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Deterministic ODE’s: Stable Manifolds

ODE on r¢:
dz(t) = h(z(t)) dt (ODE)

driven by a vector field »: R? - R4, CF; Viz.
all derivatives Din1 < j < k, continuous

and globally bounded.

Assume hyperbolic equilibrium at 0: h(0) =
0; Dh(0) € L(R%) has all eigenvalues off imag-
Inary axis.
Then (ODE) has a ¢} flow ¢: R xR? -
R? s.t.
(i) ¢(-,z) = unique solution of (ODE) through
r € Re.

(ii) ¢(t,0)=0,t € R.



(iii) Group property:
¢(t1+t27°):¢(t27')o¢(t17°)7 t17t2 ceR

(iv) Local flow-invariant stable/unstable

c* manifolds in a neighborhood of o.

Properties (i)-(iv) are “generic” among

all vector fields.



The Flow

d(t1 + t2, x)

0 tll 11 -I- 1o



Local Stable/Unstable Manifolds







What happens

if vector field

is noisy??

Stochastic DE’s:

dz(t) = h(z(t)) dt + random terms



e Noise: Brownian motion w(), Gauss-
lan, continuous, independent incre-
ments w(t) — w(s) with mean zero and

variance t — s.

e Stochastic Calculus: Stratonovich differen-
tial
dI(t) = f(t) o dW (t)

I(t) ;= lim Z[f(Si)+f(Si+l) (W (sit1) — W (s;)]

|| —0 “— 2
i

== {s;}, partition of [0,¢. Call

I(t) ::/O f(s) o dW (s)

Stratonovich stochastic integral.

Chain Rule:

odp(W(t)) = Dp(W (t)) o dW (2)
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e Stochastic calculus has many appli-
cations in engineering and mathemat-
ical finance, e.g. Black-Scholes op-
tion pricing formula (1973): x@) =
u(t, P(t)) where the stock price P(¢) sat-
isfies the SDE

dP(t) = rP(t) dt + o P(t) dW (t)

and u(t,z) 1s the solution of a deter-

ministic backward second-order lin-
ear PDE:

ou z? 0%u ou
= —— 755 —Trr— +ru

ot~ 2 022 o0x
w(T,z) = (x—q)", (t,z) €[0,T) x (0,00)

¢ = exercise price of option with ma-

turity time 7.



SDE’s: Stable Manifolds

o Formulate a Local Stable Manifold Theorem for
stochastic differential equations (SDE’s)
driven by “white noise” (Brownian
motion) (or general noise with sta-
tionary ergodic increments-Stratonovich

or Ito type.)

e Start with the existence of a stochas-
tic flow for SDE.

o Concept of a hyperbolic stationary
trajectory. The stationary trajectory
is a solution of the forward /backward
anticipating SDE for all time (Stratonovich

case).
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o Existence of a stationary random fam-
ily of asymptotically invariant stable
and unstable manifolds within a sta-
tionary neighborhood of the hyper-

bolic stationary solution.

o Stable and unstable manifolds dynam-
ically characterized using forward and
backward solutions of anticipating ver-
sions of the (Stratonovich) SDE.

« Proof based on Ruelle-Oseledec (non-
linear) multiplicative ergodic theory

and anticipating stochastic calculus.

11



Formulation of the Theorem

Stratonovich SDE on R¢

dx(t) dt—l—Zgz )odW;(t), (1)

driven by m-dimensional Brownian mo-
tion W= (Wy,--- , Wy,).
(Q, F, (F)wer, P) := canonical filtered Wiener

space.

Q := space of all continuous paths w :
R — R™, w(0) =0, in Euclidean space R™,
with compact open topology;

F := Borel s-field of o;
F: := sub-s-field of 7 generated by the

evaluations w — w(u), v<t, teR.

