

Aalborg Universitet

Comparison of Deep Packet Inspection (DPI) Tools for Traffic Classification

Bujlow, Tomasz; Carela-Español, Valentín; Barlet-Ros, Pere

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Bujlow, T., Carela-Español, V., & Barlet-Ros, P. (2013). Comparison of Deep Packet Inspection (DPI) Tools for
Traffic Classification. (UPC-DAC-RR-CBA-2013-3 ed.) Universitat Politècnica de Catalunya.
https://www.ac.upc.edu/app/research-reports/html/research_center_index-CBA-2013,en.html

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 26, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60526774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://vbn.aau.dk/en/publications/513b6aea-77af-4cf4-a353-0919351d8ff3
https://www.ac.upc.edu/app/research-reports/html/research_center_index-CBA-2013,en.html

Comparison of Deep Packet Inspection (DPI)

Tools for Traffic Classification

Technical Report

from the project work made during January 7, 2013 – April 7, 2013

PhD Student: Tomasz Bujlow (tbujlow@ac.upc.edu)

PhD Student: Valentin Carela-Español (vcarela@ac.upc.edu)

Supervisor: Pere Barlet-Ros (pbarlet@ac.upc.edu)

Department of Computer Architecture (DAC)

Version 3: June 30, 2013

Previous versions:
Version 1: June 6, 2013
Version 2: June 28, 2013

Abstract

Nowadays, there are many tools, which are being able to classify the traffic
in computer networks. Each of these tools claims to have certain accuracy,
but it is a hard task to asses which tool is better, because they are tested on
various datasets. Therefore, we made an approach to create a dataset, which
can be used to test all the traffic classifiers. In order to do that, we used
our system to collect the complete packets from the network interfaces. The
packets are grouped into flows, and each flow is collected together with the
process name taken from Windows / Linux sockets, so the researchers do not
only have the full payloads, but also they are provided the information which
application created the flow. Therefore, the dataset is useful for testing Deep
Packet Inspection (DPI) tools, as well as statistical, and port-based classi-
fiers. The dataset was created in a fully manual way, which ensures that all
the time parameters inside the dataset are comparable with the parameters
of the usual network data of the same type. The system for collecting of
the data, as well as the dataset, are made available to the public. After-
wards, we compared the accuracy of classification on our dataset of PACE,
OpenDPI, NDPI, Libprotoident, NBAR, four different variants of L7-filter,
and a statistic-based tool developed at UPC. We performed a comprehen-
sive evaluation of the classifiers on different levels of granularity: application
level, content level, and service provider level. We found out that the best
performing classifier on our dataset is PACE. From the non-commercial tools,
NDPI and Libprotoident provided the most accurate results, while the worst
accuracy we obtained from all 4 versions of L7-filter.

Contents

1 Introduction 5

2 The dataset 8
2.1 Operating systems . 8
2.2 Applications . 9

2.2.1 Web traffic . 9
2.2.2 Peer-to-peer traffic . 9
2.2.3 FTP traffic . 10
2.2.4 Remote Desktop traffic 10
2.2.5 SSH traffic . 10
2.2.6 Background traffic . 10

2.3 Operations / contents . 11
2.3.1 Web traffic . 11
2.3.2 Peer-to-peer traffic . 15
2.3.3 FTP traffic . 16

3 Methodology 18
3.1 The equipment . 18
3.2 The system for collecting the data 20
3.3 Extracting the data for processing 21

3.3.1 PACE, OpenDPI, L7-filter, NDPI, and Libprotoident . 22
3.3.2 NBAR . 23
3.3.3 UPC Machine Learning Classification Tool 24

3.4 The classification process . 25
3.4.1 PACE, OpenDPI, and the version of L7-filter used for

automatic retraining purposes 25
3.4.2 L7-filter – the standard versions 26
3.4.3 L7-filter – Computer Networks version 26
3.4.4 NDPI . 27
3.4.5 Libprotoident . 28
3.4.6 NBAR . 29

3

3.4.7 UPC Machine Learning Classification Tool 41
3.5 Analysis of the classification logs 43

3.5.1 PACE, OpenDPI, and the version of L7-filter used for
automatic retraining purposes 44

3.5.2 L7-filter – the standard versions 44
3.5.3 L7-filter – Computer Networks version 45
3.5.4 NDPI . 45
3.5.5 Libprotoident . 45
3.5.6 NBAR . 46
3.5.7 UPC Machine Learning Classification Tool 47

4 Results 48
4.1 Criteria of the classification 48

4.1.1 Operating systems . 48
4.1.2 Applications . 49
4.1.3 Content level . 50

4.2 Distribution of the flows . 52
4.3 Classification of particular types of traffic 59

4.3.1 Edonkey clients . 60
4.3.2 BitTorrent clients . 63
4.3.3 FTP clients . 67
4.3.4 DNS clients . 70
4.3.5 NTP clients . 72
4.3.6 Remote Desktop servers 74
4.3.7 NETBIOS clients . 77
4.3.8 SSH server . 80
4.3.9 Browser HTTP traffic 82
4.3.10 HTTP traffic containing Flash content 85
4.3.11 Browser RTMP traffic 88
4.3.12 HTTP traffic from Google 91
4.3.13 HTTP traffic from Facebook 93
4.3.14 HTTP traffic from YouTube 95
4.3.15 HTTP traffic from Twitter 98

4.4 Summary . 100

5 Conclusion 102

Acknowledgments 103

Bibliography 105

4

Chapter 1

Introduction

Classification of traffic in computer networks is a very challenging task. Many
different types of tools were developed for that purpose. The first generation
of tools used port-based classification [1, 2]. This fast technique is supported
on most platforms, but its accuracy decreased dramatically during time, be-
cause of increasing share of protocols, which use dynamic port numbers.
This concern especially Peer-to-Peer (P2P) applications, as eMule or BitTor-
rent [3, 4, 5]. Furthermore, some of applications on purpose use different
port numbers than the standard one – this approach allow them to cheat
port-based classifiers and obtain higher bandwidth, or higher priority in the
network.

Because of the drawbacks of the port-based tools, a new technique called
Deep Packet Inspection (DPI) was introduced. Because it relies on inspecting
of the real payload [6], it is not possible to cheat the classifier by using non-
standard port numbers. Apart from this big advantage, DPI also has many
drawbacks. First of all, it cannot be used in many countries because of
the local law. Second, even, if it is legal, it is often not used due to many
privacy issues [3]. Third, it requires significant amount of processing power
[3, 4]. Finally, in some cases DPI is not possible because of used encryption
techniques, or because the application or protocol changed its signature [3].

The third generation of network classification tools are statistical-based
tools, which use various Machine Learning Algorithms (MLAs). They do not
inspect the payload, but they rely on the behavior of the traffic (as packet
sizes and their distribution, or time-based parameters). Sometimes other
network or transport layer parameters are also included, as port numbers or
DSCP. Because of this simplicity, MLAs can offer high accuracy compared
to DPI tools (it is claimed to be over 95 %), while preserving low resource
demands [1, 2, 3, 5, 6, 7, 8, 9]. Based on the ML technology (C5.0 algorithm)
at UPC was developed a tool for classification of network traffic, which has

5

an accuracy of 88-97 % [10] in distinguishing of 14 different main application
classes.

To test the accuracy of any classification tool, we need to have a set
of data of a good quality. Some datasets are available to the public (for
example Caida sets [11]). Unfortunately, they do not contain all the data –
often they miss the real payload, transport layer information, IP addresses,
or inter-arrival times of the packets. Thanks to that, their usefulness in the
development and testing of the classification tools is limited. Moreover, the
datasets are already pre-classified by some tools; either port-based tools, or
DPI tools. Even if they contain the original payload, we are not able to build
the testing dataset based on the provided sets, because in order to do that,
we would need to pre-classify them by some other classification tool.

To overcome that problem, we decided to build the dataset used for test-
ing by ourselves. For this purpose we used a tool developed at Aalborg Uni-
versity, called Volunteer-Based System (VBS). Windows, Linux, and source
versions of this tool were published under GNU General Public License v3.0
and they are available as a SourceForge project [12]. The task of the project
is to collect flows of Internet traffic data together with detailed information
about each packet. For each flow we also collect the process name associ-
ated with it from the system sockets. Additionally, the system collects some
information about types of transferred HTTP contents. The design of the
Volunteer-Based System was initially described in [13]. Further improve-
ments and refinements can be found in [14]. We decided to use the system,
since it was successfully used in many previous approaches [15, 16, 17, 18, 19].
The original Volunteer-Based System was modified by us in order to collect
additionally the complete packets and some other information useful for data
analysis.

In this paper we focus on two main tasks. The first task is to build a
dataset, which will be useful for the testing purposes. The built dataset con-
sists of PCAP files, which contain the real packets ordered by their timestamp
and the information files, which describe each flow in details. The flow start
and end time is provided, the process name associated with that flow, and
some information which were extracted to make the analysis easier (as IP
addresses, ports, associated types of HTTP content, etc). The dataset will
be available to the public, so that other researchers can test their classifiers
and compare their accuracy to the results obtained by us. The second part of
the paper focuses on testing different DPI tools. For that purpose, we chose
Ipoque’s Protocol and Application Classification Engine (PACE), OpenDPI,
L7-filter, NDPI, Libprotoident, and Cisco NBAR. Table 1.1 summarizes these
DPI-based tools along and their characteristics. We also demonstrate how
our own solution, developed at UPC, performs comparing to these DPIs. Our

6

Table 1.1: DPI-based techniques evaluated
Name Version Applications

PACE 1.41 (June 2012) 1000
OpenDPI 1.3.0 (June 2011) 100

nDPI rev. 6391 (March 2013) 170
L7-filter 2009.05.28 (May 2009) 110

Libprotoident 2.0.6 (Nov 2012) 250
NBAR 15.2(4)M2 (Nov 2012) 85

tool is based on C5.0 Machine Learning Algorithm and it does not perform
any DPI, but it is trained by data pre-classified by PACE. While testing the
performance of different classification tools, we took into account three main
parameters: accuracy, coverage (what amount of cases were left unclassified),
and granularity (how detailed the classification is).

The remainder of this paper is structured as follows. We start by describ-
ing how we build the dataset used for testing in Chapter 2. In Chapter 3,
at first we present the overview of our methods, then we show our work-
ing environment and the equipment used by us (Section 3.1), and describe
how me modified the Volunteer-Based System in order to adjust it to match
our needs (Section 3.2). Afterwards, in Section 3.3 we show how the data
was extracted to be processed by different classification tools. Section 3.4
describes how the data is processed by the classifiers and Section 3.5 shows
how the classification logs are processed to match the classification results
to the flows stored in the database. In Chapter 4 the obtained results are
shown and discussed. Chapter 5 finalizes the paper.

7

Chapter 2

The dataset

Our first task was to create a dataset, which will be used for the testing
purposes. To create a representative dataset we decided to combine the data
on a multidimensional level. The particular levels will be described in the
sections below.

2.1 Operating systems

Based on the statistics from web usage1 we found that most PC users run
Windows 7 (55.3 % of all users), Windows XP (19.9 % of all users), and Linux
(4.8 %) - state for January 2013. Apple computers contribute for 9.3 % of
the overall traffic, and mobile devices for 2.2 %. Because of the lack of the
equipment as well as the necessary software for Apple computers and mobile
devices, we decided to to create 3 virtual machines, which will cover 80.0 %
of the used operating systems.

Each of our actions were performed using each of the following operating
systems:

• Windows 7

• Windows XP

• Lubuntu (Ubuntu with LXDE - Lightweight X11 Desktop Environ-
ment)

1http://www.w3schools.com/browsers/browsers_os.asp

8

2.2 Applications

We decided to include in our research different types of traffic generated by
various applications.

2.2.1 Web traffic

The most popular web browsers are2: Chrome (48.4 % of all users), Firefox
(30.2 % of all users), and Internet Explorer (14.3 % of all users) - state for
January 2013.

The web browsers included in the experiment were:

• Google Chrome (Windows 7, Windows XP, Linux)

• Mozilla Firefox (Windows 7, Windows XP, Linux)

• MS Internet Explorer (Windows 7, Windows XP)

2.2.2 Peer-to-peer traffic

We identified the most commonly used P2P sharing software based on the
CNET Download ranking3.

We found the software within both Top downloads and Most downloaded
last week categories and we classified it according to the used P2P protocol.
Gnutella clients (Ares Galaxy and iMesh) were not considered as it was
impossible to find any popular legal files to be downloaded by these file
sharing clients.

The P2P clients included in the experiments were:

A. Torrent protocol clients:

• uTorrent (Windows 7, Windows XP)

• Bittorrent (Windows 7, Windows XP)

• Frostwire (Windows 7, Windows XP, Linux)

• Vuze [old name: Azureus] (Windows 7, Windows XP, Linux)

B. eDonkey protocol clients:

• eMule (Windows 7, Windows XP)

• aMule (Linux)

2http://www.w3schools.com/browsers/browsers_stats.asp
3http://download.cnet.com/windows/p2p-file-sharing-software/?tag=nav

9

2.2.3 FTP traffic

We identified the most commonly used FTP software based on the CNET
Download ranking4.

The FTP clients included in the experiment were:

• FileZilla (Windows 7, Windows XP, Linux)

• SmartFTP Client (Windows 7, Windows XP)

• CuteFTP (Windows 7, Windows XP)

• WinSCP (Windows 7, Windows XP)

2.2.4 Remote Desktop traffic

Most of the operations made on the machines included in the experiment
were performed using Remote Desktop connections. On each of them we
needed to install (or enable) Remote Desktop servers.

The Remote Desktop servers included in the experiment were:

• built-in Windows Remote Desktop server (Windows 7, Windows XP)

• xrdp (Linux)

2.2.5 SSH traffic

Some operations on Linux machines were made by SSH. The only SSH server
included in the experiment was:

• sshd (Linux)

2.2.6 Background traffic

Our dataset also contains a big share of background traffic. We identified
and included in our research the following applications:

• DNS traffic (Windows 7, Windows XP, Linux)

• NTP traffic (Windows 7, Windows XP, Linux)

• NETBIOS traffic (Windows 7, Windows XP)

4http://download.cnet.com/windows/ftp-software/?tag=mncol;sort&rpp=

30&sort=popularity

10

2.3 Operations / contents

For each of the applications described above we tried to present different
types of behavior and deal with various kinds of contents.

2.3.1 Web traffic

The list of visited websites was based on the Alexa statistics5.
We chose several websites from the top 500, based on their rank and on

the character of the website (as search engines, social medias, national por-
tals, video websites, etc) to assure the variety of produced traffic. We chose
English versions of websites if it was possible. From majority of the websites
we performed some random clicks to linked external websites, which should
better characterize the real behavior of the real users. This also concerns
search engines, from which we generated random clicks in the destination
web sites. The methodology of making the random clicks is as follows:

a. Go to the website from which the random click is going to be made

b. Scroll the website to a random position (or do not scroll at all)

c. Click a random link in the visible are of the website

Each of the chosen by us websites was processed by each browser chosen
by us for the experiment. In case if it was required to log into the website,
we created fake accounts. The visited by us websites were:

A. Google - big Internet portal with integrated search engine and mail
hosting (rank 1): https://www.google.com

B. Facebook - social media portal (rank 2): http://www.facebook.com

C. YouTube - video sharing portal (rank 3): http://www.youtube.com

D. Yahoo! - big Internet portal with integrated search engine and mail
hosting (rank 4): http://www.yahoo.com

E. Wikipedia - a free encyclopedia (rank 5): http://www.wikipedia.org

F. Java - a portal for Java developers, offering downloads of JVMs and
JDKs (rank 343): http://java.com/en

5http://www.alexa.com/topsites

11

G. Justin.tv - live video streaming portal (rank 1227): http://www.justin.
tv

The detailed description of actions performed with the services is listed
below. The actions were designed by us, to match the biggest possible scope
of the users’ behavior.

