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AN ABSTRACT FOR THE THESIS OF 

MELISSA SIMPSON, for the Master of Science degree in Plant Biology, presented on 
October 15, 2009 at Southern Illinois University Carbondale.   

 

TITLE: An Evaluation of Hibiscus moscheutos ssp. lasiocarpos and Ipomoea pandurata 

 as host plants of the specialist bee, Ptilothrix bombiformis (Apoidea: Emphorini) 

and the role of floral scent chemistry in host-selection. 

MAJOR PROFESSOR:  Dr. Sedonia Sipes 

 

Ptilothrix bombiformis (Hymenoptera: Apoidea) is a specialist bee belonging to 

the tribe Emphorini.  The emphorine phylogeny suggests that Convolvulacea is the 

ancestral plant family and independent evolutionary host-switches to several unrelated 

plant families have occurred.  The role of floral scent has been well-characterized in 

pollination systems involving moths, butterflies, bumblebees, and honeybees, but little is 

known about how specialist bees mediate host selection, or how host-choice evolved in 

specialist bees.  This research investigates the role of floral scent in host selection by P. 

bombiformis.  Ptilothrix bombiformis has traditionally been classified as a Hibiscus 

(Malvaceae) oligolege.  My research shows that it can now be placed into a more detailed 

dietary classification as an eclectic oligolege because it also collects pure pollen loads 

from a distantly-related plant, Ipomoea pandurata (Convolvulaceae).  Using dynamic 

headspace sampling and gas chromatography-mass spectrometry, I obtained floral 

chemical profiles for Hibiscus moscheutos ssp. lasiocarpos and Ipomoea pandurata.  

Both flowers contain aliphatics, aromatic compounds, monoterpenes, and sesquiterpenes.  
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The host flowers have 14 shared compounds in their floral scent, which may be 

responsible for the bees’ ability to recognize and utilize I. pandurata, a member or the 

emphorine ancestral host-plant family.  Some of these shared compounds are also found 

in other emphorine host plants and may be responsible for their constraint in host-use.   
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CHAPTER 1 

INTRODUCTION 

Phytophagous Insects and Plants 

Plants and insects have affected each other’s evolution.  Ehrlich and Raven’s 

(1964) classical model of coevolution, generated from their detailed examination of 

butterfly host affinities, suggests a firm evolutionary tie between herbivorous insects and 

plants.  Their theory declares that there is natural selection for mutations in plants that 

produce more or superior toxic chemicals, which moves the plants into a “new adaptive 

zone” and allows them to escape from herbivory.  There is also natural selection for 

mutations in insects conferring resistance to toxins, which would free them from 

competition and allow diversification and radiation.  With coevolution sensu Ehrlich and 

Raven, the plant changes, the insect changes in response to the plant, the plant then 

changes in response to the insect.   

Insect-plant associations are one of the most-studied species relationships in 

biological research (Janz et al., 2001).  One of the most interesting aspects to insect-plant 

interactions is the variation in diet breadth displayed by the insects.  Herbivorous insects 

range from generalist feeders to specialist feeders (Favret and Voegtlin, 2004), with host-

plant specializations dominating over generalized feeding (Schoonover et al., 2007).  The 

majority of phytophagous insects are either oligophagous, meaning they feed on a few 

closely related plants, for example within a single family (Favret and Voegtlin, 2004), or 

monophagous meaning they feed on one host species.  More than 70% of phytophagous 

insect species specialize on one or a few chemically similar plant genera (Labandeira et 
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al., 2002).  In contrast, polyphagous insects feed on many distantly-related host taxa.  

Research has shown that polyphagous insects evaluate the nutritional quality of a host 

plant and can make choices of which plants are most suitable for feeding or oviposition 

based on nutritional quality (Bernays, 2001).  Insect herbivores may show variation in 

diet breadth to increase foraging efficiency to ensure they choose high-quality hosts in a 

minimal amount of time (Bernays, 2001; Strickler, 1979).   

The ability of an insect to specialize is constrained by a number of factors, 

including insect morphology, physiology, and ecology.  Specialists must have 

morphological features that allow them the ability to utilize the particular botanical 

resource they are specializing on.  Specialized insects are often more efficient feeders 

than generalists (Bernays and Funk, 1999).  Specialized insects must possess the neural 

ability to detect their host plant, either chemically, visually, or by tactile means.  These 

factors are important factors underlying host selection, but do not address the more 

difficult question of what evolutionary reasons underlie the specialist strategy.   

Why Insects Specialize 

The preponderance of specialist to generalist insects creates an interesting pattern 

that impels scientists to examine why and how insects specialize on a particular host 

plant, and how these particular affinities arose through plant and insect evolution.  There 

are several proposed and well-studied reasons why insects are specialized feeders.  Some 

studies have shown that predator avoidance and competition may also influence host 

choice (Larkin et al., 2008).  Host specialization may function as niche partitioning by 

reducing competition by feeding on different plant structures, feeding at different times 

of day, feeding at different times in the season, and feeding on particular plant species at 
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a certain life-stage in a holometabolous insect’s life cycle.  The host plant serves as a 

reliable meeting place when males are searching for mates, so specialization may 

increase fitness by making mates easier to find (Praz et al., 2008).   

Finally, it should be noted that specialization may not be adaptive at all, but may 

represent an ancestral condition in some insect taxa.  The ability to exploit a new host 

plant may be constrained by olfaction, vision, behavior, or morphology of the insect, and 

by the chemical, visual, physical, and other ecological attributes of potential host plants 

plant (Lopez-Vaamonde et al., 2003). 

Evolutionary Investigations of Insect Host-Use 

Molecular systematics has opened the door to a whole new approach to 

investigating plant-insect associations, allowing researchers to evaluate and understand 

the underlying mechanisms of host selection by herbivorous insects within a phylogenetic 

framework.  Robust phylogenies are now feasible to obtain, and can be used to track 

insect host-use through evolutionary time, and elucidate causes of speciation, host-

switching, and character evolution in insect lineages.   

Species-level insect phylogenies have become an important tool for scientists to 

evaluate insect host use and insect speciation over evolutionary time (Jordal and Hewitt, 

2004; Futuyma and Mitter, 1996; Sipes and Tepedino, 2005).  Evaluating evolutionary 

patterns of host choice in insects requires that the following information is available: 1) 

host-plant associations of the insect, 2) phylogeny of the insect, and 3) phylogeny of the 

plants (Patiny et al., 2008).   

As phylogenies have become a key component in understanding plant-insect 

associations, most phylogenetic examinations of phytophagous insects show that closely 
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related insects have a propensity to utilize the same or closely-related host plants 

(Futuyma and Mitter, 1996), but that in contrast to Ehrlich and Raven’s (1964) model, 

cospeciation is rare, and insects often can switch hosts to distantly related plants (e.g.  

Jermy 1984; Favret and Voegtlin, 2004; Sipes and Tepedino, 2005).   

Bees: Generalists vs.  Specialists 

Bees (superfamily Apoidea) are herbivores because their larvae are reared on 

pollen and other floral resources (Michener, 2000).  Bees vary greatly in their biology, 

lifecycle, and ecological interactions.  Highly eusocial bees, such as the well-known 

honeybee, live in perennial colonies that contain thousands of bees at any given time.  A 

colony consists of an egg-laying queen and many sterile female workers that are 

responsible for foraging, brood care, and guarding the colony (Michener, 2000).  

Bumblebees also live in colonies with a division in labor between the queen and workers, 

but their colonies are annual, starting over when a new generation emerges.   

In contrast to the social lifestyles of honeybees and bumblebees, most bees are 

solitary, meaning a single female excavates a nest, lays her egg(s), and collects pollen 

and nectar provisions for her larvae without any cooperation from other bees (Michener, 

2000).  Solitary bee nests are often found in aggregations, but each nest is occupied by a 

single female.   

All bees depend on pollen because it provides them with all the necessary 

proteins, lipids, and other nutrients that are critical for their growth and survival (Dobson 

and Peng, 1995).  In solitary bees, pollen is the principal food source for the developing 

larvae while adults consume it only to some extent (Dobson and Peng, 1995).   
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Like other phytophagous insects, the 18,000 known bee species show great 

variation in their diet breadth.  Generalist bees, including the well-studied honeybees and 

bumblebees, are termed polylectic, meaning they collect pollen from a wide range of 

unrelated host plants, while specialist bees that feed on a few closely-related plants are 

termed oligolectic (Linsley, 1958).   Monolecty (using just one species for pollen) is rare, 

and generally represents cases in which a specialist bee uses a host plant that has no 

sympatric relatives (Linsley, 1958); therefore, the term specialist is functionally 

synonymous with oligolege with respect to bees.  All of the social taxa of bees are 

generalists, whereas solitary bees can be generalists or specialists, 

The behavior of oligolectic bees differs from that of honeybees in that they only 

collect pollen from a subset of the pollen hosts available to them in the community.  

