 
stochastically stable state involves formation of the full network and all players coordinating on 
the risk dominant equilibrium regardless of whether or not it is efficient.  In this case, all links 
are valuable and so the complete network forms, and players' best responses look very similar to 
that in the previous literature, and so do the results. 
 
Case (ii) also has some interesting implications regarding speed of convergence to the 
stochastically stable state.  As discussed in Ellison (1993, 2000) and Young (1998), network 
structures with features that are similar to that of a circle, i.e., where players have tight local 
interactions and are more loosely linked across neighborhoods, have faster speeds of 
convergence to the stochastically stable state than networks with more interconnections.   Young 
(1998) provides an elegant characterization of such ``close knit’’ networks.  However, in case 
(ii) of Proposition 1, we will not end up with the close knit networks that have the nice speed-of-
convergence properties, but instead we end up with fully connected networks.  Case (ii) should 
be interpreted cautiously, however, as it depends critically on there being no significant costs to 
having a link.  This is captured in c-k>0 and d-k>0, where players still receive a positive payoff 
when they fail to coordinate.     
 
Case (iii) breaks into two parts.  The second part where (b-c)/(a-d+b-c) ≤ 1/(n-1), is an extreme 
case where if any player starts playing A, then all players would like to play A.  This makes it 
very easy to get to the state where all players play A, and thus this state becomes the unique 
stochastically stable state. 
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The other part of case (iii) where (b-c)/(a-d+b-c) >1/(n-1), is perhaps the most interesting in 
Proposition 1 in terms of the role of the network and in particular how the endogeneity of the 
network is important.   In this situation, if the network were exogenously fixed, then A would be 
the risk-dominant strategy and all playing A would be the stochastically stable state.  The idea is 
that it would take more strategy trembles to get from all playing A to all playing B, then vice 
versa.   However, when the network is endogenous, the network changes in responses to changes 
in strategies.   To see this, suppose that we are initially in a network where all players are playing 
A and are fully connected.  Suppose that two trembles occur and two players start playing B.  
Then, players playing A would like to sever links to these players, as it is costly to maintain a 
link with B players.  These B players would form a component playing B.  This component 
could then continue to grow as additional trembles occur.  This process turns out to be 
symmetric in the way it moves between A and B.  It only takes two trembles to start a new 
component, and then that component can continue to grow as trembles can accumulate one by 
one.  The other candidates for stochastically stable states are situations where there are two 
separate, fully-connected components to the network, one playing all A and the other playing all 
B.  However, such states are not stochastically stable, as they can move to other states via a 
single tremble where it takes two trembles to leave a state where there is just one component 
where all players play A, or all players play B. 
 
Case (iii) shows that endogenizing the network has implications beyond predictions of the 
network structure; it also has implications for the strategies that are chosen in the game. Case 
(iii) shows that there are stochastically stable states where actions are played that are neither risk 
dominant nor efficient.  That is, all playing B can be part of a stochastically stable state even 
when a>b.  The important aspect is that the adjustments and flexibility in the network change the 
stochastic process so that the frictions between various states of play are fundamentally different 
from when the interaction pattern is fixed (or even locational). 
 
Let us make one further remark concerning case (iii).  Although case (iii) has all players fully 
connected in the stochastically stable states, the speed of transition from any state to one of the 
stochastically stable states can be faster than with an exogenous fully connected network.  That 
is, the network adjusts as players’ strategies change.  So, even though the stable states have fully 
connected networks, the transitions involve changes in those connections that allow trembles to 
build up one-at-a-time.13  In the exogenous fully connected network case, to go from all playing 
B to all playing A requires m trembles (where m = n(b-c)/(a-d+b-c) < n/2), which must occur 
simultaneously.  In case (iii), to go from all playing B to all playing A requires (n-1) trembles, 
but these trembles can build up one-at-a-time, or in other combinations.  Thus case (iii) will have 
a faster speed of convergence than the fully connected network if m is large, but will have a 
slower speed of convergence if m is small.   
 
The analysis above assumes that in each period, players get a separate payoff for each player 
with whom they are connected.  If instead, there is a limit to how many other players a player 
can interact with and if a player still bears some cost for all of the links that she maintains, then 
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Ellison (2000). 



the results can change and in particular we can find mixed stochastically stable states where 
there is play of different strategies by different groups.  We examine this situation next.      
 
Constrained Costs of Maintaining Links  
 
The fact that the complete network forms in all stochastically stable states in Proposition 1 
(except when (b-c)/(a-d+b-c) ≤ 1/(n-1) and (a-k)<0 and (b-k)>0) is due to the simple form of the 
link costs which have no scale effects.  We now consider a situation with stark scale effects.    
This changes the resulting network structure, but the play in the game is similar to that in 
Proposition 1.  This situation is outlined in Proposition 2.  
 
We now consider a case where each player pays a cost k for maintaining each direct link 
provided that he has no more than m>1 direct links.  If a player has more than m links then the 
cost of maintaining each link is larger than any possible benefit received from maintaining the 
link. Thus, k(ni )=k for all ni ≤m and k(ni )> max{a,b}  for all ni>m.  Of course, if m≥n, then we 
are back in the case of constant costs considered previously.  But if m<n, then a player has a 
capacity constraint on how many interactions he may be involved in.   So, we restrict attention to 
m<n, as Proposition 1 already addresses the other case.  In Proposition 3 we consider cases 
where k(ni ) takes more general convex forms.  
 
Again we examine the cases where at least one of (a-k) and (b-k) is strictly greater than 0, as 
otherwise no links will form.  
 