A. Google

Logins and passwords for Google accounts:

• fake.user.upc / password

• fake.user.upc2 / password

• fake.user.upc3 / password

The operations performed on Google:

• Gmail:

a. log into Gmail

b. read 10 different e-mails

c. send 2 e-mails without attachments

d. send 1 e-mail with attached 6 pictures (around 2 MB each)

• the search engine - for each term from the top 10 searched terms
on Google6:

a. browse the first 10 search results. This should give us more
realistic traffic in out set, since users tend to browse websites
which are on the top of results from search engines

b. browse Google Images associated with that term

c. go to Google Maps and try to look for places associated with
that term. Then, select one random place and zoom until the
Street View appears. Afterwards, turn around until all the
360 degrees view from Street View is downloaded

B. Facebook

Logins and passwords for Facebook accounts:

• fake.user.upc@gmai.com / password

• fake.user.upc2@gmail.com / password

6http://www.google.com/trends/explore

12

• fake.user.upc3@gmail.com / password

The operations performed on Facebook:

• join some Facebook groups (1-5)

• post on the group

• like some posts on the group

• add some comments to someone’s comments on the group

• invite some friends

• accept invitation from other friends

• browse pictures of Enrique Iglesias

• add some personal details to the profile

• like some pages (10-20)

• posts on a page which you like

• like some posts on a page which you like

• comment some posts on a page which you like

• share some photos from pages which you like

• attend few events

• invite friends to that events

• accept invitation for events from other friends

• share some events on the wall

• create an event

• invite friends for the event created by ourselves

• make some posts and likes on the page of our event

• post something on our wall

• like some posts on other people wall

• comment some posts on other people wall

• upload 29 pictures (60 MB)

• browse the pictures which we uploaded

• browse a page called My Afghanistan Best At All

• watch some videos on the page My Afghanistan Best At All

13

C. YouTube

The watched videos are the most watched videos from all the times7

Logins and passwords for Google accounts:

• fake.user.upc / password

• fake.user.upc2 / password

• fake.user.upc3 / password

The operations performed on YouTube:

• watch the 10 most popular videos (global ranking)

• make some comments

• click randomly Like or Not like

• try to pause some random videos from the list and then resume
them

• try to rewind forward or backward some random videos from the
list

D. Yahoo!

Logins and passwords for Yahoo! accounts:

• fake.userupc1@yahoo.com / password

• fake.userupc2@yahoo.com / password

• fake.userupc3@yahoo.com / password

The operations performed on Yahoo!:

• login to the service

• search for something, see various images, photo galleries and videos

• browse news, including videos and photo galleries

• autos

• games

• horoscopes

• jobs

• mail: read messages, sent messages/replies without attachment,
send one message with few pictures attached

7Global ranking: http://www.youtube.com/charts/videos_views?t=a

14

• movies

• music

• shopping

• sports

• travel

• weather

• download few files from Yahoo Downloads

E. Wikipedia

The watched sites are the 10 most searched terms in Wikipedia for each
language8:

• English

• Dutch

• German

• Spanish

• Japanese

F. Java

Several big files (30 - 150 MB: Java JDKs) are downloaded in order to
see how the big downloads will be classified.

G. Justin.tv

Around 30 random short live video streams (1-10 minutes) were watched.

2.3.2 Peer-to-peer traffic

We tested the Torrent protocol clients by downloading few files of different
size and then leaving the files to be seeded for some time in order to obtain
enough of traffic in both directions. Peer-to-peer applications generate a
big number flows per a file and, therefore, the number of files used in the
experiment is sufficient. The links to the Torrent files were originated among
the most common downloads from:

A. a website with legal torrents ClearBits9:

8http://toolserver.org/~johang/2012.html
9http://www.clearbits.net/torrents/page/1/downloads

15

• Megan Lisa Jones - Captive (BitTorrent Edition): 212 MB

• pearl-jam-life-wasted-video: 29.6 MB

• Sick of Sarah - 2205 BitTorrent Edition: 49.2 MB

B. the official Ubuntu website:

• ubuntu-12.10-desktop-amd64.iso: 763 MB

The eMule protocol clients were tested on 2 large files, which were every
time searched in the internal search engine of each eMule protocol client:

• kubuntu-12.04.1-desktop-i386.iso: 703.29 MB

• kubuntu-12.10-desktop-amd64.iso: 934 MB

2.3.3 FTP traffic

We tried to test every FTP client using both the active transfer mode (PORT)
and passive transfer mode (PASV). However, not all the clients support both
modes and, therefore, the clients were tested in the following way:

• FileZilla: PORT + PASV

• SmartFTP Client: PORT + PASV

• CuteFTP: PORT + PASV

• WinSCP: only PASV

The following operations were performed by each FTP client (using all
possible transfer modes):

• upload one directory with 29 pictures (60 MB)

• upload one big ZIP file (60 MB)

• browse the directory tree

• download again the directory with 29 pictures (60 MB)

• delete the directory from the server

• download again the big ZIP file (60 MB)

• delete the big ZIP file from the server

16

Logins and passwords for Yahoo! accounts:

• server: ftp.wlan.webd.pl

• login: fake@wlan.webd.pl

• password: Elgayego0

17

Chapter 3

Methodology

Testing different network traffic classifiers involved a number of various tasks.
At first, the dataset used for testing had to be build. That required installing
necessary machines in desired configurations (operating systems, applica-
tions, etc) and equipping them in a data collecting software. To collect the
traffic we decided to use a modified version of the Volunteer-Based System
developed at Aalborg University. Thanks to it we could collect all the pack-
ets passing the network interfaces, where the packets are grouped into flows,
and the process name taken from the system sockets is assigned to each flow.

When the data were collected into a central database, they needed to
be properly extracted into a format, which will be understood by the clas-
sifiers. Therefore, a new component of the Volunteer-Based System, called
pcapBuilder, was developed. After processing the input data, the DPI tools
generate log files, which needed to be imported back into the database to
analyze accuracy of the classification. To deal with the various types of log
files, a new component of the Volunteer-Based System, called logAnalyzer,
was developed. The analyzed results were shown later in this paper.

3.1 The equipment

We decided to use 4 virtual machines (VMware) - 3 for each client, and 1
for the server. The detailed configuration is described below. All remote
desktop connections presented here are established in the full-screen mode.
To switch between full-screen and non-full screen modes, use Left Ctrl + Left
Alt + Enter.

A. Lubuntu Virtual Machine - VBS Client

1. Credentials (user/password): login/password

18

• Remote desktop - LXDE:
rdesktop VBS Ubuntu.pc.ac.upc.edu -u login -x l -f

• Terminal with X functionality:
ssh -X login@VBS Ubuntu.pc.ac.upc.edu

2. Credentials (user/password): login/password

• Remote desktop - LXDE:
rdesktop VBS Ubuntu.pc.ac.upc.edu -u login -x l -f

• Terminal with X functionality:
ssh -X login@VBS Ubuntu.pc.ac.upc.edu

B. Windows XP 32bit Virtual Machine - VBS Client

1. Credentials (user/password): login/password

• Remote desktop:
rdesktop VBS XP32.pc.ac.upc.edu -u login -x l -f

• To change the keyboard language (Spanish/English)
use “-k es” or “-k en”.

C. Windows 7 64bit Virtual Machine - VBS Client

1. Credentials (user/password): login/password

• Remote desktop:
rdesktop VBS W764.pc.ac.upc.edu -u login -x l -f

• To change the keyboard language (Spanish/English)
use “-k es” or “-k en”.

D. Ubuntu Virtual Machine - VBS Server for our virtual VBS clients

1. Credentials (user/password): login/password

• Remote desktop - KDE:
rdesktop classifier.cba.upc.edu -u login -x l -f

• Terminal with X functionality:
ssh -X -p 13000 login@classifier.cba.upc.edu

2. Credentials (user/password): login/password

• Remote desktop - KDE:
rdesktop classifier.cba.upc.edu -u login -x l -f

• Terminal with X functionality:
ssh -X -p 13000 login@classifier.cba.upc.edu

19

• To change the firewall rules, edit /etc/iptables/rules.v4. After
that, restart the firewall:
/etc/init.d/iptables-persistent restart.

• To transfer a local file to the server use:
scp -P 13000 /login/export/file.jar login@classifier.cba.upc.edu:

/opt/directory/.

• To transfer a file from the server to a local disk use:
scp -P 13000 login@classifier.cba.upc.edu:/opt/directory/traces.pcap

/login/export/.

3.2 The system for collecting the data

On every virtual machine we installed a modified version of Aalborg Univer-
sity Volunteer-Based System for Research on the Internet. The source code
of the original system as well as the modified version was published under
GNU General Public License v3.0 and it is available in GIT repository in
the SourceForge project [12]. The modified version of the system differs from
the original one by several things:

• The client saves full captured frames as payloads.

• Each packet with an HTTP header is stored together with the corre-
sponding URL and referrer.

• The server stores the payloads and the new information in the database.

• The client does not intercept the communication between the client
and the server to prevent intercepting the traffic generated by itself.

• We increased the limit of the size of the database on the client side
when the database is sent to the server.

• We decreased the size of the flow / number of packets in the memory
before the packets are dumped to the local database.

• We changed the IP address in the client configuration file in order to
make the connection from the new clients to the new server.

• The server has increased RAM availability in the YAJSW config file.

• The IP addresses are stored in non-hashed version in the database.

• The performance statistics are not generated.

20

Figure 3.1: Topology of our testbed

• The real timestamps are stored instead of relative timestamps to make
easier ordering of the packets.

• Provider network names are not supported.

• We added a module called pcapBuilder, which is responsible for dump-
ing all the flows to PCAP files. At the same time, INFO files are gen-
erated to provide detailed information about each flow, which allows
to assign each packet in the PCAP file to the individual flow.

• We added a module called logAnalyzer, which is responsible for analyz-
ing logs generated by different DPI tools, and assigning the results of
the classification to the flows in the database.

The topology of our virtual machines with the installed components of
VBS is shown in Figure 3.1.

3.3 Extracting the data for processing

The data stored in the database must be extracted in a format which will be
handled by the DPI tools and our Machine Learning tool. Each tool can have
different requirements and possibilities, so the extracting tool must handle
all these issues. The most challenging thing is instructing the software, which
handle the DPIs and the ML tool, how to construct flows in the identical
way as they were constructed by the Volunteer-Based System. The biggest
problem is that VBS opens and closes flows based on opening or closing of
the system sockets - the DPI and ML tools do not have such information.

21

So, the additional information about the start and end of each flow must be
provided to the classifiers as well.

Extracting all flows from the database is done separately for each client
from which the data was collected. Thanks to that, it is easier to share the
files between different researchers, or to make a small-scope classification on
a limited amount of data. The data is extracted into PCAP files, which
contain all packets ordered according to their absolute timestamps, so that
the packets are provided to the classifiers in the original order. Some clas-
sifiers can rely on the flow coexistence feature (many flows from the same
IP address), or use DNS requests to obtain the names of particular services.
Therefore, we cannot provide the packets to the classifier ordered by flows –
these would influence the flow coexistence.

Extracting of the packets can be automatized by our pcapBuilder tool
(which is a part of the modified VBS system). At first, it is advised to check
the database for consistency and repair it in case of any problems. Such prob-
lems can arise if, for example, the capture of the packets was interrupted by
system restart or hangs of the capturer itself. Checking of the consistency
(and repairing the database if needed) can be done by:

pcapBuilder --fixDatabaseStructure

Later, we can start generating the input for the desired classification tools.

3.3.1 PACE, OpenDPI, L7-filter, NDPI, and Libpro-
toident

To generate the input for PACE, OpenDPI, L7-filter, NDPI, and Libpro-
toident we can use the following syntax of our pcapBuilder tool:

pcapBuilder --writeDefault [all | infos] [express | normal]

[0=allClients | client id]

depending if we want to:

a. generate PCAP and INFO files [all], or only INFO files [infos]

b. generate only basic INFO files without application names, urls, refer-
rers, and content type information [express] or full set of data [normal]

c. generate the files only for selected client [client id] or for all clients [0]

For each client a set of 2 files is generated:

22

• a PCAP file [packets all X.pcap], which contains all the flows. The
packets are ordered by their absolute timestamps

• an INFO file [packets all X.info], which contains the description of the
flows. Based on the description the classifiers are able to construct the
flows in the same manner as they were constructed by our system

The format of each row in the INFO file is as follows:

flow id + "#" + start time + "#" + end time + "#" + local ip + "#"

+ remote ip + "#" + local port + "#" + remote port + "#"

+ transport protocol + "#" + operating system + "#"

+ process name + "#" + urls + "#" + referrers + "#"

+ content types + "#"

3.3.2 NBAR

At first, we need to extract the packets in a way which will allow them
to be processed by the router and to be correctly grouped into flows. We
achieve that by changing both source and destination MAC addresses during
the extraction process. The destination MAC address of every packet must
match up with the MAC address of the interface of the router (set by us to
be ca:00:11:5b:00:00). The router cannot process any packet which is not
directed to its interface on the MAC layer. The source MAC address is set
up to contain the identifier of the flow to which it belongs. Cisco router (and
NBAR) does not have any knowledge of when a flow starts or ends. The
default behavior is to impose a timeout, but it does not work in our case
because of two things:

• Flows stored by our system are not closed based on timeout, so the
flows generated by NBAR would not be matched 1:1 to the flows in
our system

• We are replaying the packets to the Cisco router with the maximal
speed which does not cause packet drops. It means that in many cases
the timeout will not appear and many flows of the same 5-tuple would
be just merged together.

To generate the PCAP files for NBAR, our pcapBuilder tool can be used
- it required the destination MAC address of the Cisco router as a parameter:

java -jar pcapBuilder.jar --writeNBAR ca:00:11:5b:00:00

23

3.3.3 UPC Machine Learning Classification Tool

We prepared the extractor to be able to deliver the data to test the classi-
fication tool developed at UPC, which is based on C5.0 Machine Learning
Algorithm. For MLAs, all the flows from each of the clients must be split into
sets of training and test flows. It means that we will have a set of 2 PCAP
files (and 2 INFO files), which will be used for training and testing MLAs.
There is no reason to make separate sets for each client – the files produced
in this step are not supposed to be shared, as everyone can produce them
from the full set of data obtained in the previous step. Each flow will be
randomly assigned to the training set or to the testing set. To generate the
input for the MLA tool, we can use the following syntax of our pcapBuilder
tool:

pcapBuilder --writeMLA [all | infos] [express | normal]

depending if we want to:

a. generate PCAP and INFO files [all], or only INFO files [infos]

b. generate only basic INFO files without application names, urls, refer-
rers, and content type information [express] or full set of data [normal]

A set of 4 files is generated:

• a PCAP file [packets train X.pcap], which contains around half of the
flows used for the training purposes. The packets are ordered by their
absolute timestamps

• an INFO file [packets train X.info], which contains the description of
the flows used for the training purposes. Based on the description the
classifiers are able to construct the flows in the same manner as they
were constructed by our system

• a PCAP file [packets test X.pcap], which contains around half of the
flows used for the testing purposes. The packets are ordered by their
absolute timestamps

• an INFO file [packets test X.info], which contains the description of
the flows used for the testing purposes. Based on the description the
classifiers are able to construct the flows in the same manner as they
were constructed by our system

24

The format of each row in the INFO file is as follows:

flow id + "#" + start time + "#" + end time + "#" + local ip + "#"

+ remote ip + "#" + local port + "#" + remote port + "#"

+ transport protocol + "#" + operating system + "#"

+ process name + "#" + urls + "#" + referrers + "#"

+ content types + "#"

3.4 The classification process

3.4.1 PACE, OpenDPI, and the version of L7-filter
used for automatic retraining purposes

At UPC we designed a tool, called dpi benchmark, which is able to read the
PCAP files and provide the packets one-by-one to the relevant DPI classi-
fiers. After the last packet of the flow is sent to the classifier, the tool is
obtaining the classification label associated with that flow. The labels are
written to the log files together with the flow identifier, which makes us later
able to relate the classification results to the original flows in the database.
To see all possible options of the classification we can run:

./dpi benchmark -help

To process the set of PCAP and INFO files by the classifiers we execute the
following command:

./dpi benchmark -f path/to/pcap/file -b path/to/info/file >

output/file

This operation is done separately for each client. The format of each row in
the log files is:

id#initial ts#final ts#src ip#dst ip#src port#dst port#OS#

process name#url#referrer#content types#PACE label#

OpenDPI label#L7 filter label#ML label1#ML label2#

The MLA label will not be considered at this point, since MLA is not properly
trained and the classifiers are tested on the full sets of data.
The label from L7-filter is originated from a modified by us version of L7-
filter, which was used for our automatic retraining mechanism [10]. This

25

version does not have activated the patterns declared as overmatching and it
has some patterns manually made by us to match the traffic from YouTube,
Twitter, and Facebook. The priorities given to our patterns allowed to clas-
sify by these patterns the biggest possible amount of traffic.

3.4.2 L7-filter – the standard versions

The dpi benchmark tool also has two versions, which support the standard
versions of L7-filter. The first version has activated all the patterns, but the
patterns marked as overmatching have low priority. The second version does
not have activated the patterns declared as overmatching. The tools work
as the tool described in the previous section – they read the PCAP files and
provide the packets one-by-one to L7-filter. After the last packet of the flow
is sent to the classifier, the tool is obtaining the classification label associated
with that flow. The labels are written to the log files together with the flow
identifier, which makes us later able to relate the classification results to the
original flows in the database. To see all possible options of the classification
we can run:

./dpi benchmark -help

To process the set of PCAP and INFO files by the classifiers we execute the
following command:

./dpi benchmark -f path/to/pcap/file -b path/to/info/file >

output/file

This operation is done separately for each client. The format of each row in
the log files is:

id#initial ts#final ts#src ip#dst ip#src port#dst port#OS#

process name#url#referrer#content types#L7 filter label#

3.4.3 L7-filter – Computer Networks version

At UPC, we also developed another version of L7-filter, which was used to
process the biggest possible amount of traffic in the accurate way. The mod-
ifications for that version are described in our Computer Networks journal
paper [20] and they rely on:

26

• The patterns are applied from the least overmatching to the most over-
matching.

• Packets must agree with the rules given by pattern creators – otherwise
the packet is not labeled.