Presumably, oligolecty represents a genetically “hard-wired” trait, perhaps arising from 

limited neural or olfactory abilities (Praz et al., 2008).  The only experience a newly 

emerged oligolectic bee has with the appropriate host-plant pollen source is from the 

pollen that was provisioned for it during larval development (Linsley, 1958).  Therefore, 

it is also possible that conditioning during larval development may play a role in host 

recognition in adult specialist bees, if specific pollen chemicals present in larval food 

affect the adult’s behavior and/or olfaction (Linsley, 1958; Dobson, 1987).   

Host-Plant Detection by Bees and Other Pollinators 

Bees and other insect pollinators recognize their host through visual or olfactory 

cues or a combination of the two (Hill, 1977), making flower color, size and shape, as 

well as the strength of volatile emissions important to the perception of their pollinators 

(Kevan, 2005).  At any stage in host plant selection, visual, tactile, olfactory, and 
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gustatory stimuli may act in cooperation, with the relative significance of each depending 

on each specific plant-insect interaction (Dobson and Bergstrom, 1999).  Wright et al. 

(2004) found that honeybees were able to discriminate among the scents of different 

cultivars of snapdragons.  Research shows that honeybees and lepidopterans use floral 

scent to recognize food-rewarding flowers during foraging (Anderson and Dobson, 2003; 

Wright et al., 2004).  For bees, color is the main stimulus used at a distance, but olfactory 

stimuli become increasingly important at closer range, allowing discrimination between 

plant species (Dobson et al., 1996; Majetic et al., 2007).  In naïve honeybees and 

bumblebees, odors are learned more rapidly and with greater retention than colors 

(Dobson and Bergstrom, 1999), but experienced honeybees seem to rely less on floral 

aroma and more on visual cues during foraging (Dobson, 1987). 

Recent studies have shown that visual and olfactory cues function synergistically 

to attract insect pollinators (Majetic et al., 2007).  Floral signals can include the size and 

shape of the flower, spectral (including UV) reflectance, or a suite of chemicals given off 

by particular plant taxa (Bernays, 2001).  Learning of visual cues during foraging 

increases the bees’ discrimination between plant species.  Although visual cues are less 

species-specific, they tend to be more consistent than floral odors, which tend to fluctuate 

due to environmental influences and the aging of the flower (Dobson, 1987).  

Alternatively, some flowers may appear similar at long distances, but can be 

differentiated at close range by their unique floral scent (Roy and Raguso, 1996).  

Specifically, odors from the pollen can influence bee foraging by providing guidance to 

the pollen source, discriminating flowers with different amounts of pollen, and host-plant 

recognition by specialist bees (Dobson and Bergstrom, 1999).   
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The Role of Floral Scent in Host Detection  

Studies of floral scents are important to better understand the chemical basis of 

plant-animal interactions and pollination ecology (Flamini et al., 2003).  The ability of 

insects to discriminate among scents may depend on both, the intensity and the ratios of 

specific volatiles, as well as the unique mixture of all the volatiles together (Wright et al., 

2004; Dudareva and Pichersky, 2000).  Floral fragrances vary greatly among species in 

terms of the number and amount of volatile compounds present (Dudareva and Pichersky, 

2000).  Investigations using dynamic headspace sampling, coupled with GC-MS, have 

revealed that most floral scents are a complex mixture of small (100-250 D) volatile 

molecules containing fatty-acid derivatives, terpenoids, nitrogen-containing compounds 

and sulfur-containing compounds, that are dominated by sesquiterpenoid, 

phenylpropanoid, and benzoid compounds (Dudareva and Pichersky, 2000; Dobson et al., 

2005).  All parts of a flower produce volatiles, especially the petals, but in some species, 

the stamens or carpels make significant contributions to the overall floral scent (Dobson 

et al., 2005).  Pollen volatiles have been implicated in the host-plant selection of several 

pollen-feeding insects, with most evidence coming from the studies of honeybees and 

bumblebees (Dobson and Bergstrom, 2000; Linsley, 1958).  In contrast, Dobson (1988) 

found that plants that rely on animals seeking nectar, rather than pollen, as is the case 

with hummingbirds and Lepidopterans, tend to have a pollenkitt (the oily coating on 

pollen grains) with relatively few lipids, therefore less conspicuous chemical cues than 

bee-pollinated flowers.  This may possibly be because bees collect both nectar and 

pollen, so it is imperative that both floral resources have the ability to attract their 

pollinators.  Dynamic headspace sampling of 17 different hummingbird-pollinated 
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species revealed the flowers to be truly scentless, supporting the common opinion that 

odor plays no role in bird-pollinated flowers (Knudsen et al., 2004).    

Evolutionary History of Host Choice in Bees  

Phylogenetic studies have shown that polylecty in bees can arise from oligolecty 

(Müller et al., 1996; Larkin et al., 2008).  In fact, a robust family-level phylogeny of all 

bees shows there is a basal assemblage of mostly-oligolectic taxa, suggesting that 

oligolecty may be the ancestral condition for the bees (Danforth et al., 2006).  Oligolectic 

bees may be neurologically or chemically constrained to the hosts they can use, thus 

sometimes preventing them from evolving to a generalist diet (Sedivy et al., 2008).  

These neurological constraints may explain why, when host-switching does occur, it is 

often to related plants that may be similar in morphology, color, and/or chemistry (Sedivy 

et al., 2008).  Oligolectic species may have relatives that feed on distantly-related plant 

families (Sipes and Wolf, 2000; Sipes and Tepedino, 2005), but any given species may be 

restricted in how it can exploit the resource (Wcislo and Cane, 1996).  In order to 

evaluate how and why host-switching may occur, it is important to understand and 

identify what chemical and visual signals are used to attract a pollinator to potential host-

plants. 

Host Selection and Host-Use of Ptilothrix bombiformis 

Although the role of floral scent and visual cues has been well-characterized in 

pollination systems involving moths, butterflies, bumblebees, and honeybees, 

surprisingly little is known about how specialist bees mediate host selection, or how host-

choice evolved in specialist bees.   
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 Ptilothrix bombiformis (Hymenoptera: Apoidea) is a specialist bee belonging to 

the tribe Emphorini (Michener, 2000).  It is a solitary ground-nesting bee that is 

considered oligolectic, meaning it only collects pollen from a few closely-related plants 

(Linsley, 1958; Sipes and Tepedino, 2005).  Phylogenetic studies indicate that 1) 

Emphorini is monophyletic and 2) Convolvulaceae is their ancestral host plant family 

(Sipes and Wolf, 2001; Sipes and Tepedino, 2005).  Through evolutionary time, some 

Ptilothrix species radiated onto other host plants, including hosts in Malvaceae (Sipes and 

Tepedino, 2005).  The tribe Emphorini has undergone independent evolutionary host 

switching to taxa in the same 5 or so plant families (Figure 1), but no research has been 

done to determine the proximate factors involved in host choice of these bees.  A 

comparative analysis of floral volatiles in this bee’s host plant may improve our 

understanding of how host choice has evolved in these bees.   

Ptilothrix bombiformis and its primary host plant, Hibiscus moscheutos, are both 

native to southern Illinois.  Here and elsewhere in its range, P. bombiformis has been 

observed also visiting flowers of Ipomoea pandurata, a taxon that is used by other 

emphorines (e.g. Melitoma spp.) and that is in the same plant family as the proposed 

ancestral emphorine host.  Moreover, the resemblance of these particular species of 

Hibiscus and Ipomoea flowers to one another was so striking that it intrigued me to 

investigate why the specialist bees would deviate from Hibiscus and also examine the 

Ipomoea flowers.   

The objectives of my project are to: 1) quantify pollen host preferences of P. 

bombiformis using behavioral data and scopal pollen analysis 2) obtain and compare 

chemical profiles for the floral scents of Hibiscus moscheutos ssp. lasiocarpos and 
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Ipomoea pandurata in order to evaluate the potential role of scent in P. bombiformis host 

recognition.  My hypotheses are: 1) P. bombiformis uses both plants for floral resources 

and 2) Hibiscus moscheutos ssp. lasiocarpos and Ipomoea pandurata share some 

sesquiterpene compounds in their floral scent.   