 
Proposition 2:  Let  k(ni )=k for all ni ≤ m and k(ni) > max{a,b} if  ni>m.  Let  m be even14 and 
such that n>m>1.   Also, let (b-c)/(a-d+b-c) > 1/m.15 
 
(i) If either (a-k)>0 and (b-k)<0 or (a-k)<0 and (b-k)>0, then the set of stochastically stable 

states involve everyone playing A or B, respectively.  There can be a variety of network 
configurations in stochastically stable states (as illustrated below). 

(ii) If (c-k)>0 and (d-k)>0, then in any stochastically stable state each player has m links and  
plays A. 

(iii) If (c-k)<0 and/or (d-k)<0 and (a-k)>0 and (b-k)>0, then in any stochastically stable state 
either all players play A or all players play B.  There can be a variety of network 
configurations in stochastically stable states 

 
The proof of Proposition 2 is in the appendix.   
                                                 
14 We focus on the case of m even for m≥2 and n>m since then there always exists a graph g 
where everyone has m ties.  Note that if m=1, then each player maintains at most one link.  
Stochastically stable states are networks of pairs (with one player left out if n is odd) with each 
pair playing the same strategy, but different pairs possibly playing different strategies (if it is 
true that both a-k>0 and b-k>0, otherwise they play the only profitable strategy). 
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those in the corresponding parts of Proposition 1.   



  
The similarity of play under Propositions 1 and 2 shows that adding a capacity constraint on how 
many interactions a player may have does not substantially affect the results, except in terms of 
the number of links that players form.  Although the statements of the Propositions are somewhat 
parallel, the proof of Proposition 2 (especially part (ii)) is significantly more complicated, due to 
the numerous network configurations that can conceivably be part of the set of stochastically 
stable states. 
 
The case (ii) result that all agents form the full number of m ties is actually somewhat surprising.  
Consider the following 10 player example where m=6 and (a-k)>0 and consider the following 
two states where all agents play A.  In the first state 7 agents are in a completely connected 
component and the remaining 3 agents are in a completely connected component.  Although each 
of the 3 agents would like to form a link with one of the 7 agents, the 7 agents will refuse since 
they each have 6 links already.  In the second state all agents have exactly 6 ties; the second state 
is stochastically stable while the first state is not.  To leave the first state and move toward the 
second state we only need one tremble to break one tie among the 7 agents.  Then two of the 3 
agents will be able to form a new tie.  However to leave the second state and move toward the 
first state takes more than one tremble, since if one link is broken the agents will have no one 
new to link to so the link will reform.  Thus it is easy to leave the first state but hard to leave the 
second state, which is why the first state is not stochastically stable.   Accounting for all the 
various networks that could form accounts for the complications to the proof of Proposition 2. 
 
To see the variety of network configurations that can emerge in cases (i) and (iii) in Proposition 
2, it is useful to look at some examples.  Let us concentrate on case (i), as case (iii) has similar 
examples. 
 
Consider a situation where n=5 and m=2, where (a-k)>0 and other payoffs are negative.  In any 
stochastically stable state, all players play A.   There are three types of network configurations 
that are candidates for stochastic stability: all players connected in a circle of 5 players (denoted 
as a 5,0); 4 players in a circle with 1 isolated (denoted 4,1); and 3 players in a circle with 2 
players in a separate pair (denoted 3,2).  In this situation, all of these network configurations are 
in the set of stochastically stable states.   To see this, we note that any of these networks moves 
to another with just a single tremble and so they all have the same stochastic properties (the 
formal proof is a bit more complicated, but not much more so).  A 5,0 goes to any of five 
different 4,1's by having just one player tremble.  This happens when some player trembles from 
A to play B.  The links to this player are then severed and a new link forms between the two 
players who severed the links, leading to a 4,1. Similarly, a 4,1 can lead to any of four different 
3,2's and to any of four different 5's in one tremble.  A 3,2 goes to six different 5's in one tremble 
and to 6 different 4,1's in one tremble.   In this case, all of these network configurations are 
stochastically stable. 
 
Next, consider the same setting except with n=7 and m=2.  Using a similar notation for network 
configurations we find the following.  A 7,0 goes to seven different 6,1’s via one tremble.  Any 
6,1 can go to six different 5,1's and also to six different 7's via one tremble.  Any 5,2 can go to a 
number of 4,3's and also to several 7's via one tremble.  Any 4,3 can go to several 3,3,1's and any 
3,3,1 can go to several 4,3's via one tremble.    However, a 4,3 or a 3,3,1 cannot go to any 5,2 or 
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6,1 or 7, without at least two trembles (one in each of the components where all players are at 
their capacity).  So here the 4,3's and the 3,3,1's are the only networks that are part of the set of 
stochastically stable states.    
  
The reasoning in the second example resembles that behind part (ii) of Proposition 2.  But we see 
from the combination of the two examples that the set of stochastically stable network 
configurations does not have an easy pattern.   One thing that is clear, is that the set of stable 
networks includes only those such that if there are two (or more) players with fewer than m 
links, then these players must be connected to each other as otherwise they would gain by 
linking. 
 
While the network configurations that arise in cases (i) and (iii) do not have an easy pattern, 
there are some properties that we can point out that are interesting, at least in some special cases.  
For instance, from the second example we see that the set of stochastically stable networks tends 
to consist of smaller components, where the players in each component are as completely 
connected as possible.  
 
