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ABSTRACT

We evaluate the ability of two coupled atmospheric–oceanic GCMs – the Hadley Center’s third generation coupled
climate model (HadCM3) and the Canadian Center for Climate Modeling and Analysis second-generation coupled model
(CGCM2) – to simulate the North Atlantic Oscillation (NAO), the Pacific North American teleconnection pattern (PNA),
and map patterns in the Midwest region of the United States, relative to NCEP/NCAR reanalysis (NNR) data. The
observed (NNR-derived) and GCM-derived probability distributions and temporal behavior of the daily teleconnection
indices exhibit agreement over the 1990–2001 reference period, and both GCMs successfully reproduce the range of
500-hPa map patterns over the study region. During the reference period, observed and modeled map patterns are similar
in terms of frequency, coherence, persistence, and progression, although the most common map pattern occurs too often
in HadCM3 relative to NNR and CGCM2-derived map patterns generally exhibit closer agreement with those derived
from NNR data. Despite the relatively high degree of correspondence between the observed and simulated teleconnection
indices and map patterns in the study area, differences between the GCM and NNR-derived map-pattern frequencies in the
reference period are greater than either (1) recent historical changes in map-pattern frequencies or (2) changes in the map-
pattern frequencies as derived from twenty-first century GCM simulations, indicating that changes in these phenomena
over recent and approaching decades are of insufficient magnitude relative to model uncertainty to be definitively identified.
Copyright  2005 Royal Meteorological Society.
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1. INTRODUCTION

1.1. Background

A key component of the IPCC Third Assessment Report (TAR; IPCC, 2001) was the evaluation of the
suitability of coupled atmospheric–oceanic global climate models (AOGCMs, referred to herein as GCMs)
for use in climate change projection and detection/attribution studies. Systematic comparison of several GCMs
and evaluation against reanalysis data indicated that coupled models can provide credible simulations of the
present annual mean climate and the climatological seasonal cycle over broad continental scales and are
suitable tools to provide climate projections for the future (McAveney et al., 2001). However, the IPCC
summary and other GCM evaluation studies (e.g. Coupled Model Intercomparison Project (CMIP), Covey
et al., 2003) have generally focused on spatial scales larger than subcontinental and seasonal to decadal
temporal scales. Due to the relatively coarse spatial resolution of GCMs, development of regional scale climate
prognoses typically requires application of downscaling tools, which rely upon accurate GCM simulation of
large-scale climate features at temporal scales relevant to climate change impacts research. If these features
are not realistically simulated within GCMs at the required timescale, the downscaled climate information
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will likewise be invalid. Indeed, Pan et al. (2001) demonstrated in their analysis of dynamically downscaled
hydrologic regimes that uncertainties resulting from biases in GCM boundary conditions were comparable
to those arising from variations between the regional climate models forced with the GCM. Hence, there
is a need to extend GCM evaluation of large-scale phenomena to the subcontinental spatial scale and daily
timescale to assess the confidence with which we can view climate projections at the scales needed for impacts
research, and to identify parameters or processes that are not well simulated in order to infer aspects of the
GCMs that may require improvement.

In this paper, a detailed evaluation of GCM-simulated teleconnections, the North Atlantic Oscillation (NAO)
and Pacific/North American pattern (PNA), and synoptic-scale map patterns is presented and others are being
considered under the Atmospheric Model Intercomparison Project (AMIP) (Gates et al., 1999; Kang et al.,
2002) and the Coupled Model Intercomparison Project (CMIP) (Stephenson and Pavan, 2003). By choosing
the size of our region at the lower end of the synoptic scale, we aim to evaluate the GCM simulations at the
smallest scale at which they are generally considered robust. While it must be acknowledged that accurate
simulations of the mean or variability of a parameter by a GCM need not necessarily reflect an accurate
model formulation, it is asserted that deviations from observations can be used to identify potential model
weaknesses and to provide uncertainty bounds for use in assessing prognostic changes in those parameters
relative to the current day.

In one of the first evaluations of synoptic-scale phenomena in GCM simulations, McKendry et al. (1995)
used a Kirchhofer correlation-based classification to test the ability of the Canadian Climate Center’s second-
generation atmospheric GCM to reproduce the current climate of Western Canada. They found that the
model reproduced the synoptic types, but that seasonal frequencies and their variability were not accurately
simulated. More recent comparisons have shown greater robustness of GCMs with respect to the synoptic
scale (Schubert, 1998; Lapp et al., 2002), but relatively few studies have focused on this scale, and model
evaluation results are regionally and seasonally variable.

Coupled GCMs generally simulate the NAO quite well (McAveney et al., 2001) and have been shown to
reproduce the slight serial correlation present in observations on an annual timescale (r < 0.3 for successive
winters) (Stephenson and Pavan, 2003). However, several models have been shown to exhibit unrealistic
monotonic trends in the NAO and/or overly strong correlations with the El Niño-Southern Oscillation (ENSO)
(Stephenson and Pavan, 2003). Previous analyses of NAO simulation by GCMs have focused primarily on
the spatial representation of the phenomenon and temporal behavior over interannual and longer timescales
(Osborn et al., 1999; Stephenson and Pavan, 2003). However, Stephenson and Pavan (2003) show that the
NAO signal is dominated by short-term variations and state that more than 70% of the NAO variance is
explained by fluctuations with periods of less than a decade.

