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ON STABILITY OF SCHAUDER BASES OF INTEGER TRANSLATES

MORTEN NIELSEN† AND HRVOJE ŠIKIĆ∗

ABSTRACT. We apply the Garnett-Jones distance to the analysis of Schauder bases of
translates. A special role is played by periodization functions pψ with ln pψ in the
closure of L∞ in BMO(T). In particular, for Schauder bases with such periodization
functions we study the corresponding coefficient space. We also use the Garnett-Jones
distance approach to show the stability of bases of translates with respect to convolu-
tion powers. The case of democratic conditional Schauder bases of translates is em-
phasized, as well.

1. INTRODUCTION

For any ψ ∈ L2(R) one can generate an associated shift invariant space

〈ψ〉 := span{ψ(· − k) : k ∈ Z} ⊆ L2(R).

A very natural question is then to consider the stability of the family of integer trans-
lates

(1.1) E := {ψ(· − k) : k ∈ Z}
in 〈ψ〉. The answer will of course depend on the properties of ψ. The Fourier trans-
form provides a very convenient tool to facilitate such an analysis, and it turns out
that the so-called periodization function given by

pψ(ξ) := ∑
k∈Z

|ψ̂(ξ + k)|2, ξ ∈ R.

plays a central role. As it was observed already in [15], the family of translates (prop-
erly ordered) forms a Schauder basis for 〈ψ〉 if and only if pψ is an A2 weight in the
sense of Muckenhoupt. We aim to study various properties of such bases in con-
nection with the Ap weight properties of pψ. As it is well-known, Ap weights are
closely connected to the corresponding BMO space; if w is an Ap weight, then ln w is
in BMO. Obviously, the same approach can be applied to periodizations; considered
as weights. In particular, observe (see [15]) that ln pψ is in L∞ if and only if the corre-
sponding E is a Riesz (i.e., Schauder unconditional) basis for 〈ψ〉. Therefore, the A2
weights pψ, such that ln pψ is outside L∞, provide us with examples of conditional
Schauder bases, which in general are often difficult to construct. Since in BMO spaces

Key words and phrases. Muckenhoupt condition, BMO, weights, Garnett-Jones distance, integer
translates, Schauder basis.
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we can measure the distance from L∞ (see [4]), we can employ this distance as a way
of measuring ”how far” is a particular Schauder basis from the family of Riesz bases.
Indeed, as we argue in this article, such an approach enables us to learn more about
coefficient spaces of such Schauder bases, about Schauder basis constants, and pro-
vides tools to show stability properties of convolution roots and powers of weights
pψ. We find particularly intriguing the family of conditional Schauder bases of trans-
lates such that ln pψ is in the closure of L∞ in BMO(T) (i.e., the Garnett-Jones distance
for such weights is zero). As we show, they have a very small subset of coefficient se-
quences for which the convergence is conditional.

Problems on translates of functions have a long history, let us mention Kolmogo-
roff [11] and Helson [5]. Stability of integer translates has been considered in many ar-
ticles, see e.g. [1, 8]. Schauder bases of integer translates and the connection to Muck-
enhoupt weights are considered in [13–15].

The paper is organized so that after this introduction we develop necessary no-
tation and basic results in Section 2. Main results, about stability, about coefficient
spaces and Schauder basis constants, are presented in Section 3. In Section 4 we con-
sider democratic Schauder bases. As is well-known, both the greedy property and the
democratic property are important in the study of bases. However, as we have shown
in [16] for bases of translates the greedy property leads us into Riesz bases, while the
democratic property may exist among conditional bases of translates, as well.

2. NOTATION AND RESULTS

Let us begin by introducing some notation and recalling some necessary results.
We let the Fourier transform of a function f ∈ L1(R)∩ L2(R) be normalized such that
f̂ (ξ) =

∫
R

f (x)e−2πixξdx. We denote by Lp(T), 1 ≤ p ≤ ∞, the Lp space on the torus
T := R/Z with respect to the Lebesgue measure. Functions on T are considered as 1-
periodic functions on R. When a 1-periodic measurable density (or weight) w is taken
into account, we denote by L2(T; w) the L2 space on T with respect to the measure
w(ξ) dξ.