To see this in more detail, consider the case where m=2, so that each player can link with at most 
two other players.  If n is divisible by 3 (=m+1), then the only stochastically stable states will 
consist of networks where players are grouped in fully connected components of three players.   
This is proven in the appendix, and we conjecture that it is also true for n divisible by m+1, when 
m>2.  The intuition behind this is as follows.  Consider such a network where all components are 
fully connected sub-networks and each player has m links.  If one player trembles and changes 
strategies the other players might sever their links to that player.  However, they then have no 
one to link to, other than the player they just severed the link with.  That player will switch 
strategies back to the best response, and the links will reform.   Such states need at least two 
trembles to lead to some other state.   If instead, the network does not consist of fully connected 
sub-networks, then when a player trembles and links to that player are severed, there will be 
opportunities for the remaining players to form new links (such as to each other).  Thus, the 
networks with fully connected components are more robust, and hence become the only 
stochastically stable networks.16 
 
Convex Costs of Maintaining Links 
 
Lastly, we examine the case where player j’s total cost of maintaining nj links, njk(nj), is 
increasing and convex in nj. 
 
Define mα such that α < (mα +1)k(mα +1) – (mα)k(mα) and α ≥ (mα)k(mα) – (mα -1)k(mα -1), for 
each α ∈ {a,b,c,d}.  Thus if an A player has ma links he will refuse additional links to A players, 
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show that all networks other than those with fully connected components can move from one to 
another via single trembles in such a way to form a path leading to one of those with fully 
connected components.  This can be shown for m=2, but we have not found an argument to 
establish this generally for m>2, as the potential configurations grow in number exponentially in 
m.   



and similarly for B and mb. 
 
Proposition 3:  Let  njk(nj) be  increasing and convex in nj  and let (b-c)/(a-d+b-c) >1/mb.17 
 

(i) Assume ma and mb are even.  If either a-k(1)>0 and b-k(1)<0 or a-k(1)<0 and (b-
k(1)>0, then the set of stochastically stable states involve all players playing A (resp. 
B).  There can be a variety of network configurations in stochastically stable states. 

(ii) If c-k(1)>0 and d-k(1)>0 then the set of stochastically stable states depends on the 
specifics of the cost function.  There are examples where each player has ma links and 
plays A, and there are other examples where each player has mb links and plays B. 

(iii) Assume ma and mb are even.   If c-k(1)<0 and/or d-k(1)<0, and a-k(1)>0, b-k(1)>0, 
then in any stochastically stable state all players play A or all players play B.  There 
can be a variety of network configurations in stochastically stable states.  

 
The proof of Proposition 3 is in the appendix. 
 
Cases (i) and (iii) are similar to those of Propositions 1 and 2.  However case (ii) is quite 
different.  Contrary to Propositions 1 and 2, for some cost functions it is now the case that all 
play B is part of a stochastically stable state, while all play A is not.    
 
We prove case (ii) with a 5 player example where A,A is the risk dominant equilibrium and B,B 
is the efficient equilibrium and where (b-c)/(a-d+b-c) > ¼.   Let us outline that example here.  
Consider k( ) such that mb = 4, ma = 3, mc = 2, and md = 1.  The following two states are both 
stable in the absence of trembles.  In the first state everyone plays B and has 4 ties.  In the 
second state everyone plays A and players are in an augmented circle where 4 players have 3 ties 
each and the fifth player has only has two ties.  Since ma=3 this second state is stable in the 
absence of trembles.  To leave the first state and move towards the second state takes at least two 
trembles.  If one tie is severed it is reformed.  If one person changes from B to A then since md=1 
everyone will sever ties to this person.  This person will then change back to A and will re-link 
with everyone.  So at least two trembles are needed to leave this first state.  However to leave the 
second state and move towards the first state only one tremble is needed.  If in the second state 
we change the player with two ties from A to B, then the remaining A players will sever ties to 
this B player (since mc=2) and the A players will then connect with each other so that all 4 have 
3 ties each.  We can keep changing the A players to B one-at-a-time; each instance that we do 
this we end up at another state which is stable in the absence of trembles.  Thus we can reach the 
state where all play B by a series of one-at-a-time trembles.  This reasoning can be shown to 
imply that each player playing B and having 4 ties is the unique stochastically stable state.    
 
 
Concluding Remarks 
 
From the previous literature one might take away two predictions: (1) With fixed networks of 
interaction society will coordinate on the risk-dominant equilibrium, and, (2) with endogenous 
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to those in the corresponding parts of Proposition 1. 



interaction patterns as determined by location (with homogeneous players18) society will 
coordinate on the efficient equilibrium. Here we have shown via an example that (1) may fail 
and one can see multiple stochastically stable states on a fixed network; and that (2) may fail 
with endogenous networks, as stochastically stable states can include coordination on equilibria 
that are neither efficient nor risk dominant.  Moreover, the characterization of the set of 
stochastically stable states depends in non-trivial ways on payoffs and costs of links. 
 
There are several aspects of the analysis here that deserve further attention.   
 
First, the analysis here assumes similar rates of recognition and trembles for link changes and 
strategy changes.  If instead, for instance, link patterns are much more rigid than strategies (by 
an order of 1/ε), then some of the reasoning above may not apply as players’ strategies may 
readjust before the network adjusts.  The relative ease of change, of course, will depend on the 
application, but is an important consideration. 
 
Second, the analysis depends on myopic choices on the part of players.  Players are not 
forecasting the responses of other players, in terms of the strategies played or the links chosen 
when they decide on their own actions and links.  This myopia is clearly important in the 
reasoning behind the results, and thus the analysis is best suited for large settings where history 
is the best benchmark for predicting behavior.  Note that this is a caution that applies fairly 
broadly to the literature on stochastic stability and it has to be kept in mind when interpreting the 
results. 
 
