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Stable Manifolds
Outline

Smooth cocycles in Hilbert space. Station-
ary trajectories.

Linearization of a cocycle along a stationary
trajectory.

Ergodic theory of cocycles in Hilbert space.

Hyperbolicity of stationary trajectories. Lya-
punov exponents.

Cocycles generated by stochastic systems with
memory. Viarandom diffeomorphism groups.

Local Stable Manifold Theorem for stochas-
tic differential equations with memory (SFDE’s):
Existence of smooth stable and unstable man-
ifolds in a neighborhood of a hyperbolic sta-
tionary trajectory.

Proof: Ruelle-Oseledec multiplicative ergodic
theory+ perfection techniques.



The Cocycle

(92, F, P) := complete probability space.

0:R* xQ — Q a P-preserving (ergodic) semi-
group on (2, F, P).

E :=real (separable) Hilbert space, norm |||,
Borel s-algebra.

Definition.

k = non-negative integer, e € (0,1]. A C*< per-
fect cocycle (X,0) on E is a measurable random
field X : Rt x E x Q — E such that:

(i) For each w € Q, the map R* x E > (t,z) —

X(t,z,w) € E is continuous; for fixed (t,w) €

RT x Q, the map F> 2~ X(t,z,w) € E is CF°

(D*X (t,z,w) is C¢ in ).

(11) X(tl + 1o, ',CLJ) = X(tQ, ° 0<t1,W)) OX(tl, ',CL)) for all

t1,t2 € R+, all we Q.

(iii) X(0,z,w) =2z for all z € F,w € Q.



Cocycle Property

X(tl,-,w) X(t27'79(t17w))

X(t1 +ta,x,,w)

e(tb ) 9(t27 )
Q= ICI) 0+ T, w)
t=20 t=1 t =11 + 1o

Vertical solid lines represent random fibers:
copies of E. (X,0)is a “vector-bundle morphism”.



Definition

A random variable Y : Q — E is a stationary
point for the cocycle (X,0) if

X(t,Y(w),w)=Y(0(t,w)) (1)

for all t € R and every w € Q. Denote stationary
trajectory (1) by X(t,Y) =Y (0(t)).



Linearization. Hyperbolicity.

Linearize a C*< cocycle (X, ) along a station-
ary random point Y: Get an L(E)-valued cocy-
cle (DX(t,Y(w),w),0(t,w)). (Follows from cocycle
property of X and chain rule.)

Theorem. (Oseledec-Ruelle)

Let T : R x Q — L(E) be strongly measurable, such
that (T,0) is an L(E)-valued cocycle, with each T(t,w)
compact. Suppose that

E sup log™ ||T(t,)|lL(m) < oo,
0<t<1

E sup 10g+ HT(l - t? Q(t, ))HL(E) < 0.
0<t<1

Then there is a sure event Qg € F such that 0(t,-)(Qy) C
Qg for allt € RT, and for each w € Qy,

lim [T(t,w)* o T(t,w)]*/ ) .= A(w)

t—o0
exists in the uniform operator norm. A(w) is self-adjoint

with a non-random spectrum

eM > et > et s L.
6



where the \;’s are distinct. Each e > 0 has a fized finite
non-random multiplicity m; and eigen-space F;(w), with

m; = dimF;(w). Set i =00 when \; = —00. Define
Ei(w):=E, Ei(w):= [0 Fw)]", i >1, B = kerA(w).
Then

ExC--C--CEjy1(w) CEij(w) -+ C Ey(w) C Ey(w) =F,
N Zf xr € EZ'((U)\E@'_Fl(W),

1
1. _1 T t’ s
1m y og ||T'(¢, w)z|| {—OO if x€ FEx(w),

t—o00
and
Tt w)(Ei(w)) € Ei(0(¢,w))
forall t >0, 1 > 1.

Proof.