I hypothesize that both plants may be used as pollen and nectar hosts and that 

these two plants may have a similar chemical composition for several reasons.  

Emphorini has a convolvulous ancestral host plant.  Ptilothrix and at least three other 

emphorine bee taxa have switched independently to malvaceous hosts.  If specialist bees 

have narrowly-limited abilities to recognize host plants, then evolutionary host-switching 

events may be constrained by host chemistry.  Therefore, these plants may share 

chemical attributes that facilitated the evolutionary host switches.  Sesquiterpenes 

dominate the floral scent of bee-pollinated flowers, therefore making it likely that these 

compounds may be responsible for attracting this specialist pollinator.  
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CHAPTER 2 

MATERIALS AND METHODS 

Study System 

The host-pollinator relationship of interest for this study is Hibiscus moscheutos 

ssp. lasiocarpos (Malvaceae) and its specialist bee Ptilothrix bombiformis.  I have 

observed P. bombiformis utilizing floral resources from Ipomoea pandurata 

(Convolvulaceae), which is not the preferred host plant for P. bombiformis, but is closely 

related to hosts of other emphorine bees.  I examined one potentially important aspect of 

host selection in this system: floral chemistry.   

Pollination ecology literature documents that flower size, shape, scent, color, 

motion, and pattern correspond to the sensory capabilities of pollinators (Guldberg and 

Atsatt, 1975).  Both H. moscheutos and I. pandurata look similar to the human eye in 

terms of their size, shape, color, and pattern, which leads me to believe that they are 

perceived as visually similar by the bees.  However, the role of floral scent in host 

selection by P. bombiformis is unknown.  A chemical profile is needed for both plants to 

determine what floral scent compounds could potentially attract this Hibiscus specialist to 

both flowers.  Qualitative comparison of the plants’ floral odors, together with 

information from the chemical ecology literature, may highlight specific compounds or 

combinations of compounds that may be important in bees’ host plant selection.   

The Host Plants 

 Hibiscus moscheutos is a self-compatible herbaceous perennial native to fresh 

and brackish marshes of the eastern United States (Snow and Spira, 1993).  Individual 

plants produce many shoots that grow 1-2 meters tall that emerge from a large, woody 
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rootstock each spring (Snow and Spira, 1993; 1995).  The plants are in bloom July 

through September (Mohlenbrock, 2002) and individual flowers are only open for a 

single day (Snow and Spira, 1991).  Anthesis occurs in early morning and flowers 

generally close by late afternoon or evening (Spira, 1989).  Flowers are l0-15 cm in 

diameter with a corolla that is usually white or pale pink with a conspicuous red nectar 

guide at their base (Spira, 1989).   

Ipomoea  pandurata is a herbaceous perennial vine commonly found along 

roadsides, fence rows, fields thickets, and disturbed areas (Mohlenbrock, 2002; Stucky 

and Beckmann, 1982) and blooms June through October (Mohlenbrock, 2002).  

According to the USDA NRCS Plants Database, this plant’s range includes southern 

Ontario south to the Gulf Coast and the Atlantic Ocean west to Nebraska.  The USDA 

lists it as a state threatened plant in Michigan and a state endangered plant in New York.  

Its flowers are erect, funnelform corollas up to 8cm long and 10 cm broad at the apex, 

supported on stout, ascending peduncles that exceed the petioles.  The corolla is white 

with a maroon center (Stucky and Beckman, 1982).  Stucky and Beckman (1982) found 

that anthesis occurred between 2:00 AM and 4:00 AM and the flowers begin to wilt and 

collapse 6-8 hours later.    

The Specialist Bee 

 Ptilothrix bombiformis (Cresson) is a solitary, specialist bee belonging to the 

tribe Emphorini.  All emphorine species for which host-plant affinities have been studied, 

including Ptilothrix species, are specialists, typically collecting pollen from a single host 

genus or several related genera.  Solitary bees are most diverse in warm, arid climates 

and usually nest in the ground (Linsley, 1958).  Female Ptilothrix collect water to 



13 
   

moisten the hard-packed soil while excavating burrows (Linsley et al., 1956; Michener, 

2000).  Emphorine bees place their egg on the ventral surface of a dry, convex pollen 

mass that is used to nourish the larvae during development (Rust, 1980).  The emphorine 

larva is unusually elongate and curls around the pollen mass, eating its way around.  

When feeding is complete, the larva deposits a layer of fecal material that covers the 

entire interior of the cell, and then covers itself in a cocoon.  The layer of feces appears as 

a layer of pollen exines without recognizable fecal pellets, which is a unique emphorine 

characteristic (Michener, 2000).   

 Ptilothrix (Smith) is an amphitropical genus (Michener, 2000).  Its North 

American range extends from New Jersey to Kansas, south to Florida, Texas, and 

Arizona, USA and to Oaxaca, Mexico (Michener, 2000).  Its South American range 

extends from Para, Brazil, south to Bolivia, Paraguay, and Cordoba and Entre Rios 

provinces, Argentina (Michener, 2000).   The only species of eastern North America, 

Ptilothrix bombiformis (Cresson), is an oligolectic visitor of Hibiscus (Michener, 2000).   

It nests in hard-packed roadways and levees in close proximity to water sources (Rust, 

1980).  Females alight on the water’s surface to collect water that is used to soften the 

soil while excavating her nest (Linsley et al., 1980; Rust, 1980; Michener, 2000).  Nests 

are vertical and usually one or two-celled and each cell contains an egg and a pollen 

provision (Rust, 1980).  The rapid-developing larvae continually move around the pollen 

mass while feeding and over-winters as a post-defecating larvae (Linsley et al, 1956; 

Rust, 1980).   Female Ptilothrix construct and provision several nests during one season 

(Rust, 1980).  Mating behavior involves male bees resting in Hibiscus flowers, waiting 
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for foraging females, and males will also fly from blossom to blossom in search of a 

female.   

Study Sites 

  My primary study sites were in the Shawnee National Forest in Oakwood 

Bottoms Greentree Reservoir and Gorham Tract in Jackson County, southwest of 

Carbondale, Illinois (Table 1).  I collected additional females for scopal pollen analysis at 

three additional sites along Crab Orchard Lake where H. moscheutos grew along the 

shoreline. 

 Populations of H. moscheutos and I. pandurata occur along roadsides and flooded 

ditches in Gorham Tract and the Big Muddy levee in Oakwood Bottoms.  H. moscheutos 

ssp. lasiocarpos is prevalent throughout Oakwood Bottoms along ditches and also in 

annually flooded levied parcels.  Both sites are part of the Mississippi River and Big 

Muddy River floodplains and are predominantly bottomland hardwood forests due to 

their close proximity to both rivers and the presence of a high water table.  These site 

conditions provide little drainage relief and there is often standing water present 

throughout much of the growing season.  Oakwood Bottoms is an oak-hickory dominated 

ecosystem, with willow (Salix spp.) and eastern cottonwood (Populus deltoides) 

established along the Big Muddy River.  Tall fescue (Schedonorus phoenix) and Johnson 

grass (Sorghum halepense) are the dominant grasses along the levees and I have 

identified 33 different forbs in my study sites (Table 2).  I collected and pressed all the 

flowering species that were present and blooming in my field sites and a voucher of each 

species is catalogued in the Southern Illinois University Carbondale Herbarium in the 

Department of Plant Biology. 
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These bottomland forests were drained by a series of channels in the early 1900s 

and were in intensive agriculture until it was bought by the federal government as part of 

the National Forest System.  Oakwood Bottoms was acquired by the U.S.  Forest Service 

in the 1930s and has been managed since 1964 as a public waterfowl hunting area 

(Phillipe, 1995).  The reservoir site is flooded during the fall to provide waterfowl habitat 

and is drained before the onset of the growing season.  Because the Big Muddy River 

levee prevents natural flooding of this site, flooding is accomplished by pumping water 

from the Big Muddy River into the managed units.   

Quantifying Host Preference of P. bombiformis 

 I quantified host preference of P. bombiformis in two ways:  1) by observing 

foraging choices of both females and males at a site where both host plants were present 

and 2) by identifying pollen collected by foraging females.  Most observation and 

collection efforts were focused on the morning and early afternoon, as host flowers of 

both species are closed by mid-afternoon (Spira, 1989; Stucky and Beckman, 1982).  I 

observed and collected floral visitors from July 19, 2008 through September 25, 2008.  P. 

bombiformis was easily distinguishable in the field from other large robust bees visiting 

H. mosheutos (Bombus spp.  and Xylocopa virginica).  Males and females of P. 

bombiformis were distinguishable in the field because males are less robust than females 

and lack the easily-visible scopal hairs of females.    