There are two new papers which examine some variations on what is considered here: Goyal and 
Vega-Redondo (1999) and Droste, Gilles and Johnson (2000).19  Goyal and Vega-Redondo 
consider links that are formed unilaterally (one player does not need another player's permission 
to form a link with him).  This addresses a very different set of applications than those captured 
here.  Moreover, the ability of players to unilaterally connect to other players leads to very 
different strategic dynamics and conclusions, and they find that either risk dominant play or 
efficient play is always reached in such models. 
 
Droste, Gilles, and Johnson (2000) is closer to the analysis here in that links are formed 
bilaterally  (the consent of both players necessary to form a link) and there exists a significant 
cost to forming a link.  However, their model differs in having a geographic cost to forming 
links, which again is very different in terms of the applications.  That geographical cost leads to 
the formation of networks with specific neighborhood structures and results in the risk dominant 
equilibrium as the unique stochastically stable state.  Thus, the results are again quite different.   
 
                                                 
18 Mailath, Samuelson and Shaked (1997) give an example of a locational model where there 
exists a stable state with heterogeneous play among the population.  Their example builds off of 
heterogeneity of players in the population, where players’ types affect their matching 
probabilities and their ability to choose with whom to interact.  We are referring to situations 
where players are initially homogeneous. 
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interactions that depend on a learning dynamic. 



This sensitivity to a wide variety of assumptions suggests that the conclusions in this literature 
be interpreted cautiously.20  Given this sensitivity to a number of aspects of behavior and 
interaction technology, there may not be broad-sweeping predictions that one can make 
concerning a society’s ability to reach efficient coordination.  The main message here is that 
such predictions are dependent on the details of the costs and benefits of interaction, and most 
importantly that endogenizing the network has nontrivial and sometimes subtle consequences. 
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Appendix 
 
Let x = (g,a) represent a network and strategy combination. 
 
Two network-strategy combinations x and x’ are adjacent if they differ by at most one link 
and/or one player’s strategy. 
 
Define a path (x1,…,xk ) as a sequence of network-strategy combinations such that xi and xi+1 are 
adjacent but xi ≠ xi+1  for each i=1,...,k-1.  Let p(x1,xk ) represent the set of all possible paths 
starting at x1 and ending at xk. 
 
Given a two adjacent networks, (x,x’), let the resistance r(x,x’) be the number of trembles 
needed to go from x to x’.  A tremble is needed if the players involved are not willing to make 
the change of the link and/or the strategy that is needed to move from x to x’.  Thus to go from x 
to x’ takes at most 2 trembles (to change both the link and the strategy) and at least 0 trembles.   
 
To be precise, let x  =(g,a) and x’ = (g’,a’).  No tremble is needed to move from g to g’ (given a) 
if g’=g;  g’=g-ij and either u i(g, a)<u i(g-ij, a) or uj(g, a)<u j(g-ij, a); or if g’=g+ij and u i(g+ij, 
a)≥u i(g, a) and uj(g+ij, a)≥u j(g, a) with one inequality holding strictly.  Otherwise, one tremble 
is needed to move from g to g’ (given a).  No tremble is needed to move from a to a’ (given g’) if 
a=a’ or if ai ≠a’i and a’i =argmax ui (g’,ai, a’-i ).  Otherwise, one tremble is needed to move from 
a to a’ (given g’).  Then, r(x,x’)=2 if one tremble is needed to go from g to g’ (given a) and one 
tremble is needed to go from a to a’ (given g’).  r(x,x’)=1 if one tremble is needed to go from g 
to g’ (given a) and no trembles are needed to go from a to a’ (given g’), or if no trembles are 
needed to go from g to g’ (given a) and one trembles is needed to go from a to a’ (given g’).   
r(x,x’)=0 if no trembles are needed to go from g to g’ (given a) and no trembles are needed to go 
from a to a’ (given g’). 
 
Define the resistance of a path r(x1,…,xk) as  ∑i=1

k-1 r(xi,xi+1). 
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The path (x1,…,xk ) is an improving path if r(x1,…,xk) = 0.  For further discussion of improving 
paths, see Jackson and Watts [1998].  A state x is statically stable if there are no improving paths 
leaving it. 
 
Let r(x1,xk) = min (X1,…,Xk) ∈p(X1,Xk) r(x1,…,xk). 
 
A theorem from Young [1993] is instrumental in the proofs of Propositions 1 and 2.  Before 
stating Young’s [1993] theorem, the following definitions from Young (1993) are needed. 
 
Consider a stationary Markov process on a finite state space X with transition matrix P.  
 
A set of mutations of P is a range (0,a] and a stationary Markov process on X with transition 
matrix  P(ε)  for each ε  in (0,a], such that (i) P(ε) is aperiodic and irreducible for each  ε  in 
(0,a], (ii) P(ε) →P, and (iii) P(ε)xy  > 0 implies that there exists r≥0 such that 0<lim ε-r P(ε) 

xy  <∞.   
 
The number r in (iii) above is the resistance of the transition from state x to y.  There is a path 
from x to z of zero resistance if there is a sequence of states starting with x and ending with z 
such that the transition from each state to the next state in the sequence is of zero resistance.  
Note that from (ii) and (iii), this implies that if there is a path from x to z of zero resistance, then 
the n-th order transition probability associated with P of x to z is positive for some n. 
 
