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TORSION-FREE MODULES OVER REDUCED WITT RINGS

Robert W. Fitzgerald

Southern Illinois University

Abstract. We compute the genus class group of a torsion-free module over a reduced Witt
ring of finite stability index. This is applied to modules locally isomorphic to odd degree
extensions of formally real fields.

A ring-order [7] is a reduced, noetherian ring R of dimension 1 such that its integral
closure R̃ is finitely generated over R. A simple example is the Witt ring of a Pythagorean
field with a finite square class group. For a ring-order R, Weigand and Guralnick [6] have
defined the genus class group, Genus(M), of a torsion-free, finitely generated R-module M
which consists of the modules locally isomorphic to M . They show:

(0.1) 1 → KM → (R̃/C)∗ → Genus(M) → Pic(R̃) → 1

is exact, where C is the conductor (R : R̃) and KM can be explicitly described. Our goal
is to show (0.1) also holds for reduced Witt rings of finite stability index (which need
not be noetherian). This generalizes previous work on projective modules over Witt rings
[5] and includes a wider class of odd degree extensions, since, if F is a Pythagorean field
and K/F is an odd degree extension, then WK is always a torsion-free WF -module (but
rarely a projective WF -module). The specific class of extensions considered here is: let
F be a formally real field with finite stability index, K an odd degree extension of F and
suppose [K∗/

∑
K∗2 : F ∗/

∑
F ∗2] is finite. In this case, our result applies to (WK)red as

a (WF )red-module. Moreover, the result brings out more clearly the crucial role played
by the conductor C.

For any ring A, A∗ denotes the group of units of A. All Witt rings are assumed to be
real, that is, have orderings. If W is a Witt ring then XW (or just X if the choice of ring
is understood) is the space of orderings on W . This is given by the Harrison topology with
a basis of clopen sets of the form

H(a1, . . . , an) = {α ∈ X : ai >α 0 for all i},

where the ai are in the associated group G (G = F ∗/F ∗2 in the field case). We will
sometimes identify an ordering α with its character on G writing, for example, α(a) = 1
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2 ROBERT W. FITZGERALD

instead of a >α 0. The signature of a form q with respect to α will be written q̂(α). Give
Z the discrete topology. Then q̂ : W → Z is continuous. The ring of continuous functions
from W to Z is denoted C(W,Z).

R will always denote a reduced Witt ring. R may be an abstract Witt ring, in the sense
of Marshall [9], although the only case of interest is that of the Witt ring of a formally
real Pythagorean field F . For a Witt ring W there are several conditions equivalent to be
being reduced that we will use. Namely, W is reduced iff W is torsion-free iff 2 is a non-
zero-divisor iff two forms with the same signature at each ordering are necessarily equal
[9, 4.20,4.13,4.12]. This last property allows us to identify R with its image in C(X,Z),
that is, we will identify a form q with its total signature q̂. Using this identification, the
total quotient ring, TQ, of R is C(X,Q), where again Q is given the discrete topology [4,
1.2]. The integral closure R̃ of R in TQ is C(X,Z) [4, 1.13].

For a clopen set Y ⊂ X let eY : X → Z denote the characteristic function of Y , that
is, eY (α) = 1 if α ∈ Y and eY (α) = 0 if α /∈ Y . Note eY ∈ C(X,Z) = R̃. We have that
Pic(R̃) = 1 [4, 1.1] so that our goal is the short exact sequence:

(0.2) 1 → KM → (R̃/C)∗ → Genus(M) → 1,

where KM contains the image of R̃∗ → (R̃/C)∗.
En will denote the group of exponent 2 and order 2n. Let t1, . . . , tn be a set of gen-

rators for En. E∞ will be the countably generated group of exponent 2, with generators
t1, . . . , tn, . . . . R[En] is the group ring extension of R by En; it is also a reduced Witt
ring. If R1 and R2 are reduced Witt rings the fiber product is:

R1 uR2 = {(q1, q2) ∈ R1 ⊕R2 : dim(q1) ≡ dim(q2) (mod 2)}.

R1 uR2 is also a reduced Witt ring.
The abelian group C(X, R)/R is 2-primary torsion [9, 7.14]. The stability index of R,

st(R), is the least k ≥ 0 such that 2kC(X,Z) ⊂ R (equivalently, the least k with 2k in the
conductor C). If there is no such k then st(R) is infinite.

A subgroup T ⊂ G is a fan if (i) −1 /∈ T , (ii) if a, b ∈ T then every element represented
by the binary form 〈a, b〉 is in T , and (iii) every subgroup S ⊂ G of index 2, containign T
but not −1, is an ordering. Suppose the index [G : T ] is finite, say n. Let X/T denote the
set of orderings that contain T . Then |X/T | equals the number of subgroups of index 2 of
G/T that do not contain −T , namely |X/T | = 2n−1. We have [9, 7.16] that:

st(R) = sup{k : there exists a fan T with |X/T | = 2k}.

1. Basics.
We begin by justifying the assumption that R has finite stability index. For ring-orders

A, the integral closure is finitely generated over A. The first use of this in [6] is to get a
non-zero-divisor in the conductor C. But if X is infinite then R̃ is not finitely generated
over R and C may be 0. The assumption that the stability index is finite gives a power of
2, a non-zero-divisor, in the conductor. This assumption may not be necessary but (0.2)
can fail if the stability index is infinite. We verify these assertions.
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Lemma 1.1.
(1) If X is infinite then R̃ is not a finitely generated R-module.
(2) If R = Z[E∞] then C = 0 and (0.2) fails.

Proof. (1) Suppose instead that R̃ is generated by f1, . . . , fn over R. Find a disjoint
clopen cover {Yj : 1 ≤ j ≤ t} of X such that each fi|Yj is constant, say kij ∈ Z. Since X is
infinite, some Yj , say Y1, is infinite. Pick distinct α, β ∈ Y1 and a b ∈ F such that α(b) = 1
and β(b) = −1. Then Z = H(b) ∩ Y1 is a proper clopen subset of Y1. Let ej = eYj

. We
have:

fi =
∑

j

kijej ,

so that R̃ is generated by e1, . . . , et. Write eZ =
∑

riei, where each ri ∈ R. Plugging in
α gives 1 = r̂1(α) while plugging in β gives 0 = r̂1(β). But r1 ∈ R so that its signatures
are either all even or all odd, a contradiction.