P .= Wiener measure on 9.
12



h,gi : RY - R4 1 < i <m, C/° vector fields
on R¢; viz. h has all derivatives Din,1<j <
k, continuous and globally bounded, p*n

Holder continuous with exponent s € (0,1).
gi, 1 <i<m, globally bounded and ¢f*'*.

f:RxQ— 0 is the (ergodic) Brownian
shift

O(t,w)(s) =w(t+s)—w(t), t,seR,wefll

Let ¢: R xR xQ — R? be the stochastic
flow generated by (I) (¢, -,w) = [p(=t, -, 6(t,w))] ™,

t <0). Then ¢ is a perfect cocycle:

qb(tl + t2, °,(U) — ¢(t27 °,(9(t1,CU)) © ¢(t17 °,Cd),

13



for all t,4, e R and all we o ([I-W], [A-S],
[A]).

Figure illustrates the cocycle prop-
erty. Vertical solid lines represent ran-
dom fibers consisting of copies of R4. (¢,6)
is a “random vector-bundle morphism”

over the “base” probability space .

14



The Cocycle

o(t1 +t2, x, ,w)

9(t17 ) 0(t27 )
W H(tl:,w) 0(t4 —|— to,w)
t=20 t =11 t =1 + 1

15



Definition

The SDE (I) has a stationary trajectory
if there exists an F-measurable random

variable v :Q — R? such that

¢t Y (w),w) =Y (0(t,w)) (1)

for all t e R and every w e Q. Denote sta-

tionary trajectory (1) by ¢@t,Y) =Y ((6()).

Let ¢(t,v) be a stationary solution of
(I). Cocycle property of ¢ implies that

the linearization

(D2¢(t7 Y(w)a w)v (9(75, w))

16



along the stationary solution is also a
d x d-matrix-valued cocycle. Using Kol-

mogorov’s theorem, the random variables

sup
zera (1+[2]7)

have moments of all orders. If Elog™ |v]| <
00, then FElogt|Dy¢(1,Y)] < . Apply Os-
eledec’s Theorem to get a non-random finite

Lyapunov spectrum:

lim = log |Dad(n, ¥ (w),w)(v(w))|, v e Lo, RA).

n—oo N,

Spectrum takes finitely many fized values
{x}_, with non-random multiplicities ¢,
1 <i<p and Y ¢ =d ([Ru.l], Theorem

L.6). -

17



Definition

Stationary trajectory ¢(:v) of (I) is
hyperbolic 1f Elog* |Y ()] < o0, and if the lin-
earized cocycle (Dy¢(n,Y (w),w),0(n,w)) has a

non-vanishing Lyapunov spectrum
{)\p< <)\7;0_|_1 <)\7;0 <0<)\7;0_1 < e < o <)\1}

1.e. N #0 for all 1<i<np.

Define );, .= max{x : \; < 0} if at least
one \ < 0. If all A, > 0, set x, = —c.
(This implies that A,_, is the smallest
positive Lyapunov exponent of the lin-
earized flow, if at least one A; > 0; in case

all ;, are negative, set A, _; = c.)

18



Let p e R*, z e R,
B(z,p) := open ball in R¢, center z and ra-
dius p;
B(z,p) := corresponding closed ball;
KR4 := the class of all non-empty com-
pact subsets of R¢ with Hausdorft metric
d*:
d* (A1, Ap) := sup{d(z, A1) : © € As} Vsup{d(y, As) : y €
A;} where 4,, 4, € K(R9);
d(z,A;) = inf{|lz —y|:y € A;}, x e RE, i =1,2;
B(K(R%) := Borel s,-algebra on x(R?) with
respect to the metric 4.

(K(R%),d*) complete separable.

19



Theorem 1 (The Stable Manifold Theo-
rem) (M.4+ Scheutzow, 1999)

Assume that the coefficients of SDE (I) satisfy the
given hypotheses. Suppose ¢(t,Y) is a hyperbolic station-
ary trajectory of (I) with Elog™ |Y| < oo.

Fix ¢; € (0,—\;,) and €3 € (0,A;,—1). Then there
exist

(i) a sure event Q* € F with 0(t,-)(Q2*) = Q* for all
t € R,

(ii) F-measurable random variables p;, 5; : Q2* — (0,1), B; >
p; > 0,1 = 1,2, such that for each w € Q*, the fol-
lowing is true:

There are C* (e € (0,6)) submanifolds S(w), U(w)
of B(Y (w), p1(w)) and B(Y (w), p2(w)) (resp.) with the

following properties:

20



(a) S(w) is the set of all z € B(Y (w), p1(w)) such that
p(n, z,w) = Y (8(n,w))| < fr(w) ot
for all integers n > 0. Furthermore,

timsup + log |(t,2,0) Y (B(t,0))| < Xy (2

t—o00

for all z € S(w). Each stable subspace S(w) of the
linearized flow Dy¢ is tangent at Y (w) to the sub-
manifold S(w), viz. Ty,S(w) = S(w). In particu-

lar, dim S(w) = dim S(w) and is non-random.