• In case of multiple matches, the flow is labeled with the application
given by the rule with the highest quality according to L7-filter doc-
umentation. In case if the quality of many patterns is equal, the first
label matched is chosen.

The tools work as the tool described in the previous section – they read
the PCAP files and provide the packets one-by-one to L7-filter. After the
last packet of the flow is sent to the classifier, the tool is obtaining the clas-
sification label associated with that flow. The labels are written to the log
files together with the flow identifier, which makes us later able to relate the
classification results to the original flows in the database. To see all possible
options of the classification we can run:

./dpi benchmark -help

To process the set of PCAP and INFO files by the classifiers we execute the
following command:

./dpi benchmark -f path/to/pcap/file -b path/to/info/file >

output/file

This operation is done separately for each client. The format of each row in
the log files is:

id#initial ts#final ts#src ip#dst ip#src port#dst port#OS#

process name#url#referrer#content types#L7 filter label#

3.4.4 NDPI

The dpi benchmark tool also has a version, which supports NDPI classifier.
It works as the tool described in the previous section – it reads the PCAP
files and provides the packets one-by-one to NDPI. After the last packet of
the flow is sent to the classifier, the tool is obtaining the classification label
associated with that flow. The labels are written to the log files together
with the flow identifier, which makes us later able to relate the classification

27

results to the original flows in the database. To see all possible options of
the classification we can run:

./dpi benchmark -help

To process the set of PCAP and INFO files by the classifiers we execute the
following command:

./dpi benchmark -f path/to/pcap/file -b path/to/info/file >

output/file

This operation is done separately for each client. The format of each row in
the log files is:

id#initial ts#final ts#src ip#dst ip#src port#dst port#OS#

process name#url#referrer#content types#NDPI label#

3.4.5 Libprotoident

The dpi benchmark tool also has a version, which supports Libprotoident. It
works as the tool described in the previous section – it reads the PCAP files
and provides the packets one-by-one to Libprotoident. After the last packet
of the flow is sent to the classifier, the tool is obtaining the classification la-
bel associated with that flow. The labels are written to the log files together
with the flow identifier, which makes us later able to relate the classification
results to the original flows in the database. To see all possible options of
the classification we can run:

./dpi benchmark -help

To process the set of PCAP and INFO files by the classifiers we execute the
following command:

./dpi benchmark -f path/to/pcap/file -b path/to/info/file >

output/file

This operation is done separately for each client. The format of each row in
the log files is:

28

id#initial ts#final ts#src ip#dst ip#src port#dst port#OS#

process name#url#referrer#content types#Libprotoident label#

3.4.6 NBAR

Choice of the proper NBAR version

There are 2 versions of NBAR in use: the casual NBAR and NBAR2. Unfor-
tunately, NBAR2 is currently supported only on a very limited set of Cisco
devices:

• Routers from 19xx, 29xx, and 39xx series1

• Other devices: ISR-G2, ASR1K, ASA-CX and Wireless LAN Con-
troller2

So, the classification will be limited to the standard NBAR, which is still
under constant development and which is included in most of Cisco devices
and in the newest IOS from line 15.x.

Choice of the Cisco device and the operating system IOS

We did not have any free Cisco device which we can use for the experiment.
However, we can use GNS3 - a graphical framework, which uses Dynamips
to emulate Cisco hardware. The following Cisco platforms of routers can be
emulated by Dynamips / GNS3:

• 1710, 1720, 1721, 1750, 1751, 1760

• 2610, 2611, 2610XM, 2620, 2620XM and 2650XM, 2611XM, 2621,
2621XM and 2651XM, 2691

• 3620, 3640, 3660

• 3725, 3745

• 7206

1Cisco Feature Navigator: http://tools.cisco.com/ITDIT/CFN/
2http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6558/

ps6616/qa_c67-697963.html

29

NBAR - Citrix ICA Published Applications

NBAR - Multiple Matches Per Port

NBAR - Network -based Application Recognition

NBAR Extended Inspection for HTTP Traffic

NBAR PDLM Versioning

NBAR Real -time Transport Protocol Payload Classification

NBAR Static IPv4 IANA Protocols

NBAR User -Defined Custom Application Classification

NBAR - BitTorrent PDLM

NBAR -NAT Integration & RTSP

Flexible NetFlow

Flexible NetFlow - Ingress VRF Support

Flexible NetFlow - Output Features on Data Export

Flexible NetFlow: 32 bit AS Number Support

Flexible Netflow - IPv4 Multicast Statistics Support

Flexible Netflow - Layer 2 Fields

Flexible Netflow - MPLS Egress NetFlow

Flexible Netflow - NBAR Application Recognition

Flexible Netflow - NetflowV5 export protocol

Flexible Netflow - Top N Talkers Support

Figure 3.2: The interesting features contained by the IOS image

We chose 7200 platform, since only for this platform there is available the
newest version of Cisco IOS (version 15), which contains Flexible NetFlow.
Previous versions of Cisco IOS contain only traditional NetFlow, which do
not support NBAR reporting on per flow basis. According to the Cisco
Feature Navigator, the newest IOS for the 7200 platform, which contains
interesting to us features, is:

Release: 15.2(4)M2

Platform: 7200

Feature set: ADVANCED ENTERPRISE SERVICES

DRAM: 512

Flash: 64

Image: c7200-adventerprisek9-mz.152-4.M2.bin

The set of the interesting features contained by the image is shown in
Figure 3.2. We downloaded the IOS image from one of our routers, which
are used in production, and used the image with GNS3. The router identifies
itself as Cisco IOS Software, 7200 Software (C7200-ADVENTERPRISEK9-
M), Version 15.2(4)M2, RELEASE SOFTWARE (fc2) – for the full listing
see Figure 3.3.

30

Cisco IOS Software , 7200 Software (C7200 -ADVENTERPRISEK9 -M), Version 15.2(4)

M2, RELEASE SOFTWARE (fc2)

Technical Support: http ://www.cisco.com/techsupport

Copyright (c) 1986 -2012 by Cisco Systems , Inc.

Compiled Wed 07-Nov -12 18:15 by prod_rel_team

ROM: ROMMON Emulation Microcode

BOOTLDR: 7200 Software (C7200 -ADVENTERPRISEK9 -M), Version 15.2(4)M2, RELEASE

SOFTWARE (fc2)

ROUTERO uptime is 8 hours , 56 minutes

System returned to ROM by unknown reload cause - suspect boot_data[

BOOT_COUNT] 0x0, BOOT_COUNT 0, BOOTDATA 19

System image file is "tftp ://255.255.255.255/ unknown"

Last reload reason: unknown reload cause - suspect boot_data[BOOT_COUNT] 0x0

, BOOT_COUNT 0, BOOTDATA 19

This product contains cryptographic features and is subject to United States

...

If you require further assistance please contact us by sending email to

export@cisco.com.

Cisco 7206 VXR (NPE400) processor (revision A) with 245760K/16384K bytes of

memory.

Processor board ID 4279256517

R7000 CPU at 150MHz , Implementation 39, Rev 2.1, 256KB L2 Cache

6 slot VXR midplane , Version 2.1

Last reset from power -on

PCI bus mb0_mb1 (Slots 0, 1, 3 and 5) has a capacity of 600 bandwidth points

Current configuration on bus mb0_mb1 has a total of 200 bandwidth points.

This configuration is within the PCI bus capacity and is supported.

PCI bus mb2 (Slots 2, 4, 6) has a capacity of 600 bandwidth points.

Current configuration on bus mb2 has a total of 0 bandwidth points

This configuration is within the PCI bus capacity and is supported.

Please refer to the following document "Cisco 7200 Series Port Adaptor

Hardware Configuration Guidelines" on Cisco.com <http :// www.cisco.com >

for c7200 bandwidth points oversubscription and usage guidelines.

1 FastEthernet interface

125K bytes of NVRAM.

65536K bytes of ATA PCMCIA card at slot 0 (Sector size 512 bytes).

8192K bytes of Flash internal SIMM (Sector size 256K).

Configuration register is 0x2102

Figure 3.3: The identification of the router by show version command

Connection of the router to the real network

In order to connect the router to the real network we needed to create a
virtual interface on Linux (tap0) and bridge it creating a new virtual bridge

31

interface (br0). First of all, it is worth to highlight that the way of connecting
the device to the computer without using bridge (but only tap0 interface)
does not work. Such way is described on many websites, but it is evidently
just a copy-paste without checking if such approach works or not. At first,
we create a virtual Internet cloud interface tap0 and we bridge it to br0.
Then, we set all the parameters of the bridge, as the IP address:

modprobe tun

tunctl -t tap0

ifconfig tap0 0.0.0.0 promisc up

brctl addbr br0

brctl addif br0 tap0

ifconfig br0 10.0.0.2 netmask 255.255.255.0 up

ifconfig tap0 mtu 65521

ifconfig br0 mtu 65521

If necessary, we can add any other interface to the bridge - for example to
connect the router to the Internet:

ifconfig eth0 0.0.0.0 promisc up

brctl addif br0 eth0

or to connect to a VMWare virtual machine:

ifconfig vmnet1 0.0.0.0 promisc up

brctl addif br0 vmnet1

Deleting the interfaces is going in the opposite way:

brctl delif br0 tap0

ifconfig br0 down

brctl delbr br0

tunctl -d tap0

On the router side, we connect the Fastethernet0/0 interface to the tap0
interface of the Internet cloud.

Configuration of the router

We configure the router to enable Flexible NetFlow with NBAR on the
Fastethernet0/0 interface. NetFlow records will be sent back to the Linux

32

machine, where they will be stored and processed later. We also set a static
MAC address on the interface, since every time the router is started, the
“physical” MAC address is different. To connect to the router, we use telnet:

tomasz@kubuntu: $ telnet localhost 2001

Trying ::1...

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’]̂’.

Connected to Dynamips VM "R1" (ID 0, type c7200) - Console port

Press ENTER to get the prompt.

Now, we are going to present how the router was configured. The partic-
ular steps were shown and discussed in the following points:

1. General configuration

We want to setup the router name to be more friendly. The router
should by default discard all the packets which enter the interface,
without further routing:

hostname ROUTERO

ip route 0.0.0.0 0.0.0.0 Null0

2. Configuration of the flow record

The router must be instructed how to group the packets into flows
(the match command), and which information for each flow should be
collected (the collect command):

flow record nbar-appmon

--> description NBAR flow monitor

--> match ipv4 protocol

--> match ipv4 source address

--> match ipv4 destination address

--> match transport source-port

--> match transport destination-port

--> match datalink mac source address input

--> collect counter bytes

--> collect counter packets

--> collect application name

3. Configuration of the flow exporter

33

The router must be instructed where the flows should be exported and
which option tables should be included in the export. The option tables
allows to match the identifiers of the NBAR classes to be matched to
the actual names:

flow exporter export-to-computer

--> description flexible NF v9

--> destination 10.0.0.2

--> source FastEthernet0/0

--> transport udp 9995

--> template data timeout 60

--> option interface-table

--> option exporter-stats

--> option vrf-table

--> option application-table

--> option application-attributes

4. Configuration of the flow monitor

The configured flow record must be associated with the configured flow
exporter:

flow monitor application-mon

--> description app traffic analysis

--> exporter export-to-computer

--> cache timeout active 60

--> record nbar-appmon

5. Configuration of the interface

Every time GNS3 start, another MAC address is assigned to the inter-
face. Because we need a fixed value (to be able to replay the packets to
the interface), we assign a static one. Then, we need to enable NBAR
on the interface and apply the created flow monitor:

interface FastEthernet0/0

--> mac-address ca00.115b.0000

--> ip address 10.0.0.1 255.255.255.0

--> ip nbar protocol-discovery

--> ip flow monitor application-mon input

--> duplex full

34

Configuration of the Linux computer

Computers running Linux can be tweaked to replay the packets to the net-
work in an enhanced way. The following is known to apply to the 2.4.x and
2.6.x series of kernels. By default Linux’s tcpreplay performance isn’t all
that stellar. However, with a simple tweak, relatively decent performance
can be had on the right hardware. By default, Linux specifies a 64 K buffer
for sending packets. Increasing this buffer to about half a megabyte does a
good job:

echo 524287 >/proc/sys/net/core/wmem default

echo 524287 >/proc/sys/net/core/wmem max

echo 524287 >/proc/sys/net/core/rmem max

echo 524287 >/proc/sys/net/core/rmem default

Replaying the packets to the router

We can send the packets to the router using the bridge interface:

tcpreplay -i br0 --pps=3000 packets nbar 1.pcap

tcpreplay -i br0 --pps=3000 packets nbar 2.pcap

tcpreplay -i br0 --pps=3000 packets nbar 3.pcap

To obtain the results separately for each user we need to setup the NetFlow
analyzer on the computer separately for each PCAP file which is being re-
played. It is worth mentioning that it is required to specify the speed with
which the packets are replayed. Without specifying the speed, the packets
would be replayed with the same speed as they were captured. It means
that for our 2-months capture we would need to have the same 2-months
replay period. The speed of replaying can be specified in packets per second
or Megabytes per second. It is much better to use the first possibility, since
the latter one cause enormous number of small packets sent during a short
interval of time. This overloads the router and causes input queue drops. To
adjust the number of packets per second which we are able to replay, we used
the interface counter - no drops should be observed during the replay. To see
that, we used show interfaces command of the router, and we observed the
input drops parameter:

ROUTERO#show interfaces fastEthernet 0/0

FastEthernet0/0 is up, line protocol is up

...

35

ROUTERO#show flow monitor application -mon cache format table

Cache type: Normal

Cache size: 4096

Current entries: 140

High Watermark: 140

Flows added: 381

Flows aged: 241

- Active timeout (60 secs) 0

- Inactive timeout (15 secs) 241

- Event aged 0

- Watermark aged 0

- Emergency aged 0

IPV4 SRC ADDR IPV4 DST ADDR SRCP DSTP PROT app name

============== ============== ===== ===== ==== ==================

192.168.1.128 91.189.92.163 38126 80 6 port http

192.168.1.128 173.194.41.228 56856 80 6 cisco unclassified

173.194.41.228 192.168.1.128 80 56856 6 cisco unclassified

192.168.1.128 173.194.41.230 46235 443 6 port secure -http

173.194.41.230 192.168.1.128 443 46235 6 port secure -http

74.125.235.111 192.168.1.128 80 49617 6 cisco unclassified

192.168.1.128 91.189.90.143 56001 6969 6 cisco bittorrent

192.168.1.128 87.216.1.66 0 771 1 prot icmp

Figure 3.4: The flow monitor cache

Input queue: 0/75/0/0 (size/max/drops/flushes);

...

On the router side we can see that the flows are properly inspected and
that the Flexible NetFlow entries are generated as expected. We can see
that looking into the temporary cache of the router by show flow monitor
application-mon cache format table (see Figure 3.4). To display the mappings
between the application names and IDs we can use the show flow exporter
option application table command (see Figure 3.5).

Receiving the NetFlow records by the Linux computer

There are many approaches to collect the NetFlow v9 records. Unfortunately,
most of the tools which are supposed to work with NetFlow v9 do not sup-
port that format entirely. It means that either only some basic fields are
supported, or the tools are not working at all if any custom field is added.
This especially concerns field #95 - the application identifier. It took us
around 3 weeks of experimenting with many different tools to find a one
which is working properly with NetFlow v9 exports! Here there are some ex-
periences with the tools (free and commercial) which are supposed to support
NetFlow v9 format:

36

ROUTERO#show flow exporter option application table

Engine: prot (IANA_L3_STANDARD , ID: 1)

appID Name Description

----- ---- -----------

1:8 egp Exterior Gateway Protocol

1:47 gre General Routing Encapsulation

1:1 icmp Internet Control Message Protocol

1:88 eigrp Enhanced Interior Gateway Routing Protocol

...

Engine: port (IANA_L4_STANDARD , ID: 3)

appID Name Description

----- ---- -----------

3:21 ftp File Transfer Protocol

3:80 http World Wide Web traffic

3:179 bgp Border Gateway Protocol

...

3:25 smtp Simple Mail Transfer Protocol

3:53 dns Domain Name System

Engine: NBAR (NBAR_CUSTOM , ID: 6)

appID Name Description

----- ---- -----------

6:244 custom -10 Custom protocol custom -10

6:245 custom -09 Custom protocol custom -09

...

Engine: cisco (CISCO_L7_GLOBAL , ID: 13)

appID Name Description

----- ---- -----------

13:0 unclassified Unclassified traffic

13:1 unknown Unknown application

13:9 ipsec IP Security Protocol (ESP/AH)

13:12 cuseeme CU-SeeMe desktop video conference

13:13 dhcp Dynamic Host Configuration Protocol

13:26 netbios Netbios

...

13:59 kazaa2 Kazaa Version 2

13:554 rtsp Real Time Streaming Protocol

13:61 rtp Real Time Protocol

13:62 mgcp Media Gateway Control Protocol

13:63 skinny Skinny Call Control Protocol

13:64 h323 H323 Protocol

13:66 rtcp Real Time Control Protocol

13:67 edonkey eDonkey

13:68 winmx WinMx file -sharing application

13:69 bittorrent bittorrent

13:70 directconnect Direct Connect Version 2.0

13:83 skype Skype Peer -to-Peer Internet Telephony

13:84 sap SAP Systems Applications Product in Data

...