(2) Let q ∈ C. Say q has all of its entries in span{−1, t1, . . . , tk}, where the ti’s are a
subset of the generators of E∞. Let α ∈ X and let εi = α(ti) for 1 ≤ i ≤ k. Choose any
m ≥ k and set

Z = H(ε1t1, . . . , εktk, tk+1, . . . tm).

Let T be the fan spanned by {ε1t1, . . . , εktk, tm+1, . . . } so that |X/T | = 2m−k. Then there
is a unique ordering β in Z ∩ (X/T ), namely the ordering with β(ti) = εi for 1 ≤ i ≤ k
and β(ti) = 1 for i > k. Now qeZ ∈ R so by the easy half of the Representation Theorem
[8, 7.2] we get q̂(β) ≡ 0 (mod 2m−k). Since α(ti) = β(ti) for 1 ≤ i ≤ k and all entries of
q are combinations of these ti, we have q̂(α) = q̂(β). Thus q̂(α) ≡ 0 (mod 2m−k). But m
was arbitrary so q̂(α) = 0. And α was arbitrary so q = 0.

Lastly, suppose (0.2) holds. KM contains the image of R̃∗ in (R̃/C)∗ so that C = 0 gives
KM = R̃∗. Thus each Genus(M) = 1. But Genus(R) = Pic(R) 6= 1 by [4, 1.17]. Thus
(0.2) fails. ¤

We need some technical results on localizing R and C. Recall [9, 4.18] that the maximal
ideals of R are the fundamental ideal IR of even dimensional forms and all

P (α, p) = {q ∈ R : q̂(α) ≡ 0 (mod p)},

where α ∈ X and p is an odd prime. For a maximal ideal m of R, the notation R̃m means
the integral closure of Rm.

Lemma 1.2. Let m be a maximal ideal of R.

(1) If m = P (α, p) for some α ∈ X and odd prime p, then R̃m
∼= Z(p) and Rm = R̃m.

(2) If m = IR then R̃m = C(X,Z(2)).

Proof. (1) Map Rm → Z(p) by sending ϕ/q to ϕ̂(α)/q̂(α). This is clearly a well-defined
surjective homomorphism. Suppose ϕ̂(α) = 0. By the Regularity Theorem of [1] there
exists a ψ ∈ R and a positive integer k such that ψ̂(β) = 2k if ϕ̂(β) = 0 and ψ̂(β) = 0 if
ϕ̂(β) 6= 0. Then ψ /∈ m, ψϕ = 0 and ϕ/q = 0/ψ = 0. Thus the map is injective as well.
Hence Rm

∼= Z(p).
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Z(p) is an integral domain so Rm is also. The total quotient ring of Rm, call it K(m),
consists of all fractions, with a non-zero denominator, of elements of Rm . The isomorphism
of the first part extends to an isomorphism of K(m) onto Q. Since Z(p) is integrally closed
in Q, Rm is integrally closed in K(m) and Rm = R̃m.

(2) RIR ⊂ C(X,Z(2)) ⊂ C(X,Q) and C(X,Z(2)) is integrally closed in C(X,Q) since
Z(2) is integrally closed in Q. So we need only check that C(X,Z(2)) is integral over RIR.
But any f ∈ C(X,Z(2)) is a finite Z(2)-combination of eY ’s and eY ∈ C(X,Z) is integral
over R. Thus f is integral over RIR. ¤

The following is standard when R̃ is finitely generated over R but false in general.

Lemma 1.3. For all maximal ideals m of R

(R̃m)∗ → (R̃m/C(Rm))∗

is surjective, where C(Rm) denotes (Rm : R̃m).

Proof. If m 6= IR then m = P(α, p) for some α ∈ X and odd prime p. Then Rm = R̃m

by (1.2). So C(Rm) = R̃m and the result is vacuous. Suppose then that m = IR. If
R = Z then again Rm = Z(2) = R̃m and the result is vacuous. So we may assume |X| ≥ 2.
If f ∈ C(Rm) then f ∈ Rm so that f can be written as h/k where k(α) is odd for all
α ∈ X. We first claim that if h/k ∈ C(Rm) then h(α) ∈ 2Z for all α ∈ X. Choose any
clopen subset Y with Y 6= ∅, X. We have eY (h/k) = ϕ/q for some ϕ, q ∈ R with q odd
dimensional. For α /∈ Y we get ϕ̂(α) = 0. In particular, ϕ is even dimensional. For α ∈ Y
we get h(α)/k(α) = ϕ̂(α)/q̂(α). So q̂(α)h(α) = k(α)ϕ̂(α), q odd and ϕ even dimensional
gives h(α) ∈ 2Z, proving the claim.

Now R̃m = C(X,Z(2)) by (1.2). Suppose f + C(Rm) ∈ (R̃m/C(Rm))∗. Then for some
g ∈ C(X,Z(2)) we have fg − 1 ∈ C(Rm). Write fg − 1 = h/k where all k(α) are odd and
all h(α) are even by the claim. Pick α ∈ X and write f(α) = a/b and g(α) = c/d where
a, b, c, d ∈ Z and b, d are odd. Then

k(α)(ac− bd) = h(α)bd ∈ 2Z.

This implies a is odd. Thus f(α) ∈ (Z(2))∗ for all α ∈ X. So f ∈ (R̃m)∗. ¤

Proposition 1.4. If R has finite stability index then for every maximal ideal m we have
(Rm : R̃m) = Cm.

Proof. If m 6= IR then again m = P(α, p) for some α ∈ X and odd prime p, so that
Rm = R̃m by (1.2). Thus (Rm : R̃m) = Rm. The stability index is finite so there is a
2-power in C. Hence Cm = Rm also. So suppose m = IR.