One observes that 〈ψ〉 is the smallest shift invariant space in L2(R) generated by ψ.
Hence, it is known that

(2.1) t 7→ (t · ψ̂)∨

is an isometry between the weighted L2-space L2(T; pψ) and 〈ψ〉, see [8], where pψ is
the periodization of |ψ̂|2, given by

(2.2) pψ(ξ) := ∑
k∈Z

|ψ̂(ξ + k)|2, ξ ∈ R.

Since ψ ∈ L2(R), pψ is a 1-periodic function in L1(T) and

(2.3)
∫

T
pψ(ξ) dξ = ‖ψ̂‖2

2 = ‖ψ‖2
2.

The isometry (2.1) maps the exponential ek(ξ) := e−2πikξ , k ∈ Z, into ψ(· − k).
A family B = {xn : n ∈ N} of vectors in a Hilbert space H is a Schauder basis for

H if for every x ∈ H there exists a unique sequence {αn := αn(x) : n ∈ N} of scalars
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such that

lim
N→∞

N

∑
n=1

αnxn = x

in the norm topology of H. For a Schauder basis B, and n ∈ N, there exists a unique
vector yn such that αn(x) = 〈x, yn〉. It follows that

(2.4) 〈xm, yn〉 = δm,n, m, n ∈N

and that there exists a smallest constant C = C(B) ≥ 1 such that, for every n ∈N,

(2.5) 1 ≤ ‖xn‖ · ‖yn‖ ≤ C.

A pair of sequences ({un}n∈N, {vn}n∈N) in H is a bi-orthogonal system if 〈um, vn〉 =
δm,n, m, n ∈ N. We say that {vn}n∈N is a dual sequence to {un}n∈N, and vice versa. A
dual sequence is not necessarily uniquely defined. In fact, it is unique if and only if the
original sequence is complete in H (i.e., if the span of the original sequence is dense in
H). A complete sequence {xn : n ∈ N} with dual sequence {yn} is a Schauder basis
for H if and only if the partial sum operators SN(x) = ∑N

n=1〈x, yn〉xn are uniformly
bounded on H. Obviously, (2.4) shows that every (Schauder) basis {xn : n ∈ N} for
H has an associated bi-orthogonal system ({xn}, {yn}) with a uniquely determined
dual sequence. Furthermore, the dual sequence {yn} is also a Schauder basis for H.

For a Schauder basis B = {xn : n ∈N} with dual sequence {yn}, the number

κ(B) := sup
N∈N

‖SN‖

is called the basis constant for B. The coefficient space associated with B is the se-
quence space given by

C(B) :=
{
{yn(x)}n∈N : x ∈H

}
.

The coefficient space C(B) inherits a norm from H in a natural way. Whenever B is
normalized, it follows from (2.5) that we have the continuous embedding C(B) ↪→
`∞(N). However, for Schauder bases of integer translates, we will give an improved
estimate in Theorem 3.4 that depends on certain finer properties of pψ.

It was demonstrated in [15] that T := {ek : k ∈ Z}, with Z ordered the natu-
ral way as 0, 1,−1, 2,−2, . . ., forms a Schauder basis for L2(T; pψ) if and only if the
periodization function pψ satisfies the so-called A2(T) condition.

Definition 2.1. Let I be the collection of finite intervals of R, and let 1 < p < ∞. A
measurable, 1-periodic function w : R→ (0, ∞) is an Ap(T)-weight provided that

[w]Ap := sup
I∈I

(
1
|I|
∫

I
w(ξ) dξ

)(
1
|I|
∫

I
w(ξ)

− 1
p−1 dξ

)p−1

< ∞.

The A2(T)-condition will be of special importance to us, so we remark that the
A2(T)-weight condition simplifies to

[w]A2 := sup
I∈I

(
1
|I|
∫

I
w(ξ) dξ

)(
1
|I|
∫

I
w(ξ)−1 dξ

)
< ∞.
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It is known that the A2(T)-condition is equivalent to the so-called Helson-Szegö con-
dition, see [6, 9].

We say that w : R→ (0, ∞) is an A1-weight if there exists C < ∞ such that for any
x ∈ T and I ∈ I with x ∈ I,

1
|I|
∫

I
w(t) dt ≤ Cw(x).

Let us state some well-known properties of Ap-weights that will be used through-
out the paper. For proofs of the properties stated in Lemma 2.2 see e.g. [3].