The recurrent communication classes of P, denoted X 1,…,X J, are disjoint subsets of states such 
that (i) from each state there exists a path of zero resistance leading to a state in at least one 
recurrent communication class, (ii) any two states in the same recurrent communication class are 
connected by a path of zero resistance (in both directions), and (iii) for any recurrent 
communication class X j and states x in X j and y not in X j   such that P(ε)xy  > 0 ,  the resistance 
of the transition from x to y is positive.   
 
For two communication classes X i  and X j , since each  P(ε) is irreducible, it follows that there is 
a sequence of states x1,…xk with x1 in X i  and xk in X j  such that the resistance of transition from 
xk to xk+1 is defined by (iii) and finite.  Denote this by r(xk,xk+1).   Let the resistance of transition 
from X i  to X j  be the minimum over all such sequences of  Σ1

Κ−1 r(xk,xk+1), and denote it by r(X i  
, X j ). 
 
Given a recurrent communication class X i , an i-tree is a directed graph with a vertex for each 
communication class and a unique directed path leading from each class j ( ≠i) to i.   The 
stochastic potential of a recurrent communication class X j    is then defined by finding an i-tree 
that minimizes the summed resistance over directed edges, and setting the stochastic potential 
equal to that summed resistance. 
 
Given any state x, an x-tree is a directed graph with a vertex for each state and a unique directed 
path leading from each state y ( ≠x) to x.   The resistance of x is then defined by finding an x-tree 
that minimizes the summed resistance over directed edges. 
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The following theorem is a combination of Theorem 4 and Lemmas 1 and 2 in Young: 
 
Theorem (Young [1993]): Let P be the transition matrix associated with a stationary Markov 
process on a finite state space with a set of mutations {P(ε)} and with corresponding (unique) 
stationary distributions {m(ε)}.  Then m(ε) converges to a stationary distribution m of P, and a 
state x has m x >0 if and only if x is in a recurrent communication class of P which has a minimal 
stochastic potential.  This is equivalent to x having minimum resistance. 
 
 
Proof of Proposition 1:   
 
The stochastic process of Proposition 1 determines a finite state, irreducible, aperiodic Markov 
chain, and thus has a unique stationary distribution µγ, ε  over states, where states are 
network/strategy combinations.  Given that  γ = fε,  we can write µγ, ε as µε. 
 
Case (i):  Consider the case where (a-k)>0 and (b-k)<0.  The statically stable states are those 
where there is a fully connected component of players playing A, the remaining players play B 
and are not connected to anyone, and if there are any such B players then there must be enough 
of them so that their best response to the average play of all other players is B (which requires 
that there are more than n/2 such players).  Let (gN,A) represent the state where players are in the 
fully connected network gN and all players play strategy A.  From the fully disconnected network 
with all players playing B it takes at most two trembles (two players changing to A) to get a link 
to form.  From that state with one link, any single tremble of a player from B to A leads to a state 
where that player becomes fully linked with the other players who play A.  This continues, and 
so by single trembles we move from state to state until it is a best response for all disconnected 
players to play A, in which case the process moves directly to the complete network with all 
players playing A.    From (gN,A), it takes more than (n+1)/2 trembles to get to any other 
statically stable state.   So, whenever (n+1)/2>2 it follows that (gN,A) is the unique stochastically 
stable state.  The only remaining case is when n=3.  However, in that case it takes only one 
tremble to change from the fully disconnected network with all players playing B to get a link to 
form, as one player trembling to A can lead another player to switch to A as a best response to  
the average play.  The case of (a-k)<0 and (b-k)>0 is similar where now (gN,B) is the unique 
stochastically stable state; except for the situation where  (b-c)/(a-d+b-c) ≤ 1/(n-1) and (a-k)<0 
and (b-k)>0.   Then two trembles can lead from (gN,B) to a situation where there are two 
disconnected players playing A.  In that case, the fully disconnected network with all players 
playing A is also stochastically stable (it takes two trembles to leave either of these states, and 
only one tremble to transition between other states and from neighboring states into these  
states). ◊ 
 
 
Case (ii):  Note that from any x=(g,a) there is a path of zero resistance leading to either (gN,A) or 
(gN,B) , where (gN,A) and (gN,B) represent the states where players are in the fully connected 
network gN and all players play strategy A (or B, respectively). This follows since all payoffs are 
strictly positive and so players always prefer to add a link when given the opportunity, and the 
fact that all players must coordinate on strategy A or B given the symmetry of payoffs and the 
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assumed uniqueness of the best response in the coordination game.  Note also that any path from 
(gN,A) or (gN,B) to any adjacent network-strategy pair has positive resistance. 
 
Thus, the recurrent communication classes as defined above must be {(gN,A)} and {(gN,B)}.  
The set of stochastically stable states depends on which of these states has the smallest 
resistance.  Given the theorem above, we need only find the minimum resistance over paths from 
{(gN,A)} to {(gN,B)} and compare that to the minimum resistance over paths from {(gN,A)} to 
{(gN,B)}.  
 
If agents are in the gN network and all playing B, then given the payoff structure if we consider a 
path from (gN,A) to (gN,B) where only strategies are changed it takes less than n/2 trembles to 
get all agents to switch to all playing A.   So, r((gN,B), (gN,A)) < n/2.  Next we bound r((gN,A), 
(gN,B)).  If agents are in a gN network and all agents play A, then given the payoff structure if no 
links are changed it will take at least n/2 trembles to get players to want to switch to play B.  So, 
if the resistance is less than n/2 it must involve some trembles on links.  Let us consider what it 
would take to get some single player to switch from playing A to B.  For a player to switch from 
A to B more than half of the players that this player is linked to must play B.  Thus, if k links are 
severed, then (n-k)/2 players must be playing B if n-k-1 is odd and (n-k+1)/2 if n-k-1 is even.  So 
starting at (gN,A) to get a single player to want to switch from A to B involves at least k+(n-k)/2 
trembles and this is at least n/2.  Thus r((gN,A), (gN,B)) ≥n/2.  Since r(gN,A)< r(gN,B), (gN,A) is 
the unique stochastically stable state.   
 