Figure 3.5: Applications recognized by NBAR together with their IDs

37

A. NFDUMP

The standard tool NFDUMP3 can collect only the standard fields from
the NetFlow exports and it does not allow to collect any additional fea-
tures, for example, the application name. However, we tested, if any
NetFlow exports are collected at all. We started the capturing tool by:

nfcapd -p 9995 -b 10.0.0.2 -T all -t 61 -l /home/tomasz/nfcapd

Then, we processed the NetFlow records to obtain a human-readable
version:

nfdump -o raw -R /home/tomasz/nfcapd

We confirmed that the NetFlow exports are correct, but as expected
we did not obtain the application names. To see that everything is ex-
ported from the router as expected, we used the standard TCPDUMP
tool:

tcpdump -i br0 -n ’src 10.0.0.1 and udp and dst port 9995’

-w /home/tomasz/tcpdump.out

In case of problems, if any background process ix occupying a port and
we need to know which process it is, it is sufficient to invoke the fol-
lowing command to obtain the application PID:

netstat -tulpn | grep 9995

where 9995 is the port number we want to inspect.

B. PMACCT

This set of PMACCT tools4 is very powerful and it supports as well
NetFlow v9 export format as field #95 (application name). However,
to be able to capture flow records, all the records must contain packet
counters and byte counters - without that, the flow records are ignored.
We used the following command to obtain the relevant statistics:

3http://nfdump.sourceforge.net/
4http://www.pmacct.net/

38

nfacctd -L 10.0.0.2 -l 9995 -r 30 -c src mac,src host,dst host,

proto,src port,dst port,class -P print -O csv

> nbar results X.txt

where X is the identifier of the client. There is also a possibility to put
the configuration in a file:

nfacctd ip: 10.0.0.2

nfacctd port: 9995

plugins: print[test]

!

aggregate[test]: src mac,src host,dst host,proto,src port,

dst port,class

print refresh time[test]: 30

print output[test]: csv

print output file[test]: /home/tomasz/nbar results X.txt

Afterwards, we can execute nfacctd as:

nfacctd -f nfacctd.cfg

For now it is not working properly, since every 30 seconds the file is
completely overwritten with the new data (instead of just appending
the data to the file) and there is no possibility to override this behavior.

This tool is the only tool tested by us which works with NetFlow v9
format including field #95 as it should! Therefore, we chose PMACCT
to collect the NetFlow data from the router. The data collection process
must be done in the following way:

• Start the NetFlow collector (nfacctd) on the computer

• Wait until at least one flow entry with other class than unknown
appears in the log file. This is necessary since the collector must
obtain from the router some special option tables before it will be
able to recognize what is the application class. Before it happens,
all the flows will be marked as unknown. No traffic generation is
required during this step. Router generates multicasts by itself
and they will be included in the log. This step can take even 10
minutes

• Replay the packets from the pcap file to the router

39

C. Scrutinizer

Scrutinizer is supposed to be a tool which can not only collect, but also
visualize the network traffic. It consumes a lot of resources, especially
RAM (around 700 MB). Furthermore, it does not record the NetFlow
v9 packets (but they are captured, because Wireshark can see them
arriving).

D. ManageEngine NetFlow Analyzer

In theory, a big flow analyzer, which is supposed to support NetFlow
v9 record format, NBAR, etc. It can be downloaded for free from the
developer’s website5. Unfortunately, NBAR #95 field is not detected
(no idea why). Furthermore, it cannot even connect to the router by
SNMP. The application hangs frequently and it is quite unusable in our
approach.

E. Other tools

We did not find any other tools which should support NetFlow v9
format together with the #95 field.

Filtering of the results

The results must be filtered to remove any debug information and the head-
ers. Additionally, we need to filter all flows which were associated directly
with the router which was used for the classification by NBAR or with the
local network where the router existed. There are many broadcasts and mul-
ticasts, Cisco Discovery Protocol flows, etc. So, we need to leave flows which
are associated only with the original clients. We can do that using the IP
addresses of the clients (they did not change during the experiment). The
IP addresses were:

• Client 1: 147.83.42.206

• Client 2: 147.83.42.217

• Client 3: 147.83.42.187

The filtering process can be done by our logAnalyzer tool automatically,
so we do not need to take any action. A fragment of the original output from
NFACCTD is shown in Figure 3.6.

5http://www.manageengine.com/products/netflow/

40

CLASS ,SRC_MAC ,SRC_IP ,DST_IP ,SRC_PORT ,DST_PORT ,PROTOCOL ,PACKETS ,FLOWS ,BYTES

dns ,00:00:00:00:00:03 ,147.83.42.206 ,147.83.30.71 ,64217 ,53 ,udp ,1,0,72

dns ,00:00:00:00:00:03 ,147.83.30.71 ,147.83.42.206 ,53 ,64217 ,udp ,1,0,214

unclassified ,00:00:00:00:00:0e ,147.83.42.206 ,84.88.81.41 ,3375 ,7774 ,tcp

,5,0,214

http ,00:00:00:00:01:22 ,98.139.0.22 ,147.83.42.206 ,80 ,3637 ,tcp ,6 ,0 ,1296

http ,00:00:00:00:01:23 ,66.196.116.162 ,147.83.42.206 ,80 ,3638 , tcp ,5,0,653

secure -http ,00:00:00:00:01:45 ,147.83.42.206 ,173.194.41.240 ,3413 ,443 , tcp

,19 ,0 ,1800

secure -http ,00:00:00:00:01:45 ,173.194.41.240 ,147.83.42.206 ,443 ,3413 , tcp

,20 ,0 ,3490

netbios ,00:00:00:00: a0 :29 ,147.83.42.206 ,147.83.2.220 ,137 ,137 ,udp ,3,0,288

netbios ,00:00:00:00: a0 :29 ,147.83.2.220 ,147.83.42.206 ,137 ,137 ,udp ,3,0,270

ftp ,00:00:00:01: eb :58 ,147.83.42.206 ,94.75.225.18 ,3266 ,21 ,tcp ,11,0,546

ftp ,00:00:00:01: eb :58 ,94.75.225.18 ,147.83.42.206 ,21 ,3266 ,tcp ,15 ,0 ,1198

...

Figure 3.6: The original log generated by NFACCTD

3.4.7 UPC Machine Learning Classification Tool

The dpi benchmark tool also allows to build, train, and test the C5.0-based
Machine Learning Classification Tool. At first, we need to backup the pre-
vious classification build, then compile the software with the original classi-
fication library that will be copied to /opt/dpi benchmark/build/classifier :

cd /opt/dpi benchmark

mv build build orig

mkdir build

cd build

cmake ..

make

Now, it is the time to generate the training data for the C5.0 classifier. We
run the dpi benchmark tool in the build directory with the -o option and
redirect the output to classifier/upcnet.data. In this step we use the training
PCAP and INFO files:

./dpi benchmark -f path/to/train/pcap/file -b path/to/train/info/file

-o > classifier/upcnet.data

for example, in our case we write:

./dpi benchmark -f /opt/pcapBuilder/packets train.pcap -b

/opt/pcapBuilder/packets train.info -o > classifier/upcnet.data

41

As the result, we obtain the data used for training of the C5.0 classifier. The
structure of each row in the upcnet.data file is as follows:

hex src ip,hex dst ip,protocol,src port,dst port,#pkts,#bytes,ToS,

urg,ack,push,rst,syn,fin,avg pkt size,flow rate,inter time,

flow time,application id

The description of the features and possible labels in the upcnet.data file
can be find in a file called upcnet.names. Both of the files are necessary to
train the C5.0 classifier. Then, we can train the classifier providing the new
upcnet.data file:

cd classifier

./serviceTrainer upcnet.data 10 0 > services.data;

./c5.0 -f upcnet > class.aux;

./parse c50.py < class.aux > tree.c

./compile.sh

cd ..

Now, we can process the set of the testing PCAP and INFO files by executing
the following command:

./dpi benchmark -f path/to/test/pcap/file -b path/to/test/info/file

> output/file

for example, in our case we write:

./dpi benchmark -f /opt/pcapBuilder/packets test.pcap -b

/opt/pcapBuilder/packets test.info >

/opt/pcapBuilder/mla results 1.log

The format of each row in the log files is identical as in the first approach:

id#initial ts#final ts#src ip#dst ip#src port#dst port#OS#

process name#url#referrer#content types#PACE label#

OpenDPI label#L7 filter label#ML label1#ML label2#

Only the MLA labels will be considered at this point, since other classifiers
would be tested only on the half of the flows.

Finally, the training and testing files must be swapped and the training
and classification processes must be done from the beginning. If we did not

42

make that, the classification by the MLA would only concern half of the
flows. If we swap the training and the test sets, and re-train the classifier,
we have a possibility to obtain the results for all the flows, since each flow
will be once in the training set, and once in the test set.

3.5 Analysis of the classification logs

The data stored in the classification logs must be processed and imported
back to the database. The most challenging part is matching the log records
to the proper flows in the database. Thanks to the flow identifier contained
by each flow record (either directly or encoded in the source MAC address
as it is in the case of NBAR), the job can be done automatically by our log-
Analyzer tool, which is also a part of the modified VBS system. At first, we
will create a new database for the analysis purpose. This allows us to store
all the data in a compact way, which is not the optimal one from the design
point of view, but which speeds up the analysis process. This is thanks to
many indexes (almost all columns are indexed) and due to storing the con-
crete string values instead of just the foreign keys. We start from creating
the database for the analysis:

java -jar logAnalyzer.jar --createDatabase

In case, if for some reasons we want to drop the database and start from
scratch, we can do that by:

java -jar logAnalyzer.jar --dropDatabase

The next step is to import the information about each of the flows to
the new database. The information will be imported from the original INFO
files, which were created during dumping the packets for analysis by pcap-
Builder. After this step the database will contain the complete information
about flows, but for now without any classification results. The job can be
done by our logAnalyzer tool by:

logAnalyzer --importFlowsInformation [infoFileName] [clientId]

which in our case means:

java -jar logAnalyzer.jar --importFlowsInformation

packets all 1.info 1

43

java -jar logAnalyzer.jar --importFlowsInformation

packets all 2.info 2

java -jar logAnalyzer.jar --importFlowsInformation

packets all 3.info 3

Now, it is time to import the classification logs from all the tested tools.

3.5.1 PACE, OpenDPI, and the version of L7-filter
used for automatic retraining purposes

The classification logs contains a lot of debug information, which can amount
even for 90 % of the file size. Therefore, at first, it is good to decrease the
size of the classification log by removing the unnecessary lines by fast Linux
GREP tool:

grep "#" packets all 1.log > packets all 1.cleanlog

grep "#" packets all 2.log > packets all 2.cleanlog

grep "#" packets all 3.log > packets all 3.cleanlog

That step is not necessary, as logAnalyzer can handle the raw output of the
classifiers, but it greatly enhances the speed. Afterwards, it is sufficient to
run our logAnalyzer tool to import the classification results into the database:

java -jar logAnalyzer.jar --importDPILogs packets all 1.cleanlog

java -jar logAnalyzer.jar --importDPILogs packets all 2.cleanlog

java -jar logAnalyzer.jar --importDPILogs packets all 3.cleanlog

3.5.2 L7-filter – the standard versions

The raw outputs of L7-filter classifications do not have any debug informa-
tion, so no prior filtering of the log is advised. It is sufficient to run our
logAnalyzer tool to import the classification results into the database. For
the first version of the classifier, which has activated all the patterns:

java -jar logAnalyzer.jar --importL7AllLog packets all 1.l7all

java -jar logAnalyzer.jar --importL7AllLog packets all 2.l7all

java -jar logAnalyzer.jar --importL7AllLog packets all 3.l7all

For the second version of the classifier, which does not have activated pat-
terns declared as overmatching :

44

java -jar logAnalyzer.jar --importL7SelLog packets all 1.l7sel

java -jar logAnalyzer.jar --importL7SelLog packets all 2.l7sel

java -jar logAnalyzer.jar --importL7SelLog packets all 3.l7sel

3.5.3 L7-filter – Computer Networks version

The raw outputs of L7-filter classifications do not have any debug informa-
tion, so no prior filtering of the log is advised. It is sufficient to run our
logAnalyzer tool to import the classification results into the database. For
the first version of the classifier, which has activated all the patterns:

java -jar logAnalyzer.jar --importL7ComNetLog

packets all 1.l7filter comnet

java -jar logAnalyzer.jar --importL7ComNetLog

packets all 2.l7filter comnet

java -jar logAnalyzer.jar --importL7ComNetLog

packets all 3.l7filter comnet

3.5.4 NDPI

The raw output of NDPI classification does not have any debug information,
so no prior filtering of the log is advised. It is sufficient to run our logAnalyzer
tool to import the classification results into the database:

java -jar logAnalyzer.jar --importNDPILog packets all 1.ndpi output

java -jar logAnalyzer.jar --importNDPILog packets all 2.ndpi output

java -jar logAnalyzer.jar --importNDPILog packets all 3.ndpi output

3.5.5 Libprotoident

The raw output of Libprotoident classification does not have any debug in-
formation, so no prior filtering of the log is advised. It is sufficient to run
our logAnalyzer tool to import the classification results into the database:

java -jar logAnalyzer.jar --importLibprotoidentLog

packets all 1.libproto

java -jar logAnalyzer.jar --importLibprotoidentLog

45

packets all 2.libproto

java -jar logAnalyzer.jar --importLibprotoidentLog

packets all 3.libproto

3.5.6 NBAR

Importing of the NBAR logs to the database can be done by our logAnalyzer
tool by:

logAnalyzer --importNBARLog [nbarFileName] [localIPAddress]

which in our case means:

java -jar logAnalyzer.jar --importNBARLog nbar results 1.txt

147.83.42.206

java -jar logAnalyzer.jar --importNBARLog nbar results 2.txt

147.83.42.217

java -jar logAnalyzer.jar --importNBARLog nbar results 3.txt

147.83.42.187

NBAR relies on NetFlow, which treats the flows in a unidirectional way.
It means that we need to assess what is the type of the bi-directional flow
based on 2 unidirectional flows (inbound and outbound). The final result of
the classification is assessed in the following way:

a. Inbound and outbound flows are of the same class → the class is as-
signed to the bidirectional flow

b. Either inbound or outbound flow was classified as unclassified → the
bidirectional flow gets the class from the second unidirectional flow,
which was not classified as unclassified

c. Both inbound and outbound flows are of different classes, and none
of them are unclassified → the bidirectional flow gets class from the
unidirectional flow, which amounts for more Bytes

Estimating of the final classification result can be done by our logAnalyzer
tool by:

java -jar logAnalyzer.jar --estimateFinalNBARClassification

46

3.5.7 UPC Machine Learning Classification Tool

Importing of the UPC Machine Learning Classification Tool logs to the
database can be done by our logAnalyzer tool by:

logAnalyzer --importMLALog [classificationLog]

which in our case means:

java -jar logAnalyzer.jar --importMLALog mla results 1.log

java -jar logAnalyzer.jar --importMLALog mla results 2.log

UPC Machine Learning Classification Tool relies on NetFlow, which treats
the flows in a unidirectional way. It means that we need to assess what is the
type of the bi-directional flow based on 2 unidirectional flows (inbound and
outbound). The final result of the classification is assessed in the following
way:

a. Inbound and outbound flows are of the same class → the class is as-
signed to the bidirectional flow

b. Either inbound or outbound flow was classified as UNKNOWN → the
bidirectional flow gets the class from the second unidirectional flow,
which was not classified as UNKNOWN

c. Both inbound and outbound flows are of different classes, and none
of them are UNKNOWN → the bidirectional flow gets class from the
unidirectional flow, which amounts for more Bytes

Estimating of the final classification result can be done by our logAnalyzer
tool by:

java -jar logAnalyzer.jar --estimateFinalMLAClassification

47

Chapter 4

Results

4.1 Criteria of the classification

Based on the data stored in the database, we can create some rules, which
allow to test the accuracy of different classifiers. The classification criteria
are different for each classifier, since each of the classifiers has a separate
set of returned results. Furthermore, the classifiers have different coverage
and granularity. There is almost unlimited number of ways in which the
classifiers can be tested. At first, we show some criteria which can be used
for the assessment of the results. The criteria are presented together with
the proper parts of SQL statement, so they can be easily combined to test
the particular classifiers.