Lemma 2.2. The following holds true:

a. For any A2(T)-weight w, we have w, 1/w ∈ L1(T).
b. For w ∈ A1(T) there exists c := c(w) > 0 such that c ≤ w(x) for a.e. x ∈ T.
c. For 1 ≤ p ≤ q < ∞, Ap(T) ⊆ Aq(T) with [w]Aq(T) ≤ [w]Ap(T) for any w ∈

Ap(T).
d. Suppose w ∈ Ap(T), 1 ≤ p < ∞. Then there exists δ := δ(w) > 0 such that

w1+η ∈ Ap(T).
e. For w ∈ Ap(T), 1 ≤ p < ∞ and 0 < θ ≤ 1, wθ ∈ Ap(T) with [wθ]Ap(T) ≤

[w]θAp(T).

3. THE DISTANCE TO L∞ IN BMO AND THE CONNECTION TO SCHAUDER BASES

The Ap classes are closely related to the functions of bounded mean oscillation. The
space of such functions will play a central role in our analysis below.

Definition 3.1. Let f ∈ L1
loc(R) be 1-periodic, and let I be the collection of finite

intervals of R. We say that f ∈ BMO(T) provided that

(3.1) ‖ f ‖BMO(T) := sup
I∈I

1
|I|
∫

I
| f (x)− f I | dx < ∞,

where f I := 1
|I|
∫

I f (x) dx.

It is easy to check that L∞(T) ↪→ BMO(T). For f ∈ BMO(T) we can therefore
consider the distance to L∞ given by

(3.2) dist( f , L∞(T)) := inf
g∈L∞(T)

‖ f − g‖BMO(T).

The distance to L∞ in BMO is of interest to our study of Schauder bases since L∞ is
exactly the class of BMO-functions coming from logarithms of periodization functions
associated with Riesz bases. Hence one may speculate that the distance to L∞ could,
with a suitable intrepretation, measure “closeness” to a Riesz basis. Theorems 3.4 and
3.8 below give two such intrepretations.
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It is known that L∞(T) is not a closed subset of BMO(T). In fact, one has (see [3, p.
474])

{ f ∈ BMO(T) : dist( f , L∞) = 0} =
{

f ∈ BMO(T) : e f , e− f ∈
⋂

p>1

Ap(T)
}

=
{

f ∈ BMO(T) : em f ∈ A2(T), ∀m ∈ Z
}

.

Example 3.2. An example of an unbounded BMO function in {dist( f , L∞) = 0} is
given by

f (x) = ln
(

ln(2 + |x|−1)
)
, x ∈ T.

This is a consequence of the fact that lnN(2 + |x|−1) ∈ A2(T) for any N ∈ N, which
follows by a direct calculation.

For f ∈ BMO(T) we can also introduce the following quantity

(3.3) ε( f ) = inf{λ > 0 : [e f /λ]A2(T) < ∞}.
The John-Nirenberg inequality ( [10]) implies that for f ∈ BMO(T) there is some
α > 0 such that eα f ∈ A2(T), so we always have 0 ≤ λ( f ) < ∞.

The celebrated result by Garnett and Jones ( [4]) asserts that dist( f , L∞) and ε( f )
are in fact equivalent independent of f ∈ BMO(T).

Theorem 3.3 ( [4]). There exist positive constants C1 and C2 such that for f ∈ BMO(T),

(3.4) C1ε( f ) ≤ dist( f , L∞(T)) ≤ C2ε( f ).

The Reverse Hölder inequality shows that if w ∈ A2(T) then always ε(ln w) < 1
since there exists δ > 0 such that w1+δ ∈ A2(T).

We now prove that for a Schauder basis of integer translates, a small distance to L∞

of ln pψ gives added control of the coefficient space for the Schauder basis. Indeed, if
the distance is zero then the coefficient spaces is very close to being contained in `2.

Theorem 3.4. Let ψ ∈ L2(R) and suppose that the periodization function pψ ∈ A2(T). We
let C(E) denote the coefficient space associated with the Schauder basis E = {ψ(· − k)}k for
〈ψ〉. Define ε = ε(ln pψ) := inf{λ > 0 : [p1/λ

ψ ]A2 < ∞}. Then the following inclusion
holds

C(E) ⊂
⋂

p0<p<∞
`p(Z),

where p0 := 2
1−ε .