Comparatively few studies have quantified the ability of GCMs to accurately simulate the PNA. Several
atmospheric GCMs have been shown to underestimate the amplitude of the PNA pattern associated with the
1997–1998 El Niño event (Kang et al., 2002), although Renshaw et al. (1998) showed that HadAM3, the
atmospheric component of HadCM3, correctly reproduces the changes in the frequency distribution of the
PNA index associated with the phases of ENSO. As with the NAO, most studies of the PNA have focused on
interannual and longer timescales, although the PNA varies on all timescales from days to decades (Blackmon
et al., 1984; Yarnal and Leathers, 1988).

In this study, we extend previous NAO and PNA research by focusing on shorter timescales, allowing
examination of short-term variability in the teleconnection indices and their relationships with daily circulation
patterns in the study region.

1.2. Objectives

The primary objective of this study is to evaluate the simulation of two teleconnections and synoptic-
scale map patterns in the Midwest region of the United States within two GCMs: the Hadley Center’s third
generation coupled climate model, HadCM3 (Gordon et al., 2000; Pope et al., 2000), and the Canadian Center
for Climate Modeling and Analysis second-generation coupled climate model, CGCM2 (Flato et al., 2000;
Flato and Boer, 2001), relative to NCEP/NCAR reanalysis (NNR) data (Kalnay et al., 1996; Kistler et al.,
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GMC TELECONNECTIONS IN THE MIDWEST USA 269

2001). We also examine the linkages between the teleconnection indices and map patterns, by evaluating
the relative frequencies of the dominant map patterns under positive and negative teleconnection phases.
The evaluation is conducted for the 1990–2001 reference period, which is dictated by the period of overlap
between the NNR data and GCMs, and observed discrepancies are considered in the context of changes over
recent decades and potential twenty-first century changes projected by the GCMs. An additional objective is to
examine the teleconnections and map patterns generated by HadCM3 and CGCM2 for approaching decades
relative to changes documented over the latter portion of the observed climate record. This comparison
provides a mechanism for determining the confidence with which we can view prognostic climates for this
region, as derived from these GCMs.

2. DATA

The NNR project was designed to provide homogenized gridded records to support climate research. The
system combines data from a range of sources in an assimilation scheme to produce temporally continuous
atmospheric fields for the period from 1948 to the present. The data used here are archived at a resolution
of 2.5° × 2.5° (Figure 1). In this study, we average twice-daily NNR 500-hPa geopotential height fields to
produce daily fields from which the PNA index and map patterns for the study region are derived. Daily
mean sea-level pressure (SLP) fields are used to compute the NAO index.

This study also uses daily output from transient climate simulations conducted using the two GCMs;
HadCM3 (1990–2099) and CGCM2 (1990–2100). The atmospheric component of HadCM3 has 19 levels
with a horizontal resolution of approximately 2.5° latitude × 3.75° longitude. CGCM2 has 10 vertical levels,
with a horizontal resolution of approximately 3.75° latitude × 3.75° longitude. The model grid points from
each GCM are shown in Figure 1. Prior to application of the map-pattern classification, both GCM grids
were interpolated to the 2.5° × 2.5° NNR grid using an inverse distance-based interpolation algorithm. Using
a cross-validation procedure, we estimated the interpolation errors for 500-hPa geopotential height to be in
the range of 6 to 9 m for both GCMs. Both GCM simulations used here are conducted using the SRES A2
emissions scenario (IPCC, 2000), which results in global CO2 emissions from industry and energy in 2100
that are almost four times the 1900 value, and emissions from land use change by 2100 are close to zero,
leading to a global CO2 emission in 2100 of almost 28 GtC yr−1. This emissions scenario is used in this
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Figure 1. Map of the study region showing NNR (°), HadCM3 (∗) and CGCM2 (+) grid points
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analysis to provide an upper bound on likely climate change and hence a high signal to noise ratio when
comparing current to future teleconnection indices and map patterns.

In this study, the NAO is defined in terms of the difference in standardized SLP between grid points near
the NAO centers of action, at Ponta Delgada, Azores (37.7 °N, 25.7 °W) and Stykkisholmur, Iceland (65.1 °N,
22.7 °W), while the PNA index is computed using the equation of Wallace and Gutzler (1981):

PNA = 1

4
[Z(20 °N, 160 °W) − Z(45 °N, 165 °W) + Z(55 °N, 115 °W) − Z(30 °N, 85 °W)] (1)

where Z is the standardized (by season within the study period) 500-hPa geopotential height value. Results
of compositing analyses (not shown) indicate that these locations represent accurate proxies for the NAO
and PNA centers of action in both the NNR and GCMs. Because NNR, HadCM3, and CGCM2 output are
archived at different resolutions, output from all data sources was interpolated to the appropriate locations
for calculation of the indices. We focus our analysis of the NAO exclusively on winter (DJF) when it
is most dominant (Barnston and Livezey, 1987) and standardize our index using winter means and standard
deviations. Likewise, the PNA is not a major mode of the Northern Hemisphere circulation during the summer
(Barnston and Livezey, 1987), but exhibits statistically significant relationships with US temperatures during
the winter, spring, and autumn (Leathers et al., 1991). Hence, we exclude summer from our analysis of the
PNA. Normalized NAO and PNA indices from the GCMs and NNR (where each is normalized to the specific
model values) are compared here because we wish to focus on the relative behavior of the centers of action
rather than the absolute values at the station locations.