{|¢(t,$17w)—¢(t,$27w)|}] <

|1 — 22

1
(b) lim sup — log[ sup
t—o00 t T1FT2
z1,290€S(w)

i -
(c) (Cocycle-invariance of the stable manifolds):

There exists T1(w) > 0 such that



Also
Dy(t,Y (w),w)(S(w)) = S(8(¢,w)), ¢>0. (4)

(d) U(w) is the set of all x € B(Y (w), p2(w)) with the

property that

p(—n, z,w) — Y (0(—n,w))| < B2(w) e(—Aig—1tez)n
()

for all integers n > 0. Also

i sup + 10g [9(—t, 7,0) — Y (0(~t, )] < —Ai-1.
(6)
for all x € U(w). Furthermore, the unstable subspace
U(w) of Dy¢ is the tangent space to U(w) at Y (w),
viz. Ty(mU(w) = U(w). In particular, dim U(w) =

dim U(w) and is non-random.

22



(loctoe) ol tanoll)

e) limsu lo su
(e) pt g[ D P—

t—o0 :131#:1:2
1,2 Eu(w)

—Nig—1-
(f) (Cocycle-invariance of the unstable manifolds):

There exists T2 (w) > 0 such that
B(—t, -, w)UW)) CUB(~t,w)), t>7w). (7)
Also
Dag(—t,Y (w),w)U(w)) =U(0(-t,w)), t20. (8)
(g) The submanifoldsi(w) and S(w) are transversal, viz.
R? = Ty () (w) & Ty ()S(w). (9)

(h) The mappings

Q- KRY, Q- KR,

w Sw) w— Uw)
23



are (F, B(K(R%)))-measurable.

Assume, further, that h, g;, 1 <1i < m, are C;° Then
the local stable and unstable manifolds S(w), U(w) are

C*.

24



t > Tl(CU)

A picture is worth a 1000 words!

25




t > TQ((U)

26



Sketch of Proof

Linearization and Substitution

Assume regularity conditions on the
coeflicients n,g;. By the Substitution Rule,
o(t,Y (w),w) 1S & stationary solution of the an-

ticipating Stratonovich SDE

1=1

do(t,Y) = h(o(t,Y))dt + f: 9i(6(t,Y)) o dWy(t), t> 0}

$(0,Y) =Y.
(I1)

(IN-P]).

Linearize the SDE (I) along the sta-
tionary trajectory. By substitution, match
the solution of the linearized equation

with the linearized cocycle Dy¢(t, Y (w),w).

27



Hence
Ds¢(t,Y (w),w), t > 0, solves the SDE:

dD2¢(t,Y) = Dh($(t,Y)) Dath(t,Y) dt )

ZDgZ o(t,Y))Dag(t,Y) o dW;(t), t>0

Ve

D2¢(07 Y) =I.

/

(II1)

D,, D denotes spatial (Fréchet) derivatives.

Similarly, the backward trajectories
&(t,Y), Dagp(t,Y), t <0,

solve the corresponding backward Stratonovich
SDE’s:

do(t,Y) = —h(¢(t,Y)) dt—Zgz )) o dW;(t), t<0}

»(0,Y) =Y.
(117)

28



dDy¢(t,Y) = —Dh(¢(t,Y))Da¢p(t,Y) dt

—ZDgz (t,Y))Dag(t,Y) o dW;i(t), t<0

(IIT7)
Above SDE’s (IT)-(I1I)- give dynamic
characterizations of the stable and un-

stable manifolds.

The following lemma is used to con-
struct the shift-invariant sure event ap-
pearing in the statement of the local sta-
ble manifold theorem. Gives “perfect
versions” of the ergodic theorem and King-

man’s subadditive ergodic theorem.