Proof. Let pψ ∈ A2(T) so in particular pψ, 1/pψ ∈ L1(T). We have the isomorphic
isometry between Jψ : L2(T, pψ)→ 〈ψ〉 given by

Jψm := (mψ̂)∨

We notice that we have the continuous embedding

(3.5) L2(T, pψ) ↪→ L1(T),
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which follows from the Cauchy-Schwarz inequality using that

‖h‖L1(T) =
∥∥h · √pψ · p−1/2

ψ

∥∥
L1(T)

≤ ‖h‖L2(T,pψ)

∥∥p−1
ψ

∥∥1/2
L1(T)

, h ∈ L2(T, pψ).

Now we take any
f = lim

N→∞
∑
|k|≤N

〈 f , Tkψ̃〉Tkψ ∈ 〈ψ〉,

and let m f = J−1
ψ ( f ) ∈ L2(T, pψ). The trigonometric system T := {ek}k∈Z forms a

Schauder basis for L2(T, pψ) since pψ ∈ A2(T). In particular, the expansion of m f

relative to T is norm convergent in L2(T, pψ) and thus in L1(T) by the embedding
(3.5). An easy calculation shows that

m f = lim
N→∞

∑
|k|≤N

〈m f , ẽk〉L2(T,pψ)e
2πikx

= lim
N→∞

∑
|k|≤N

∫

T
m f (ξ)

e−2πikξ

pψ(ξ)
pψ(ξ)dξ · e2πikx

= lim
N→∞

∑
|k|≤N

〈m f , ek〉L2(T)e
2πikx,

with convergence in L2(T, pψ) and in L1(T). Hence, using the isometry Jψ,

〈 f , Tkψ̃〉 = 〈m f , ek〉L2(T),

with m f ∈ L1(T). Hence, C(E) is exactly the family of Fourier coefficient sequences
of the periodic functions m f , f ∈ 〈ψ〉.

Next we use the A2(T) properties of pψ to obtain additional information about m f .

It holds true that ε < 1 since p1+η
ψ ∈ A2(T) for some η > 0 by the Reverse Hölder

Inequality. We notice that for any 1 < η < 1/ε, pη
ψ ∈ A2(T). In particular, p−η

ψ ∈
L1(T) so p−1/2

ψ ∈ Lq0(T) for q0 := 2η > 2. By the generalized Hölder inequality, for
1/r = 1/2 + 1/q0 ⇒ r = 2η/(1 + η),

‖m f ‖Lr(T) = ‖(m f
√

pψ) · p−1/2
ψ ‖Lr(T) ≤ ‖m f ‖L2(T,pψ) · ‖p−1/2

ψ ‖Lq0 (T) < +∞.

By the Hausdorff-Young inequality, the Fourier coefficients of m f are contained in
`r′(Z) where r′ = r/(r− 1) = 2η/(η − 1). Finally we let η → 1/ε to conclude. �
Remark 3.5. It is perhaps not surprising that the most restrictive inclusion in Theo-
rem 3.4 happens when dist(ln pψ, L∞) = 0, which happens if and only if ε(ln pψ) = 0.
In this case, we have

C(E) ⊂
⋂

2<p<∞
`p(Z).

Remark 3.6. It is known that the Fourier transform F : Lp(T) → `p′(Z), 1 ≤ p ≤ 2,
fails to be onto `p′(Z) unless p = 2, so it is in fact not possible that the stronger
conclusion C(E) = ∩p0<p<∞`p(Z) can hold in Theorem 3.4.
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Example 3.7. Define ψ ∈ L2(R) by

ψ̂(ξ) =
√

ln
(

ln(2 + |ξ|−1)
)
· χ[0,1)(ξ).

It follows that pψ(ξ) = ln
(

ln(2+ |ξ|−1)
)
, ξ ∈ [−1/2, 1/2). A direct calculation shows

that pψ ∈ A2(T), so E := {ψ(· − k) : k ∈ Z} forms a Schauder basis for 〈ψ〉. However,
pψ is not bounded and consequently E fails to be an unconditional Riesz basis for 〈ψ〉.
However, according to Example 3.2, dist(ln pψ, L∞) = 0, so the coefficient space for E
is controlled by C(E) ⊂ ⋂2<p<∞ `p(Z).