Let ϕ/q ∈ (RIR : R̃IR). Then ϕ ∈ (RIR : R̃) and we want to show ϕ ∈ C. Pick an
α ∈ X with ϕ̂(α) 6= 0. Pick any fan T with α ∈ X/T . X/T is finite since the stability
index is. There exists a clopen Y ⊂ X such that Y ∩ (X/T ) = {α} since X/T is finite.
Now ϕeY = ψ/p for some forms ψ, p ∈ R with p odd dimensional. Thus pϕeY ∈ R. By
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the easy half of the Representation Theorem [8,7.2] we have:
∑

β∈X/T

(pϕeY )(β) ≡ 0 (mod |X/T |)

p̂(α)ϕ̂(α) ≡ 0 (mod |X/T |)
ϕ̂(α) ≡ 0 (mod |X/T |),

since p̂(α) is odd. Hence either ϕ̂(α) = 0 or ϕ̂ ≡ 0 (mod |X/T |) for any fan T with
α ∈ (X/T ).

We now show ϕ ∈ C. Pick any clopen subset Z and any fan S. Again, X/S is finite
since the stability index is. For each α ∈ X/S we have ϕ̂(α) ≡ 0 (mod |X/S|). Thus, by
the non-trivial half of the Representation Theorem, we have ϕeZ ∈ R. So ϕ ∈ C since any
f ∈ R̃ is a finite Z-combination of eZ ’s. ¤
2. Projective modules.

We need results about projective modules over both C(X,Z) and C(X,Z(2)). So for this
section, let X be any topological space that is compact, Hausdorff and totally disconnected.
Let D be a PID, given the discrete topology. We will consider modules over C(X, D).

For each α ∈ X and prime p ∈ D set

P(α, p) = {f ∈ C(X, D) : f(α) ≡ 0 (mod p)}.
A module M over a ring A is torsion-free if for every regular a ∈ A (that is, a is a
non-zero-divisor) and every non-zero m ∈ M we have am 6= 0.

Lemma 2.1. For X and D as above

(1) The maximal ideals of C(X, D) are the P(α, p), over all α ∈ X and primes p ∈ D.
(2) Let m = P(α, p) be a maximal ideal of C(X,D). Then C(X, D)m

∼= D(p).
(3) If M is a finitely generated torsion-free C(X,D)-module then M is projective.

Proof. (1) This is [10, 3.1.2,3.2.1] for D = Z and the proof works for any PID D.
(2) Say m = P(α, p). The map ϕ : C(X,D)m → D(p) sending f/g to f(α)/g(α) is

clearly a surjective homomorphism. If ϕ(f/g) = 0 then f(α) = 0. Let Y = f−1(0) and set
h = eY . Then fh = 0, h(α) = 1 and so h /∈ m. Then f/g = 0/h = 0 and ϕ is injective.

(3) Let m be a maximal ideal of C(X, D). Then Mm is a torsion-free C(X, D)m-module.
By (2) C(X,D)m is a PID, so Mm is free. Thus M is projective. ¤

The following is presumably well-known.

Lemma 2.2. If A is a reduced ring and V1, . . . , Vt is a disjoint clopen cover of Spec(A)
then there exist orthogonal idempotents e1, . . . , et of A such that A ∼= ⊕Aei and, for each
i, Spec(Aei) is homeomorphic to Vi.

Proof. Let V = V1. Then V closed means V = V (I) for some ideal I and V open means
V = V (J)′ for some ideal J (here Y ′ means the complement of Y ). Then

I ∩ J =
⋂

P∈Spec(A)

P = nil(A) = 0
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and V ∩V ′ = ∅ implies I +J = A. Thus A = I⊕J . Write 1 = e+f with e ∈ I and f ∈ J .
Then I = Ae, J = Af and, as J ∼= A/I, Spec(J) ∼= V (I) = V1. Similarly decompose
Af . ¤
Proposition 2.3. Let P be a finitely generated projective module over S̃ = C(X,D).
Then there exist orthogonal idempotents e1, . . . , et such that:

(1) P = ⊕Pei.

(2) For each i, S̃ei
∼= C(Yi, D) for some clopen Yi ⊂ X. The set {Yi : 1 ≤ i ≤ t} is a

disjoint clopen cover of X.
(3) Each Pei is a free S̃ei-module.

Further, if P is faithful then P contains a copy of S̃ as a direct summand.

Proof. The rank map r : Spec(S̃) → N given by r(I) = rank(PI) is continuous and, as
P is finitely generated, bounded. Let V1, . . . , Vt be a clopen cover of Spec(S̃) such that
r|Vi is constant for each i. Let e1, . . . , et be the associated idempotents, as in (2.2). Then
S̃ ∼= ⊕S̃ei and P ∼= ⊕Pei.

Now ei(α)2 = ei(α) for all α ∈ X so, as D is a domain, ei(α) = 0 or 1. Set Yi = e−1
i (1).

Then {Yi} is disjoint clopen cover of X. Map S̃ei → C(Yi, D) by fei 7→ fei|Yi. This is
easily seen to be an isomorphism.

Each Pei is a projective S̃ei-module of constant rank. hence Pei is S̃ei-free by [4,1.1].
Lastly, if P is faithful then no Pei = 0. So each Pei contains at least one copy of S̃ei as a
direct summand. Thus P contains a copy of S̃ as a direct summand. ¤

We recall determinants. Let A be a ring and let P be a finitely generated projective
A-module. Suppose there are idempotents ei such that A = ⊕Aei, P = ⊕Pei and each
Pei is a projective Aei-module of constant rank ri. This holds if A is noetherian or if
A = C(X, D) by (2.3). The determinant of P is the class in Pic(A) of the rank-one
projective module:

det(P ) =
⊕

i

∧riPei.

If ϕ is an endomorphism of P then the induced endomorphism of det(P ) is multiplication
by a unique element of A, called det ϕ. When P = Ak is free then ϕ is given by a matrix
and det ϕ is the usual matrix determinant.

We extend, in one direction, Wiegand’s Lifting Theorem [12,1.1].