3. METHODOLOGY

3.1. Evaluation of large-scale teleconnection indices

Successful simulation of the teleconnection indices by the GCMs requires that the models can reproduce
the distribution of the daily teleconnection index values, as well as their evolution. To evaluate the former,
probability distributions of the daily indices are compared using a two-sample Kolmogorov–Smirnov (K–S)
goodness-of-fit test (see Wilks, 1995) under the null hypothesis that the daily teleconnection indices from
the NNR and GCMs are drawn from the same distribution. The K–S test statistic is the largest absolute
difference between empirical cumulative distribution functions (ECDFs). For each test, effective sample sizes
(see von Storch and Zwiers, 1999) are computed to account for the autocorrelation in the daily teleconnection
indices. The evolution of the daily teleconnection indices is evaluated using correlograms, which depict the
correlation between time series values separated by lags of 1–10 days. Differences in the autocorrelation in
the NNR- and GCM-derived teleconnection time series are tested for statistical significance using Fisher’s z
test.

The period of standardization plays a critical role in the calculation of teleconnection indices. Hence,
when comparing NNR and GCM-simulated teleconnection indices for the period 1990–2001, we standardize
the data using the 1990–2001 seasonal means and standard deviations from the NNR or GCMs. To place
the differences between observed and simulated teleconnection indices in context, we also examine their
magnitude relative to recent and possible future changes in the teleconnection indices. Thus, for historical
analyses, the indices are standardized using 1954–2001 seasonal means and standard deviations, while for
analysis of GCM projections, data are standardized using 1990–2099 (HadCM3) or 1990–2100 (CGCM2)
seasonal means and standard deviations.

3.2. Synoptic-scale map-pattern analysis

Several methodologies can be applied to develop synoptic-scale circulation classifications (Yarnal, 1993).
In this study, we use correlation-based methods because they are readily amenable to (1) development of
targeted classifications for the GCM output relative to the NNR and (2) comparison of the NNR and GCM
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classifications using bootstrapping techniques to develop confidence intervals for the mean seasonal map-
pattern frequencies. The former allows direct comparison of the NNR- and GCM-derived classifications, while
the latter facilitates application of quantitative statistical tools to assess differences in the classifications.

Correlation-based methods of synoptic-scale weather classification have been widely used since their
introduction by Lund (1963), who classified map patterns using the Pearson product-moment correlation
of gridded fields. Kirchhofer (1974) improved on the correlation-based map typing technique by requiring
that sub-map scale patterns also meet the correlation threshold (El-Kadi and Smithson, 1992). The Kirchhofer
score of similarity, S, for two grid point maps is simply the sum of squared differences of the normalized
grid point values and can be easily transformed to a correlation coefficient using the expression given by
Willmott (1987). By setting a threshold for the required correlation, an appropriate threshold for S can be
determined. It is then necessary to calculate S for all combinations of pairs of observations being classified.
Subgrid scale similarity is ensured by also requiring each of the rows and columns of the grids to meet the
similarity criteria. The observation with the maximum number of threshold exceedances is referred to as the
first key day. This key day and all similar observations are then removed from the analysis. All days similar
to those days are also removed. This process is then repeated until there are no more days left. Once all of
the key days have been identified, each observation that has been removed is assigned to the key day for
which it has the highest S value.

Different thresholds for grid and subgrid similarity and minimum group size have previously been applied
for different variables (Yarnal, 1985; McKendry et al., 1995). In this study, the correlation threshold for the
entire grid is set at 0.75, the individual row and column thresholds are set at half of the entire grid threshold
(0.375), and the map-pattern groups are required to have more than five members. These values are chosen
to ensure a manageable number of weather types and a high percentage of classified days.

To evaluate the ability of the two GCMs to represent the circulation regimes of the study area, we apply
the Kirchhofer method to the NNR 500-hPa geopotential heights fields for the period of overlap with the
GCMs (1990–2001). Viewing the 1990–2001 NNR results as one possible realization of the current climate,
other potential realizations are extracted using a bootstrap resampling method (Efron, 1982) to generate a
‘climatology’ comprising 1000 random samples of this 12-year period, which are presented in the form of
confidence intervals for the means and standard deviations of map-pattern frequencies.

Targeted Kirchhofer classifications are subsequently applied to HadCM3 and CGCM2 output for
1990–2001. In each targeted classification, the key days identified in the 1990–2001 NNR are used as
seeds and the classification procedure is the same as that previously described. Use of the targeted classifica-
tions facilitates quantitative comparisons between observations (NNR) and simulations (GCMs) to determine
whether differences in the NNR and GCM synoptic regimes result from differences in the map patterns or dif-
ferences in the frequencies with which the map patterns are observed. In addition to the seasonal map-pattern
frequencies, the analysis of the map patterns also includes an examination of the persistence of individual map
patterns, which is defined as the average run length, and the progression from one map pattern to another,
which is examined by tabulating the map patterns which most commonly precede each of the identified map
patterns.

To place the differences between NNR and the GCMs in context, we examine their magnitude relative
to recent changes in NNR and potential future changes as simulated by the GCMs. For the former, NNR
map-pattern frequencies from historical periods (1954–1965, 1966–1977, and 1978–1989) are compared to
the NNR 1990–2001 bootstrap confidence intervals. For the latter, we construct bootstrap confidence intervals
using the 1990–2001 GCM data and then compute the mean map-pattern frequencies for future GCM periods:
2002–2013, 2014–2025, 2026–2037, 2038–2049, 2050–2061, 2062–2073, 2074–2085, and 2086–2097.