3.1. Improved conditioning of Schauder bases. A well-known conditioning step in
the construction of multiresolution analysis based orthonormal wavelets is to trans-
form a Riesz basis of the form

S := {g(· − k)}k∈Z

to an orthonormal basis for the same space by switching to a new improved generator
given by ϕ̂ = ĝ/√pg, with pg = ∑k∈Z |ĝ(· − k)|2. One can show that c1 ≤ pg(ξ) ≤ c2
for two positive constants c1 and c2, so the tranformation is actually carried out by

the bounded and bijective multiplier operator on L2(R) defined by f → ( f̂√pg
)∨. In

particular, the old Riesz basis S and the new orthonormal basis generated by ϕ are
equivalent bases.

Next we study what happens if the starting point S is ”only” a conditional Schauder
basis and we are restricted to transforming the system by a bounded and invertible
multiplier operator on L2(R). It is clearly not possible to transform such a basis to
an orthonormal system by a bounded and bijective map since a conditional basis can
never be equivalent to an unconditional one, but we will demonstrate that improve-
ment on the original basis can still be obtained. We have the following result.

Theorem 3.8. Let ψ ∈ L2(R) with periodization function pψ ∈ A2(T). Suppose pψ satisfies
dist(ln pψ, L∞) = 0. We let E be given by (1.1). Then we have

i. If ln pψ ∈ L∞(T) then E forms a Riesz basis for 〈ψ〉.
ii. If ln pψ 6∈ L∞(T) then for every η > 0 there exists b ∈ L∞(T) such that Ẽ = {ϕ(· −

k)}k, with ϕ̂ := ψ̂

eb , forms a Schauder basis for 〈ψ〉 with Schauder basis constant at
most 3 +O(η). The Schauder bases E and Ẽ are equivalent.

Proof. For (i) we immediately obtain positive constants c1, c2 such that c1 ≤ pψ(ξ) ≤ c2
for ξ ∈ T. Then the Schauder basis property then follows from a standard result, see
e.g. [17].

For (ii), we let η > 0 be given, where we may assume η � 1. We pick b ∈ L∞

such that ‖ ln pψ − b‖BMO(T) < η. It follows from the John-Nirenberg inequality, by
exponentiating, that [pψe−b]A2(T) = 1 + O(η). The best possible constant for this
estimate is studied in [12]. It now follows from [18] that the Riesz projection P+ onto
H2 for f ∈ L2(T; pψe−b) has norm 1 +O(η). As is well-known, we can write for any
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f ∈ L2(T; pψe−b),

S2N+1( f ) =
N

∑
k=−N

f̂ (k)e2πik· = e−2πiN·P+(e2πiN· f )− e2πi(N+1)·P+(e−2πi(N+1)· f ),

so ‖S2N+1‖ ≤ 2 +O(η), N ∈ N. This takes care of partial sums with an odd number
of terms.

Finally we notice that S2N+2 = S2N+1 + 〈 f , ẽ−N−1〉e−N−1, with ẽk = ek
pψeb and 〈·, ·〉

the standard inner product on L2(T). The linear operators f 7→ 〈 f , ẽk〉ek are uniformly
bounded on L2(T; pΨ) and their operator norms are given by

‖ek‖L2(T;pψe−b) · ‖ẽk‖L2(T;pψe−b) =

√∫

T
pψ(ξ)e−b(ξ) dξ ·

√∫

T

1
pψ(ξ)e−b(ξ)

dξ

≤ [pψe−b]1/2
A2

= 1 +O(η),
for every k ∈ Z. Hence, we have the bound ‖SN‖ ≤ 3 +O(η) for any N ∈N∪ {0}.

The equivalence of E and Ẽ follows immediately from the fact that the multiplier
operator f → (e−b f̂ )∨ on L2(R) is bounded and bijective since e−b, eb ∈ L∞(T). �

3.2. Convolution roots and powers. The Garnett-Jones formula (see Theorem 3.3)
shows that an A2(T)-weight w remains in A2(T) for any power less than 1/ε(ln w) �
1/dist(ln w, L∞). In this section we propose one interpretation of this fact related to
stability of Schauder bases of integer translates under certain “convolution powers”
of the Schauder basis generator ψ.

For ψ ∈ L2(R) we formally define the convolution powers of ψ by

ψ(1) := ψ, ψ(2) := ψ ∗ ψ(1), . . . , ψ(k+1) := ψ ∗ ψ(k), . . . .