29




Lemma 1

(i) Let h : Q — R™ be F-measurable and such that

/Qoilzllglh(ﬁ(u,w))dp(w) < 0.

Then there is a sure event £y € F such that 0(t,-)(Q1) =

Qq for allt € R, and

lim ~A(8(¢,w)) = 0

t—oo t

for all w € ;.
(ii) Suppose f : RT x @ — R U {—o0} is a measurable
process on (£, F, P) satisfying the following condi-

tions

(a) E sup f(u) <oco, E sup fr(1—u,0(u)) <o
0<u<l1 0<u<l1

(b) f(t1+t2,w) < f(tl,CU)+f(t2,(9(t1,w>) forallt,,t5 > 0

and all w € Q).

30



Then there is sure event Q2 € F such that 0(t,-)(Q22) =
), for all t € R, and a fixed number f* € RU{—o0} such
that

lim > f(t,w) = f*

t—oo t

for all w € 5.

Proof

[Mo.1], Lemma 7. ©

31



Theorem 2 ([O], 1968)

Let (2, F, P) be a probability space and 6 : Rt xQ —
(2 a measurable family of ergodic P-preserving transforma-
tions. Let T : Rt x Q — L(R%) be measurable, such that
(T, ) is an L(R%)-valued cocycle. Suppose that

E sup log" ||T(t,-)|| <oo, E sup log™ [ T(1—t,6(t,-))|| < co.
0<t<1 0<t<1

Then there is a set g € F of full P-measure such that
6(t,-) (o) C Qo for all t € RT, and for each w € Qy, the
limit

lim [T(t,w)* o T(t,w)]*/ ) := A(w)

n— 00

exists in the uniform operator norm. FEach A(w) has a

discrete non-random spectrum

eM > er2 > e s > et

32



where the \;’s are distinct. Each e has an eigen-space
F;(w) and a fixed non-random multiplicity m; := dimF;(w).

Define

Ey(w) C--- C Eij1(w) C Bi(w)--- C Ex(w) C Ey(w) =R

1
lim p log |T(¢t,w)z|| = Mi(w), if x€ Ej(w)\Fir1(w),

t—o00

and

T(t,w)(Ei(w)) C Ei(6(¢,w))
forall t >0, 1<17<p.
Proof.

Based on the discrete version of Os-

eledec’s multiplicative ergodic theorem
33



and Lemma 1. (|[Ru.l], L.H.E.S Publi-
cations, 1979, pp. 303-304; cf. Fursten-
berg & Kesten (1960), [Mo.1]), “perfect”

infinite-dimensional version and applica-
tion to SFDE’s. O

34



Spectral Theorem

T(t w)

39



Apply Theorem 2 with T(t,w) := D2¢(t, Y (w),w).
Then linearized cocycle has random
invariant stable and unstable subspaces
{S(w),U(w):w e Q}:

D2¢(t,Y (w), w)(S(w)) = S(0(¢,w)),

Dod(—t,Y (), w)U(w)) = UB(—t,w)), t>0.

[Mo.1].
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Estimates on the non-linear cocycle

Theorem 3 (M + Scheutzow [M-
S.2])

There exists a jointly measurable modification of the
trajectory random field of (I), denoted by {¢s +(z) : —00 <

s,t < 0o, x € R4}, with the following properties:

Define ¢ : R x R? x 2 — R? by
o(t,z,w) == ¢os(z,w), z€RYLwetecR.

Then for all w € Q, € € (0,0),v,p,T > 0,1 < |a| <k,

P(t,-,w) is C*,0 < € < §, and the quantities

|¢s,t(%, W) | DZ ¢s,t(z, w))|
sup - : sup :
o<s,e<t, [1+ |z|(log™ |z|)7] o<sie<r, (14 |z|7)
xERd wGRd
D¢ x,w) — D¢ x,w
o s 1DEOu(@0) — Didui(a )|
zERd 0<s,t<T, z —a’|*(1+ |z])7

0<|z! —z|<p

38



are finite. The random variables defined by the above

expressions have p-th moments for all p > 1.
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Ruelle’s Non-linear Ergodic Theorem