 
Case (iii):   If a-k>0>d-k and b-k>0>c-k then players will prefer to sever any link to a player 
who plays a strategy that is different than their own, and add a link to any player who plays a 
strategy that is the same as their own.  Thus, the set of recurrent communication classes are 
{(gN,A)}, {(gN,B)}, and each {(gm,A/gn-m,B)} for 2≤m≤n-2.  Here (gm,A/gn-m,B) represents any 
state where there are two separate fully connected components, one of size m and the other of 
size (n-m) with all players in the m-size component playing A and all players in the (n-m) size 
component playing B.  Note that for any m, there are many different states (gm,A/gn-m,B) since 
here are many ways to select m individuals.  Each is a distinct recurrent communication class. 
 
Given Young’s theorem, we look for the set of recurrent communication classes with minimum 
resistance, found by constructing restricted (g,a)-trees.  First assume that (b-c)/(a-d+b-c) > 1/(n-
1).  We next construct a restricted (gN,A)-tree.  Direct (gN,B) to any of the (g2,A/gn-2,B) vertices; 
(gN,B) has resistance 2 to an improving path leading to any (g2,A/gn-2,B) vertex.  (Starting at 
(gN,B) allow two trembles to change two player’s strategies to A.  Then there is an improving 
path leading to a (g2,A/gn-2,B) vertex.  This improving path exists since all of the B players will 
receive a negative payoff from their link with the A players, and will sever it when given the 
opportunity.  Note that (gN,B) has a distance of more than 2 from an improving path to any other 
communication class, since more than 2 players strategies must be changed.)   Any of the 
(gm,A/gn-m,B), 2≤m≤n-3, vertices has a distance of 1 from an improving path leading to one of 
the (gm+1,A/gn-m-1,B) vertices; simply allow a tremble to change one of the B players to strategy 
A.  Any of the (gn-2,A/g2,B) vertices has a distance of 1 from an improving path leading to 
(gN,A).  Simply allow a tremble to change one of the B players to strategy A, then the remaining 
B player will sever the tie to this player.  The remaining B player will now be unlinked; since we 
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assume that disconnected players, choose a best response to the current average play of all other 
players, this B player will change strategies to A and will then form links with all the other A 
players.  Thus r(gN,A) is equal to the number of recurrent communication classes.  Similar 
reasoning shows that r(gN,B) is the same. 
 
Next we compute r(gm,A/gn-m,B) for 2≤m≤n-2.  From the above, we know that gN/A and gN/B are 
both a distance of 2 or more from an improving path leading to any (gm,A/gn-m,B).  Thus 
r(gm,A/gn-m,B) is strictly greater than the number of recurrent communication classes, and so 
larger than r(gN,A)=r(gN,B).  It follows from Young’s theorem that the stochastically stable 
states are (gN,A) and (gN,B). 
 
However if (b-c)/(a-d+b-c) ≤ 1/(n-1) then to go from (gN,B) to any of the (g2,A/gn-2,B) vertices 
takes only one tremble.  (Starting at (gN,B) allow one tremble to change one player’s strategy 
from B to A.  Since (b-c)/(a-d+b-c) ≤ 1/(n-1), another B player will switch to A if given the 
chance to update.  Additionally the remaining B players will sever ties to these A players when 
given the opportunity.)  So r(gN,A) is now equal to the number of recurrent communication 
classes minus one.  Thus (gN,A) now has the smallest resistance and is the unique stochastically 
stable state.   
 
 
Proof of Proposition 2: 
 
Case (i):  This is a straightforward extension of the proof of (i) in Proposition 1.   
 
We now prove the following claim mentioned after Proposition 2.  
 
Claim 1:  If m=2 and n is divisible by 3 then the stochastically stable states are networks of 
n/(m+1) fully connected components each of size m+1. 
 
Proof of Claim 1:  Let s be the state where all play A and players are in n/(m+1) fully connected 
components each of size (m+1).  State s is statically stable since no one wants to form a new tie 
(everyone already has m links) and no one wants to sever a tie (since all play A, all ties up to m 
are beneficial).   
 
Next we show that s is the unique stochastically stable state.  To leave state s and go to any other 
statically stable state takes at least two trembles.  To see this note that if there is only one 
tremble, say one link is severed, then the link will be reformed since agents have no one else to 
link to (all other agents already have m ties).  If one agent trembles from A to B then links with 
this agent may be severed.  The agent will change back to A when given the opportunity to 
update his strategy and all links will be reformed.   
 
However we can go from any other statically stable state s’ to s by a series of one-at-a-time 
trembles.  State s’ must contain at least one component bigger than 3.   In this component let one 
agent, say i, tremble from A to B.  Ties to this agent will be severed.  The two agents who were 
next to i on the circle will then link with each other (they are not already linked since the 
component was originally bigger than 3).  Agent i is now unlinked.   Repeat this process with 
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any component of size greater than 3.  Eventually a state s will be reached by one-at-a-time 
trembles.   
 