Visitation rates were observed at the Big Muddy Levee site because there were 

large populations of both plants growing intermingled with each other, therefore this site 

provided the potential for Ptilothrix to choose either plant species for floral rewards.  

Foraging bees were observed for 30 minute periods by one to three observers.  A single 



16 
   

bee was followed for as long as possible and the number and species of flowers it visited 

was recorded.   Because Ptilothrix was very abundant at this site and distinguishing 

individual bees with certainty was not feasible, each bee encountered was assumed to be 

a new individual.  Observations were recorded for 55 individuals. 

I also experimented with Hibiscus syriacus (Rose of Sharon) to see if Ptilothrix 

reacted differently to a cultivated host when it was presented along with its natural host, 

H. moscheutos.  H. syriacus flowers are light pink with a red center or white with a red 

center (both colors occurring on one bush) and have a slightly smaller diameter than H. 

moscheutos.  I placed picked H. moscheutos flowers alongside H. syriacus flowers in a H. 

syriacus bush.  I also picked and placed H. syriacus flowers to serve as a control.  I 

recorded visits to all the flowers within my field of view for a total of 4 man-hours.  I also 

placed picked H. syriacus flowers in with naturally-occuring H. moscheutos (Figure 3).  I 

also picked and placed H. moscheutos flowers to serve as a control.  I recorded visits to 

all flowers in my field of view for 1 man-hour. 

I opportunistically collected foraging bees using insect nets and euthanized them 

in cyanide kill jars.  I collected a total of 56 pollen-bearing female P. bombiformis that 

were foraging both H. moscheutos ssp. lasiocarpos and I. pandurata.  Insect specimens 

were databased and deposited in the Southern Illinois Pollinator Collection, Department 

of Plant Biology, Sipes Laboratory, at Southern Illinois University Carbondale in 

Carbondale, Illinois 62901.   

Using a clean insect pin, I removed pollen from within the tibial scopal hairs of 

one leg, leaving the other scopal load intact for future research needs.  I scraped the 

pollen onto a clean microscope slide and placed one drop of 70% ethanol onto the slide to 
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remove some of the oily pollenkit, making the exine morphology more distinguishable.  I 

mounted the pollen in glycerine jelly containing light basic fuchsin stain (Beattie, 1971).  

I melted the jelly using low heat and covered it with a cover slip.  I analyzed pollen using 

an Olympus BX40 light microscope at 100x magnification (10 x 10).  I characterized 

pollen by type, based on exine morphology and size, and compared them to reference 

slides of pollen from both study species and also other plants present in my study site.  

The Hibiscus pollen grains were 172.5 ± 7.9 µm in diameter, whereas Ipomoea pollen 

grains were 99.0 ± 7.2 µm in diameter, making them easily distinguishable under a light 

microscope. Also, all other pollen grains present in the samples were much smaller and 

shaped differently.  I categorized the pollen as Hibiscus, Ipomoea, or other and identified 

all of the grains on the slide.  The loads were classified as pure if they contained ≥ 90% a 

single species.  A species was considered contamination if it was present in ≤ 10% of the 

sample.   

Whole Floral Scent Collection 

I collected floral volatiles using dynamic headspace sampling technique (Figure 

4).  Dynamic headspace sampling was ideal because it allowed me to collect scent from 

intact inflorescences as it was emitted (Ashman et al., 2005).  This method causes no 

damage to intact flowers, which is important because injury to a plant can cause a change 

in the emission profile due to the release of defensive volatiles at the site of injury 

(Dudareva and Pichersky, 2000).  I followed methods for dynamic headspace sampling 

described by Raguso and Pellmyr (1998), who proposed a standardized method of floral 

scent analysis based on comparisons of different trap sorbents, elution solvents, and flow 

rates.  The results of their experiments revealed that Porapak Q and hexane outperformed 
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other sorbents and solvents, respectively, in quantitative aspects of floral scent trapping 

and elution.   

I collected floral scent in the mornings and early afternoon before the flowers 

closed in mid-afternoon, from July 28- August 29, 2008.   I collected scent directly from 

living flowers at 6 locations within Oakwood Bottoms and Gorham Tract.  I collected 

floral scent from 10 H. moscheutos ssp. lasiocarpos and 10 I. pandurata. I took control 

samples from an empty polyvinylacetate bag that I placed in my collection sites.  I also 

collected scent from a single leaf of each plant species, which I used as controls to 

identify any vegetative volatiles.  For floral scent collection, I covered a single flower 

with a polyvinylacetate bag (Reynolds, Alcoa Consumer Products) and secured the bag 

tightly with a plastic tie.  These bags were determined by Raguso (1998) to produce the 

fewest artificial volatiles while, at the same time, being very economical.  To reduce the 

amount of plastic volatiles released from the bags, the bags were oven-baked at 300°C for 

ten minutes.  During sampling, no foliage was included in the bag.  I cut a small slit in the 

bag to create an opening for the scent collection trap.  The scent trap was constructed 

from a glass Pasteur pipette packed with 10 mg of Super Q adsorbent (80/100 mesh size, 

Alltech Associates, Deerfiled, Illinois, USA) between 2 plugs of glass wool.  I inserted 

the pointed end of the pipette into the plastic tubing connected to the vacuum pump 

(PAS-500 Micro Air Sampler, 40-200 cc/min, Supelco, Bellefonte, Pennsylvania, USA), 

then inserted the other end into the slit in the plastic bag and secured the pipette with a 

plastic tie.  I attached the pump to a tripod to adjust it to the height of the flower, if 

needed.    
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I collected scent for a range of times (1.5 hrs, 1.75 hrs, 2 hrs, 2.5 hrs, 3 hrs, 4 hrs, 

4.5 hrs, and 6 hrs). If the collection time was too brief, compounds in small amounts may 

not show up in analysis.  If collection time was too long, the scent trap may saturate and 

bleed off compounds that are produced in copious amounts.  Although this collection 

method has few replicates per collection time, the range of collection times may overall 

allow for more compounds to be collected from the floral headspace.  This method likely 

increases among-sample variation, but minimizes the chances of missing floral scent 

components across all samples.  When collection was complete, I stored the scent traps 

individually in polyvinylacetate bags and kept them in a small cooler on icepacks while I 

transported them back to the laboratory.  In the laboratory, I eluted the samples with 3 

mL of hexane and stored them in glass vials at -80° C until they could be analyzed by gas 

chromatography-mass spectrometry.   

Floral Scent Analysis 

Gas chromatography-mass spectrometry (GC-MS) is the premier analytical 

technique used for the separation and identification of volatile compounds (McNair and 

Miller, 1997).  GC-MS provides both qualitative and quantitative identification of 

unknown compounds (McNair and Miller, 1997).  The technique for identification of 

floral volatiles using gas chromatography-mass spectrometry follows that described by 

Adams (2007). 

 To prepare the samples for GC-MS analysis, I concentrated my scent samples to 

approximately 200 µL using a flow of nitrogen gas to evaporate the hexane.  Once the 

samples were concentrated, I pipetted the 200 µL sample into silanized polyspring inserts 

within the glass GC-MS vials and securely sealed the caps.   
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 I obtained mass spectra on a Saturn 2100T mass spectrometer, coupled directly to 

a Varian 3900 gas chromatograph, fitted with a J&W DB-5, 30 m x 0.25 mm, 0.25 µm 

coating thickness, fused silica capillary column.  The GC-MS was operated using Adam’s 

Method (Adams, 2007): injection temperature of 220°C, transfer line of 240°C, the oven 

temperature at 60-246°C at 3°C/min, using Helium as a carrier gas (34.96 cm/sec or 1.02 

mL/min at 210°C).  The single injection contained 2 µL of sample using a split ratio of 

1:20.   