Theorem 4 ([Ru.l1], 1979)

Let Q >— F, € C*(R%0;R%0) be measurable
such that Elog™ ||F.|B(0,1)||x,e < 00. Set F™(w) := Fp(p_1.1)°
+-0 Fp(1,0) 0 Fy,. Suppose A < 0 is not in the spectrum of
the cocycle (DF*(0),0(n,w)). Then there is a sure event
Qo € F such that 0(1,-)(Qy) C Qo, and measurable func-
tions 0 < a(w) < f(w) < 1,y(w) > 1 with the following

properties:

(a) If w € Qq, the set
VLj‘ = {z € B(0,a(w)) : |F7(z)| < B(w)e")‘ for all n > 0}

is a C*¢ submanifold of B(0, a(w)).

(b) If z1,29 € ch‘, then

|F(21) — F2 (22)] < v(w)|z1 — 22]€™
40



for all integers n > 0. If X' < X and [\, \] is disjoint
from the spectrum of (DF(0),6(n,w)), then there

exists a measurable v'(w) > 1 such that
P2 (21) — FJ (32)] < ' (w)|21 — wale™

for all x1,x9 € ch‘ and all integers n > 0.

Proof

[Ru.1], Theorem 5.1, p. 292.
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Construction of the Stable/Unstable Man-
ifolds

o Use auxiliary cocycle (z,6):
Z(t,x,w) =¢(t,x+Y(w),w) —Y(0(t,w)) (16)

for te R,z e RLweQ. Set r:=6(1,):Q—

Q. Define maps F,, Fr: R¢ - R

F,(z):=Z(1,z,w) xcR?

Fn = Tn—l(w) ©-«--0 FT(w) @) Fw

w

for all w € 9. Then cocycle property
for z gives F" = Z(n,-,w) for each n > 1.

F, 1S Ck< (e € (0,6)) and (DF,)(0) = Ds¢(1,Y (w),w).

 Integrability of the map

w = log™ [ Dag(1, Y (w), w) || (ma)
42



(Lemma 2) implies discrete cocycle
((DF™)(0),8(n,w),n > 0) has same non-random
Lyapunov spectrum as that of lin-

earized continuous cocycle
(ngb(t, Y(w)a w)a (9(15, w)v t 2> 0)7

VIZ. {dm < - < Xig1 < A < - < da < A1}
where each A, has fixed multiplicity
¢, 1<i<m (Lemma 2).

If \; >0 for all 1 <i < m, then take
Sw) = {Y(w)} for all w € . Theorem
is trivial in this case. Hence assume

there 1s at least one ) <o.

Use discrete non-linear ergodic the-
orem of Ruelle (Theorem 4) and its

proof to obtain a sure event Qi € F
43



such that 4@, ) = : for all ¢ € R,
F-measurable positive random vari-
ables pi,8 : QF = (0,0), 91 < B1, and a
random family of c#< (e € (0,5)) sub-
manifolds of B(0, p;(w)) denoted by
Si(w), w € Q;, and satisfying the follow-
ing properties for each we Qi: Sy(w) 1S
the set of all z € B(0, p1(w)) such that

| Z(n,z,w)| < Bl(w)e(AiO’Lel)", nezZt’ (21)

Si(w) 18 tangent at o to the stable sub-
space S(w) of the linearized flow D,s,
Viz. TpSi(w) = S(w). Therefore dim S,(w)

is non-random by ergodicity of 4. Also

Z(n, z1,w) — Z(n, x2,w)|

. 1
lim sup — log sup
n—oo N T1F#T, |371 - 332|
z1,22€84(w)

(22)
44



The 4(t,-)-invariant sure event Qf € 7
is constructed using the ideas in Ru-
elle’s proof (of Theorem 5.1 in [Ru.1],
p. 293), combined with the estimate
(10) of Lemma 2 and the subadditive

ergodic theorem (Lemma 1 (ii)).