4.1.1 Operating systems

• Windows 7

os = ’7’

• Windows XP

os = ’X’

• Lubuntu (Ubuntu with LXDE - Lightweight X11 Desktop Environ-
ment)

os = ’L’

48

4.1.2 Applications

Web clients

• Google Chrome (Windows 7, Windows XP, Linux)

process = ’chrome’

• Mozilla Firefox (Windows 7, Windows XP, Linux)

process = ’firefox’

• Microsoft Internet Explorer (Windows 7, Windows XP)

process = ’iexplore’

• Mozilla Firefox plugins (Windows 7, Windows XP, Linux)

process = ’plugin-container’ OR process = ’plugin-contai’

OR process = ’plugin-contain’

Peer-to-peer clients

A. BitTorrent clients

• uTorrent (Windows 7, Windows XP)

process = ’uTorrent’

• Bittorrent (Windows 7, Windows XP)

process = ’BitTorrent’

• Frostwire (Windows 7, Windows XP, Linux)

process = ’FrostWire’

• Vuze [Azureus] (Windows 7, Windows XP, Linux)

process = ’Azureus’

B. eDonkey clients

• eMule (Windows 7, Windows XP)

process = ’emule’

• aMule (Linux)

process = ’amule’

49

FTP clients

• FileZilla (Windows 7, Windows XP, Linux)

process = ’filezilla’

• SmartFTP Client (Windows 7, Windows XP)

process = ’SmartFTP’

• CuteFTP (Windows 7, Windows XP)

process = ’ftpte’

• WinSCP (Windows 7, Windows XP)

process = ’WinSCP’

Other applications

• DNS clients (Windows 7, Windows XP, Linux)

(process = ’svchost’ OR process = ’dnsmasq’)

AND remote port = 53

• NTP clients (Windows 7, Windows XP, Linux)

process = ’ntpd’ OR (process = ’svchost’ AND

local port = 123 AND remote port = 123)

• Remote Desktop servers (Windows 7, Windows XP, Linux)

(process = ’svchost’ OR process = ’xrdp’)

AND local port = 3389

• NETBIOS clients (Windows 7, Windows XP)

process = ’System’ AND local port = 137 AND

remote port = 137

• SSH server (Linux)

process = ’sshd’ OR process = ’sshd:’

4.1.3 Content level

• Browser HTTP traffic

(process = ’chrome’ OR process = ’firefox’ OR

process = ’iexplore’) AND content types <> ’-’

50

• HTTP traffic containing Flash content

content types LIKE ’%video/x-flv%’ OR content types

LIKE ’%x-shockwave-flash%’

• Browser RTMP traffic

(process = ’chrome’ OR process = ’firefox’ OR

process = ’iexplore’ OR process = ’plugin-container’

OR process = ’plugin-contai’ OR process = ’plugin-

contain’) AND content types = ’-’ AND (remote ip

LIKE ’199.9.%’ OR remote ip LIKE ’188.125.94.%’ OR

remote ip LIKE ’188.125.95.%’) AND remote port = 1935

Comments:

a. RTMP traffic can be generated by a web browser or a plugin,
which is responsible for playing Flash content

b. RTMP flows do not transport any HTTP content, so they do not
have any content-type field

c. RTMP flows use port 1935 by default (if it is not blocked)

d. We were capturing RTMP flows from Justin.tv (IPs 199.9.x.x) and
Yahoo Europe (IPs 188.125.94.x and 188.125.95.x)

e. Even if we tried to filter out all the other types of traffic, it can
happen that some minor amount of HTTP traffic also falls in this
category. This can happen when the flow was not collected from
the beginning (e.g. because of the packet capturer crashes, system
restarts, etc)

• HTTP traffic from Google

urls LIKE ’%.google.com/%’

• HTTP traffic from Facebook

urls LIKE ’%.facebook.com/%’

• HTTP traffic from YouTube

urls LIKE ’%.youtube.com/%’

• HTTP traffic from Twitter

urls LIKE ’%.twitter.com/%’

51

4.2 Distribution of the flows

In this section, we give an insight into the coverage and granularity levels
of each of the classifiers. We grouped all the flows, which participate in the
experiment, according to the class assigned by the classifiers and ordered
them by the number of flows in each class. The number of the flows in the
application classes is obtained from the classifiers and it does not represent
the real number of flows, which should be provided. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

678381 53.75 DNS

180661 14.32 EDONKEY SUBTYPE PLAIN

131817 10.44 RDP

73730 5.84 UNKNOWN

60841 4.82 HTTP SUBTYPE UNKNOWN

54710 4.34 BITTORRENT SUBTYPE PLAIN

29826 2.36 SSH

27786 2.20 NTP

10336 0.82 SSL SUBTYPE UNKOWN

6406 0.51 NETBIOS

3102 0.25 FLASH

1805 0.14 BITTORRENT SUBTYPE ENCRYPTED

1194 0.09 FTP SUBTYPE DATA

1068 0.08 MEEBO

146 0.01 EDONKEY SUBTYPE ENCRYPTED

111 0.01 FTP SUBTYPE CONTROL

34 0.00 QUICKTIME

31 0.00 WINDOWSMEDIA

13 0.00 IRC SUBTYPE UNKNOWN

8 0.00 OSCAR SUBTYPE UNKNOWN

7 0.00 MPEG

5 0.00 BLACKBERRY

2 0.00 OGG

1 0.00 ORB SUBTYPE SETUP SERVER CONNECTION

1 0.00 SIP SUBTYPE UNKNOWN

B. OpenDPI

No. of flows % of flows Class

678381 53.75 DNS

293641 23.27 UNKNOWN

131851 10.45 RDP

61899 4.90 HTTP

52

29831 2.36 SSH

27786 2.20 NTP

20333 1.61 BITTORRENT

10510 0.83 SSL

3133 0.25 FLASH

2437 0.19 NETBIOS

1344 0.11 FTP

792 0.06 EDONKEY

34 0.00 QUICKTIME

32 0.00 WINDOWSMEDIA

8 0.00 OSCAR

7 0.00 MPEG

2 0.00 OGG

1 0.00 SIP

C. L7-filter – the version developed at UPC and published in Computer
Networks journal

No. of flows % of flows Class

675229 53.50 DNS

251021 19.89 UNKNOWN

140706 11.15 SKYPE SUBTYPE SKYPEOUT

68988 5.47 EDONKEY SUBTYPE PLAIN

35990 2.85 NTP

29868 2.37 SSH

29593 2.34 BITTORRENT SUBTYPE PLAIN

12690 1.01 HTTP SUBTYPE UNKNOWN

7899 0.63 SSL SUBTYPE UNKOWN

2500 0.20 SKYPE SUBTYPE AUDIO

2426 0.19 HTTP SUBTYPE CACHEHIT

1113 0.09 TSP

1020 0.08 SOCKS

913 0.07 XUNLEI

777 0.06 SSL SUBTYPE VALIDCERTSSL

611 0.05 RTP

218 0.02 KUGOO

162 0.01 QQ

92 0.01 FTP SUBTYPE CONTROL

71 0.01 HTTP SUBTYPE VIDEO

47 0.00 HTTP SUBTYPE CHACHEMISS

27 0.00 AIM SUBTYPE UNKNOWN

23 0.00 STUN

21 0.00 NBNS

7 0.00 PPLIVE

6 0.00 ARMAGETRON

2 0.00 SOULSEEK

1 0.00 H323

1 0.00 SIP SUBTYPE UNKNOWN

53

D. L7-filter – the version developed at UPC and used for automatic re-
training purposes

No. of flows % of flows Class

675233 53.50 DNS

493038 39.07 UNKNOWN

29868 2.37 SSH

29644 2.35 BITTORRENT SUBTYPE PLAIN

12837 1.02 HTTP SUBTYPE UNKNOWN

9373 0.74 SSL SUBTYPE UNKOWN

5341 0.42 FACEBOOK

2434 0.19 HTTP SUBTYPE CACHEHIT

1496 0.12 YOUTUBE

1025 0.08 SOCKS

787 0.06 SSL SUBTYPE VALIDCERTSSL

462 0.04 TWITTER

208 0.02 QQ

92 0.01 FTP SUBTYPE CONTROL

48 0.00 HTTP SUBTYPE CHACHEMISS

43 0.00 HTTP SUBTYPE VIDEO

30 0.00 NBNS

27 0.00 AIM SUBTYPE UNKNOWN

23 0.00 STUN

8 0.00 ARMAGETRON

2 0.00 SOULSEEK

1 0.00 KUGOO

1 0.00 SIP SUBTYPE UNKNOWN

1 0.00 H323

E. L7-filter – the standard version with activated all patterns

No. of flows % of flows Class

675229 53.50 DNS

198396 15.72 UNKNOWN

140490 11.13 SKYPE SUBTYPE SKYPEOUT

68982 5.47 EDONKEY SUBTYPE PLAIN

65420 5.18 FINGER

35937 2.85 NTP

29868 2.37 SSH

29593 2.34 BITTORRENT SUBTYPE PLAIN

7899 0.63 SSL SUBTYPE UNKOWN

2730 0.22 HTTP SUBTYPE UNKNOWN

2480 0.20 SKYPE SUBTYPE AUDIO

1110 0.09 TSP

1020 0.08 SOCKS

912 0.07 XUNLEI

777 0.06 SSL SUBTYPE VALIDCERTSSL

54

609 0.05 RTP

209 0.02 KUGOO

156 0.01 QQ

92 0.01 FTP SUBTYPE CONTROL

27 0.00 AIM SUBTYPE UNKNOWN

23 0.00 STUN

21 0.00 NBNS

15 0.00 WHOIS

9 0.00 HTTP SUBTYPE CACHEHIT

6 0.00 PPLIVE

5 0.00 ARMAGETRON

2 0.00 SOULSEEK

2 0.00 HTTP SUBTYPE VIDEO

1 0.00 SIP SUBTYPE UNKNOWN

1 0.00 H323

1 0.00 HTTP SUBTYPE CHACHEMISS

F. L7-filter – the standard version without activated patterns declared as
overmatching

No. of flows % of flows Class

675233 53.50 DNS

497269 39.40 UNKNOWN

29868 2.37 SSH

29608 2.35 BITTORRENT SUBTYPE PLAIN

14770 1.17 HTTP SUBTYPE UNKNOWN

9373 0.74 SSL SUBTYPE UNKOWN

2434 0.19 HTTP SUBTYPE CACHEHIT

1025 0.08 SOCKS

913 0.07 XUNLEI

787 0.06 SSL SUBTYPE VALIDCERTSSL

222 0.02 KUGOO

208 0.02 QQ

92 0.01 FTP SUBTYPE CONTROL

71 0.01 HTTP SUBTYPE VIDEO

48 0.00 HTTP SUBTYPE CHACHEMISS

30 0.00 NBNS

27 0.00 AIM SUBTYPE UNKNOWN

23 0.00 STUN

9 0.00 PPLIVE

8 0.00 ARMAGETRON

2 0.00 SOULSEEK

1 0.00 H323

1 0.00 SIP SUBTYPE UNKNOWN

G. NDPI

55

No. of flows % of flows Class

677578 53.69 dns

251975 19.97 unknown

131825 10.45 rdp

47760 3.78 http

38204 3.03 bittorrent

29831 2.36 ssh

27786 2.20 ntp

15363 1.22 google

13502 1.07 skype

9565 0.76 netbios

5889 0.47 facebook

4110 0.33 ssl

2720 0.22 flash

1452 0.12 rtp

1334 0.11 ftp

792 0.06 edonkey

735 0.06 WinUpdate

459 0.04 twitter

454 0.04 iMessage Facetime

375 0.03 youtube

130 0.01 H323

95 0.01 Viber

27 0.00 quicktime

20 0.00 sip

13 0.00 irc

8 0.00 oscar

6 0.00 mpeg

5 0.00 http connect

5 0.00 Last.fm

2 0.00 TeamSpeak

1 0.00 netflow

1 0.00 windowsmedia

H. Libprotoident

No. of flows % of flows Class

678381 53.75 DNS

205337 16.27 eMule UDP

131529 10.42 RDP

61246 4.85 HTTP

34903 2.77 No Payload

34048 2.70 BitTorrent UDP

29866 2.37 SSH

27786 2.20 NTP

19314 1.53 BitTorrent

56

12725 1.01 Unknown UDP

11634 0.92 Unknown TCP

10430 0.83 HTTPS

1146 0.09 FTP Data

803 0.06 EMule

711 0.06 RTMP

669 0.05 YahooError

474 0.04 RTP

448 0.04 Flash Player

271 0.02 HTTP NonStandard

92 0.01 FTP Control

83 0.01 Invalid Bittorrent

28 0.00 Mystery 99

23 0.00 Web Junk

20 0.00 SIP UDP

16 0.00 Bittorrent Extension

10 0.00 Gnutella UDP

9 0.00 Teredo

8 0.00 ISAKMP

6 0.00 Skype

2 0.00 DNS TCP

2 0.00 DNS TCP

1 0.00 HTTP 443

1 0.00 Kademlia

I. NBAR

No. of flows % of flows Class

678322 53.75 dns

415393 32.91 unclassified

69362 5.50 http

30807 2.44 ssh

21000 1.66 rtp

19578 1.55 bittorrent

10280 0.81 secure-http

9565 0.76 netbios

2325 0.18 rtcp

1687 0.13 skype

754 0.06 ftp

679 0.05 edonkey

496 0.04 sqlserver

449 0.04 h323

161 0.01 telnet

152 0.01 cuseeme

129 0.01 novadigm

110 0.01 ntp

98 0.01 citrix

88 0.01 mgcp

57

83 0.01 socks

70 0.01 skinny

66 0.01 sap

59 0.00 streamwork

45 0.00 l2tp

34 0.00 notes

31 0.00 nfs

25 0.00 sqlnet

22 0.00 pop3

22 0.00 sip

21 0.00 fasttrack

20 0.00 pptp

17 0.00 secure-imap

16 0.00 snmp

13 0.00 nntp

12 0.00 pcanywhere

10 0.00 vdolive

8 0.00 rsvp

5 0.00 kerberos

3 0.00 finger

2 0.00 irc

2 0.00 secure-pop3

1 0.00 gopher

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

678803 53.79 DNS

210900 16.71 EDONKEY SUBTYPE PLAIN

132955 10.54 RDP

81682 6.47 HTTP SUBTYPE UNKNOWN

73310 5.81 BITTORRENT SUBTYPE PLAIN

31243 2.48 SSH

27802 2.20 NTP

11281 0.89 SSL SUBTYPE UNKOWN

9631 0.76 NETBIOS

1550 0.12 FLASH

1044 0.08 MEEBO

745 0.06 FTP SUBTYPE DATA

367 0.03 GOOGLE

269 0.02 BITTORRENT SUBTYPE ENCRYPTED

200 0.02 SOCKS

148 0.01 FTP SUBTYPE CONTROL

80 0.01 EDONKEY SUBTYPE ENCRYPTED

8 0.00 HTTP SUBTYPE CACHEHIT

3 0.00 QUICKTIME

1 0.00 NBNS

58

4.3 Classification of particular types of traffic

This section provides a detailed insight into the results of classifications of
different types of traffic by each of the classifiers. The classifier have different
granularity, so we needed to establish a mean to compare them. Therefore,
we marked the classification results in the following way:

a. The classification was correct and the returned class is on the same or
higher granularity level as we were intended to obtain. These results
were marked by us as green.

b. The classification was correct and the returned class is on lower gran-
ularity level as we were intended to obtain. These results were marked
by us as blue.

c. The classification was obviously incorrect. These results were marked
by us as red .

d. The classification was unsuccessful and we did not obtain any applica-
tion class. These results were marked by us as black .

In the classification we used several versions of L7-filter and the abbrevi-
ations mean:

• L7-filter-com – UPC version, modifications are described in our Com-
puter Networks journal paper [20]

• L7-filter-aut – UPC version, which was used for our automatic retrain-
ing mechanism [10]

• L7-filter-all – the standard version with all the patterns activated, but
the patterns marked as overmatching have low priority

• L7-filter-sel – the standard version, the patterns marked as overmatch-
ing are deactivated

It is worth to notice that the number of flows reported by the classifiers
for the particular traffic classes here does not need to agree with the number
of flows reported before in Distribution of the flows section. To check the
accuracy of the classifiers, we define the traffic classes in our way (the rules
were shown in the Criteria of the classification section). For the majority of
the short flows (below 10 packets) we do not have the application name taken
from the system sockets, because the time of the opening of the socket was
to short to be able to extract the application name. Therefore, many of the
short flows were not taken into account while we were doing the evaluation
below.