Volatiles from 10 individuals of each host species were identified using published 

databases of mass spectra and retention times of known chemicals.  The software used to 

analyze the GC-MS output was the Varian MS Workstation with the NIST Spectral 

Database and Adams Library of Flavors and Oils Retention Times.  I searched each 

individual chromatogram by extraction of fragment ions that are characteristic of 

monoterpenes (m/z 77, 79, 93, 121, 136) and sesquiterpenes (m/z 161, 204). These ion 

searches allowed for clearer examination of the chromatogram by removing common 

contamination peaks and showing possible floral compound peaks.  I used the peaks 

found in the ion searches to determine peak area of each compound.  In my analysis, I 

excluded compounds that were present at similar abundance in the ambient and 

vegetative controls and considered them to be contaminants from the plastic bag, the 

collection apparatus, other floral parts, or the surrounding vegetation.  To determine the 

identity of a compound, I 1) compared the retention time of my compound to known 

retention times and 2) compared the mass spectra to mass spectra of compounds whose 

retention times were close to the retention time of my given chemical.  Using retention 
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time and mass spectra, I determined the identity of all the compounds detected in my 

floral scent samples.  

Data Analyses 

 In order to assess host plant preferences, I calculated the proportion of each plant 

species, H. moscheutos ssp. lasiocarpos and I. pandurata, present in the scopal pollen 

loads from 56 individual P. bombiformis collected at my study sites.  Each pollen load 

was characterized as “pure” H. moscheutos, “pure” I. pandurata, or mixed loads.  

Following the designations of Sipes and Tepedino (2006), scopal loads were considered 

pure if they were 90% or more one taxon; this cutoff allows for various sources of 

contamination (unintentional incorporation of pollen from nectar hosts, contamination 

from common kill vials, etc).  Bees were collected while foraging from both plant 

species.  In order to establish whether or not Ipomoea is a pollen host for P. bombiformis 

(as opposed to only a nectar host) I compared the loads of bees collected from H. 

moscheutos and bees collected from I. pandurata.  If I. pandurata is only being used as a 

nectar source, then both groups of bees would be expected to have predominantly H. 

moscheutos pollen.  Using SAS Institute Inc. © version 9.1 statistical software, I ran a 

one-way ANOVA (analysis of variance) to determine if there was a difference in the 

proportion of the scopal load that was Hibiscus pollen  between bees collected from 

Hibiscus versus bees collected from Ipomoea.  I did not include the “other” pollen 

category in statistical analysis because it is considered contamination in most cases.  The 

proportions of pollen were arcsin transformed to improve normality and α=0.05.   

 Behavioral observations for host plant visitation were recorded for 14 females and 

41 males.  The number of visits to H. moscheutos ssp. lasiocarpos and I. pandurata were 
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recorded for each bee observed.  I used a Student’s t-test to determine visitation rates for 

both males and females to see if they preferred Hibiscus over Ipomoea.  The number of 

visits to each species was square root transformed to improve normality and α=0.05.   

 I compared the floral scents of both species two ways:  I used Chi-Square tests to 

test for presence/absence differences for individual chemicals, and I also used a 

MANOVA (multivariate analysis of variance) to examine quantitative differences among 

chemical groups.  The individual chemicals present in both host flowers were tested as 

present or absent in all of the 10 flowers of each species.  This presence/absence data was 

analyzed in SAS 9.1 using a Chi-Square test to determine if any individual chemicals 

were found in significantly higher amounts in one flower species versus the other.  Due to 

the high number of tests performed (41), I used a Bonferroni adjustment, making α=0.001 

(α=0.05/41).   

 To perform the multivariate analysis, I grouped the chemicals into their chemical 

classes: aliphatics, aromatics, monterpenes, and sesquiterpenes.  This grouping was 

necessary because the high variation in the individual chemicals.  For each individual 

flower, I calculated the percentage each chemical class represented in the total floral 

scent.  I then changed the percentages into proportions, and then proportions to log ratios. 

The log ratios take care of two problems: 1) the lack of normality in proportions and 2) 

the fact that proportions sum to one and are therefore a highly dependent set of variables. 

Using SAS 9.1, I ran MANOVA (multivariate analysis of variance) to determine if there 

was a difference in the proportion of chemical classes present in the floral scent of the 

two host species.  The chemical class proportions were log transformed to improve 

normality and α=0.05.   
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CHAPTER 3 

RESULTS 

Floral Visitors 

All of the following field observations were taken in my 2008 field season.  I. 

pandurata began blooming 2 weeks before H. moscheutos, but both species bloomed 

concurrently in late July.  Male Ptilothrix were first observed on July 19 and females on 

August 9.  These observations are typical of solitary bees; male bees emerge from nests 

before female bees because male eggs are laid last, nearest the entrance to the nest cell. 

During the period without females, male Ptilothrix were observed actively 

patrolling Hibiscus flowers in search of females.  The patrolling flights were 

distinguished from nectaring visits (Figure 5) because the male bees do not stop at the 

flower, they only pause their flight a few centimeters from the flower (Praz et al., 2008).  

Male Ptilothrix would patrol mixed patches of Hibiscus and Ipomoea and stop to drink 

nectar in both flowers.  Males would patrol the same group of Hibiscus and fly by each 

open flower in the same pattern every time it made a round-trip.  Males displayed 

aggressive behavior towards other males who would fly near or land on Hibiscus flowers 

they were repeatedly patrolling.  This aggressive behavior included chasing the other 

away or physically fighting on the flower’s petals until they both fell off.  This 

aggressive, territorial behavior was common among the males in Hibiscus patches, but 

they seemed amicable when they were drinking nectar from Ipomoea.  Often, when the 

temperature was high and the skies were clear and sunny, males would rest in the 

Hibiscus flowers.  Bumblebees were also very abundant on Ipomoea and didn’t seem to 

cause conflict with Ptilothrix males. 
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Female Ptilothrix would drink and collect pollen from Hibiscus and I observed 

them entering Ipomoea to drink nectar and possibly collect pollen, although I never saw 

them actively collecting Ipomoea pollen.  When a female landed on a Hibiscus that was 

already occupied by another female, it would fly away to another unoccupied flower 

without showing any aggressive behavior.   

Other floral visitors were found on both species of flowers.  Xylocopa, Bombus, 

and Melissodes spp. were observed visiting both flowers, but were found much more 

often on Ipomoea than Hibiscus.  Other minor floral visitors included other solitary bees, 

honey bees, flies, wasps, katydids, Japanese beetles, weevils, and butterflies.  All of the 

floral visitors that were captured are deposited in the Southern Illinois Pollinator 

Collection, Department of Plant Biology, Sipes Laboratory, at Southern Illinois 

University Carbondale in Carbondale, Illinois 62901. 

Nesting Behavior 

Females were initially observed displaying nesting behavior on August 16.  

Females at the nesting site would fly very low to the ground and fly in a zig-zag or 

circling pattern in search of their nest or a site to build a nest.  They had no scopal pollen 

loads, indicating that they were constructing their nests and had not yet begun 

provisioning their nests.  Nests were found in aggregations with a 2-3 cm turret built 

around the entrance.  The only nesting site I found contained approximately 20 nests and 

was located in a dirt and gravel parking lot that was approximately 5-10 meters from a 

small pond.  The nests were built in hard-packed soil with sparse vegetation (Figure 6).  

Heavy rainfall on August 23 destroyed any evidence of nests I previously flagged and 

one small aggregation was completely inundated.  On August 28, I saw 7 nests reappear 
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once the ground had dried.  The nesting site experienced heavy rainfall on September 4 

and 5, causing some turrets to collapse into the nest entrance.  I then counted 17 nests.  

Nests were still present on September 11, but no females were seen flying and there were 

only a few Hibiscus still blooming at the nesting site.  On September 18, all Hibiscus had 

dehiscent fruits and no flowers remained.  I observed no bee activity and only saw 3 

nests.   

I observed one female land on the ground, moisten the soil with water from her 

scopal hairs, and begin to dig a small divot out of the soil with her front legs.  She dug for 

3 minutes before flying away.  I watched the same spot for 30 minutes hoping she would 

return to continue the excavation, but she never returned.   

Host Preference 

 I observed that when Hibiscus moscheutos flowers were picked and placed among 

the flowers of Hibiscus syriacus (Rose of Sharon), Ptilothrix would visit the picked H. 

moscheutos flowers just as often as they would intact H. syriacus and they ignored the 

picked H. syricacus.  When the picked H. syriacus flowers were placed next to the intact 

and picked H. moscheutos flowers (Figure 3), they largely ignored the H. syriacus 

flowers and visited H. moscheutos, whether it was picked or intact.  I also place large, red 

Hibiscus cultivars in with native H. moscheutos and the red flowers were completely 

ignored.   