Proposition 2.4. Let I ⊂ S̃ = C(X, D) be an ideal and let P be a finitely generated

projective C(X, D)-module. Suppose ϕ is an S̃/I-automorphism of P/IP with determinant
1. Then there exists an automorphism ψ of P such that ψ induces ϕ.

Proof. We may assume P is free by (2.3) as Aut(⊕Pei) = ⊕Aut(Pei). Let M̄ be a matrix
for ϕ. Let M be any lifting to C(X,D). Suppose M = (mij) with det M = 1+ z, for some
z ∈ I. There is a clopen cover Y1, . . . , Yt such that all mij and z are constant on each
Yk. Call these constants mij(k) and z(k). Then M(k) gives an endomorphism of a free D-
module with determinant 1 modulo z(k). By the Lifting Theorem for D [12,1.1] we can find
a matrix N(k) = (nij(k)) over D such that all nij(k) ∈ z(k)D and det(M(k) + N(k)) = 1.
Set nij =

∑
k nij(k)eYk

and for the pij(k) ∈ D that satisfy nij(k) = pij(k)z(k), set
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pij =
∑

k pij(k)eYk
. Then for all α ∈ X we have nij(α) = pij(α)z(α) and so each nij ∈ I.

And we still have det(M + N) = 1. ¤

If, in the set-up of (2.4), det ϕ 6= 1 we can still lift to an endomorphism (not necessarily
an automorphism) of P .

Corollary 2.5. Let S̃ = C(X, D) and let P be a faithful, finitely generated projective

S̃-module. Let I be an ideal of Ŝ.

(1) Given any x̄ ∈ (S̃/I)∗ there exists an automorphism of P/IP of determinant x̄.
(2) If ϕ is an automorphism of P/IP then there exists an endomorphism of P that

induces ϕ.

Proof. (1) We can write P = S̃ ⊕N , for some S̃-module N by (2.3). Let x ∈ S̃ lift x̄. Let
µ be the endomorphism of P that is multiplication by x in the first coordinate and the
identity in the second. Then µ induces say µ̄ : P/IP → P/IP of determinant x̄. As x̄ is a
unit, µ̄ is an automorphism.

(2) Let det ϕ = x̄ ∈ (S̃/I)∗. Then ϕµ̄−1is an automorphism of determinant 1, where µ̄
is the automorphism constructed in the first paragraph. Lift this to an automorphism ψ
of P by (2.4). Then ψµ is an endomorphism of P that induces ϕ. ¤

3. The construction.
Here we simply follow the development in [12], substituting results from the first two

sections for the results on noetherian rings used by Wiegand. For the reader’s convenience
we supply most of the details.

We continue with the notation of the last section : X is a compact, Hausdorff, totally
disconnected topological space, D is a PID with the discrete topology and S̃ = C(X,D).
Further, let QD be the quotient field of D and set TQ = C(X, QD). Let S be any ring
with total quotient ring TQ and integral closure, in TQ, S̃. The two cases of S ⊂ S̃ ⊂ TQ
that we need are R ⊂ C(X,Z) ⊂ C(X,Q) and RIR ⊂ C(X,Z(2)) ⊂ C(X,Q). Let C be the
conductor (S : S̃).

Let M be a finitely generated, torsion-free S-module. Let T (M) be the torsion sub-
module of S̃ ⊗M (all tensor products are over S unless otherwise specified). Define S̃M

to be S̃ ⊗M/T (M). Note that the map M → S̃M is injective since being torsion-free is
equivalent to M → TQ⊗M being injective. By construction S̃M is a finitely generated,
torsion-free S̃-module hence projective by (2.1).

Lemma 3.1. Suppose M is a finitely generated, torsion-free S-module. If M is faithful
and C contains a regular element then S̃M is faithful.

Proof. Suppose there exists a y ∈ S̃ such that yS̃M = 0, that is, y(S̃⊗M) ⊂ T (M). Since
M is finitely generated we can find a regular z ∈ S̃ such that zy(S̃ ⊗M) = 0. Let w ∈ C
be regular. Then wzy ∈ S and 0 = wzy(1 ⊗M) = 1 ⊗ wzyM . Now M is torsion-free so
M → TQ⊗M is injective. Hence wzyM = 0. Then M faithful implies wzy = 0 and hence
that y = 0 since wz is regular. ¤
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We can write M in terms of the standard pull-back :

M −−−−→ S̃M
y

y
M/CM −−−−→ S̃M/CM.

Suppose now that M is faithful. For any x ∈ (S̃/C)∗ choose an automorphism ϕ of
S̃M/CM with det ϕ = x, which is possible by (2.5). Define Mx by the pull-back:

Mx S̃M
y

y
M/CM −−−−→ S̃M/CM ϕ−−−−→ S̃M/CM.

We will let π : S̃∗ → (S̃/C)∗ be the natural projection.

Proposition 3.2. Let M be a faithful, finitely generated torsion-free S̃-module.

(1) Mx is well-defined, that is, it does not depend on the choice of the automorphism
ϕ of determinant x.

(2) (Mx)y ∼= Mxy.

(3) Mx ∼= M iff there exists an automorphism θ : S̃M/CM → S̃M/CM of determinant

xu, where u ∈ π(S̃∗), such that θ(M/CM) ⊂ M/CM . In particular, if x ∈ π(S̃∗)
then Mx ∼= M .

Proof. These results are part of [12,2.2]. The proofs are diagram chases, which continue
to be valid here, and liftings which follow from (2.4) and (2.5). ¤

We now revert to our original set-up : R is a reduced Witt ring, X is its space of
orderings and R̃ = C(X,Z).

Proposition 3.3. Let R be a reduced Witt ring with finite stability index. Let M be
a faithful, finitely generated, torsion-free R-module. Then for all x ∈ (R̃/C)∗, we have
(Mx)m

∼= Mm for each maximal ideal m of R.