59

4.3.1 Edonkey clients

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 94.80 0.00 0.02 5.18
OpenDPI 0.45 0.00 0.00 99.55
L7-filter-com 34.22 0.00 8.57 57.21
L7-filter-aut 0.00 0.00 0.01 99.98
L7-filter-all 34.21 0.00 13.70 52.09
L7-filter-sel 0.00 0.00 0.04 99.96
NDPI 0.45 0.00 6.72 92.83
Libprotoident 98.39 0.00 0.00 1.60
NBAR 0.38 0.00 10.81 88.81
UPC MLA 99.78 0.00 0.22 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

167255 94.72 EDONKEY SUBTYPE PLAIN

9153 5.18 UNKNOWN

139 0.08 EDONKEY SUBTYPE ENCRYPTED

37 0.02 BITTORRENT SUBTYPE ENCRYPTED

B. OpenDPI

No. of flows % of flows Class

175795 99.55 UNKNOWN

788 0.45 EDONKEY

1 0.00 HTTP

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

101031 57.21 UNKNOWN

60

60419 34.22 EDONKEY SUBTYPE PLAIN

7849 4.44 SKYPE SUBTYPE SKYPEOUT

6031 3.42 NTP

753 0.43 SKYPE SUBTYPE AUDIO

366 0.21 RTP

80 0.05 TSP

34 0.02 KUGOO

14 0.01 QQ

3 0.00 NBNS

2 0.00 PPLIVE

1 0.00 AIM SUBTYPE UNKNOWN

1 0.00 SSL SUBTYPE UNKOWN

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

176554 99.98 UNKNOWN

25 0.01 QQ

3 0.00 NBNS

1 0.00 SSL SUBTYPE UNKOWN

1 0.00 AIM SUBTYPE UNKNOWN

E. L7-filter – all patterns

No. of flows % of flows Class

91991 52.09 UNKNOWN

60418 34.21 EDONKEY SUBTYPE PLAIN

9252 5.24 FINGER

7694 4.36 SKYPE SUBTYPE SKYPEOUT

5996 3.40 NTP

738 0.42 SKYPE SUBTYPE AUDIO

364 0.21 RTP

77 0.04 TSP

33 0.02 KUGOO

14 0.01 QQ

3 0.00 NBNS

2 0.00 PPLIVE

1 0.00 SSL SUBTYPE UNKOWN

1 0.00 AIM SUBTYPE UNKNOWN

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

176518 99.96 UNKNOWN

34 0.02 KUGOO

61

25 0.01 QQ

3 0.00 NBNS

2 0.00 PPLIVE

1 0.00 AIM SUBTYPE UNKNOWN

1 0.00 SSL SUBTYPE UNKOWN

G. NDPI

No. of flows % of flows Class

163926 92.83 unknown

11371 6.44 skype

788 0.45 edonkey

494 0.28 rtp

2 0.00 H323

1 0.00 http

1 0.00 netflow

1 0.00 TeamSpeak

H. Libprotoident

No. of flows % of flows Class

172949 97.94 eMule UDP

2069 1.17 Unknown UDP

798 0.45 EMule

653 0.37 Unknown TCP

108 0.06 No Payload

5 0.00 Skype

1 0.00 HTTP

1 0.00 HTTP NonStandard

I. NBAR

No. of flows % of flows Class

156819 88.81 unclassified

16150 9.15 rtp

1621 0.92 rtcp

1035 0.59 skype

672 0.38 edonkey

142 0.08 cuseeme

50 0.03 streamwork

13 0.01 novadigm

12 0.01 snmp

12 0.01 h323

11 0.01 pcanywhere

9 0.01 l2tp

62

9 0.01 nntp

8 0.00 rsvp

8 0.00 secure-imap

4 0.00 citrix

2 0.00 finger

2 0.00 http

2 0.00 mgcp

1 0.00 gopher

1 0.00 notes

1 0.00 sap

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

176110 99.73 EDONKEY SUBTYPE PLAIN

316 0.18 BITTORRENT SUBTYPE PLAIN

62 0.04 EDONKEY SUBTYPE ENCRYPTED

31 0.02 BITTORRENT SUBTYPE ENCRYPTED

25 0.01 RDP

25 0.01 DNS

11 0.01 HTTP SUBTYPE UNKNOWN

4 0.00 FLASH

4.3.2 BitTorrent clients

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 81.44 0.00 0.01 18.54
OpenDPI 27.23 0.00 0.00 72.77
L7-filter-com 42.21 0.00 7.59 50.20
L7-filter-aut 42.26 0.00 0.28 57.46
L7-filter-all 42.17 0.00 8.78 49.05
L7-filter-sel 42.23 0.00 0.48 57.27
NDPI 56.00 0.00 0.43 43.58
Libprotoident 77.24 0.00 0.06 22.71
NBAR 27.44 0.00 1.49 71.07
UPC MLA 99.53 0.00 0.47 0.00

63

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

49556 78.72 BITTORRENT SUBTYPE PLAIN

11670 18.54 UNKNOWN

1681 2.67 BITTORRENT SUBTYPE ENCRYPTED

27 0.04 HTTP SUBTYPE UNKNOWN

7 0.01 SSL SUBTYPE UNKOWN

7 0.01 EDONKEY SUBTYPE ENCRYPTED

2 0.00 DNS

1 0.00 EDONKEY SUBTYPE PLAIN

B. OpenDPI

No. of flows % of flows Class

45812 72.77 UNKNOWN

17095 27.16 BITTORRENT

35 0.06 HTTP

7 0.01 SSL

2 0.00 DNS

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

31601 50.20 UNKNOWN

26531 42.15 BITTORRENT SUBTYPE PLAIN

2250 3.57 SKYPE SUBTYPE SKYPEOUT

796 1.26 TSP

657 1.04 EDONKEY SUBTYPE PLAIN

594 0.94 NTP

150 0.24 SKYPE SUBTYPE AUDIO

134 0.21 QQ

126 0.20 KUGOO

47 0.07 RTP

33 0.05 HTTP SUBTYPE UNKNOWN

10 0.02 STUN

9 0.01 NBNS

8 0.01 SSL SUBTYPE UNKOWN

3 0.00 DNS

64

2 0.00 SOULSEEK

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

36172 57.46 UNKNOWN

26561 42.19 BITTORRENT SUBTYPE PLAIN

150 0.24 QQ

29 0.05 HTTP SUBTYPE UNKNOWN

12 0.02 NBNS

11 0.02 SSL SUBTYPE UNKOWN

10 0.02 STUN

3 0.00 DNS

2 0.00 SOULSEEK

1 0.00 KUGOO

E. L7-filter – all patterns

No. of flows % of flows Class

30879 49.05 UNKNOWN

26531 42.15 BITTORRENT SUBTYPE PLAIN

2235 3.55 SKYPE SUBTYPE SKYPEOUT

796 1.26 TSP

788 1.25 FINGER

653 1.04 EDONKEY SUBTYPE PLAIN

587 0.93 NTP

147 0.23 SKYPE SUBTYPE AUDIO

128 0.20 QQ

120 0.19 KUGOO

47 0.07 RTP

10 0.02 STUN

9 0.01 NBNS

8 0.01 HTTP SUBTYPE UNKNOWN

8 0.01 SSL SUBTYPE UNKOWN

3 0.00 DNS

2 0.00 SOULSEEK

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

36054 57.27 UNKNOWN

26546 42.17 BITTORRENT SUBTYPE PLAIN

150 0.24 QQ

129 0.20 KUGOO

34 0.05 HTTP SUBTYPE UNKNOWN

65

12 0.02 NBNS

11 0.02 SSL SUBTYPE UNKOWN

10 0.02 STUN

3 0.00 DNS

2 0.00 SOULSEEK

G. NDPI

No. of flows % of flows Class

35141 55.82 bittorrent

27432 43.58 unknown

132 0.21 skype

105 0.17 http

95 0.15 Viber

36 0.06 rtp

7 0.01 ssl

2 0.00 dns

1 0.00 google

H. Libprotoident

No. of flows % of flows Class

32080 50.96 BitTorrent UDP

16342 25.96 BitTorrent

8471 13.46 Unknown TCP

5632 8.95 No Payload

188 0.30 Unknown UDP

70 0.11 Invalid Bittorrent

54 0.09 HTTP NonStandard

52 0.08 HTTP

24 0.04 Mystery 99

16 0.03 Bittorrent Extension

10 0.02 Gnutella UDP

7 0.01 HTTPS

2 0.00 DNS

1 0.00 RTP

1 0.00 Skype

1 0.00 RTMP

I. NBAR

No. of flows % of flows Class

44742 71.07 unclassified

17161 27.26 bittorrent

511 0.81 skype

66

162 0.26 rtcp

155 0.25 rtp

104 0.17 http

96 0.15 h323

8 0.01 secure-http

2 0.00 edonkey

2 0.00 novadigm

2 0.00 dns

2 0.00 mgcp

1 0.00 fasttrack

1 0.00 sap

1 0.00 notes

1 0.00 citrix

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

62331 99.02 BITTORRENT SUBTYPE PLAIN

207 0.33 EDONKEY SUBTYPE PLAIN

197 0.31 BITTORRENT SUBTYPE ENCRYPTED

118 0.19 HTTP SUBTYPE UNKNOWN

51 0.08 RDP

24 0.04 FLASH

9 0.01 SSL SUBTYPE UNKOWN

5 0.01 EDONKEY SUBTYPE ENCRYPTED

5 0.01 FTP SUBTYPE DATA

3 0.00 DNS

1 0.00 SOCKS

4.3.3 FTP clients

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 95.92 0.00 0.00 4.08
OpenDPI 96.15 0.00 0.00 3.85
L7-filter-com 6.12 0.00 86.51 7.37
L7-filter-aut 6.24 0.00 85.26 8.50
L7-filter-all 6.11 0.00 93.31 0.57
L7-filter-sel 6.24 0.00 85.26 8.50
NDPI 95.69 0.00 0.45 3.85
Libprotoident 95.58 0.00 0.00 4.42
NBAR 40.59 0.00 0.00 59.41

67

UPC MLA 66.67 0.00 33.33 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

775 87.87 FTP SUBTYPE DATA

58 6.58 FTP SUBTYPE CONTROL

36 4.08 UNKNOWN

8 0.91 SSL SUBTYPE UNKOWN

5 0.57 HTTP SUBTYPE UNKNOWN

B. OpenDPI

No. of flows % of flows Class

835 94.67 FTP

34 3.85 UNKNOWN

8 0.91 SSL

5 0.57 HTTP

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

748 84.81 SOCKS

65 7.37 UNKNOWN

45 5.10 FTP SUBTYPE CONTROL

15 1.70 SKYPE SUBTYPE SKYPEOUT

7 0.79 SSL SUBTYPE UNKOWN

1 0.11 SSL SUBTYPE VALIDCERTSSL

1 0.11 HTTP SUBTYPE UNKNOWN

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

752 85.26 SOCKS

75 8.50 UNKNOWN

45 5.10 FTP SUBTYPE CONTROL

7 0.79 SSL SUBTYPE UNKOWN

68

2 0.23 HTTP SUBTYPE UNKNOWN

1 0.11 SSL SUBTYPE VALIDCERTSSL

E. L7-filter – all patterns

No. of flows % of flows Class

748 84.81 SOCKS

59 6.69 FINGER

45 5.10 FTP SUBTYPE CONTROL

15 1.70 SKYPE SUBTYPE SKYPEOUT

7 0.79 SSL SUBTYPE UNKOWN

5 0.57 UNKNOWN

1 0.11 SSL SUBTYPE VALIDCERTSSL

1 0.11 WHOIS

1 0.11 HTTP SUBTYPE UNKNOWN

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

752 85.26 SOCKS

75 8.50 UNKNOWN

45 5.10 FTP SUBTYPE CONTROL

7 0.79 SSL SUBTYPE UNKOWN

2 0.23 HTTP SUBTYPE UNKNOWN

1 0.11 SSL SUBTYPE VALIDCERTSSL

G. NDPI

No. of flows % of flows Class

835 94.67 ftp

34 3.85 unknown

5 0.57 ssl

4 0.45 http

4 0.45 google

H. Libprotoident

No. of flows % of flows Class

784 88.89 FTP Data

45 5.10 FTP Control

24 2.72 Unknown TCP

15 1.70 No Payload

8 0.91 HTTPS

69

6 0.68 HTTP

I. NBAR

No. of flows % of flows Class

524 59.41 unclassified

344 39.00 ftp

8 0.91 secure-http

6 0.68 http

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

491 55.67 FTP SUBTYPE DATA

184 20.86 SOCKS

99 11.22 FLASH

61 6.92 FTP SUBTYPE CONTROL

29 3.29 HTTP SUBTYPE UNKNOWN

7 0.79 SSL SUBTYPE UNKOWN

7 0.79 BITTORRENT SUBTYPE PLAIN

3 0.34 SSH

1 0.11 EDONKEY SUBTYPE PLAIN

4.3.4 DNS clients

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 99.97 0.00 0.00 0.03
OpenDPI 99.97 0.00 0.00 0.03
L7-filter-com 98.95 0.00 0.05 1.00
L7-filter-aut 98.95 0.00 0.00 1.05
L7-filter-all 98.95 0.00 0.13 0.92
L7-filter-sel 98.95 0.00 0.00 1.05
NDPI 99.88 0.00 0.09 0.03
Libprotoident 99.97 0.00 0.00 0.04
NBAR 99.97 0.00 0.02 0.02
UPC MLA 99.98 0.00 0.02 0.00

70

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

6598 99.97 DNS

2 0.03 UNKNOWN

B. OpenDPI

No. of flows % of flows Class

6598 99.97 DNS

2 0.03 UNKNOWN

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

6531 98.95 DNS

66 1.00 UNKNOWN

2 0.03 SKYPE SUBTYPE SKYPEOUT

1 0.02 EDONKEY SUBTYPE PLAIN

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

6531 98.95 DNS

69 1.05 UNKNOWN

E. L7-filter – all patterns

No. of flows % of flows Class

6531 98.95 DNS

61 0.92 UNKNOWN

5 0.08 FINGER

2 0.03 SKYPE SUBTYPE SKYPEOUT

1 0.02 EDONKEY SUBTYPE PLAIN

71

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

6531 98.95 DNS

69 1.05 UNKNOWN

G. NDPI

No. of flows % of flows Class

6592 99.88 dns

6 0.09 rtp

2 0.03 unknown

H. Libprotoident

No. of flows % of flows Class

6598 99.97 DNS

1 0.02 Unknown TCP

1 0.02 No Payload

I. NBAR

No. of flows % of flows Class

6598 99.97 dns

1 0.02 unclassified

1 0.02 mgcp

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

6599 99.98 DNS

1 0.02 SSH

4.3.5 NTP clients

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 100.00 0.00 0.00 0.00

72

OpenDPI 100.00 0.00 0.00 0.00
L7-filter-com 99.83 0.00 0.15 0.02
L7-filter-aut 0.00 0.00 0.01 99.99
L7-filter-all 99.83 0.00 0.15 0.02
L7-filter-sel 0.00 0.00 0.01 99.99
NDPI 100.00 0.00 0.00 0.00
Libprotoident 100.00 0.00 0.00 0.00
NBAR 0.40 0.00 0.00 99.60
UPC MLA 100.00 0.00 0.00 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

27786 100.00 NTP

B. OpenDPI

No. of flows % of flows Class

27786 100.00 NTP

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

27739 99.83 NTP

41 0.15 EDONKEY SUBTYPE PLAIN

6 0.02 UNKNOWN

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

27783 99.99 UNKNOWN

3 0.01 QQ

E. L7-filter – all patterns

73

No. of flows % of flows Class

27739 99.83 NTP

41 0.15 EDONKEY SUBTYPE PLAIN

6 0.02 UNKNOWN

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

27783 99.99 UNKNOWN

3 0.01 QQ

G. NDPI

No. of flows % of flows Class

27786 100.00 ntp

H. Libprotoident

No. of flows % of flows Class

27786 100 NTP

I. NBAR

No. of flows % of flows Class

27676 99.60 unclassified

110 0.40 ntp

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

27786 100.00 NTP

4.3.6 Remote Desktop servers

Summary

Classifier % correct % correct-lg % wrong % unclassified

74

PACE 99.04 0.00 0.02 0.94
OpenDPI 99.07 0.00 0.02 0.91
L7-filter-com 0.00 0.00 91.19 8.81
L7-filter-aut 0.00 0.00 0.02 99.98
L7-filter-all 0.00 0.00 91.21 8.79
L7-filter-sel 0.00 0.00 0.02 99.98
NDPI 99.05 0.00 0.08 0.87
Libprotoident 98.83 0.00 0.16 1.01
NBAR 0.00 0.00 0.66 99.34
UPC MLA 99.79 0.00 0.21 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