 Using a paired t-test, there was a highly significant difference in female Ptilothrix 

preference for Hibiscus over Ipomoea (P <0 .001).  There was no difference in male 

preference for either flower (P= 0.118) (Table 3). 
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 There was a highly significant difference in the amount of Hibiscus pollen present 

in the scopal loads of female bees collected from Hibiscus versus bees collected from 

Ipomoea (F= 112.95, df=1,54 and P < 0.0001).  The mean proportion of Hibiscus pollen 

present in the scopal load of the bees collected on Hibiscus was 0.959 ± .086 and the 

mean proportion of Hibiscus pollen present in the scopal load of the bees collected on 

Ipomoea was 0.363 ± 0.335 (Figure 7).   

Floral Scent Composition  

 There were a total of 38 chemicals detected from the floral headspace of H. 

moscheutos ssp. lasiocarpos (Table 4) and 26 from I. pandurata (Table 5).  The 

chemicals represent four chemical classes: aliphatics, aromatics, monterpenes, and 

sesquiterpenes.  H. moscheutos and I. pandurata floral scents have 14 chemicals in 

common (Table 6, Figure 8), most of which were sesquiterpenes. Para-cymene, which 

was found in Ipomoea, is a monoterpene-derivative, but I listed it in the monoterpene 

group so it was comparable to the compound classes in Hibiscus, thus fitting into the 

chemical classes used for statistical analysis.  

For all of the individual chemicals present in both flowers, only 6 were found in 

significantly different amounts (Table 7) at α= .05.  After a Bonferroni correction where 

α= .001, only two chemicals, β-ocimene from Hibiscus and 4-ethyl-benzaldehyde from 

Ipomoea were found in significantly different amounts.   

There was a highly significant difference in the proportion of chemical classes 

present in the whole-flower scent of both species (MANOVA Wilks’ Lambda F= 26.49, 

df= 3,16,  P < 0.0001) (Figure 9).  The Hibiscus floral scent was dominated by 

sesquiterpenes, with monoterpenes, aliphatics, and aromatics found in nearly equal 
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amounts.  The floral scent of Ipomoea had sesquiterpenes and aromatics in nearly equal 

amounts, followed closely by aliphatics comprising most of the remaining scent.  

Monoterpenes only accounted for 1% of the total floral scent in Ipomoea, where it is the 

second most common chemical constituent group in Hibiscus.   
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CHAPTER 4 

DISCUSSION 

Host-Use of Ptilothrix bombiformis 

Like other emphorines, Ptilothrix species are restricted in their pollen host use.  

Of the species of Ptilothrix for which host-use has been documented, P. plumata is 

narrowly oligolectic on a few species in Malvaceae (Schlindwein et al.2009), P. relata is 

narrowly polylectic (Tellería, 2003), P. tricolor is oligolectic on Cactaceae (Díaz and 

Cocucci, 2003), and P. fructifera is oligolectic on Opuntia (Schlindwein and Wittmann, 

1997).   

Ptilothrix bombiformis is an eclectic oligolege because it collects pollen from a 

few fixed genera of plants belonging to different families (Cane and Sipes, 2006).  

Previously, Ptilothrix bombiformis has been classified as oligolectic on Hibiscus 

(Malvaceae) (Michener, 2000), but evidence from my study shows that P. bombiformis 

also utilizes Ipomoea pandurata as an alternate pollen source.  This evidence reveals that 

P. bombiformis has a broader diet breadth than previously known, lending itself to be 

placed under a more specific dietary classification as an eclectic oligolege.   

P. bombiformis has been documented as a rare visitor to Ipomoea purpurea, a 

smaller, purple convolvulous flower, but it was not documented whether the visit was for 

nectaring or gathering pollen, or which sex visited the flowers (Galetto and Bernardello, 

2004).  My study documents male P. bombiformis nectaring and females both nectaring 

and collecting pollen from I. pandurata.  Male bees nectar for themselves but don’t 

collect pollen provisions, so males of oligolectic species may not be as closely associated 

with the pollen host plant.  The data show no significant difference on male preference 
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for Hibiscus vs. Ipomoea when nectaring, but females do prefer Hibiscus over Ipomoea 

as a pollen host.   

Overall, female P. bombiformis do significantly prefer Hibiscus over Ipomoea as 

a pollen host, but I found some evidence that there may be individual variation in host 

preference within a given population.  The variability in pollen host use was revealed 

during the scopal pollen analysis.  Oligolectic bees should have pure pollen loads 

comprised of at least 90% a single flower species (Cane and Sipes, 2006).  For the bees 

collected on Hibiscus, 69% had pure Hibiscus pollen loads while the remaining bees had 

mixed loads of Hibiscus and Ipomoea.  The bees collected on Ipomoea had mostly mixed 

loads of Ipomoea and Hibiscus, but 9% had pure Hibiscus pollen loads while 36% had 

pure Ipomoea pollen loads.  It was surprising that a bee previously described as a 

Hibiscus oligolege actually had more pure loads of Ipomoea than Hibiscus when the bee 

was collected from the non-preferred host flower.  These bees were collected in mixed 

stands of Hibiscus and Ipomoea and thus had equal opportunity to forage for pollen from 

both plants species.  Yet, some bees seemed to overlook their host plant and 

preferentially collect pollen from a non-host, I. pandurata.   

There are several hypotheses as to what factors are responsible for specialization 

in bees.  Some authors suggest that larval imprinting in responsible for adult feeding 

preferences, meaning adult insects will seek out the pollen they were reared on as larvae.  

However, this hypothesis does not readily explain why host preferences are generally a 

species-level characteristic in oligolectic bees.  There are more recent suggestions that 

host-choice is genetically controlled.  Praz et al.(2008) found that when the specialist bee, 

Heriades truncorum (Megachilidae) was reared on non-host pollen, adult females still 
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only collected pollen from their preferred host plant and adult males exclusively patrolled 

the host flowers.  This strongly suggests a genetic basis rather than larval imprinting as 

controlling host recognition in this specialist bee.   

In general, some pollinators may have evolved an inherent preference for a 

particular host, but learning during foraging allows flexibility in host-use (Shiestl and 

Schlüter, 2009).  Adult learning during foraging is well documented for honeybees and 

bumbles and other pollinators, but there are only a few studies demonstrating learning in 

specialist bees.  Dötterl et al. (2005) studied a Salix specialist, Andrena vaga.  By 

conducting electroantennogram studies, they found that foraging-naïve bees could 

recognized pollen-specific odors, but experienced adults relied on the whole-flower odor 

blends that they learned through foraging experiences.  Dobson and Bergstrom (2002) 

demonstrate that Chelostoma florisomne, a Ranunculus specialist, can recognize pollen 

odors when it emerges from its nest, but also learns the whole-flower scent of its host 

plant during foraging bouts and depends upon this for host recognition as an experienced 

adult.   

As discussed above, experimental evidence suggests that there is a genetic basis 

to host-use in specialists (Praz et al., 2008), imprinting may play a role for host 

recognition in foraging-naïve bees, and there may also be a learning component.  As for 

Ptilothrix bombiformis, I propose that there is a genetic component to host-recognition 

due to the fact that its host use of Hibiscus is consistent throughout its range in the 

eastern United States (Michener, 2000).  Like some other specialist bees, P. bombiformis 

may also be able to learn whole-flower odor, which may be a possible explanation as to 

why it utilizes the non-host, I. pandurata, because most of the chemicals present in the 
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floral odor of I. pandurata are present in H. moscheutos.  Further study is needed to 

speculate on imprinting in this species.  I do not know what pollens the larvae were 

reared on, but it would be interesting to know if the bees caught on Ipomoea and had full 

Ipomoea loads were reared on Ipomoea pollen as larvae.   

There is evidence that some oligolectic emphorine bees have the ability to utilize 

non- host pollen.  Several Diadasia species, also oligoleges belonging to Emphorini, have 

collected pure pollen loads of alternate host species (Sipes and Tepedino, 2005).  Tellería 

(2003) proposed that the Argentinian bee Ptilothrix relata should be classified as 

narrowly polylectic rather than oligolectic because it collects pollen from several 

unrelated species.  She found that P. relata collected pollen from Malvaceae, 

Onagraceae, and Asteraceae.   

 It is interesting to note that P. bombiformis’s alternate host, Ipomoea, is a member 

of Convolvulaceae, which is suggested to be the ancestral host-plant family for 

Emphorini (Sipes and Tepedino 2006).  P. bombiformis, or at least those individuals who 

collected Ipomoea pollen, may have some residual ability to recognize their ancestral 

plant family.  It is important to note that all documented host families for Ptilothrix 

species at large are also host families to other emphorine bees, revealing that the tribe as 

a whole seems to be constrained to a limited number of pollen host families.  Chemistry 

may be the key to explaining why P. bombiformis has the ability to recognize and utilize 

non-host plant and that host-chemistry may be the constraining factor in emphorine host 

use.   