Proof. Now C contains regular element, namely 2s where s is the stability index. So
R̃M is faithful and hence contains a copy of R̃ as a direct summand by (2.3). So we
can write R̃M/CM ∼= (R̃/C) ⊕ N , for some (R̃/C)-module. Let ϕ be multiplication by
x = f + C ∈ (R̃/C)∗ in the first coordinate and the identity on the second coordinate. Let
m be a maximal ideal of R and set y = f + Cm ∈ (R̃m/Cm)∗. Now Cm = (Rm : R̃m) by
(1.4) so R̃mMm/CmMm

∼= R̃m/Cm⊕Nm. Let ψ be multiplication in the first coordinate by
y and the identity on the second coordinate. If j is the map R̃M/CM → R̃mMm/CmMm

then ψj = jϕ.
Define α : (Mx)m → (Mm)y by:

1
q
(g ⊗m1 + T (M),m2 + CM) 7→

(
g

q
⊗m1 + T (Mm),

m2

q
+ CmMm

)
,
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where q ∈ R \m, g ∈ R̃ and m1, m2 ∈ M . We check the image is indeed in (Mm)y.

ψ((1⊗ m2

q
+ T (Mm)) + CmMm) =

1
q
· ψ((1⊗m2 + T (Mm)) + CmMm)

=
1
q
· ψj((1⊗m2 + T (M)) + CM)

=
1
q
· jϕ((1⊗m2 + T (M)) + CM)

=
1
q
· j(g ⊗m1 + T (M))

=
g

q
⊗m1 + T (Mm),

where the computation of ϕ follows since we began with (g⊗m1 +T (M),m2 +CM) ∈ Mx.
Thus α is well-defined and can easily be check to be an isomorphism. Thus (Mx)m

∼=
(Mm)y. Now π : (R̃m)∗ → (R̃m/Cm)∗ is surjective by (1.34) hence, by (3.2) applied to
S = Rm, (Mm)y ∼= Mm. So (Mx)m

∼= Mm. ¤
Proposition 3.4. Let R have finite stability index. Let M,N be faithful, finitely gen-
erated torsion-free R-modules. If R̃M ∼= R̃N and MIR

∼= NIR then N ∼= Mx for some
x ∈ (R̃/C)∗.
Proof. Set S = R \ IR. Each s ∈ S is a unit modulo C as some 2k ∈ C and s /∈ IR implies
(2k, s) = R. So

S−1M/CS−1M = M/CM and S−1(R̃/C) = R̃/C.

We are given isomorphisms α : S−1M → S−1N and β : R̃M → R̃N . Now α induces an
isomorphism α1 : M/CM → N/CN and hence an isomorphism

α2 = 1S−1R̃ ⊗ α : S−1R̃⊗S−1R S−1M → S−1R̃⊗S−1R S−1N.

Now S−1R̃⊗S−1R S−1M ∼= S−1(R̃⊗R M). Hence α2 maps S−1(R̃⊗M) to S−1(R̃⊗N).
Since α2 takes torsion to torsion it induces an isomorphism α3 : S−1(R̃M) → S−1(R̃N).
This in turn gives an isomorphism α4 : R̃M/CM → R̃N/CN upon modding out by
CS−1R̃M and its image.

Further, β also induces an isomorphism β1 : R̃M/CM → R̃N/CN . Set ϕ = β−1
1 α4, an

automorphism of R̃M/CM . Let x = det ϕ ∈ (R̃/C)∗. Then the pull-back of Mx and the
standard pull-back of N are isomorphic via β, β1, α1. Thus N ∼= Mx. ¤
Theorem 3.5. Let R be a reduced Witt ring with finite stability index. Let M, N be
faithful, finitely generated torsion-free R-modules. The following are equivalent:

(1) Mx ∼= N for some x ∈ (R̃/C)∗.
(2) Mm

∼= Nm for all maximal ideals m of R.
(3) MIR

∼= NIR.
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Proof. (1 → 2) is (3.3) and (2 → 3) is clear so we show (3 → 1). Given that MIR
∼= NIR

we need to show R̃M ∼= R̃N by (3.4). To simplify the notation, set P = R̃M and Q = R̃N .
We can find a disjoint clopen cover {Yi} of X such that the rank functions (from Spec(R) to
N) of both M and N are constant on each Yi. Then there is a set of orthogonal idempotents
{ei} such that

P =
t⊕

i=1

Pei and Q =
t⊕

i=1

Qei,

where each Pei and Qei is a free R̃ei-module (see the proof of (2.3)). Let ri(P ) denote the
rank (over R̃ei) of Pei; similarly define ri(Q). Clearly P ∼= Q iff ri(P ) = ri(Q) for all i.

Let α ∈ X and let m̃ = P(α, 2). Write (as in (2.3)) R̃ei as C(Yi,Z). If α ∈ Yi then for
j 6= i we have (Pej)m̃ = 0 since ejei = 0 and ei /∈ m̃. Thus

Pm̃ = (Pei)m̃
∼= (C(Yi,Z)ri(P ))m̃

∼= (Z(2))ri(P ),

by (2.1). Hence ri(P ) = ri(Q) for all i iff for all α ∈ X, Pm̃
∼= Qm̃ where m̃ = P(α, 2).

Let A be a finitely generated projective R̃-module. The map

ϕ : R̃m̃ ⊗RIR
Am̃ → (R̃⊗R A)m̃

f

g
⊗ a

x
7→ f ⊗ a

gx
,

is a well-defined isomorphism (with inverse (f⊗a)/g 7→ (f/g)⊗a). Here f ∈ R̃, g, x ∈ R̃\m̃
and a ∈ A. Next, let tor denote the torsion submodule of (R̃⊗ P )m̃. The projection

ψ : (R̃⊗A)m̃ → (R̃A)m̃ = (R̃⊗A/T (A))m̃

has kernel tor. Namely, if
∑

(fi ⊗ ai)/gi ∈ tor then there exists a regular z ∈ R̃m̃ with
z

∑
(fi ⊗ ai)/gi = 0. Thus zh

∑
fi ⊗ ai = 0 for some h /∈ m̃. This implies h

∑
fi ⊗ ai is

torsion in R̃⊗A. Hence

∑ fi ⊗ ai

gi
=

∑ hfi ⊗ ai

hgi
∈ ker(ψ).

The reverse inclusion is similar. We thus have for all m̃ = P(α, 2):

Pm̃ = (R̃M)m̃
∼= (R̃⊗M)m̃/tor ∼= (R̃m̃ ⊗RIR

MIR)/tor.