Based on discrete version of Oseledec’s mul-
tiplicative ergodic theorem and the perfect er-
godic theorem. ([Ru.1], I.LH.E.S Publications,
1979, pp. 303-304; cf. Furstenberg & Kesten
(1960), [Mo.1]). O

Lyapunov Spectrum:

{\1, X2, A3, -+ } := Lyapunov spectrum of (T,0).
7



Spectral Theorem

T(t,w)

A

o :\EP L e
i TT—Es(6(t,0))
By(w)— | || P

Definition

A stationary point Y (w) of (X, 0) is hyperbolic
if the linearized cocycle (DX (t,Y (w),w),d(t,w)) has



a non-vanishing Lyapunov spectrum {--- < \;41 <
N < - <Xy <A1}, viz. N #0 for all i > 1.

Let ip > 1 be s.t. A\, <0< X\;,_1.
Assume X(t,-,w) locally compact and

E10g+ sup HDQX(tQ,Y(Q(tl)),ﬁ(tl))HL(E) < Q.
Ogtl,tQST‘

By Oseledec-Ruelle Theorem, there is a sequence
of closed finite-codimensional (Oseledec) spaces

- Fi_1(w) CEj(w) C--- C Ey(w) C Ey(w) =E,

1
Ei(w)={r € FE: tlim 7 log [|[DX (¢, Y (w),w)(x)]] < A},

i >1 and all w € Q*, a sure event in F satistying
0(t,-)(Q*) = Q* for all t € R.

Let {U(w),S(w) : w € Q*} be the unstable and
stable subspaces associated with the linearized
cocycle (DX, 0) ([Mo.1], Theorem 4, Corollary 2;
[M-S.1], Theorem 5.3). Then get a measurable
invariant splitting

E=Uw)eS(w), w € QF,
9



DX(t,Y (w),w)U(w)) =U0(t,w)), DX(t,Y(w),w)(Sw)) € SO,w)),

for all t > 0, with exponential dichotomies
IDX(t,Y (w),w)(x)]| > ||z|let for all ¢>7f 2zelU(w),

DX (t,Y (w),w)(z)]| < |z|]le”?t for all t>r,zeSw),

with 77 = 7*(z,w) > 0,7 = 1,2, random times and
85 >0,i=1,2, fixed.

10
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Nonlinear Stochastic Systems with Memory

“Regular” Ito SFDE with finite memory:

d(t) H(x(tmt)dHZai(x(t))dwi(t), (1)

(2(0),z0) = (v,n) € My := R% x L*([-r,0],RY)

Solution segment z;(s) := x(t +s), t > 0,5 €
[—r,0].

m~dimensional Brownian motion W := (Wy,--- ,W,,),
W (0) = 0.

Ergodic Brownian shift # on Wiener space
(Q,F,P). F:= P-completion of F.

State space M., Hilbert with usual norm ||-|.

Can allow for “smooth memory” in diffusion
coefficient.

H: M, — R C*°, globally bounded.
G:RY— L(R™ RY), CF1. G = (G, ,Gp).

B((v,n),p) open ball, radius p, center (v,n) €
Mo;
12



B((v,n), p) closed ball.

Then (I) has a stochastic semiflow X : RT x
My x Q — M, with X(¢,(v,n),") = (z(t),x;). X 1is
C*k< for any e € (0,9), takes bounded sets into
relatively compact sets in M,. (X,0) is a perfect
cocycle on M, ([M-S.4]).

Example

Consider the affine linear sfde
dz(t) = H(z(t), z;) dt + GdW(t), t>0 ,
w0)=veRY, m—nerl(-ro R [
where H : M, — R? is a continuous linear map, G
is a fixed (d x p)-matrix, and W is p-dimensional

Brownian motion. Assume that the linear deter-
ministic (d x d)-matrix-valued FDE

dy(t) = H o (y(t),y:) dt
has a semiflow

T, : LR x L?([-r,0], L(RY)) — L(RY)xL?([-r,0], L(RY)),t > 0,
13



which is uniformly asymptotically stable. Set

y = / T (.0)G AW () (2)

where I is the identity (d x d)-matrix. Integration
by parts and

Wi(t,0(t1,w)) =W({t+t,w)—W(ti,w), t,t1 €R, (3)

imply that Y has a measurable version satisfying
(1). Y is Gaussian and thus has finite moments
of all orders. See ([Mo.1]|, Theorem 4.2, Corol-
lary 4.2.1, pp. 208-217.) More generally, when
H is hyperbolic, one can show that a stationary
point of (I') exists ([Mo.1]).