Next we show that state s is stochastically stable.  Consider the minimal resistance g-tree for 
state s’.  Change the g-tree as follows:  direct state s’ to s by a series of one-at-a-time trembles.  
Sever the arrow leaving state s (this arrow must involve at least two trembles).  Sever any other 
arrows necessary to make this a tree.  We have constructed an s-tree.  We have added only 
arrows with one tremble.  We have deleted the same number of arrows; at least one of the 
deleted arrows had two trembles.  So the resistance of state s is less than state s’.  Thus state s’ is 
not stochastically stable.  ◊ 
 
 
 
  
Case (ii):  First we show that only states where everyone has m links are stochastically stable.  
To do this we use Claim 2 and the corresponding proof.  Note that any player with less than m 
links is willing to link with any other free player, due to c-k>0 and d-k>0. 
 
Claim 2:  Statically stable states where some players have fewer than m links are not 
stochastically stable.   
 
Proof of Claim 2:  Let G0 denote networks where all players have m links.  Let G1 be the 
networks one tremble from some network in G0. Define G2 to be the networks not in G0 or G1 
that are one tremble from some network in G1.  For t>2, let Gt denote networks not in Gj for any 
j<t, that are one tremble from some network in Gt-1.  Let us show that these exhaust all networks 
that could be part of a statically stable states.  Consider any statically stable state s where players 
are in network g∈Gt, all play A, and t>0.  We show that we can move from g to a network g’∈Gj 
with j<t by a single tremble.  Since g∉G0 and n is even, there exists either two players i and l 
who each have less than m ties in g or there exists one only player i who has less than m ties and 
then given that n is even that player has less than m-1 ties.  First consider the case where i has 
less than (m-1) ties.  Since s is statically stable we know there exists at least one player j who has 
m ties in g (since all play A, any player with less than m ties wants to link with any free player, 
thus a state cannot be statically stable unless some players have m ties) and ij∉g.  (Since n>m we 
know in any statically stable state there exists m+1 players with m ties.  Agent i cannot be linked 
to all of these players or i also would have m ties.)  Since player j has m ties he must be linked to 
a player k who is also not linked to i in g.  (Such a k exists because player j has m ties and player 
i cannot be linked to everyone j is linked to otherwise i would also have m ties.)   Sever the link 
jk.  Now player i can link to both players j and k.  The new graph has more total links than g.  
The case where players i and l each have less than m ties is similar, except there we  find player 
k who is linked to j but is not linked to l.   
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The above argument implies that for any state s with a g in Gt where t>0, there exists some state 
s’ with a g’ ∈Gj for some j<t such that the minimum resistance of s’ is no more than s.  (Starting 
with an s tree, simply redirect an arrow from s to some s’ that is just one tremble away, as from 
the argument above.  This s’ tree has no more trembles than the s tree.)  So to complete the 
proof, we show that the resistance of states with a network in G0 is lower than those with 



networks in G1.  Start with any s with a network in G1 and find a minimum s tree.  Find a 
statically stable state s' with g' in G0 such that s is 1 tremble away from s'.  Now, alter the s-tree 
as follows:  draw a new arrow from s to s'.  This has one tremble.  Next, follow the old path away 
from s' and identify the first s'' on that path such that the arrow away from s'' had more than one 
tremble.  (This could be s').  There must exist such an s'' since that path leads all the way to s, 
and g has fewer links than g', so at some point on that path from s' to s there exists an arrow 
pointing from a network with where all players have m links to one where some players have 
fewer links.  At least two links must be broken by trembles to make such a change.  Now delete 
the arrow away from s''.  We have constructed an s''-tree.  The added arrow from s to s' had one 
tremble.  The deleted arrow away from s'' had at least two trembles.  So the resistance of s is 
more than that of s'', which concludes the proof of Claim 2.  
 
Next we show that all stochastically stable states have all players playing A.  We already know 
that stochastic stability implies that everyone has m links.  First, think of the case where if just 
one neighbor plays A then I want to play A.  Then we can start with a state s where some players 
play B and g is in G0 (where G0 is defined as in the proof of Claim 2).  Find an s-tree.  Next, find 
a state s' where g is the same as is s but some component in g has now switched from B to A.  By 
definition it only takes one tremble to get from s to s'.  Now follow the path on the s-tree from s' 
back to s.  There must be some s'' on that path where either links changed which needs at least 
two trembles (since g is in G0) or where some players switch from A to B which also needs at 
least two trembles.  We construct an s'' tree by deleting the arrow leaving s’’ and adding an 
arrow from s to s’.  Since the added arrow has one tremble and the deleted arrow has two 
trembles we know that s could not have been stochastically stable.   
 
Next, we examine situations where two or more neighbors must play A to get me to switch from 
B to A.  Let us use the following induction argument.  Pick a state s which has g in G0, and has 
as few players playing B as possible, but still some.  Now follow a reasoning similar to that 
above.  Point s to s' where s' has all playing A and the same g as in s.  It takes some number of 
trembles (the minimum threshold to go from B to A) to go from s to s’.  Now follow the path on 
the s-tree back from s' to s.  There has to be an s'' where the arrow leaving s’’ has some players 
switch from A to B.  This switch must take strictly more than the minimum number of trembles 
to go from B to A.  Next construct an s’’-tree as we did above.  This new s''-tree has less 
resistance than the s-tree.   
 