This research also adds to the understanding of host-use of the tribe Emphorini as 

a whole.  Emphorini is constrained to using Asteraceae, Cactaceae, Convolvulaceae, 
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Malvaceae, Onagraceae, and a few other rare accounts of other families, for pollen 

sources to provision their nests (Sipes and Tepedino, 2005).  Emphorine bees have large, 

unbranched scopal hairs that give them the ability to transport large pollen grains 

(Michener, 2000; Schlindwein and Martins, 2000).  Most of the plant families utilized by 

emphorines have large or spiny pollen grains, a characteristic that has been hypothesized 

as a possible explanation for their constrained host-use (Schlindwein and Martins, 2000; 

Schlindwein et al., 2009).  However, other plant families possess large, spiney pollen and 

may be present in the bees’ range without ever serving as hosts for the bees.  In addition 

to host-plant pollen, Tellería (2003) found large, spiny pollen grains from non-host plants 

in the scopal loads of Ptilothrix relata, but these represented <1% of the pollen load, 

which does provide evidence that Ptilothrix scopal hairs do allow for the transport of 

large pollen grains, but provides no evidence to suggest that they are selecting a host 

simply because it has large pollen.   

Floral Scent Composition of Hibiscus moscheutos ssp.  lasiocarpos and Ipomoea 

pandurata 

 The field of pollination biology opens a whole new avenue of understanding the 

role secondary metabolites have in plants.  For the past 15 years, there has been a wealth 

of research conducted on floral volatiles (reviewed in  Raguso, 2008; Hartman, 2009), 

and more recently, researchers are integrating their understanding of floral chemical 

ecology into pollination biology by searching for specific chemicals that are responsible 

for attracting pollinators to a given taxa (Plepys et al., 2002; Schlumpberger et al., 2004; 

Dötterl et al., 2005; Jürgens et al., 2009).   
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 Nearly all floral scent compounds result from the major pathways in secondary 

metabolism in plants (Knudsen et al., 2006).  There are over 1700 known volatiles that 

have been detected in the floral headspace of more than 990 species in over 90 families 

(Knudsen et al., 2006).  Hibiscus moscheutos ssp. lasiocarpos and Ipomoea pandurata 

contain some of the most common floral scent compounds.  The monoterpene β-ocimene, 

and the aromatics benzaldehyde and benzyl alcohol are found in 54-71% of the plant 

families that have been reported in the literature and the sesquiterpene, caryophyllene has 

been reported in more than half of the families (Knudsen et al., 2006).   

Specific compounds that are present in H. moscheutos and I.pandurata have been 

shown to attract pollinators.  Benzaldehyde has been proven to be an attractant for flies, 

butterflies, and hymenopterans (Jürgens et al., 2009).  During electroantennographic 

studies, the monoterpene β-ocimene and the sesquiterpene α-farnesene elicited a response 

in Andrena vaga, a Salix oligolege (Dötterl et al., 2005) and benzaldehyde and benzyl 

alcohol elicited responses by honey bees (Bruce et al., 2005).  Germacrene D, β-ocimene, 

and α-farnesene were found to be primary chemicals present in kiwi flowers that are 

dependent upon bees for pollination (Nieuwenhuizen et al., 2009; Hartmann 2009).   

Although volatile identification has become much more sensitive and accurate 

with the use of gas chromatography-mass spectrometry (Hartman, 2009), there are 

several factors that can make chemical identification difficult.  Sesquiterpenoids are the 

most abundant compounds and they are often difficult to identify using standard GC-MS 

because there are many compounds that have similar mass spectra and retention times 

(Dudareva and Pichersky, 2006).  I tentatively identified the sesquiterpenes α-copaene 

and α-cubebene based on their mass spectra and retention times, but internal standards 
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would yield a more certain identification do to the close similarity of these chemicals’ 

mass spectra and retention times.  Geometric isomers commonly co-occur in a single 

species (Dudareva and Pichersky, 2006) and may often be overlooked as two forms of the 

chemical, leading to fewer reported compounds than may actually be present in the 

flower.  Based on the obvious difference in retention times of (E)-cinnamaldehyde and 

(Z)-cinnamaldehyde, I am confident that both isomers are present in the Hibiscus floral 

scent.   

Determining which compounds are restricted solely to the floral scent can be 

difficult because most of the chemical compounds present in floral scents have also been 

identified as defense chemicals to deter herbivores (Dudareva and Pichersky, 2006).  

Herbivory is known to change floral headspace.  Muhlemann et al.(2006) found that 

benzaldehyde in Cirsium spp. was emitted at lower levels when florivores were present 

and increased when pollinators were present.  Theis et al. (2009) found that herbivory on 

leaves cause an increase in floral scent emission in male flowers of Cucurbita pepo ssp.  

texana.  There were Japanese beetles and weevils present on the Hibiscus flowers I 

sampled.  The flowers from which I collected floral scent had no Japanese beetles in them 

when sampled, but they were in the vicinity, providing a possible release of some defense 

chemicals from the floral headspace.  Weevils were almost always present in the flowers, 

but were always removed with forceps before sampling.  The abundance of weevils and 

beetles in the flowers and in the study area may influence the emission of certain floral 

chemicals, making it difficult to determine if some of the floral chemicals are actually 

used to guide or attract pollinators.   
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Some bees recognize their host plant by the blend of volatiles, often in specific 

ratios, rather than just detection of a single compound (Bruce et al., 2005).  Therefore, the 

bee must be able to distinguish the specific host-plant blend of volatiles from all the other 

volatiles emitted from surrounding plants.  The 14 compounds that H. moscheutos and I. 

pandurata have in common may be the key factor in the bees’ ability to detect and utilize 

I .pandurata as an alternate host.  Most of the shared compounds (Table 6) are present in 

20-45% of the plant families that have been studied and caryophyllene is present in over 

half of the plant families studied (Knudsen et al., 2006).  The remaining shared 

compounds have been reported as floral scent constituents in far fewer families than the 

other compounds.  For example, benzoic acid has only been reported in six families, 

acetophenones in 14 families, longifolene in four families, and β-copaene in four 

families.  Possibly, these rarer compounds may allow P. bombiformis to detect the host 

plants against background floral fragrances and should be targeted in future research. 

There is also preliminary evidence suggesting that Hibiscus and Ipomoea may be 

chemically similar to host plants used by other emphorine bees.  Messinger and Sipes 

(unpublished data) have collected scent from the floral headspace of species in 

Cactaceae, Convolvulaceae, Malvaceae, and Onagraceae that are used by Diadasia 

species as pollen hosts.  Their preliminary analysis found eight chemicals that are 

common to my study species (Table 8), including caryophyllene and copaene that are 

shared in H. moscheutos and I. pandurata.  This provides evidence that emphorine bees 

may be constrained by floral chemistry, rather than (or in addition to) pollen size, when 

selecting a pollen host.   
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 I found variation among individual flowers in scent composition with both H. 

moscheutos and I. pandurata (Tables 4 and 5, respectively).  For example, nonanal was 

detected in seven samples, comprising nearly 49% of one sample, while it was 

completely undetected in three of the samples.  Nonanal was also detected in seven 

Ipomoea, accounting for 95% of the total floral scent, while it was undetected in three of 

the flowers.  Similar variation has been reported for other plant species.  Both the 

qualitative and quantitative floral scent composition can vary within species for a variety 

of reasons (Dudareva and Pichersky, 2006; Salzmann et al., 2007).  The fragrance of a 

living flower can show a continuous change due to several internal and external factors 

(Theis et al., 2007;Stashenko and Martinez, 2008).  Individual variation of the volatile 

profile of the same species in a given population could be due to genetic factors 

(Stashenko and Martinez, 2008).   