In the general white-noise case an invariant
measure on M, for the one-point motion gives
rise to a stationary point provided we suitably
enlarge the underlying probability space. Con-
versely, let Y : Q — M, be a stationary ran-
dom point independent of the Brownian motion
W(t),t > 0. Let p:= PoY~! be the distribution of
Y. By independence of Y and W, p is an invariant
measure for the one-point motion

14



Theorem. (/M-S], 2000) (The Stable Manifold Theorem)

Assume smoothness hypotheses on H and G. LetY :
Q — My be a hyperbolic stationary point of the SFDE (I)
such that E(||Y (+)||°) < oo for some ey > 0

Suppose the linearized cocycle (DX (t,Y (w),w),0(t,w),t >
0) of (1) has a Lyapunov spectrum {--- < Xjp1 < A\; <
<o < Ay < A1}. Define N\, := max{\; : \; <0} if at least
one \; < 0. If all finite \; are positive, set \;;, = —o0.
(This implies that \;,—1 is the smallest positive Lyapunov
exponent of the linearized semiflow, if at least one \; > 0;
in case all \; are negative, set \;j;_1 = 00.)
Fiz e1 € (0,—X;,) and ea € (0,\;,—1). Then there
ex1st
(i) a sure event Q* € F with 0(t,-)(Q*) = Q for all
teR,
(ii) F-measurable random variables p;, 3; : ¥* — (0,1), §; >
p; >0, 1 =1,2, such that for each w € Q*, the fol-
lowing is true:

There are C*< (e € (0,6)) submanifolds S(w), U(w)
of B(Y (w), p1(w)) and B(Y (w),p2(w)) (resp.) with the

following properties:

15



(a) S(w) is the set of all (v,n) € B(Y (w), p1(w)) such
that

HX(NT, (’U, 77)7 w) - Y(Q(nr, w))H < 61 (w) e(>‘i0+61)n7’

for all integers n > 0. Furthermore,

1
lim sup m log || X (¢, (v,m),w) =Y (0(t,w))]| < A

t— o0

for all (v,n) € S(w). Each stable subspace S(w) of

the linearized semiflow DX is tangent at Y (w) to the

submanifold S(w), viz. Ty(w)S(W) = S(w). In partic-

ular, codim S(w) = codim S(w), is fized and finite.

: 1 ”X(tv (’01»"71),00) _X(t7 (U27772)7W)H
b) limsup — log lsup{ :
(b) ¢ [(v1,m1) = (v, m2) |l

(vi,m) # (v2,m2), (v1,m), (v2,m2) € S(W)H < Adg -

t—o0

(c) (Cocycle-invariance of the stable manifolds):
There exists T (w) > 0 such that

X(t,,w)(Sw) € S(0(t,w))

16



for allt > 7 (w). Also

DX(t,Y(w),w)(Sw)) C SO(t,w)), t>0.

(d) U(w) is the set of all (v,n) € B(Y (), p2(w)) with
the property that there is a unique “history” process
y(,w) : {—nr : n > 0} — My such that y(0,w) =
(v,m) and for each integer n > 1, one has
X(r,y(—nr,w),0(—nr,w)) = y(—(n — 1)r,w) and

ly(—nr,w) =Y (0(=nr,w))llar, < Ba(w)e” Pom1mealmr,

Furthermore, for each (v,n) € U(w), there is a unique
continuous-time “history” process also denoted by y(-,w) :
(—00,0] — Ms such that y(0,w) = (v,n),
X(t,y(s,w),0(s,w)) = y(t + s,w) for all s < 0,0 <
t < —s, and

_ 1
lim sup — log [[y(—t, ) — ¥ (B(—t,w)) | < —ig 1,

t—o00
Fach unstable subspace U(w) of the linearized semi-
flow DX is tangent at Y (w) toU(w), viz. Ty(w)Z;{(w) =
U(w). In particular, dim U(w) is finite and non-
random.
17