So MIR
∼= NIR implies Pm̃

∼= Qm̃ for all m̃ = P(α, 2) which, by the first part of the proof,
implies P ∼= Q. ¤
Definition. For an R-module M that is faithful, finitely generated and torsion-free, the
genus Genus(M) is the set of isomorphism classes of R-modules N , also faithful, finitely
generated and torsion-free, with Mm

∼= Nm for all maximal ideals m of R. ∆M is the set
of x ∈ (R̃/C)∗ such that there exists an automorphism θ of R̃M/CM of determinant x

such that θ(MCM) ⊂ M/CM . ∆m is a subgroup of (R̃/C)∗.
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Theorem 3.6. Let R be a reduced Witt ring of finite stability index. Let M be a faithful,
finitely generated torsion-free R-module. Then the following is exact:

1 → π(R̃∗)∆M → (R̃/C)∗ → Genus(M) → 1,

where π : R̃∗ → (R̃/C)∗ is the natural projection.

Proof. Combine (3.5) and (3.2)(3). ¤
Note that Genus(M) inherits the structure of a group from the sequence of (3.6). To

write the operation explicitly: if A,B ∈ Genus(M) then A + B = Mxy where A = Mx

and B = My. This is well-defined since if A = Mz and B = Mw also then by (3.2)(2) we
have M = Mx−1z and M = Myw−1

. Hence Mxy = Mzw.

Lemma 3.7. Let R have finite stability index. Let M,N be faithful, finitely generated
torsion-free R-modules.

(1) If x ∈ (R̃/C)∗ then (M ⊕N)x ∼= Mx ⊕N .
(2) ∆M∆N ⊂ ∆M⊕N .

Proof. (1) It is easy to check that:

R̃(M ⊕N)
C(M ⊕N)

∼= R̃M

CM ⊕ R̃N

CN .

Given x ∈ (R̃/C)∗ pick an automorphism ϕ of R̃M/CM with determinant x. Then ψ =
ϕ⊕1 is an automorphism of R̃(M ⊕N)/C(M ⊕N) with determinant x. Thus (M ⊕N)x ∼=
Mx ⊕N .

(2) If x ∈ ∆M then let θ be the automorphism of R̃M/CM with determinant x and
satisfying θ(M/CM) ⊂ M/CM . Then θ ⊕ 1 has determinant x also and takes (M ⊕
N)/C(M ⊕N) into itself. Thus x ∈ ∆M⊕N . Similarly for x ∈ ∆N . ¤

For ring-orders A one has ∆M∆N = ∆M⊕N by [13, 1.7]. We have been unable to
decide if this holds for our Witt rings. For this reason, we are unable to extend the various
cancellation results of [6],[12] and [13].

Corollary 3.8. Let R have finite stability index. Let M be a finitely generated torsion-
free R-module that contains R as a direct summand. Then there is a projection Pic(R) ³
Genus(M).

Proof. Pic(R) = Genus(R) and we have ∆R ⊂ ∆M by (3.7). So the sequence of (3.6) gives
the projection:

Pic(R) ∼= (R̃/C)∗
π(R̃∗)∆R

→ (R̃/C)∗
π(R̃∗)∆M

∼= Genus(M).

¤
When M = Rn (3.8) gives back half of [5, 2.8] which says, in this notation, that

Genus(Rn) = Pic(R).
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Corollary 3.8. Suppose R has stability index st(R) ≤ 2. Let M,N be faithful, finitely
generated torsion-free modules. The following are equivalent:

(1) M ∼= N .
(2) Mm

∼= Nm for all maximal ideals m of R.
(3) MIR

∼= NIR.

Proof. We have 4 ∈ C so each element x ∈ (R̃/C)∗ is represented by a function f ∈
R̃ = C(X,Z) with values in {±1}. Thus x ∈ π(R̃∗). Then (3.6) gives Genus(M) is trivial.
Hence (2) implies (1). Clearly (1) implies (2) and the equivalence of (2) and (3) is (3.5). ¤

The equivalence of (1) and (2) fails if st(R) ≥ 3 since in this case Pic(R) = Genus(R)
is non-trivial [5,2.5]. Also (3.9) is a partial generalization of [4, 1.17] (the case of M = R)
and [5, 2.5] (the case of M free).

4. Examples.
We begin with a simple example to illustrate Wiegand’s construction of Mx and the

failure, in general, of cancellation.

Example. Let R = Z[E3]. Here R̃ = Z8, C = 8R̃ and R̃/C = (Z/8Z)8. We have
(R̃/C)∗ = {±1,±3}8 and π(R∗) = {±1}8. Let M = R so that R̃M = R̃. We want to
compute ∆M .

Let x ∈ (R̃/C)∗; write x = y+C for some y ∈ R̃. The only automorphism of R̃M/CM =
R̃/C of determinant x is multiplication by x, call it µ. Then x ∈ ∆M iff µ(M/CM) ⊂
M/CM iff x(1+C) ∈ M/C iff y+C ∈ M/C iff y ∈ M = R. Now for any q ∈ R, q+C ∈ (R̃/C)∗
iff every signature of q is odd iff q is odd-dimensional.Hence ∆M = (R \ IR)/C.

We next compute π(R∗)∆M . If z1, z2 ∈ E3 are independent then 〈z1, z2, z1z2〉 has
signature 3 at the two orderings with z1, z2 positive, and signature −1 at the other six
orderings. Indeed, any element of (R̃/C)∗ with two coordinates 3 and the rest −1 comes
from an element of R and hence is in ∆M . So π(R∗)∆M has index at most two in (R̃/C)∗.
Now none of the elements (±3,±1,±1,±1,±1,±1,±1,±1) of R̃ are in R [3, p. 380] so
y = (3, 1, 1, 1, 1, 1, 1, 1) /∈ π(R∗)∆M . Thus π(R∗)∆M has index two in (R̃/C)∗ and y
represents the non-trivial coset. Thus:

Ry = {(r + C, z) ∈ (R/C)⊕ R̃ : r̂(α1) = 3z1, r̂(αi) = zi for i ≥ 2},

is locally isomorphic, but not isomorphic, to R. We know Pic(R) = Genus(M) consists
of R and I = (〈1, 1, t1〉, 〈1, t2, t2t3〉), where t1, t2, t3 generate E3, by [3, p. 380] again. So
Ry ∼= I.