The following concludes the induction argument.  Define state s’ as any statically stable state 
which has g in G0 and some players playing B.  Define state s as a statically stable state which 
has the same g as s’ but has more players playing B than does state s’ and where the difference 
between the number of players who play B in s’ and who play B in s is as small as possible.  
Following the same reasoning as above it is possible to find an s’’-tree with less resistance than 
the s-tree.  ◊ 
 
 
Case (iii):  If (a-k)>0>(d-k) and (b-k)>0>(c-k) then players will prefer to sever any link to a 
player who plays a strategy different from their own.  Thus the set of recurrent communication 
classes are {(gm,A)}, {(gm,B)}, and the set {(gl,A/gn-l,B)} for 2≤l≤n-2.  Here gm represents any 
network where no agent has more than m ties and any agent j with less than m ties has no one to 
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link with (thus any agent unlinked to j already had m ties).  And (gl,A/gn-l,B) represents any state 
where there are two distinct components, one of size l with everyone playing A and the other of 
size (n-l) with everyone playing B.  Again in gl (respectively gn-l) no agent has more than m ties 
and any agent with less than m ties has no other player who plays the same strategy who also has 
less than m ties and is not already connected to the given agent. 
 
Consider any state in the set {(gm,A)}.  To move from any such state to a statically stable state 
where some players are playing B requires at least two trembles, as a lone player who trembles 
to B will switch back to A when allowed to update his strategy, and so at least one other player 
must also tremble to B for it to be a best response for those players to stay playing B (and two 
trembles is sufficient, as then these two players can link and continue to play B). Similarly, it 
takes at least two trembles to move from any state in {(gm,B)} to a state outside of it.   However, 
for any state in {(gl,A/gn-l,B)}, it takes only one tremble to move to a state with a different 
number l’≠ l.   In particular, let l* be such that A is a best response to l*-1 players playing A and 
n-l*-1playing B, but B is a best response to l*-2 players players playing A and n-l* players 
playing B.   Then any state in {(gl,A/gn-l,B)} where l<l* will be one tremble away from a state in  
{(gl-1,A/gn-l+1,B)},  and any state where l>l* will be one tremble away from a state in a state in 
{(gl+1,A/gn-l-1,B)}.  So consider a least resistance tree leading to some state s in {(gl,A/gn-l,B)}.   
Say that l>l* and find a state s’ in {(gm,A)} that can be reached from state s by successive 
trembles leading to a sequence of states in {(gl+1,A/gn-l-1,B)}, {(gl+2,A/gn-l-2,B)}, etc.  Form an s’ 
tree by deleting the arrow leaving s’ and forming a path following the sequence just described.  
This tree will have less resistance than the s tree, and so s is not stochastically stable.  A similar 
argument handles the case where l<l* working with a state s’ in {(gm,B)}. ◊ 
 
 
Proof of Proposition 3: 
 
Case (i):  Assume (a-k(1))>0 and (b-k(1))<0.  Thus any player playing A will sever any ties to 
agents who are playing B.  Also by assumption, no A player is willing to have more than ma 
links to other A players.  This case is now identical to case (i) of Proposition 2 where no A 
player is willing to have more than m ties.   
 
Case (ii):  First note that we can find k() to arbitrarily approximate a constrained cost function of 
Proposition 2, and so it is possible to find examples where all players have ma ties and play A.  
So we show an example where the only stochastically stable states have all players having mb 
ties and playing B. 
 
Consider the following 5 player example.  Assume that A,A is the risk dominant equilibrium but 
that B,B is the efficient equilibrium and assume that (b-c)/(a-d+b-c) > ¼.  Then there exists a k( ) 
such that mb = 4, ma = 3, mc = 2, and md = 1. 
 
 Claim 2:  A state where all play A is not stochastically stable. 
 
Proof of Claim 2: Consider a state where all play B.  Since N=5 and mb = 4, if all play B then the 
only stable network is gN.  To leave this state and go to any other state takes at least 2 trembles.  
(If one tie is severed it is reformed.  If one person changes from B to A, then since md = 1 
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everyone will sever ties with this person.  Next this person will change back to B and reform all 
his old ties.) 
 
Next consider a state where all play A.  Since ma = 3, each player has at most 3 ties.  Thus one 
possible stable state, say s', is an augmented circle where 4 players have 3 ties each and the fifth 
player has only 2 ties.  Another possible stable state, say s'', is for 4 players to be completely 
connected and the fifth player to be connected to no one.  To leave any of these stable states 
takes only 1 tremble.  To leave s' and go to s'' we just need to change the fifth player from A to 
B.  All ties will be severed to this player (since mc = 2).  The remaining agents will then become 
completely connected.  The fifth unconnected player will then change from B to A.  Now 
consider leaving state s'' to move towards state s (where all play B).  From state s'' change one of 
the fully connected players from A to B.  Since mc = 2 all ties to this player will be severed.  
This player will then connect to the unconnected player who may change from A to B.  Now we 
have a triangle playing A and a two link line playing B.  This state is stable.  From here we can 
keep switching the A agents to B one at a time and thus move to other stable states.  We will end 
up at state s where all play B.  Note that we got from state s' (or s'') to state s by a series of one-
at-a-time trembles. 
 
Thus if we construct an s tree, it must be that states s' and s'' are lead to state s by one-at-a-time 
trembles (since this is the minimum number of trembles possible).  However to leave state s 
always takes at least 2 trembles.  Therefore states s' and s'' must have a higher resistance than 
state s.  Thus all play A is not stochastically stable. 
 
 
Case (iii):  This case is similar to that of case (iii) from Proposition 2, except now A (resp. B) 
players are willing to have ma (resp. mb) ties to other A (B) players.  Thus the only difference 
with this and Proposition 2 is that now ma may not equal mb.  But the Proposition 2 proof is 
easily extended to handle this case, since the trembles considered involved the severing of all 
links to given players. ◊ 
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