3.3. Relationships between teleconnections and midwest US weather types

Using the NAO and PNA indices described above, the frequency of each correlation-based map pattern
is determined for each phase of the NAO and PNA. Each day is assigned as either positive (more than one
standard deviation greater than the seasonal mean of the teleconnection), negative (more than one standard
deviation less than the seasonal mean of the teleconnection), or neutral (within one standard deviation of the
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272 J. T. SCHOOF AND S. C. PRYOR

seasonal mean of the teleconnection). The strength of the link between the teleconnections and map patterns is
then determined by comparing the frequency of the map-pattern occurrence during the positive and negative
phases of the teleconnections.

To quantify variations in the links between the teleconnection indices and the map patterns, a two-sample
difference of proportions test (Ott, 1993; Sheridan, 2003) was applied to the proportions of positive and
negative phase days for each teleconnection using a z-score. Proportions that result in a large absolute z-score
(e.g. not expected to occur more than 5% of the time if the proportions are the same) suggest that a particular
map pattern is more likely to occur in either the positive or negative phase of the teleconnection.

4. RESULTS

4.1. Teleconnection indices

4.1.1. North Atlantic Oscillation (NAO). The K–S test statistics for the probability distributions of the
reference period (1990–2001) NNR, HadCM3, and CGCM2 winter NAO index do not warrant rejection of
the null hypotheses that the observed and simulated indices are drawn from the same underlying distribution
at the α = 0.05 level (Table I). Further, each model correctly simulates the strong lag-1 autocorrelation
present in the daily NNR data (Figure 2(a)), although both GCMs, and particularly CGCM2, overestimate the
autocorrelation at lags greater than 1. The differences between the observed and simulated autocorrelations
are not significant, according to Fisher’s z statistic.

To examine the temporal evolution of the NAO and provide a context for the differences between the
NNR- and GCM-derived indices, the NAO index was calculated for 12-year segments of the observed
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Table I. Results of the Kolmogorov–Smirnov tests performed on NNR-, HadCM3- and CGCM2-derived NAO and PNA
indices. For each season and time period the table provides the p-values (i.e. the probability of observing a test statistic
as extreme or more extreme than that observed if the null hypothesis is true) associated with the test. Table entries are

in italics if statistically significant at α = 0.05

K–S D-statistic (p-value)

Time Period NAO PNA

DJF DJF MAM SON

NNR vs HadCM3 1990–2001 0.05 (1.00) 0.07 (0.99) 0.03 (1.00) 0.04 (1.00)
NNR vs CGCM2 1990–2001 0.02 (1.00) 0.07 (1.00) 0.04 (1.00) 0.05 (1.00)
NNR: 1990–2001 vs 1954–1965 0.16 (0.34) 0.09 (0.96) 0.24 (0.02) 0.05 (1.00)
NNR: 1990–2001 vs 1966–1977 0.14 (0.38) 0.14 (0.62) 0.21 (0.04) 0.04 (1.00)
NNR: 1990–2001 vs 1978–1989 0.09 (0.87) 0.07 (1.00) 0.06 (1.00) 0.05 (1.00)
HadCM3: 1990–2001 vs 2002–2013 0.14 (0.27) 0.12 (0.44) 0.03 (1.00) 0.11 (0.63)
HadCM3: 1990–2001 vs 2014–2025 0.13 (0.45) 0.06 (1.00) 0.03 (1.00) 0.03 (1.00)
HadCM3: 1990–2001 vs 2026–2037 0.06 (0.99) 0.16 (0.19) 0.05 (1.00) 0.04 (1.00)
HadCM3: 1990–2001 vs 2038–2049 0.06 (1.00) 0.06 (1.00) 0.06 (0.99) 0.05 (1.00)
HadCM3: 1990–2001 vs 2050–2061 0.03 (1.00) 0.06 (1.00) 0.09 (0.76) 0.06 (1.00)
HadCM3: 1990–2001 vs 2062–2073 0.15 (0.22) 0.13 (0.55) 0.09 (0.88) 0.05 (1.00)
HadCM3: 1990–2001 vs 2074–2085 0.04 (1.00) 0.20 (0.05) 0.16 (0.18) 0.15 (0.30)
HadCM3: 1990–2001 vs 2086–2097 0.08 (0.90) 0.07 (0.99) 0.10 (0.74) 0.14 (0.53)
CGCM2: 1990–2001 vs 2002–2013 0.06 (1.00) 0.11 (0.69) 0.05 (1.00) 0.03 (1.00)
CGCM2: 1990–2001 vs 2014–2025 0.05 (1.00) 0.01 (0.81) 0.08 (0.99) 0.03 (1.00)
CGCM2: 1990–2001 vs 2026–2037 0.07 (0.99) 0.10 (0.78) 0.04 (1.00) 0.03 (1.00)
CGCM2: 1990–2001 vs 2038–2049 0.09 (0.90) 0.04 (1.00) 0.12 (0.70) 0.06 (0.99)
CGCM2: 1990–2001 vs 2050–2061 0.05 (1.00) 0.17 (0.13) 0.17 (0.24) 0.06 (1.00)
CGCM2: 1990–2001 vs 2062–2073 0.06 (1.00) 0.17 (0.16) 0.24 (0.03) 0.07 (0.99)
CGCM2: 1990–2001 vs 2074–2085 0.11 (0.58) 0.29 (0.00) 0.27 (0.02) 0.17 (0.15)
CGCM2: 1990–2001 vs 2086–2097 0.10 (0.75) 0.24 (0.02) 0.38 (0.00) 0.21 (0.05)