The convolution Nth root of ψ denoted by ψ(1/N) is defined by ψ̂(1/N)(ξ) := |ψ̂|1/N(ξ),
ξ ∈ R. We notice that the “power and root” operations are not, in general, bounded
on L2(R), so we can only perform these mappings on “nice” ψ.

We now focus on bandlimited ψ ∈ L2(R). Suppose there exists K ∈ N such that
Supp(ψ̂) ⊆ [−K, K]. Notice in particular that

pψ(ξ) := ∑
k∈Z

|ψ̂(ξ − k)|2 = ∑
k∈Fξ

|ψ̂(ξ − k)|2,

with Fξ = {k ∈ Z : ψ̂(ξ − k) 6= 0}. By the assumption on the support of ψ̂ we deduce
that #Fξ ≤ 2K + 1 for a.e. ξ ∈ T. For 0 < β < ∞ we use the equivalence of any two
norms on R2K+1 to obtain constants cβ

1 , cβ
2 such that

(3.6) cβ
1 pβ

ψ(ξ) = c1

(
∑

k∈Fξ

|ψ̂(ξ − k)|2
)β
≤ ∑

k∈Fξ

|ψ̂(ξ − k)|2β ≤ cβ
2 pβ

ψ(ξ), a.e.

The estimate (3.6) can be used to deduce the following result.
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Proposition 3.9. Let ψ ∈ L2(R) be bandlimited and suppose that the periodization function
pψ ∈ A2(T). Define ε = ε(ln pψ) := inf{λ > 0 : [p1/λ

ψ ]A2 < ∞}. Then

i. For any N ∈N, ψ(1/N) generates a Schauder basis for 〈ψ(1/N)〉.
ii. Suppose ε > 0. Then for N ∈ N such that N < ε−1, the convolution power ψ(N)

generates a Schauder basis for 〈ψ(N)〉.
iii. If ε = 0 then the convolution power ψ(N) generates a Schauder basis for 〈ψ(N)〉 for

any N ∈N.

Proof. For (i), we notice that the periodization function for ψ(1/N) is given by

pψ(1/N)(ξ) = ∑
k∈Z

|ψ̂(1/N)(ξ − k)|2 = ∑
k∈Z

|ψ̂(ξ − k)|2/N.

Using (3.6) we immediately obtain that uniformly for a.e. ξ ∈ T,

pψ(1/N)(ξ) � p1/N
ψ (ξ).

However, since pψ ∈ A2(T) we also have p1/N
ψ ∈ A2(T) according to Lemma 2.2 and

the result follows.
For (ii) and (iii) the proofs are very similar. We use fact that ψ̂(N)(·) = ψ̂N(·) to

obtain
pψ(N)(ξ) � pN

ψ (ξ).

Then we notice that pN
ψ ∈ A2(T) for N < ε−1 in case ε > 0 [or that pN

ψ ∈ A2(T) for
any N ∈N when ε = 0]. �

4. DEMOCRATIC SCHAUDER BASES OF INTEGER TRANSLATES

A Schauder basis B = {en}n∈N for a Hilbert space H is said to be democratic if
there exists C > 0 such that

(4.1)
∥∥∥ ∑

k∈Γ
ek

∥∥∥
H
≤ C

∥∥∥ ∑
k∈Γ′

ek

∥∥∥
H

,

for all finite sets Γ, Γ′ ⊂ N with the same cardinality. It is known that for democratic
Schauder bases in a Hilbert space, we necessarily have the uniform estimate (see [7,
20])

(4.2)
∥∥∥ ∑

k∈Γ
ek

∥∥∥
H
�
√
|Γ|, Γ ⊂N.

Democratic systems of integer translates E as defined by (1.1) were studied in [7]. It
was shown in [7, Theorem 4.7] that for a democratic system E there is a finite constant
B such that pψ(ξ) ≤ B a.e. In particular, if E is a democratic system then the dual
system Ẽ is a Besselian system. Moreover, for a democratic system E , it follows from
Lemma 2.2.(b) that pψ ∈ A1(T) implies pψ, 1/pψ ∈ L∞(T), which is equivalent to E
being a Riesz basis.
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We now improve the result given by Theorem 3.4 in the case we have a democratic
system. The Lorentz sequence space `2,1(Z) is defined by

(4.3) ‖{ck}k‖`2,1(Z) :=
∞

∑
m=1

|c?m|
m1/2 < ∞.

where {|c?k |}k denotes a decreasing rearrangement of {ck}k. If we let Λj = {k : |c?k | ≥
2−j} then it can be shown that

‖{ck}k‖`2,1(Z) �∑
jZ

2−j|Λj|1/2,

see [2].