For each w e 0, let S(w) be as defined
in part (a) of the theorem. Then by
definition of S,(w) and z:

~

S(w) = Sq(w) + Y (w). (23)

Since S,;(w) is a c* (e € (0,6)) subman-
ifold of B(0,p:(w)), then Sw) is a c*c
(¢ € (0,6)) submanifold of B(Y (), (w))-

Furthermore, Ty ,S(w) = T)Ss(w) = Sw).
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Hence dim S(w) = dim S(w) = iqi, and

1s non-random.
(22) implies that

1
limsup —log |Z(n, z,w)| < A4 (24)
n

n—00

for all w in @7 and all z € S;(w). Lemma
4 implies there is a sure event Q; C O
such that ¢, )(z) =z for all t e R, and

1
lim sup p log |Z(t, z,w)| < Ay (25)

t—o00

for all we o and all 2 € S;(w). There-
fore (2) holds.

To prove (b), let w e ;. By (22),
there is a positive integer N, := Ny(w)
(independent of z € S4w)) such that
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Z(n,z,w) € B(0,1) for all n > N,. Let Q3 =

O3 N Qs, where Q; is the shift-invariant
sure event defined in the proof of Lemma
4. Then 0 is a sure event and 6(¢,-)(2) =
q; for all t e R. By cocycle property,
Mean-Value theorem and the ergodic

theorem (Lemma 1(i)), we get (b).

To prove the invariance property (4),
apply the Oseledec theorem to
(D2gp(t, Y (w),w),0(t,w)). (Get a sure 6(¢-)-
invariant event, also denoted by «,
such that

D¢ (t, Y (), w)(S(w)) C S(8(t,w)) for all ¢ >0
and all w € 9r. Equality holds because
D2¢(t,Y (w),w) 18 Injective and dim S(w) =
dim s@(t,w)) for all +>0 and all w e Q.
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« To prove the asymptotic invariance
property (3), use ideas from Ruelle’s
Theorems 5.1 and 4.1 in [Ru.1l], to
pick random variables p;, 3, and a sure
event (also denoted by) or such that
o(t,-)(Q) = @ for all ¢t e R, and for any
e c (0,¢) and every w e Qf, there exists
a positive K¢(w) for which the inequal-
1ties

p1(B(t,w)) > K (w)p1(w)ePiot,

(26)
B1(0(t,w)) > K&(w)B1 (w)ePioTe)t

hold for all ¢+ >0. Use (b) to obtain a
sure event Qr Cc Q; such that 4, -)(Qz) =

q; for all t e R, and for any 0 <€ < ¢
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and w € @}, there exists p<(w) >0 (inde-

pendent of z) with
B¢, 2, w) = Y (0(t,w))| < B(w)ePoFIt (27)

for all z € Sw),t >0. Fix t >0, we
and z € S(w). Let n be a non-negative
integer. Then the cocycle property
and (27) imply that

9(n, 98, 3,), 6(¢,))=Y (B, 6(t, )|
= |60+ £,2,0) = ¥ (B(n +1,)
< B(w)ePioTe)(n+t)

< BG(W)G()\iO —|—e)t€()\i0 —I—el)n.
(28)

If w € 0z, then it follows from (26),(27),
(28) and the definition of §(6(t,w)) that
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there exists = (w) > 0 such that ¢, z,w) €
S(4(t,w)) for all ¢ > 7 (w). This proves as-

ymptotic invariance.

Prove (d), the existence of the lo-
cal unstable manifolds #(w), by run-
ning both the flow ¢ and the shift ¢
backward in time getting the cocycle

~ ~

(Z(t, -, w),8(t,w),t > 0):

~ ~

o(t,x,w) = (-t x,w), Z(t,z,w) = Z(—t,z,w),

0(t,w) := 0(—t,w)

for all t>0,w e Q. The linearized flow
(D2g(t,Y (w),w), B(¢,w), t > 0) 1S an L(R%)-valued
perfect cocycle with a non-random fi-
nite Lyapunov spectrum {-); < -\, <
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< Aip1 < A < --- < Ay < Ay} 1s the Lya-
punov spectrum of the forward lin-
earized flow (D.¢(t, Y (w),w),d(t,w), t > 0).
Apply first part of the proof to get
stable manifolds for the backward flow
é satisfying assertions (a), (b), (c).
This gives unstable manifolds for the orig-
inal flow ¢, and (d), (e), (f) automat-
ically hold.