record (1954–1965, 1966–1977, and 1978–1989) and the GCM simulation periods (2001–2013, 2014–2025,
2026–2037, 2038–2049, 2050–2061, 2062–2073, 2074–2085, and 2086–2097). In accord with previous
studies (e.g. Hurrell, 1995) and consistent with the established underlying trend in the north–south pressure
difference in the Atlantic in the latter portion of the twentieth century (Pryor and Barthelmie, 2003), the NNR-
derived winter NAO index exhibits an increased prevalence of positive values toward the end of the twentieth
century. While a K–S test applied to the NAO index derived from different segments of the NNR historical
data does not result in rejection of the null hypothesis (Table I), the p-values suggest that historical changes
in the NAO probability distribution are much larger than the differences between NAO indices derived from
the 1990–2001 NNR data and GCM simulations. Additionally, a t-test that assumes unequal variances and
accounts for autocorrelation identifies a statistically significant difference (with α = 0.05) in the mean of the
winter NAO index for 1990–2001 compared to 1954–1965.

Further examination of the historical winter NAO index indicates that different parts of the probability
distribution have changed over time (Figure 3(a)). The overall increase between 1954–1965 and 1966–1977
resulted primarily from fewer large negative index values, while the relative frequency of positive NAO
index values remained nearly stable. The change between 1966–1977 and 1978–1989 was due to fewer small
negative index values and more large positive index values. The most recent change (between 1978–1989
and 1990–2001) resulted from fewer negative index days and more positive index days, consistent with a
positive translation of the probability distribution (Figure 3(a)).

Application of the K–S test to the reference period (1990–2001) NAO index and future 12-year segments
from HadCM3 and CGCM2 does not result in a rejection of the null hypothesis for any of the periods
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considered (Table I). However, HadCM3 indicates a decrease in the probability of positive NAO values during
the first quarter of the twenty-first century, an NAO probability distribution similar that of the 1990–2001
reference period during the middle of the twenty-first century, another decrease in the probability of positive
NAO values during the 2060s, and a probability distribution again similar to that of the reference period for
the last quarter of the twenty-first century. In contrast, the CGCM2-derived NAO index indicates little change
in the teleconnection over the twenty-first century. The shift toward more positive NAO index values that
occurs around 2075 is not statistically significant.

Based on the analyses presented above, we conclude that differences between observed and simulated
probability distributions of the NAO index over the reference period (1990–2001) are smaller than both
changes in the indices during recent decades and prognostic changes quantified using transient GCM output.
The finding that HadCM3 does not suggest continued evolution toward higher north–south gradients across
the Atlantic, and hence a more positive NAO index, is in accord with analyses in Osborn et al. (1999),
which indicate that the positive trend in observed winter NAO from 1963 to 1992 is ‘highly unusual’ and
that the HadCM2 winter NAO exhibited a decline from the 1990 level over the following decades. The
discrepancy between CGCM2 and HadCM3 projections may be due to differences in the model treatment
of atmosphere–surface interactions. Although the NAO has been reproduced in atmosphere-only GCMs
(Glowienka-Hense, 1990), the oceans may provide the inertia for longer-term variability in the NAO (Osborn
et al., 1999, Visbeck et al., 2003). While these models contain similarly discretized oceanic models, CGCM2
uses monthly heat and water flux adjustments, which may moderate the atmospheric response to changing
oceanic conditions. These flux adjustments may influence the NAO realizations because while the NAO is
particularly responsive to atmospheric forcing on the annual timescale, it is most sensitive to changes in
oceanic circulation and sea-surface temperatures as well as snow cover within the North Atlantic sector and
beyond on longer timescales (Kushnir, 1994; Hurrell and Van Loon, 1997; Tourre et al., 1999; Bojariu and
Gimeno, 2003).

4.1.2. Pacific/North American (PNA) index. Application of the K–S test to the reference period NNR and
GCM-derived PNA indices does not result in the rejection of the null hypotheses that the seasonal PNA
indices are drawn from the same underlying distribution. Each model also correctly simulates the strong lag-1
autocorrelation present in the NNR data, but the persistence of the PNA is underestimated by HadCM3 during
winter and spring, and CGCM2 underestimates the persistence of the PNA during winter and overestimates
the persistence of the PNA during spring (Figure 2). As with the NAO, these differences are not significant
according to Fisher’s z statistic.

According to the K–S test, the distributions of the PNA indices derived from the NNR data for 1954–1965
and 1966–1977 differ from the 1990–2001 PNA distribution during spring (Table I, Figure 3(c)). Further
examination of the historical spring PNA index indicates fewer negative index values and more positive index
values concurrent with the increase in tropical Pacific sea-surface temperatures (i.e. the climate shift of the
mid-1970s, see Stocker et al., 2001). Although not statistically significant, the distribution of the winter PNA
index shifted to more positive values at the same time (Figure 3(b)).