131664 99.04 RDP

1243 0.94 UNKNOWN

27 0.02 HTTP SUBTYPE UNKNOWN

B. OpenDPI

No. of flows % of flows Class

131698 99.07 RDP

1209 0.91 UNKNOWN

27 0.02 HTTP

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

121188 91.16 SKYPE SUBTYPE SKYPEOUT

11712 8.81 UNKNOWN

9 0.01 RTP

8 0.01 NBNS

8 0.01 TSP

6 0.00 SKYPE SUBTYPE AUDIO

1 0.00 KUGOO

1 0.00 QQ

75

1 0.00 PPLIVE

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

132912 99.98 UNKNOWN

13 0.01 NBNS

7 0.01 QQ

2 0.00 ARMAGETRON

E. L7-filter – all patterns

No. of flows % of flows Class

121188 91.16 SKYPE SUBTYPE SKYPEOUT

11682 8.79 UNKNOWN

30 0.02 FINGER

9 0.01 RTP

8 0.01 NBNS

8 0.01 TSP

6 0.00 SKYPE SUBTYPE AUDIO

1 0.00 QQ

1 0.00 KUGOO

1 0.00 PPLIVE

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

132908 99.98 UNKNOWN

13 0.01 NBNS

7 0.01 QQ

3 0.00 PPLIVE

2 0.00 ARMAGETRON

1 0.00 KUGOO

G. NDPI

No. of flows % of flows Class

131672 99.05 rdp

1153 0.87 unknown

82 0.06 H323

27 0.02 http

76

H. Libprotoident

No. of flows % of flows Class

131376 98.83 RDP

1188 0.89 No Payload

181 0.14 RTMP

162 0.12 Unknown TCP

27 0.02 HTTP NonStandard

I. NBAR

No. of flows % of flows Class

132052 99.34 unclassified

277 0.21 h323

105 0.08 novadigm

91 0.07 citrix

69 0.05 skinny

69 0.05 mgcp

64 0.05 sap

30 0.02 l2tp

28 0.02 notes

26 0.02 nfs

25 0.02 sqlnet

24 0.02 socks

22 0.02 http

20 0.02 fasttrack

18 0.01 pptp

11 0.01 sqlserver

2 0.00 vdolive

1 0.00 pcanywhere

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

132654 99.79 RDP

238 0.18 HTTP SUBTYPE UNKNOWN

22 0.02 BITTORRENT SUBTYPE PLAIN

14 0.01 EDONKEY SUBTYPE PLAIN

4 0.00 FLASH

2 0.00 EDONKEY SUBTYPE ENCRYPTED

4.3.7 NETBIOS clients

Summary

77

Classifier % correct % correct-lg % wrong % unclassified

PACE 66.66 0.00 0.08 33.26
OpenDPI 24.63 0.00 0.00 75.37
L7-filter-com 0.00 0.00 8.45 91.55
L7-filter-aut 0.00 0.00 0.00 100.00
L7-filter-all 0.00 0.00 8.45 91.55
L7-filter-sel 0.00 0.00 0.00 100.00
NDPI 100.00 0.00 0.00 0.00
Libprotoident 0.00 0.00 5.03 94.97
NBAR 100.00 0.00 0.00 0.00
UPC MLA 100.00 0.00 0.00 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

6296 66.66 NETBIOS

3141 33.26 UNKNOWN

8 0.08 EDONKEY SUBTYPE PLAIN

B. OpenDPI

No. of flows % of flows Class

7119 75.37 UNKNOWN

2326 24.63 NETBIOS

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

8647 91.55 UNKNOWN

407 4.31 SKYPE SUBTYPE SKYPEOUT

200 2.12 EDONKEY SUBTYPE PLAIN

98 1.04 NTP

93 0.98 RTP

78

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

9445 100.00 UNKNOWN

E. L7-filter – all patterns

No. of flows % of flows Class

8647 91.55 UNKNOWN

407 4.31 SKYPE SUBTYPE SKYPEOUT

200 2.12 EDONKEY SUBTYPE PLAIN

98 1.04 NTP

93 0.98 RTP

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

9445 100.00 UNKNOWN

G. NDPI

No. of flows % of flows Class

9445 100.00 netbios

H. Libprotoident

No. of flows % of flows Class

8970 94.97 Unknown UDP

473 5.01 RTP

1 0.01 Kademlia

1 0.01 eMule UDP

I. NBAR

No. of flows % of flows Class

9445 100.00 netbios

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

79

9445 100.00 NETBIOS

4.3.8 SSH server

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 95.57 0.00 0.00 4.43
OpenDPI 95.59 0.00 0.00 4.41
L7-filter-com 95.71 0.00 0.00 4.29
L7-filter-aut 95.71 0.00 0.00 4.29
L7-filter-all 95.71 0.00 0.00 4.29
L7-filter-sel 95.71 0.00 0.00 4.29
NDPI 95.59 0.00 0.00 4.41
Libprotoident 95.71 0.00 0.00 4.30
NBAR 99.24 0.00 0.05 0.70
UPC MLA 100.00 0.00 0.00 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

25057 95.57 SSH

1162 4.43 UNKNOWN

B. OpenDPI

No. of flows % of flows Class

25062 95.59 SSH

1157 4.41 UNKNOWN

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

80

25095 95.71 SSH

1124 4.29 UNKNOWN

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

25095 95.71 SSH

1124 4.29 UNKNOWN

E. L7-filter – all patterns

No. of flows % of flows Class

25095 95.71 SSH

1124 4.29 UNKNOWN

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

25095 95.71 SSH

1124 4.29 UNKNOWN

G. NDPI

No. of flows % of flows Class

25062 95.59 ssh

1157 4.41 unknown

H. Libprotoident

No. of flows % of flows Class

25093 95.71 SSH

1124 4.29 No Payload

2 0.01 Unknown TCP

I. NBAR

No. of flows % of flows Class

26020 99.24 ssh

184 0.70 unclassified

81

13 0.05 h323

1 0.00 socks

1 0.00 skinny

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

26219 100.00 SSH

4.3.9 Browser HTTP traffic

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 96.16 0.00 1.85 1.99
OpenDPI 98.01 0.00 0.00 1.99
L7-filter-com 27.02 0.00 12.19 60.79
L7-filter-aut 42.43 0.00 0.01 57.56
L7-filter-all 4.31 0.00 95.67 0.02
L7-filter-sel 31.17 0.00 1.78 67.04
NDPI 99.18 0.00 0.76 0.06
Libprotoident 98.66 0.00 0.00 1.34
NBAR 99.58 0.00 0.00 0.42
UPC MLA 98.60 0.00 1.40 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

43239 92.65 HTTP SUBTYPE UNKNOWN

1570 3.36 FLASH

931 1.99 UNKNOWN

863 1.85 MEEBO

31 0.07 QUICKTIME

27 0.06 WINDOWSMEDIA

6 0.01 MPEG

2 0.00 OGG

82

B. OpenDPI

No. of flows % of flows Class

44101 94.50 HTTP

1574 3.37 FLASH

927 1.99 UNKNOWN

31 0.07 QUICKTIME

27 0.06 WINDOWSMEDIA

6 0.01 MPEG

2 0.00 OGG

1 0.00 BITTORRENT

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

28371 60.79 UNKNOWN

10329 22.13 HTTP SUBTYPE UNKNOWN

4850 10.39 SKYPE SUBTYPE SKYPEOUT

2164 4.64 HTTP SUBTYPE CACHEHIT

826 1.77 XUNLEI

70 0.15 HTTP SUBTYPE VIDEO

45 0.10 HTTP SUBTYPE CHACHEMISS

5 0.01 ARMAGETRON

3 0.01 NTP

2 0.00 EDONKEY SUBTYPE PLAIN

1 0.00 SKYPE SUBTYPE AUDIO

1 0.00 KUGOO

1 0.00 PPLIVE

1 0.00 NBNS

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

26861 57.56 UNKNOWN

10463 22.42 HTTP SUBTYPE UNKNOWN

5284 11.32 FACEBOOK

2171 4.65 HTTP SUBTYPE CACHEHIT

1351 2.89 YOUTUBE

444 0.95 TWITTER

46 0.10 HTTP SUBTYPE CHACHEMISS

42 0.09 HTTP SUBTYPE VIDEO

5 0.01 ARMAGETRON

1 0.00 NBNS

1 0.00 SOCKS

83

E. L7-filter – all patterns

No. of flows % of flows Class

38962 83.49 FINGER

4848 10.39 SKYPE SUBTYPE SKYPEOUT

2004 4.29 HTTP SUBTYPE UNKNOWN

825 1.77 XUNLEI

9 0.02 HTTP SUBTYPE CACHEHIT

8 0.02 UNKNOWN

4 0.01 ARMAGETRON

3 0.01 NTP

2 0.00 HTTP SUBTYPE VIDEO

2 0.00 EDONKEY SUBTYPE PLAIN

1 0.00 HTTP SUBTYPE CHACHEMISS

1 0.00 NBNS

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

31287 67.04 UNKNOWN

12260 26.27 HTTP SUBTYPE UNKNOWN

2171 4.65 HTTP SUBTYPE CACHEHIT

826 1.77 XUNLEI

70 0.15 HTTP SUBTYPE VIDEO

46 0.10 HTTP SUBTYPE CHACHEMISS

5 0.01 ARMAGETRON

1 0.00 NBNS

1 0.00 KUGOO

1 0.00 PPLIVE

1 0.00 SOCKS

G. NDPI

No. of flows % of flows Class

33590 71.97 http

5395 11.56 google

5300 11.36 facebook

1271 2.72 flash

414 0.89 twitter

356 0.76 iMessage Facetime

281 0.60 youtube

26 0.06 unknown

24 0.05 quicktime

5 0.01 Last.fm

5 0.01 mpeg

1 0.00 H323

84

1 0.00 windowsmedia

H. Libprotoident

No. of flows % of flows Class

45937 98.43 HTTP

330 0.71 Unknown TCP

296 0.63 No Payload

86 0.18 HTTP NonStandard

18 0.04 Web Junk

1 0.00 HTTP 443

1 0.00 FTP Data

I. NBAR

No. of flows % of flows Class

46402 99.43 http

195 0.42 unclassified

70 0.15 secure-http

1 0.00 irc

1 0.00 citrix

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

45306 97.08 HTTP SUBTYPE UNKNOWN

644 1.38 MEEBO

487 1.04 FLASH

213 0.46 GOOGLE

12 0.03 BITTORRENT SUBTYPE PLAIN

3 0.01 QUICKTIME

3 0.01 HTTP SUBTYPE CACHEHIT

1 0.00 RDP

4.3.10 HTTP traffic containing Flash content

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 86.27 12.96 0.22 0.55
OpenDPI 86.34 13.11 0.04 0.51

85

L7-filter-com 1.35 13.43 12.97 72.25
L7-filter-aut 7.12 15.29 0.04 77.55
L7-filter-all 0.07 0.22 99.45 0.26
L7-filter-sel 1.35 16.97 6.17 75.50
NDPI 99.48 0.26 0.00 0.26
Libprotoident 0.00 98.07 0.00 1.93
NBAR 0.00 100.00 0.00 0.00
UPC MLA 23.85 76.01 0.15 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

2361 86.20 FLASH

355 12.96 HTTP SUBTYPE UNKNOWN

15 0.55 UNKNOWN

6 0.22 MEEBO

2 0.07 MPEG

B. OpenDPI

No. of flows % of flows Class

2363 86.27 FLASH

359 13.11 HTTP

14 0.51 UNKNOWN

2 0.07 MPEG

1 0.04 BITTORRENT

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

1979 72.25 UNKNOWN

366 13.36 HTTP SUBTYPE UNKNOWN

186 6.79 SKYPE SUBTYPE SKYPEOUT

168 6.13 XUNLEI

37 1.35 HTTP SUBTYPE VIDEO

2 0.07 HTTP SUBTYPE CACHEHIT

1 0.04 NBNS

86

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

2124 77.55 UNKNOWN

417 15.22 HTTP SUBTYPE UNKNOWN

169 6.17 YOUTUBE

17 0.62 FACEBOOK

9 0.33 HTTP SUBTYPE VIDEO

2 0.07 HTTP SUBTYPE CACHEHIT

1 0.04 NBNS

E. L7-filter – all patterns

No. of flows % of flows Class

2369 86.49 FINGER

186 6.79 SKYPE SUBTYPE SKYPEOUT

168 6.13 XUNLEI

7 0.26 UNKNOWN

6 0.22 HTTP SUBTYPE UNKNOWN

2 0.07 HTTP SUBTYPE VIDEO

1 0.04 NBNS

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

2068 75.50 UNKNOWN

463 16.90 HTTP SUBTYPE UNKNOWN

168 6.13 XUNLEI

37 1.35 HTTP SUBTYPE VIDEO

2 0.07 HTTP SUBTYPE CACHEHIT

1 0.04 NBNS

G. NDPI

No. of flows % of flows Class

2023 73.86 flash

444 16.21 google

237 8.65 youtube

17 0.62 facebook

7 0.26 http

7 0.26 unknown

3 0.11 mpeg

1 0.04 H323

87

H. Libprotoident

No. of flows % of flows Class

2683 97.96 HTTP

31 1.13 Unknown TCP

22 0.80 No Payload

3 0.11 Web Junk

I. NBAR

No. of flows % of flows Class

2739 100.00 http

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

2082 76.01 HTTP SUBTYPE UNKNOWN

623 22.75 FLASH

29 1.06 GOOGLE

4 0.15 BITTORRENT SUBTYPE PLAIN

1 0.04 QUICKTIME

4.3.11 Browser RTMP traffic

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 0.00 80.56 0.00 19.44
OpenDPI 0.00 82.44 0.00 17.56
L7-filter-com 0.00 0.00 23.19 76.81
L7-filter-aut 0.00 0.00 0.23 99.77
L7-filter-all 0.00 0.00 24.12 75.88
L7-filter-sel 0.00 0.00 0.94 99.06
NDPI 0.00 78.92 8.90 12.18
Libprotoident 77.28 0.00 0.47 22.25
NBAR 0.00 0.23 0.23 99.53
UPC MLA 0.00 72.83 27.17 0.00

88

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

344 80.56 FLASH

83 19.44 UNKNOWN

B. OpenDPI

No. of flows % of flows Class

352 82.44 FLASH

75 17.56 UNKNOWN

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

328 76.81 UNKNOWN

54 12.65 SKYPE SUBTYPE SKYPEOUT

40 9.37 TSP

1 0.23 EDONKEY SUBTYPE PLAIN

1 0.23 KUGOO

1 0.23 H323

1 0.23 SKYPE SUBTYPE AUDIO

1 0.23 PPLIVE

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

426 99.77 UNKNOWN

1 0.23 H323

E. L7-filter – all patterns

No. of flows % of flows Class

324 75.88 UNKNOWN

54 12.65 SKYPE SUBTYPE SKYPEOUT

40 9.37 TSP

89

4 0.94 FINGER

1 0.23 EDONKEY SUBTYPE PLAIN

1 0.23 KUGOO

1 0.23 H323

1 0.23 SKYPE SUBTYPE AUDIO

1 0.23 PPLIVE

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

423 99.06 UNKNOWN

2 0.47 KUGOO

1 0.23 H323

1 0.23 PPLIVE

G. NDPI

No. of flows % of flows Class

337 78.92 flash

52 12.18 unknown

38 8.90 H323

H. Libprotoident

No. of flows % of flows Class

330 77.28 RTMP

65 15.22 No Payload

30 7.03 Unknown TCP

2 0.47 SSL/TLS

I. NBAR

No. of flows % of flows Class

425 99.53 unclassified

1 0.23 http

1 0.23 mgcp

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

311 72.83 FLASH

50 11.71 HTTP SUBTYPE UNKNOWN

90

29 6.79 RDP

24 5.62 BITTORRENT SUBTYPE PLAIN

9 2.11 EDONKEY SUBTYPE PLAIN

4 0.94 EDONKEY SUBTYPE ENCRYPTED

4.3.12 HTTP traffic from Google

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 0.00 100.00 0.00 0.00
OpenDPI 0.00 100.00 0.00 0.00
L7-filter-com 0.00 76.73 9.19 14.07
L7-filter-aut 0.00 82.75 0.45 16.80
L7-filter-all 0.00 0.57 99.43 0.00
L7-filter-sel 0.00 82.75 0.45 16.80
NDPI 97.28 2.61 0.11 0.00
Libprotoident 0.00 96.37 0.00 3.63
NBAR 0.00 100.00 0.00 0.00
UPC MLA 2.27 97.73 0.00 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

881 100.00 HTTP SUBTYPE UNKNOWN

B. OpenDPI

No. of flows % of flows Class

881 100.00 HTTP

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

91

676 76.73 HTTP SUBTYPE UNKNOWN

124 14.07 UNKNOWN

77 8.74 SKYPE SUBTYPE SKYPEOUT

4 0.45 ARMAGETRON

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

729 82.75 HTTP SUBTYPE UNKNOWN

148 16.80 UNKNOWN

4 0.45 ARMAGETRON

E. L7-filter – all patterns

No. of flows % of flows Class

796 90.35 FINGER

77 8.74 SKYPE SUBTYPE SKYPEOUT

5 0.57 HTTP SUBTYPE UNKNOWN

3 0.34 ARMAGETRON

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

729 82.75 HTTP SUBTYPE UNKNOWN

148 16.80 UNKNOWN

4 0.45 ARMAGETRON

G. NDPI

No. of flows % of flows Class

857 97.28 google

23 2.61 http

1 0.11 Last.fm

H. Libprotoident

No. of flows % of flows Class

849 96.37 HTTP

27 3.06 Unknown TCP

5 0.57 No Payload

92

I. NBAR

No. of flows % of flows Class

881 100.00 http

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

861 97.73 HTTP SUBTYPE UNKNOWN

15 1.70 FLASH

4 0.45 GOOGLE

1 0.11 QUICKTIME

4.3.13 HTTP traffic from Facebook

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 0.00 100.00 0.00 0.00
OpenDPI 0.00 100.00 0.00 0.00
L7-filter-com 0.00 18.39 18.76 62.85
L7-filter-aut 100.00 0.00 0.00 0.00
L7-filter-all 0.00 10.78 89.22 0.00
L7-filter-sel 0.00 19.07 0.00 80.93
NDPI 100.00 0.00 0.00 0.00
Libprotoident 0.00 99.17 0.00 0.83
NBAR 0.00 99.77 0.00 0.23
UPC MLA 0.00 100.00 0.00 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