(e) Let y(-, (vi,m:),w),i = 1,2, be the history processes
associated with (vy,m;) = y(0, (v;,m;),w) € U(w), i =
1,2. Then

lim sup 1 log | sup |y(—t, (v1,m1),w) — y(—t, (v2,m2),w)|| |
[(v1,m1) = (v2,m2) | '

t—o0

(v1,m1) # (v2,12), (v5,) € U(w), i = 1,2}]

S _>\?;0—1'

(f) (Cocycle-invariance of the unstable manifolds):
There exists To(w) > 0 such that

Uw) S X (t, 0(—t,w))UO(~t,w)))
for all t > 75(w). Also
DX(t,-,0(~t,w)U(O(-t,w))) =U(w), =0
and the restriction
DX (t,,0(=t,w)[UO(—t,w)) : UO(—t,w)) = Uw), t>0,

18 a linear homeomorphism onto.

18



(9) The submanifolds U(w) and S(w) are transversal, viz.
My = Ty(w)l/?(w) s>, Ty(w)g(w).

Assume, in addition, that H,G are C;°. Then the

~

local stable and unstable manifolds S(w), U(w) are C°.

Figure summarizes essential features of Sta-
ble Manifold Theorem:

19



Stable Manifold Theorem

5 o o)
t>1 (w)

A picture is worth a 1000 words!

20



Outline of Proof

e By definition, a stationary random point
Y (w) € M, is invariant under the semiflow X;
viz X(t,Y) =Y (0(¢,-)) for all times t¢.

e Linearize the semiflow X along the station-
ary point Y(w) in M,. By stationarity of Y
and the cocycle property of X, this gives a
linear perfect cocycle (DX (¢,Y),0(t,-)) in L(Ms),
where D = spatial (Fréchet) derivatives.

e Ergodicity of ¢ allows for the notion of hy-
perbolicity of a stationary solution of (I) via
Oseledec-Ruelle theorem: Use local compact-
ness of the semiflow for times greater than
the delay r ([M-S.4]), and apply multiplica-
tive ergodic theorem to get a discrete non-
random Lyapunov spectrum {); : i > 1} for
the linearized cocycle. Y is hyperbolic if \; #
0 for every i.

e Assume that ||Y|| is integrable (for small
¢p). Variational method of construction of
the semiflow shows that the linearized cocy-

cle satisfies hypotheses of “perfect versions”
21



of ergodic theorem and Kingman’s subad-
ditive ergodic theorem. These refined ver-
sions give invariance of the Oseledec spaces
under the continuous-time linearized cocy-

cle. Thus the stable/unstable subspaces will

serve as tangent spaces to the local stable /unstable
manifolds of the non-linear semiflow X.

Establish continuous-time integrability esti-
mates on the spatial derivatives of the non-
linear cocycle X in a neighborhood of the
stationary point Y. Estimates follow from
the variational construction of the stochas-
tic semiflow coupled with known global spa-
tial estimates for finite-dimensional stochas-
tic flows.

Introduce the auxiliary perfect cocycle
Z(t,w) =Xt ()+Y (w),w)-Y(0(tw)), tc RT,we .

Refine arguments in (|[Ru.2], Theorems 5.1
and 6.1) to construct local stable/unstable
manifolds for the discrete cocycle (Z(nr,-,w), 8(nr,w))
near 0 and hence (by translation) for X (nr, -, w)

22



near Y (w) for all w sampled from a 6(¢,-)-
invariant sure event in Q. This is possible be-
cause of the continuous-time integrability es-
timates, the perfect ergodic theorem and the
perfect subadditive ergodic theorem. By in-
terpolating between delay periods of length r

and further refining the arguments in [Ru.2],

show that the above manifolds also serve as

local stable /unstable manifolds for the continuous-
time semiflow X near Y.

Final key step: Establish the asymptotic in-
variance of the local stable manifolds under
the stochastic semiflow X. Use arguments
underlying the proofs of Theorems 4.1 and
5.1 in [Ru.2] and some difficult estimates us-
ing the continuous-time integrability prop-
erties, and the perfect subadditive ergodic
theorem. Asymptotic invariance of the local
unstable manifolds follows by employing the
concept of a stochastic history process for X
coupled with similar arguments to the above.
Existence of history process compensates for
the lack of invertibility of the semiflow.

23
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