Unlike the NAO, the projections of the PNA from HadCM3 and CGCM2 differ only slightly between the
models, and neither model indicates substantial changes in the distribution of the PNA during the first half of
the twenty-first century. In HadCM3, the only significant difference identified by the K–S test occurs with
a further positive shift in the winter PNA index during 2074–2085 (Table I), and, although not statistically
significant, changes in the spring PNA index are also evident during the same period. In CGCM2, a positive
shift in the PNA index distribution occurs slightly earlier, with statistically significant differences between
the 1990–2001 and the post-2074 winter PNA index and between the 1990–2001 and post-2062 spring PNA
index. Unlike HadCM3, CGCM2 also indicates an increase in the autumn PNA index (significant at α = 0.10,
see Table I). These results, taken in concert with analyses by Leathers and Palecki (1992) who suggest that the
1957–1987 PNA index exhibited a bias toward positive values, may be indicative of a sustained prevalence
of positive PNA values and hence, a more meridional circulation over the continental United States.
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4.2. Synoptic-scale map-pattern analysis

4.2.1. Observed map patterns: 1990–2001. Application of the Kirchhofer method (Section 3.2) to the
1990–2001 daily NNR 500-hPa geopotential height fields results in 15 map patterns accounting for 91.37%
of the observations. The key days for these map patterns are shown in Figure 4. Table II shows the frequency,
mean correlation coefficient (a measure of within-class variability computed as the mean correlation between
each key day and members of the class associated with the key day), persistence, and map-pattern progression
for each map pattern. The correlations shown in Table II are much higher than the threshold of 0.75, suggesting
that this classification is robust.
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Figure 4. Key day maps for each of the 15 Kirchhofer map patterns associated with the 1990–2001 NNR 500-hPa geopotential height
fields (in gpm). The domain is as shown in Figure 1
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Table II. Percentage frequency, mean correlation coefficient, mean persistence, and most commonly preceding map
patterns for each of the 15 Kirchhofer map patterns identified from the 1990–2001 NNR, HadCM3, and CGCM2

500-hPa geopotential height fields

Map
pattern

Percentage
frequency (%)

Mean correlation
coefficient

Mean persistence
(days)

Most commonly
preceding types

NNR HadCM3 CGCM2 NNR HadCM3 CGCM2 NNR HadCM3 CGCM2 NNR HadCM3 CGCM2

1 17.59 26.57 16.58 0.93 0.92 0.94 1.78 2.25 1.90 1, 8, 3 1, 3, 8 1, 8, 11
2 7.60 8.54 4.25 0.92 0.92 0.93 1.46 1.65 1.49 2, 7, 5 2, 7, 4 2, 7, 5
3 6.68 5.90 7.92 0.93 0.93 0.95 1.28 1.18 1.40 3, 7, 11 7, 2, 11 3, 7, 11
4 5.80 9.72 4.54 0.95 0.93 0.95 1.24 1.41 1.24 8, 1, 4 4, 1, 8 8, 4, 1
5 7.73 3.50 7.99 0.95 0.93 0.95 1.20 1.09 1.25 1, 5, 11 1, 4, 9 5, 1, 8
6 3.74 2.13 2.60 0.94 0.93 0.95 1.15 1.16 1.18 2, 5, 6 2, 5, 8 11, 6, 2
7 6.50 6.41 6.78 0.95 0.94 0.95 1.27 1.22 1.30 11, 7, 2 11, 4, 7 11, 7, 4
8 14.37 9.44 15.27 0.95 0.93 0.95 1.50 1.42 1.49 8, 1, 11 8, 1, 11 8, 11, 1
9 4.15 4.21 4.41 0.93 0.92 0.94 1.17 1.24 1.21 1, 3, 9 1, 9, 3 1, 9, 3

10 0.39 0.44 0.02 0.88 0.80 0.80 1.70 1.27 1.00 10, 15, 1 1, 10, 15 –
11 14.99 9.07 18.81 0.97 0.96 0.97 1.53 1.26 1.54 11, 8, 5 11, 1, 2 11, 8, 5
12 0.66 0.86 0.57 0.90 0.86 0.90 1.26 1.19 1.25 12, 2, 5 4, 5, 12 5, 12, 2
13 0.59 0.74 0.09 0.88 0.87 0.90 1.24 1.28 1.00 4, 13, 1 4, 13, 1 1, 8
14 0.41 0.21 0.11 0.89 0.87 0.87 1.20 1.00 1.00 14, 1, 7 1 1, 9
15 0.14 0.07 0.02 0.85 0.83 0.85 1.00 1.00 1.00 1, 3 1 1

The three most commonly observed Kirchhofer map patterns represent the average meridional (map pattern
1) and zonal (map patterns 11 and 8) conditions over the study area. The first pattern accounts for 17.6% of
the observations and is characterized by a strong southwest–northeast height gradient and a trough located
north/northeast of the study area. Weak north–south height gradients characterize the second and third most
prevalent patterns identified by the analysis (map patterns 11 and 8), which account for approximately 15.0%
and 14.4% of the observations, respectively. Each of the subsequent patterns accounts for less than 10% of
the observations, although each represents a unique and meaningful synoptic-scale circulation regime.

4.2.2. Comparison of map-pattern frequencies in NNR and transient GCM simulations. The targeted
Kirchhofer analysis of the HadCM3 and CGCM2 simulations for 1990–2001 led to the classification of
87.80% and 89.98% of simulated days, respectively, and both GCM classifications reproduce the range
of map patterns found in the NNR data (Table II). The HadCM3 and CGCM2 classifications also exhibit
correlation coefficients for the members of each type that are of similar magnitude as those found in the NNR
analysis, suggesting that within-type variability is of similar magnitude as that in the observed record.