Proposition 4.1. Suppose E defined by (1.1) is a democratic Schauder basis of integer trans-
lates. Then we have the continuous embedding `2,1(Z) ↪→ C(B), i.e., there exists a constant
C such that ∥∥∥ ∑

k∈Z

ckTkψ
∥∥∥

L2(R)
≤ ‖{ck}k‖`2,1 .

Proof. An extremal point argument (see [7, Lemma 4.6]) shows that for any finite set
Λ ⊂ Z, and any set of coefficients {ck}k∈Z,

∥∥∥ ∑
k∈Λ

ckTkψ
∥∥∥

L2(R)
≤ max

k∈Λ
|ck| max

εk∈{−1,1}

∥∥∥ ∑
k∈Λ

εkTkψ
∥∥∥

L2(R)
≤ C max

k∈Λ
|ck||Λ|1/2.

Let f = ∑k∈Z ckTkψ be any finite expansion and denote by Λj = {k : |c?k | ≥ 2−j},
where {c∗k}k is a decreasing rearrangement of {ck}k performed by the index-permutation
π : Z→ Z. We have

‖ f ‖L2(R) =

∥∥∥∥
∞

∑
j=−∞

∑
k∈Λj\Λj−1

c?k Tπ(k)ψ

∥∥∥∥
L2(R)

≤
∞

∑
j=−∞

∥∥∥∥ ∑
k∈Λj\Λj−1

c?k Tπ(k)ψ

∥∥∥∥
L2(R)

≤ ∑
j∈Z

C2−(j−1)|Λj\Λj−1|1/2

≤ C̃ ∑
j∈Z

2−j|Λj|1/2

≤ C′‖{ck( f )}‖`2,1 .

The claim now follows. �

We can now combine Thorem 3.4 and Proposition 4.1.

Corollary 4.2. Let ψ ∈ L2(R) and suppose that the periodization function pψ ∈ A2(T).
We let C(E) denote the coefficient space associated with the Schauder basis E = {ψ(· − k)}k
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for 〈ψ〉. Define ε = ε(ln pψ) := inf{λ > 0 : [p1/λ
ψ ]A2 < ∞}. If E is democratic, then the

following inclusions hold

`2,1(Z) ⊂ C(E) ⊂
⋂

p0<p<∞
`p(Z),

where p0 := 2
1−ε . In particular, when ε = 0,

`2,1(Z) ⊂ C(E) ⊂
⋂

2<p<∞
`p(Z).

Let us complete this article by the following observation. Since in the democratic
case the periodization function pψ is bounded above, it is not difficult to prove, using
the Orlicz theorem on unconditional convergence (see [19]), that infinite linear com-
binations of vectors from our basis will converge unconditionally if and only if the
coefficients belong to `2(Z). Hence, if we have a democratic conditional Schauder ba-
sis of translates, with ln pψ in the closure of L∞ in BMO(T) (see Example 4.3 below),
then the only conditional sums that such bases will produce will consist of sums with
coefficients which are in all `p(Z) spaces, for p > 2, but are not in `2(Z).

Example 4.3. For 0 < a < 1/2, we define ψa ∈ L2(R) by

ψ̂a(ξ) =
χ[0,1)(ξ)√

ln
(

ln(2 + |ξ − a|−1)
) .

It follows that pψa(ξ) = ln
(

ln(2+ |ξ− a|−1)
)−1, ξ ∈ [−1/2, 1/2). A direct calculation

shows that pψa ∈ A2(T), so Ea := {ψa(· − k) : k ∈ Z} forms a Schauder basis for 〈ψa〉,
and by [7, Corollary 4.20] Ea is democratic. We notice that pψa is not bounded from
below so Ea is a conditional Schauder basis for 〈ψa〉. However, by a direct calculation
(see Example 3.2), dist(ln pψa , L∞) = 0 so the coefficient space for Ea is controlled by
`2,1(Z) ⊂ C(Ea) ⊂

⋂
2<p<∞ `p(Z).
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[16] M. Nielsen and H. Šikić. Quasi-greedy systems of integer translates. J. Approx. Theory, 155(1):43–
51, 2008.
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