1327 100.00 HTTP SUBTYPE UNKNOWN

93

B. OpenDPI

No. of flows % of flows Class

1327 100.00 HTTP

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

834 62.85 UNKNOWN

249 18.76 SKYPE SUBTYPE SKYPEOUT

244 18.39 HTTP SUBTYPE UNKNOWN

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

1327 100.00 FACEBOOK

E. L7-filter – all patterns

No. of flows % of flows Class

935 70.46 FINGER

249 18.76 SKYPE SUBTYPE SKYPEOUT

143 10.78 HTTP SUBTYPE UNKNOWN

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

1074 80.93 UNKNOWN

253 19.07 HTTP SUBTYPE UNKNOWN

G. NDPI

No. of flows % of flows Class

1327 100.00 facebook

H. Libprotoident

No. of flows % of flows Class

1315 99.10 HTTP

94

6 0.45 Unknown TCP

5 0.38 No Payload

1 0.08 Web Junk

I. NBAR

No. of flows % of flows Class

1324 99.77 http

3 0.23 unclassified

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

1327 100.00 HTTP SUBTYPE UNKNOWN

4.3.14 HTTP traffic from YouTube

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 34.05 64.37 0.00 1.58
OpenDPI 34.16 64.37 0.00 1.47
L7-filter-com 3.96 44.80 9.84 41.40
L7-filter-aut 49.89 1.24 0.11 48.76
L7-filter-all 0.00 0.57 98.64 0.79
L7-filter-sel 3.96 45.81 0.79 49.43
NDPI 98.65 0.45 0.00 0.90
Libprotoident 0.00 97.85 0.00 2.15
NBAR 0.00 100.00 0.00 0.00
UPC MLA 22.96 77.04 0.00 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

95

569 64.37 HTTP SUBTYPE UNKNOWN

301 34.05 FLASH

14 1.58 UNKNOWN

B. OpenDPI

No. of flows % of flows Class

569 64.37 HTTP

302 34.16 FLASH

13 1.47 UNKNOWN

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

396 44.80 HTTP SUBTYPE UNKNOWN

366 41.40 UNKNOWN

79 8.94 SKYPE SUBTYPE SKYPEOUT

35 3.96 HTTP SUBTYPE VIDEO

6 0.68 XUNLEI

1 0.11 EDONKEY SUBTYPE PLAIN

1 0.11 NBNS

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

434 49.10 YOUTUBE

431 48.76 UNKNOWN

11 1.24 HTTP SUBTYPE UNKNOWN

7 0.79 HTTP SUBTYPE VIDEO

1 0.11 NBNS

E. L7-filter – all patterns

No. of flows % of flows Class

785 88.80 FINGER

79 8.94 SKYPE SUBTYPE SKYPEOUT

7 0.79 UNKNOWN

6 0.68 XUNLEI

5 0.57 HTTP SUBTYPE UNKNOWN

1 0.11 NBNS

1 0.11 EDONKEY SUBTYPE PLAIN

96

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

437 49.43 UNKNOWN

405 45.81 HTTP SUBTYPE UNKNOWN

35 3.96 HTTP SUBTYPE VIDEO

6 0.68 XUNLEI

1 0.11 NBNS

G. NDPI

No. of flows % of flows Class

505 57.13 google

366 41.40 youtube

8 0.90 unknown

4 0.45 http

1 0.11 H323

H. Libprotoident

No. of flows % of flows Class

860 97.29 HTTP

10 1.13 Unknown TCP

9 1.02 No Payload

5 0.57 Web Junk

I. NBAR

No. of flows % of flows Class

884 100.00 http

J. UPC Machine Learning Classification Tool

No. of flows % of flows Class

680 76.92 HTTP SUBTYPE UNKNOWN

167 18.89 FLASH

35 3.96 GOOGLE

1 0.11 QUICKTIME

1 0.11 HTTP SUBTYPE CACHEHIT

97

4.3.15 HTTP traffic from Twitter

Summary

Classifier % correct % correct-lg % wrong % unclassified

PACE 0.00 99.25 0.00 0.75
OpenDPI 0.00 99.25 0.00 0.75
L7-filter-com 0.00 39.40 56.61 3.99
L7-filter-aut 99.50 0.50 0.00 0.00
L7-filter-all 0.00 0.50 0.00 99.50
L7-filter-sel 0.00 76.06 19.95 3.99
NDPI 99.75 0.00 0.00 0.25
Libprotoident 0.00 99.00 0.00 1.00
NBAR 0.00 100.00 0.00 0.00
UPC MLA 0.25 99.75 0.00 0.00

Results per classifier

We grouped the flows according to the class assigned by the classifiers and
ordered them by the number of flows in each class. The results for the
particular classifiers are shown in the following listings:

A. PACE

No. of flows % of flows Class

398 99.25 HTTP SUBTYPE UNKNOWN

3 0.75 UNKNOWN

B. OpenDPI

No. of flows % of flows Class

398 99.25 HTTP

3 0.75 UNKNOWN

C. L7-filter – UPC version described in Computer Networks journal

No. of flows % of flows Class

158 39.40 HTTP SUBTYPE UNKNOWN

147 36.66 SKYPE SUBTYPE SKYPEOUT

80 19.95 XUNLEI

16 3.99 UNKNOWN

98

D. L7-filter – UPC version used for automatic retraining mechanism

No. of flows % of flows Class

399 99.50 TWITTER

2 0.50 HTTP SUBTYPE UNKNOWN

E. L7-filter – all patterns

No. of flows % of flows Class

172 42.89 FINGER

147 36.66 SKYPE SUBTYPE SKYPEOUT

80 19.95 XUNLEI

2 0.50 HTTP SUBTYPE UNKNOWN

F. L7-filter – without overmatching patterns

No. of flows % of flows Class

305 76.06 HTTP SUBTYPE UNKNOWN

80 19.95 XUNLEI

16 3.99 UNKNOWN

G. NDPI

No. of flows % of flows Class

400 99.75 twitter

1 0.25 unknown

H. Libprotoident

No. of flows % of flows Class

397 99.00 HTTP

3 0.75 No Payload

1 0.25 Unknown TCP

I. NBAR

No. of flows % of flows Class

401 100.00 http

J. UPC Machine Learning Classification Tool

99

No. of flows % of flows Class

400 99.75 HTTP SUBTYPE UNKNOWN

1 0.25 FLASH

4.4 Summary

The following table shows the summary of classification results from all the
applications / protocols together. The numbers in the table mean how many
times the classifiers gave the particular result during all experiments per-
formed by us.

Classifier correct correct-lg wrong unclassified

PACE 464451 3874 951 27453
OpenDPI 260652 3886 31 232160
L7-filter-com 159091 1842 149526 186270
L7-filter-aut 80446 1161 998 414124
L7-filter-all 148403 161 203424 144741
L7-filter-sel 72892 2157 2251 419429
NDPI 289911 371 12649 193798
Libprotoident 460438 6113 730 29448
NBAR 106950 6230 20928 362621
UPC MLA 489018 5662 2049 0

We converted the numbers to percents to better show the classification
accuracy.

Classifier % correct % correct-lg % wrong % unclassified

PACE 93.50 0.78 0.19 5.53
OpenDPI 52.47 0.78 0.01 46.74
L7-filter-com 32.03 0.37 30.10 37.50
L7-filter-aut 16.20 0.23 0.20 83.37
L7-filter-all 29.88 0.03 40.95 29.14
L7-filter-sel 14.67 0.43 0.45 84.44
NDPI 58.36 0.07 2.55 39.01
Libprotoident 92.69 1.23 0.15 5.93
NBAR 21.53 1.25 4.21 73.00
UPC MLA 98.45 1.14 0.41 0.00

100

However, in our experiment we have a big variation of number of flows
originated from different application classes. Therefore, the results shown
above are biased by how the particular classifiers treat application classes,
which amount for the biggest number of flows in our dataset. Therefore, we
decided to make second summary, where we weight each application class
equally. In that case, we assign to each application class 100 units, which are
distributed between correct, correct-lg, wrong, and unclassified, depending on
the percentage of flows falling into the particular classifications. Then, we
sum the values from all application classes and calculate the percentage. This
normalized approach is not biased by the number of flows in each application
class. However, it is biased by the low number of application classes, gran-
ularity level of each class, and by the definition of each class. The following
table shows the percentage results.

Classifier % correct % correct-lg % wrong % unclassified

PACE 63.33 30.48 0.15 6.05
OpenDPI 50.77 30.61 0.00 18.61
L7-filter-com 27.29 12.85 23.02 36.84
L7-filter-aut 36.14 6.65 5.76 51.45
L7-filter-all 25.42 0.84 48.15 25.58
L7-filter-sel 18.64 16.04 7.73 57.59
NDPI 82.73 5.48 1.17 10.61
Libprotoident 56.11 32.71 0.38 10.81
NBAR 31.17 33.33 0.88 34.61
UPC MLA 60.91 34.89 4.20 0.00

101

Chapter 5

Conclusion

In this report, we presented a novel approach to test different classifiers of
traffic in computer networks. There are several major contributions made to
the research community:

1. We showed how to build an efficient testbed, with different operating
systems, by using only virtual machines.

2. We described our methodology of generating of the network traffic in
a realistic way.

3. We invented a way to collect all the traffic going through the network
interfaces, group it into flows, add the process label taken from the
system sockets, and send packets together with all the information to
the server.

4. We showed how to create and manage a system (VBS Server), which
needs to deal effectively with a large MySQL database.

5. The data collected by us are available to other researchers, so they can
compare the accuracy of their classifiers on the same dataset, which
was already used to compare the classifiers evaluated by us.

6. We compared the accuracy of PACE, OpenDPI, NDPI, Libprotoident,
NBAR, four different variants of L7-filter, and a statistic-based tool
developed at UPC. The results are presented in the report.

However, our study has still many limitations and the previous conclu-
sions refer only to the research made on our dataset:

1. Only 10 different well-known applications were included in our study
and the obtained results are directly related to these applications.

102

2. The dataset used in our tests was generated by us using three machines.
We made an effort to create the dataset manually and in a realistic
way, but the dataset is still artificial. The main purpose for generating
the dataset by us was the possibility to publish it together with the
whole payloads. The real backbone traffic contains numerous different
applications, which were not included in our dataset, and thus, in our
study.

3. Therefore, the characteristics of our dataset could impact the perfor-
mance of NBAR and L7-filter, which appears to be very poor. We do
not disprove the numerous previous works based on these classifiers.

4. The measured performance heavily depends on the classification granu-
larity, for example, NDPI can classify the traffic on the service provider
level, as Yahoo, Google, or YouTube, while the rest cannot do that.
Newer versions of PACE also can classify the traffic based on service
providers, but the version used in our experiment could not do that.

5. We performed our study using full packet payloads. However, the
datasets available for the research community usually carry a small
part of the payload (e.g., 96 bytes) and, thus, the best solution in this
case would be Libprotoident, as it uses the first 4 Bytes of payload for
each direction.

6. PACE is able to detect considerably bigger number of applications
than other classifiers tested by us. That makes PACE more suitable
for heterogeneous scenarios.

Taking into account all the issues, we found PACE as the best net-
work traffic classification solution among all the tools studied. Among non-
commercial tools we would choose Libprotoident or NDPI depending on the
scenario studied.

Acknowledgments

The authors want to thank Ipoque for kindly providing access to their PACE
software. This research was funded by the Spanish Ministry of Science and
Innovation under contract TEC2011-27474 (NOMADS project) and by the
Comissionat per a Universitats i Recerca del DIUE de la Generalitat de
Catalunya (ref. 2009SGR-1140). This research was also funded by Vækst-

103

forum Nordjylland1, a regional Danish development project, and Bredb̊and
Nord A/S2, a regional Danish Internet Service Provider.

1See http://www.rn.dk/RegionalUdvikling/Vaekstforum/
2See http://www.bredbaandnord.dk/

104

Bibliography

[1] Riyad Alshammari, A. Nur Zincir-Heywood. Machine Learning based
encrypted traffic classification: identifying SSH and Skype. Proceedings
of the 2009 IEEE Symposium on Computational Intelligence in Security
and Defense Applications (CISDA 2009).

[2] Sven Ubik, Petr Žejdl. Evaluating application-layer classification using
a Machine Learning technique over different high speed networks. 2010
Fifth International Conference on Systems and Networks Communica-
tions, IEEE 2010, pp. 387–391.

[3] Jun Li, Shunyi Zhang, Yanqing Lu, Junrong Yan. Real-time P2P traffic
identification. IEEE GLOBECOM 2008 PROCEEDINGS.

[4] Ying Zhang, Hongbo Wang, Shiduan Cheng. A Method for Real-Time
Peer-to-Peer Traffic Classification Based on C4.5. IEEE 2010, pp. 1192–
1195.

[5] Jing Cai, Zhibin Zhang, Xinbo Song. An analysis of UDP traffic classi-
fication. IEEE 2010, pp. 116–119.

[6] Riyad Alshammari, A. Nur Zincir-Heywood. Unveiling Skype encrypted
tunnels using GP. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), pp. 1–8, July 2010.

[7] Jun Li, Shunyi Zhang, Yanqing Lu, Zailong Zhang. Internet Traffic
Classification Using Machine Learning. In Proceedings of the Second
International Conference on Communications and Networking in China
(CHINACOM ’07), pp. 239–243, August 2007.

[8] Yongli Ma, Zongjue Qian, Guochu Shou, Yihong Hu. Study of Infor-
mation Network Traffic Identification Based on C4.5 Algorithm. In Pro-
ceedings of the 4th International Conference on Wireless Communica-
tions, Networking and Mobile Computing (WiCOM ’08), pp. 1–5, Oc-
tober 2008.

105

[9] Wei Li, Andrew W. Moore. A Machine Learning Approach for Efficient
Traffic Classification. In Proceedings of the Fifteenth IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunications Systems (MASCOTS’07), pp. 310–317, Octo-
ber 2007.

[10] Oriol Mula-Valls. A practical retraining mechanism for network traffic
classification in operational environments. In Master Thesis in Com-
puter Architecture, Networks and Systems, Universitat Politècnica de
Catalunya, June 2011.

[11] CAIDA Internet Data – Passive Data Sources, 2010. [Online]. Available:
http://www.caida.org/data/passive/

[12] Volunteer-Based System for Research on the Internet, 2012. [Online].
Available: http://vbsi.sourceforge.net/

[13] Tomasz Bujlow, Kartheepan Balachandran, Tahir Riaz, Jens Myrup
Pedersen. Volunteer-Based System for classification of traffic in com-
puter networks. In Proceedings of the 19th Telecommunications Forum
TELFOR 2011, IEEE 2011, pp. 210–213, November 2011.

[14] Tomasz Bujlow, Kartheepan Balachandran, Sara Ligaard Nørgaard
Hald, Tahir Riaz, Jens Myrup Pedersen. Volunteer-Based System for
research on the Internet traffic. TELFOR Journal, Vol. 4, No. 1, pp. 2–
7, September 2012.

[15] Tomasz Bujlow, Tahir Riaz, Jens Myrup Pedersen. A Method for clas-
sification of network traffic based on C5.0 Machine Learning Algorithm.
In Proceedings of ICNC’12: 2012 International Conference on Comput-
ing, Networking and Communications (ICNC): Workshop on Comput-
ing, Networking and Communications, pp. 244–248, February 2012.

[16] Tomasz Bujlow, Tahir Riaz, Jens Myrup Pedersen. A Method for As-
sessing Quality of Service in Broadband Networks. In Proceedings of the
14th International Conference on Advanced Communication Technology,
pp. 826–831, February 2012.

[17] Tomasz Bujlow, Tahir Riaz, Jens Myrup Pedersen. Classification of
HTTP traffic based on C5.0 Machine Learning Algorithm. In Proceed-
ings of Fourth IEEE International Workshop on Performance Evaluation
of Communications in Distributed Systems and Web-based Service Ar-
chitectures (PEDISWESA 2012), pp. 882–887, July 2012.

106

[18] Jens Myrup Pedersen, Tomasz Bujlow. Obtaining Internet Flow Statis-
tics by Volunteer-Based System. In Fourth International Conference on
Image Processing & Communications (IP&C 2012), Image Processing &
Communications Challenges 4, AISC 184, pp. 261–268, September 2012.

[19] Tomasz Bujlow, Jens Myrup Pedersen. Obtaining Application-based and
Content-based Internet Traffic Statistics. In Proceedings of the 6th Inter-
national Conference on Signal Processing and Communication Systems
(ICSPCS’12), pp. 1–10, December 2012.

[20] Valent́ın Carela-Español, Pere Barlet-Ros, Albert Cabellos-Aparicio,
Josep Solé-Pareta. Analysis of the impact of sampling on NetFlow traffic
classification. Computer Networks, Volume 55, Issue 5, pp. 1083–1099,
April 2011.

107