The largest discrepancy between the NNR and HadCM3 map-pattern frequencies is that the most common
map pattern (pattern 1) occurs too often in HadCM3, while the second and third most common map patterns
(patterns 11 and 8) occur too seldom. With the exception of map pattern 8 during winter, the interannual
variability of these three most common map patterns is well simulated in all seasons (Figure 5). HadCM3 also
slightly overestimates the frequency and interannual variability of map-type 2 during winter and spring. During
summer, when the overestimation of map pattern 1 is greatest, the frequencies of several less common map
patterns (2, 3, 5, 8, and 11) are underestimated, while two additional map patterns occur too often relative to the
NNR-derived confidence intervals (4 and 9). Based on the descriptions presented in the previous section, these
results suggest that HadCM3 may be biased toward meridional conditions. Accompanying the overestimation
of the most common map pattern by HadCM3 is an overestimation of the persistence associated with it. For
the other map patterns, HadCM3 simulates the persistence of the map patterns well. Although there are some
differences in the progression of the map patterns (Table II), the first-order progression of the most common
map patterns is also well simulated by HadCM3.
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Figure 5. Means (left column) and standard deviations (right column) of the relative frequency of 1990–2001 HadCM3 (∗) and CGCM2
(+) map patterns relative to NNR-derived bootstrap confidence intervals (°): (a) winter, (b) spring, (c) summer, and (d) autumn

In contrast to HadCM3, CGCM2 produces the most common map pattern too seldom during winter and
spring, but relative frequencies are within the NNR confidence limits during the other seasons (Figure 5).
Summer and autumn mean map-pattern frequencies are within the NNR-derived confidence intervals for most
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map patterns, although frequencies and interannual variability for two of the cyclonic types (2 and 3 in
summer, 2 in autumn) are lower than those expected from NNR. The largest difference between NNR and
CGCM2 during winter is associated with the partitioning of days between two similar map patterns (1 and 3).
Both types are associated with low geopotential height anomalies to the northeast of the study region, although
map pattern 1 exhibits much stronger geopotential height gradients (Figure 4). The interannual variability of
map-type 3 is also overestimated by CGCM2 during the winter. During spring, CGCM2 overestimates the
mean frequency of the two zonal map patterns (8 and 11) and underestimates the mean frequency of two of
the cyclonic map patterns (2 and 6). As with HadCM3, the persistence and progression of the CGCM2 map
patterns exhibit agreement with the NNR map patterns.

Changes in the map-pattern frequencies during the recent historical record are small relative to differences
between the observed (NNR) and simulated (HadCM3, CGCM2) map-pattern frequencies. Nearly all of
the map-pattern frequencies from the three 12-year periods preceding the 1990–2001 reference period
(1978–1989, 1966–1977, and 1954–1965) lie within the confidence bounds derived from the 1990–2001
NNR data. However, winter occurrences of map pattern 1 were less common and less variable during the
reference period than during other portions of the historical record and many of the map patterns exhibit
changes in their interannual variability.

Projections from HadCM3 exhibit little evolution in map-pattern frequencies over the twenty-first century.
Frequencies of the map patterns during 12-year segments of transient output from HadCM3 (2002–2013,
2014–2025, 2026–2037, 2038–2049, 2050–2061, 2062–2073, 2074–2085, and 2086–2097) lie within, or
in close approximation to, the bootstrap confidence intervals derived from the 1990–2001 HadCM3 map-
pattern frequencies. However, HadCM3 does project increases in the interannual variability of several map
patterns, including the three most common map patterns (1, 8, and 11) during winter. The occurrence of
cyclonic conditions associated with map pattern 2 is projected to become less variable during summer and
more variable during autumn. Similarly, CGCM2 does not project major changes in the relative frequencies
of the map patterns during the twenty-first century, but does indicate that the variability of the frequency of
several types may increase. However, in CGCM2 these changes are predominantly associated with zonal or
weakly anticyclonic map patterns (8 and 11 during winter, 4 during spring and autumn, 5 during summer).

4.3. Linking synoptic-scale circulation and the teleconnection indices

Historical analysis of the relationships between NNR map patterns and the NAO index shows that, although
several map patterns show preference for a particular phase of the NAO, the differences in proportions are
not statistically significant at α = 0.05 (Table III). When applied to the twenty-first century transient GCM
simulations several of the linkages between the teleconnections and map patterns are found to be statistically
significant. However, the patterns that are identified as coupled with the NAO differ between the GCMs.
Specifically, HadCM3 pattern 1 is linked to the negative phase of the winter NAO and HadCM3 patterns 2,
7, and 11 are linked to the positive phase of the winter NAO, while CGCM2 patterns 2 and 3 are linked to
the negative NAO phase and CGCM2 pattern 8 is more likely under positive NAO conditions.

Given the relative locations of the study region and the NAO centers of action, the weak coupling of the
NAO and map patterns is not surprising. Conversely, the PNA centers of action are located much closer to the
study area, and therefore exert much more influence on synoptic-scale circulation in this region (Table III).
When applied to the 1954–2001 NNR PNA index and map patterns, the two-sample difference of proportions
test indicates that several map patterns are more frequent under the positive phase of the PNA. These include
map pattern 1 during winter, spring, and autumn and map pattern 3 during winter and autumn. Likewise,
multiple map patterns have statistically significant links to the negative phase of the PNA, including map
patterns 5 and 11 during winter, spring and autumn, and map pattern 7 during winter and spring.