 Environmental factors, including light availability, temperature, and soil moisture 

content can cause intraspecific variability in the volatile profiles (Stashenko and 

Martinez, 2008).  Scent production can peak when the flower is most receptive for 

reproductive success (Muhlemann et al., 2006) and the scent profile may change once 

pollination has occurred (Negre et al., 2003; Muhlemann et al., 2006).  It has been 

demonstrated that species can show geographic variation in their scent profiles (Svensson 

et al., 2005) and also floral scent emission can follow circadian rhythms (Muhlemann et 

al., 2006; Raguso et al., 2003).  The diurnal patterns in floral scent emission and 

composition has often been attributed to the type pollinators that are attracted to the 

plants (Knudsen et al., 1999).  The intra-specific variability in the chemical profiles of 

both H. moscheutos and I. pandurata may be attributed to any combination of the above 
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factors.  Alternatively, my collection methods may have lead me to be near the threshold 

of detection for some compounds such that they were present but not detected in some 

individuals.   

Future Research 

In addition to floral scent, it is important to determine what visual cues are 

attracting these bees to both the host and non-host plant.  The flowers appear similar to 

the human eye, but they must been analyzed to account for the visual range of bees, 

which includes UV wavelengths.  Separate treatment of the visual and chemical cues is 

not realistic, and their interrelationships of the stimuli should also be considered (Kevan, 

2005).  These investigations are most revealing when behavioral bioassays are carried out 

in parallel with chemical analysis of the scents (Dobson et al., 2005).   

Honeybees are model organisms for studying the complexity of visual perception 

in organisms with small nervous systems (Chittka and Wells, 2004).  The role of color 

vision in honeybee and bumblebee foraging is more understood than in any other natural 

forager-plant system (Chittka and Wells, 2004).  It is well documented in the literature 

that honeybees and bumblebees use color to discriminate between flowers, learn to 

associate flower color with reward, and to discern the flower from its background 

vegetation.  Visual signals to pollinators result from natural light being absorbed, 

reflected, refracted, or possibly fluoresced from the surfaces of the flowers and floral 

parts (Kevan, 2005).  Flowers are visible to their pollinators and other visitors because 

they appear to be different from the general background vegetation, ground, or sky 

(Kevan, 2005).   
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All species within Hymenoptera (except ants) are trichromates, with receptors 

most sensitive near 345 nm (UV-receptors), 440 nm (blue receptors) and 535 nm (green 

receptors) (Kevan, 2005; Briscoe and Chittka, 2001; Chittka and Wells, 2004).  Many 

flowers have nectar guides, or visual markings, that are assumed to guide the pollinator to 

the nectar or pollen source in the center of the corolla (Dafni et al., 1997).  UV- patterns 

in most flowers are formed by UV-absorbing central parts, including pollen, anthers, and 

nectar guides, in contrast to the outer portions of the flower that are UV-reflecting 

(Lunau, 1992).   

Future research should target integrating the role of visual cues along with the 

olfactory cues to obtain a more complete analysis of the degree to which these flowers 

may be detected as similar by P. bombiformis.  Visual studies should focus on obtaining 

the UV reflectance of both flowers to determine if there are any visual differences from 

the bees’ perspective.  Behavioral studies should be conducted to determine to what 

degree visual cues play a role in host selection and detection.  These may include 

manipulating live flowers in the field by reducing petal size and also painting the flower 

with sunscreen to block any attractive UV patterns (Andersson and Amundsen, 1997; 

Johnson and Andersson, 2002). 

The floral scent composition of both flowers can be investigated further by solid-

phase micro-extraction (SPME) to determine the contribution of different floral structures 

to the whole-flower odor.  Because these bees are specializing on a pollen host, I think it 

is most important to analyze the pollen to see if there are any chemicals present that 

weren’t detected in the whole flower scent and also see the ratios of pollen chemicals 

compared to that of the whole-flower scent.  Behavioral analysis for investigating which 
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part of the flower is emitting the biologically active scent can include observing the bees’ 

reactions when a particular floral organ or tissue is removed, for example, the anthers.  

Also, Hibiscus pollen could replace Ipomoea pollen in an Ipomoea flower, and vice 

versa, and observe if the bees change their behavior.   

Conclusions 

My research provides a better understanding of the host-use of Ptilothrix 

bombiformis and documents this bee utilizing a new pollen host, lending its self to be 

classified as an eclectic oligolege.  Additionally, I have provided baseline descriptive data 

to explore the hypothesis that floral chemical cues may be responsible for host 

recognition and utilization in this specialist bee.  I have shown that at least two 

emphorine host plants share chemical compounds: H. moscheutos and I. pandurata had 

14 shared chemicals in their floral headspace.  These chemicals should be targeted for 

further investigations of their role in host selection by P. bombiformis 

This research also adds to the understanding of host-use of the tribe Emphorini as 

a whole.  Emphorini is constrained to using Asteraceae, Cactaceae, Convolvulaceae, 

Malvaceae, Onagraceae, and a few other rare accounts of other families, for pollen 

sources to provision their nests (Sipes and Tepedino, 2005).  Possibly, Emphorini at large 

is constrained to a limited number of chemically-similar plant families for pollen hosts.  

However, further floral scent studies of more emphorine hosts, in combination with 

evaluations of the visual similarity of host plants, will be needed to fully understand host 

choice in these specialist bees. 
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TABLES 

 

Table 1. Study site locations in southern Illinois.   
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Table 2. Angiosperms in bloom throughout the study sites.   
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Table 3. Descriptive statistics from a paired t-test for male and female Ptilothrix 

visitations to H. moscheutos ssp. lasiocarpos and I. pandurata. 

 

The means were square root transformed for normality and the variance is given in 

parenthesis. 
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Table 4. Relative amounts of compounds present in the floral headspace of Hibiscus 

moscheutos ssp. lasiocarpos.  
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Table 4 continued.  

Unknowns are listed by ion fragments in ascending order of mass/unit charge, with 

abundance in parenthesis.  
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Table 5. Relative amounts of chemicals detected in the floral headspace of Ipomoea 

pandurata.   

Unknowns are listed by ion fragments in ascending order of mass/unit charge, with 

abundance in parenthesis.  
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Table 6. Compounds shared by H. moscheutos ssp. lasiocarpos and I. pandurata.   
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Table 7. Chemicals found in significantly different amounts according to a Chi-Square 

test in H. moscheutos ssp. lasiocarpos and I. pandurata.   

 

* Indicates chemicals that were significantly different after a Bonferroni adjustment, 

n=10 for both plant species.   
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Table 8. Chemical constituents from other emphorine host plants from Messinger’s 

unpublished data.   
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FIGURES 

 

Figure 1.  Phylogenetic tree for Diadasia and other Emphorini, taken from Sipes and 

Tepedino, 2005 © 2005 The Linnean Society of London, Biological Journal of the 

Linnean Society. 
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Figure 2.  Hibiscus moscheutos ssp. lasiocarpos (top) and Ipomoea pandurata (bottom). 



51 
   

 

Figure 3. Flower orientation for behavioral experiment with Hibiscus moscheutos ssp.  

lasiocarpos and its cultivated congener Hibiscus syriacas.  Pictured are picked H.  

syriacas flowers placed in flowering Hibiscus moscheutos ssp. lasiocarpos plants. 
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Figure 4. Floral scent collection apparatus for dynamic headspace sampling.   

 



53 
   

 

 

 

Figure 5. Male Ptilothrix bombiformis resting (top) and nectaring (bottom) on Hibiscus 

moscheutos ssp. lasiocarpos.   
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Figure 6. Ptilothrix bombiformis nesting aggregation (top) and individual nest with turret 

(bottom).  
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Figure 7. Scopal pollen composition from bees collected on Hibiscus moscheutos ssp. 

lasiocarpos (a) and I. pandurata (b).  Note that the pie wedges represent average amounts 

of pollen found in scopal loads.  For the bees collected on Hibiscus (n=45), 69% had pure 

Hibiscus pollen loads.  For the bees collected on Ipomoea (n=11), 9% had pure Hibiscus 

pollen loads and 36% had pure Ipomoea pollen loads.  A pure pollen load was defined as 

at least 90% a single flower species.   
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Figure 8. Chromatograms showing some chemicals shared between Hibiscus moscheutos 

ssp. lasiocarpos and Ipomoea pandurata.   
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Figure 9. Chemical classes represented in the floral scent of H. moscheutos and I. 

pandurata.  The bars, showing standard error,  represent the average amount each 

chemical class represents of the total floral scent of H. moscheutos (light bars) and I. 

pandurata (dark bars) and n=10 for each species.   
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Figure 10. Chemical structures of some of the compounds shared between H. moscheutos 

ssp. lasiocarpos and I. pandurata. a) α-Copaene, b) Germacrene D, c) Longifolene, d) 

(Z)-Cinnamaldehyde, e) Nonanal, f) β-Copaene 
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