Now let ρ1 = 〈〈t1, t2, t3〉〉, the 3-fold Pfister form 〈1, t1〉 ⊗ 〈1, t2〉 ⊗ 〈1, t3〉. Let αi, for
1 ≤ i ≤ 8, be the orderings on R and let α1 be the ordering with t1, t2, t3 all positive.
Let ei be the characteristic function for αi, that is, ei(αj) = δij . Let ρi be the 3-fold
Pfister form with 8ei = ρi. Let N = R/ann(ρ1); N is torsion-free, but not faithful. Now
R̃N = e1 ⊗ Z ∼= Z since if i ≥ 2 we have:

8(ei ⊗ (1 + ann(ρ1)) = 1⊗ (ρi + ann(ρ1)) = 0,
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and so ei ⊗ N ⊂ T (N). Then R̃N/CN ∼= Z/8Z. Let ϕ be the automorphism of R̃N/CN
that, as a map of Z/8Z, is multiplication by 3. Then detϕ = (3, 1, 1, 1, 1, 1, 1, 1). Note
that ϕ(N/CN) ⊂ N/CN . So detϕ ∈ ∆N .

Let A = R ⊕ N . A is torsion-free and faithful. By [13, 1.7] we have ∆A = ∆R∆N =
(R̃/C)∗. We thus obtain from (3.6) and (3.7)

R⊕N ∼= (R⊕N)y ∼= Ry ⊕N ∼= I ⊕N.

Since R is not isomorphic to I we see that cancellation fails here. For other examples of
the failure of cancellation, when R is noetherian, see [12, 2.3]

We next consider odd degree extensions. For a Witt ring R, Rt denotes the torsion ideal
of R and Rred is R/Rt, which is again a Witt ring. For a field F we let

∑
F ∗2 denote the

set of non-zero sums of squares in F .

Lemma 4.1. Let K/F be an odd degree extension of formally real fields. Let R =
(WF )red and M = (WK)red. Then M is a faithful, torsion-free R-module. M is finitely
generated over R, iff F ∗/

∑
F ∗2 has finite index in K∗/

∑
K∗2.

Proof. Let i∗ : WF → WK be induced by the inclusion F ⊂ K. M is an R-module via
(q + WtF )(ϕ + WtK) = i∗(q)ϕ + WtK, where q ∈ WF and ϕ ∈ WK. If i∗(q) ∈ WtK and
α ∈ XF then α extends to, say, β ∈ XK [11, III,4.3] and 0 = î∗(q)(β) = q̂(α). So q ∈ WtF
and M is a faithful R-module. If q + WtF is regular then q̂(α) 6= 0 for all α ∈ XF and so
i∗(q)ϕ ∈ WtK implies ϕ ∈ WtK. So M is torsion-free. Lastly, F ∗ ∩∑

K∗2 =
∑

F ∗2 since
if a ∈ F ∗ ∩∑

K∗2 then n〈1〉 ⊥ 〈−a〉 is isotropic over K, for some n, and hence isotropic
over F by Springer’s Theorem [11, II, 5.3]. Thus:

F ∗∑
F ∗2

∼= F ∗
∑

K∗2
∑

K∗2 ↪→ K∗
∑

K∗2 .

The group associated to R, GR, is F ∗/
∑

F ∗2. Similarly, GM = K∗/
∑

K∗2. So M is
finitely generated over R iff GM is finitely generated over GR. ¤
Lemma 4.2. Let K/F be an odd degree extension of formally real fields. Let R =
(WF )red and M = (WK)red. Suppose M is finitely generated over R. Let α ∈ XF , p an
odd prime and m = P (α, p) ⊂ R. Then Mm

∼= Zr
(p), where r is the number of extensions

of α to K.

Proof. Let β1, . . . , βr be the extensions of α to K. We map Mm to Zr
(p) by:

ψ

s
7→

(
ψ̂(β1)
ŝ(α)

, . . . ,
ψ̂(βr)
ŝ(α)

)
,

where ψ = ϕ + WtK and s = q + WtF for some ϕ ∈ WK and q ∈ WF . Suppose ψ/s is
sent to 0. Then ϕ̂(βi) = 0 for each i. Set Z = {β ∈ XK : ϕ̂(β) 6= 0}. Z is clopen. Let
ε : XK → XF be the restriction map. Then ε(Z) is clopen by the Open Mapping Theorem
of [2]. Thus there exist a u ∈ WF and positive integer k such that û(γ) is 2k for γ /∈ ε(Z)
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and 0 for γ ∈ ε(Z). No βi is in Z so α is not in ε(Z). Thus u+WtF /∈ P (α, p) and uϕ = 0.
Hence ψ/s = 0/u and the map is injective.

To show the map is surjective, let x̄ = (a1/b, . . . , ar/b) ∈ Zr
(p). Pick clopen sets

Y1, . . . , Yr in XK such that for every i we have Yi ∩ {β1, . . . , βr} = {βi}. There is a
positive integer n such that for each i there exists a vi ∈ WK with v̂i equal to 2n on Yi

and 0 off Yi. Then: ∑
aivi + WtK

2nb + WtF
7→ x̄.

¤
Corollary 4.3. Let K and L be odd degree extensions of formally real F of finite stability
index. Let R = (WF )red, M = (WK)red and N = (WL)red. Suppose M and N are finitely
generated R-modules. If MIR

∼= NIR as R-modules then

(1) Each α ∈ XF has the same number of extensions to K as to L.

(2) Mx ∼= N for some x ∈ (R̃/C)∗.
(3) If K/F is separable then Genus(M) is a quotient of Pic(R).