HadCM3 successfully mimics the link between map pattern 1 and the PNA during winter, spring, and
autumn, but fails to produce the link between map pattern 3 and the positive PNA phase during winter
(Table III). HadCM3 also reproduces the observed relationships between each of the zonal map patterns and
the negative PNA phase. CGCM2 correctly reproduces each of the statistically significant links between the
map patterns and PNA phase. Because the sample sizes from the transient GCM simulations are considerably
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Table III. Results of the two-sample difference of proportions tests performed on NNR, HadCM3, and CGCM2 map
patterns and NAO and PNA indices indicating preference to a particular phase of the teleconnections. For each season,
the table provides the p-value (i.e. the probability of observing differences in proportion as extreme or more extreme
than those observed if the null hypothesis is true). Table entries are bold if statistically significant at α = 0.05 for map
patterns more likely under the positive teleconnection phase. Table entries are underlined if statistically significant at
α = 0.05 for map patterns more likely under the negative teleconnection phase. A blank entry means that the test was

not performed due to small sample size

Map
pattern

NAO DJF PNA DJF PNA MAM PNA SON

NNR HadCM3 CGCM2 NNR HadCM3 CGCM2 NNR HadCM3 CGCM2 NNR HadCM3 CGCM2

1 0.24 0.03 0.21 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
2 0.41 0.04 0.01 0.08 0.00 0.01 0.13 0.00 0.07 0.05 0.03 0.04
3 0.14 0.26 0.02 0.00 0.29 0.00 0.08 0.65 0.00 0.01 0.00 0.00
4 0.22 0.08 0.68 0.17 0.03 0.29 0.08 0.07 0.02 0.06 0.00 0.00
5 0.57 0.14 0.14 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00
6 0.23 0.05 0.11 0.24 0.40 0.27 0.66 0.57 0.59 0.22 0.27 0.02
7 0.20 0.04 0.15 0.00 0.00 0.00 0.04 0.00 0.03 0.25 0.07 0.29
8 0.27 0.53 0.01 0.63 0.30 0.05 0.56 0.54 0.67 0.66 0.53 0.48
9 0.50 0.32 0.35 0.69 0.15 0.04 0.50 0.50 0.61 0.55 0.61 0.22

10 0.41 0.07 0.16 0.21
11 0.14 0.00 0.15 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.03 0.04
12 0.58 0.14 0.22
13 0.65 0.63 0.30 0.26
14 0.41 0.64
15

larger than those in the historical NNR data, each of the GCMs also identifies statistically significant linkages
between the PNA index and the map patterns that are not statistically significant according to the analyses
performed on the NNR data.

Examination of the links between the teleconnections and the map patterns as simulated by the GCMs
provides some insight into the differences between the classifications described in Section 4.2.2. For example,
the GCM-simulated links between the NAO and map patterns that are not evident in the historical NNR data
may provide a partial explanation for the differences in the winter NNR and GCM-derived map-pattern
classifications. Further study is needed to prescribe causality to these results.

5. CONCLUDING REMARKS

Reliable regional climate projections for the midlatitudes are critically dependent on the accuracy of the
depiction of large-scale climate within GCMs. We have presented an evaluation of GCM simulations of
two prominent teleconnections, the NAO and PNA, as well as synoptic-scale map patterns in the Midwest
region of the United States and their links to the teleconnection indices. The analyses presented here indicate
that differences between GCM and NNR realizations of both the NAO and PNA for the reference period
(1990–2001) are smaller than both changes in the observed historical record and prognostic changes for
approaching decades. Despite the relatively good correspondence between the NNR and GCMs with respect
to the synoptic-scale map patterns within the study region, differences between NNR and both HadCM3 and
CGCM2 map patterns in the reference period (1990–2001) are demonstrated to be of comparable or greater
magnitude than recent historical changes (based on 1954–2001 NNR map patterns) and prognostic changes
from the HadCM3 and CGCM2 simulations (based on twenty-first century transient GCM simulations). Hence,
the inference that must be drawn from this analysis is that GCM-derived projections of the synoptic climate
of this region remain uncertain. This finding does not indicate a lack of evolution in the map patterns, but the
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results do suggest that the evolution does not exceed the differences between NNR and GCM-derived map
patterns during the reference period.

The results of this study have major implications for studies which downscale GCM output for regional
climate change assessments. While many downscaling studies rely on changes in the frequency of circulation
types to provide additional information about potential climate change (see Giorgi et al., 2001 and references
therein), our findings indicate only small changes in circulation-based map-pattern frequencies within the
Midwest region of the United States during the twenty-first century. Hence, map-pattern classifications may
provide little additional regional climate change information beyond that provided by the direct use of GCM
output.

It is important to note that there are two major caveats to the findings presented here. First, we examined 12-
year time windows to ensure direct comparability with the overlap period for NNR, HadCM3, and CGCM2.
Even with the implementation of the bootstrap resampling methodology, these time periods do not represent a
full climatology, and cannot account for decadal variability in the teleconnections and map patterns. Second,
it should be emphasized that the findings documented herein were specifically based on simulations conducted
using a single emissions scenario (SRES A2) and two GCMs. Just as the results could differ for other periods,
they may also differ if other GCMs or emissions scenarios were used. Future work will address this issue by
evaluating and comparing the performance of additional GCMs under various emissions scenarios.
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