Measurability of the stable manifolds

follows from the representations:

S(w) =Y (w) + Sa(w) (29)

Su(w) = lim B0, pi (@) N () fil-w) " (B(0,1))

n— 00 !
1=1

(30)

fi(z,w) = Bi(w) e~ Vo)l Z(; z W), z € RY, w € QF,

o1



for all integers i > 0. (Above limit is
taken in the metric ¢ on ¢(rR%).) Use
joint continuity of translation and mea-
surability of v, f;, pi, finite intersec-

tions and the continuity of the maps
R* 37— B(0,r) € C(R%).
Hom@®?) > f — 71 (B(0,1)) € C(R?).

For n,¢4; in cg°, can adapt above argu-
ment to give a sure event in F, also
denoted by o* such that Sw), #(w) are
ce for all we Q. O
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Examples of Stationary Solutions

1. Fixed points:

h(xg) =gi(zg) =0, 1<i<m
Take v (w) = = for all w e Q.

2. Linear affine case d=1:
do(t) = AG(t)) dt + dW (¢)
A >0 fixed, w) e R. Take
V(w)i=- [ e Naw),

0(t,w)(s) = w(t +s) — w(t).
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Check that ¢, Y(w),w) = Y(8(t,w)), using in-
tegration by parts and variation of pa-

rameters.
3. Affine linear SDE in 4= 2:
do(t) = Ad(t)) dt + GAW (¢)

with 4 a fixed hyperbolic 2 x 2-diagonal

matrix; ¢ a constant matrix.

4. Non-linear transforms of (3) under a

global diffeomorphism.
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Some Technical Lemmas

I-lg.c := C*<-norm on C*< mappings B(0, p) —
R4,
Lemma 2

Assume that log™ |Y (-)| is integrable. Then the co-

cycle ¢ satisfies

/Qlog+ S [p(t2, Y (O(t1,w))+(:), 0(t1, w))|lk,e dP(w) < 00
ST (10)

for any fixed 0 < T, p < oo and any € € (0,0). Further-
more, the linearized flow (D2¢(t,Y (w),w),0(t,w)), t > 0,

is an L(R%)-valued perfect cocycle and

[ 108" sup[IDaglta. Y(Olt1.)).6(t1,0)|ire) dP) < o0
Q —T<ty,t2<T
(11)
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for any fixed 0 < T < oo. The forward cocycle

(D2¢(t,Y (w),w),0(t,w),t > 0) has a non-random finite

Lyapunov spectrum {\,, < -+ < A\jy1 < A; < -+ <

A2 < A1}. Each Lyapunov exponent \; has a non-random

multiplicity q;, 1 < ¢ < m, and Em:qi = d. The backward
i=1

linearized cocycle (D2¢(t,Y (w),w),0(t,w),t < 0), admits

a “backward” non-random finite Lyapunov spectrum:

lim_—10g | Dag(t, Y (), @) (0(w))], v € I, RY)

t——o00

taking values in {—\;}; with non-random multiplicities
m

Q’L71§Z§m7andZQ’L:d

1=1
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The Auxiliary Cocycle

To apply Ruelle’s discrete non-linear
ergodic theorem ([Ru.l], Theorem 5.1,
p. 292), introduce the following auxil-
lary cocycle Z : Rx R x Q — R4, This a
“centering” of the flow ¢ about the sta-

tionary solution:
Z(t,x,w):=¢(t,z+Y(w),w) —Y(0(t,w)) (16)

for teR,z e R, w e Q.

Lemma 3

(Z,0) is a perfect cocycle on R¢ and Z(t,0,w) = 0

for all t € R, and all w € ().
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The proof of the local stable-manifold
theorem (Theorem 1) uses a discretiza-
tion argument that requires the follow-

ing lemma.

Lemma 4

Suppose that log™ |Y'(-)| is integrable. Then there is

a sure event 23 € F with the following properties:
(i) 6(t,)(Q3) = Q3 for allt € R,
(ii) For every w € Q3 and any x € R?, the statement

1
limsup — log |Z(n, z,w)| <0 (17)
n

n— 00

implies

lim sup — . log|Z(t z,w)| = limsup — log|Z(n x,w)|.

t—o0 n—o00

(18)
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