Proof. (2) follows from (3.5) and (1) follows from (3.5) and (4.2). When K/F is separable
then K is a simple extension of F and so i∗ : WF → WK is a split monomorphism. In
particular, WK ∼= WF ⊕Q, for some WF -module Q. Thus R is a direct summand of M .
Apply (3.8). ¤

We remark that if MIR
∼= NIR as rings then it is simple to show M ∼= N . Thus

the significance of (4.3) comes from having the weaker condition that MIR and NIR be
isomorphic as R-modules.

Corollary 4.4. Let K and L be odd degree extensions of formally real F with st(F ) ≤ 2.
Let R = (WF )red, M = (WK)red and N = (WL)red. Suppose M and N are finitely
generated R-modules. If MIR

∼= NIR as R-modules then M ∼= N .

Proof. Combine (3.9) with (4.1). ¤
We close with some computations of CR, the conductor of R, and R̃/CR for a reduced

Witt ring R.

Lemma 4.5. Let R = S[E1], where E1 = {1, t} is the group of order 2 and S is a reduced
Witt ring. If s1 + s2t ∈ CR, for some si ∈ S, then s1, s2 ∈ CS .

Proof. Each ordering α on S has two extensions to R, one with t > 0 ,denoted α+,
and one with t < 0, denoted α−. Let B ⊂ XS be clopen. Let A = B+ ∪ B−, where
B+ = {α+ : α ∈ B} and similarly for B−. Then (s1 + s2t)eA = q1 + q2t for some
q1, q2 ∈ S. Evaluate this at α+ and α− for some α ∈ B to get:

ŝ1(α) + ŝ2(α) = q̂1(α) + q̂2(α)

ŝ1(α)− ŝ2(α) = q̂1(α)− q̂2(α).

Thus for each α ∈ B and for i = 1, 2 we have ŝi(α) = q̂i(α). Evaluate now at β+ and β−

for some β /∈ B to get:
q̂1(β) + q̂2(β) = 0 = q̂1(β)− q̂2(β).
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Thus q̂i(β) = 0 for all β /∈ B and i = 1, 2. This implies s1eB = q1 and s2eB = q2. Since B
was arbitrary, we have s1, s2 ∈ CS . ¤
Proposition 4.6. Let R = S[E1] with E1 = {1, t}. Then:

(1) CR = (〈1, t〉, 〈1,−t〉)CS .

(2) R̃/CR
∼= (S̃/2CS)⊕ (S̃/2CS).

Proof. (1) Let I = (〈1, t〉, 〈1,−t〉)CS . Let s ∈ CS and set ϕ = 〈1, t〉s. We will show ϕ ∈ CR

(the proof for 〈1,−t〉s is the same). Let A ⊂ XR be clopen. Write A = B+ ∪C− for some
clopen subsets B, C of XS . Suppose seB = q ∈ S. Then ϕeA = ϕeB+ = 2seB = 2q ∈ S ⊂
R. Hence ϕ ∈ CR.

Now suppose s1 + s2t ∈ CR. Let A = H(t), the set of orderings on R with t > 0. Then
(s1 + s2t)eA = q1 + q2t for some q1, q2 ∈ S. Evaluating at α+ and α− for any α ∈ XS

gives:

ŝ1(α) + ŝ2(α) = q̂1(α) + q̂2(α)

0 = q̂1(α)− q̂2(α).

Thus q1 = q2 and s1 + s2 = 2q1. Hence:

s1 + s2t = −2q1 + 〈1, t〉s2.

Now 〈1, t〉q1 = (s1 + s2t)eA ∈ CR. By (4.5) q1 ∈ CS and so 2q1 ∈ I. Again by (4.5) we have
s2 ∈ CS and so 〈1, t〉s2 ∈ I. So s1 + s2t ∈ I.

(2) First R̃ ∼= S̃ ⊕ S̃ via f 7→ (f |H(t), f |H(−t)). Also, by (1), CR = 2R̃CS . The result
follows. ¤
Proposition 4.7. If R = R1 uR2, the fiber product of R1 and R2, then

CR = (CR1 ∩ IR1)⊕ (CR2 ∩ IR2).

Proof. Suppose s ∈ CR1 ∩ IR1. Let A ⊂ XR be clopen. Write A = A1 ∪A2 with Ai ⊂ XRi

for i = 1, 2. Then (s, 0)eA = (seA1 , 0) ∈ IR1×0 ⊂ R. This shows that (CR1∩IR1)×0 ⊂ CR.
Similarly 0× (CR2 ∩ IR2) ⊂ CR. Hence (CR1 ∩ IR1)⊕ (CR2 ∩ IR2) ⊂ CR.

Now suppose (s1, s2) ∈ CR. Let B ⊂ XR1 be clopen. We have (s1eB , 0) = (s1, s2)eB ∈
R. Then s1eB ∈ IR1 for every clopen B ⊂ XR1 . In particular, s1 ∈ CR1 and, taking
B = XR1 , s1 ∈ IR1. So s1 ∈ CR1 ∩ IR1 and the proof that s2 ∈ CR2 ∩ IR2 is similar. ¤
Corollary 4.8. Suppose R = R1 uR2s finitely generated.

(1) If neither Ri is Z then R̃/CR
∼= (R̃1/CR1)⊕ (R̃2/C2).

(2) If R1 = Z and R2 6= Z then R̃/CR
∼= (Z/2Z)⊕ R̃2/CR2 .

(3) R1 = R2 = Z then CR
∼= (Z/2Z)⊕ (Z/2Z).

Proof. R̃ ∼= R̃1 ⊕ R̃2. If Ri 6= Z then CRi ⊂ IRi since Ri is either a group ring (use (4.6))
or a product (use (4.7)). Thus if neither Ri is Z then Cr = CR1 ⊕ CR2 , by (4.7), and the
result follows. If Ri = Z then CRi = Z and CRi ∩ IRi = (2). Apply (4.7). ¤
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(4.6) and (4.8) give an inductive method of computing R̃/C for any finitely generated
reduced Witt ring R. As an example:

R = (Z[E3] u Z[E2] u Z)[E1]

R̃/C = (Z/4Z)2 ⊕ (Z/8Z)8 ⊕ (Z/16Z)16.
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