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More Sources of Bias in Half-life Estimation 

Byeongchan Seonga,*, AKM Mahbub Morshedb, Sung K. Ahna 

a Department of Management and Operations, Washington State University, Pullman WA 99164, USA 
b Department of Economics, Mail Code 4515, Southern Illinois University, Carbondale, IL 62901, USA 

 

Abstract 

Biases in measurement of dynamics of time series from calculation of half- life 

received more attention lately.  In particular, this issue amplifies the controversy 

surrounding the purchasing power parity doctrine.  Cross-sectional and temporal 

aggregations along with mis-specified models were identified before as sources of this 

bias.  We identified a few other sources of bias, namely, sampling error, wrong 

approximations, and structural breaks in time series.  These sources should receive 

adequate attention for a sound measure of half- life. 
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1.  Introduction 

The empirical evidence of the high persistence of the deviation of the real exchange 

rates from its long run equilibrium warrants a simple measure that captures this slow 

transitional dynamics1.  Consequently, economists borrowed the concept of half- life from 

the natural sciences.  The “half- life” in natural sciences has been defined as the time 

required for the amount of radioactivity to decrease by one-half.  In real exchange rate 

literature, following the same spirit, we define half- life as the time required for the effects 

of a unit innovation to dissipate to one-half.  The half- life is also used in economics as a 

simple measure of the dynamics of time series such as the income level and the price 

level.   

However, in empirical studies of half- lives, controversies surrounding the accuracy 

of half- life estimates often arise as some over-estimate and others under-estimate 

compared with what would be commonly expected (for a detailed discussion see Murray 

and Papell, 2002; Taylor, 2001).  Efforts have been made to explore the sources of 

differences in half- life estimates:  Basker and Hernandez-Murillo (2004), Choi et al. 

(2005), Chen and Devereux (2003), and Imbs et al. (2005) investigated cross-sectional 

aggregations as a contributing factor 2 ; Chambers (2004) investigated temporal 

aggregation as a contributing factor for biased estimates and Taylor (2001) investigated 

temporal aggregation and mis-specified linear models as contributing factors.  The 

expositions of the latter two articles are within the context of the autoregressive process 

of order one, AR(1). 

                                                 
1 The rate of convergence of the real exchange rate has been estimated to be roughly 15% (Froot and 
Rogoff, 1995; Cheung and Lai, 2000a). 
2 Chen and Engel (2005), however, showed that the cross-sectional aggregation bias might not be large 
enough to explain the PPP puzzle.  
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In this paper, we explore other sources for the  differences in half- life estimates in an 

effort to add feasible explanations to the puzzles of the purchasing power parity (PPP).  

These sources are the sensitivity of the half- life formula, an inappropriate formula 

commonly used for the half- life, and mis-specified models attributable to structural 

breaks.  We found from our simulations that the half- life formula commonly used is very 

sensitive to the sampling error even if the autoregressive process is AR(1).  The formula 

for half- life can be quite inaccurate when time series is of higher order (for example, 

AR(2)) or a mixed process (for example, ARMA(1,1)).  Moreover, when there exists a 

structural break in time series and we do not take into account this issue, we over-

estimate half- lives. 

The present paper consists of five sections.  In section 2, we discuss how sensitive 

the commonly-used half- life formula obtained from AR(1) model is.  Biases resulting 

from using the half- life formula for higher order autoregressive processes and mixed 

processes are discussed in section 3.  Effects of structural breaks on half- life calculations 

are discussed in section 4.  At the end some concluding remarks are made. 

 

2.  Sensitivity of the half-life formula 

Following the cumulative impulse response analysis of Campbell and Mankiw 

(1987), researchers define the moving average (MA) coefficients of the MA 

representation of the process as impulse responses.  More specifically, for a linear 

process ∑∞

= −=
0j jtjty εψ  where 10 =ψ  and the tε ’s are independent identically 

distributed random variables, the half- life, denoted by h, is such that 2/1=hψ , that is the 

lag where the impulse response jψ  becomes half of the initial impulse response.  
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However, unlike radioactive material, the impulse response does not always decay 

monotonically.  If the jψ  is not a monotonically decreasing function of the lag j, the half-

life is not well-defined (Cheung and Lai, 2000b; Choi et al., 2005). 

The often-used formula for the half- life of a (stationary) time series in the 

econometric literature is 1log/2log ρ−=h  where 1ρ  is the autocorrelation of ty  at lag 1, 

that is ),( 11 −= tt yycorrρ .  This formula is valid only when 01 >ρ , and correct if ty  is 

an AR(1) satisfying 

 ttt yy ερ += −11 . (1) 

This is because for the AR(1), j
j 1ρψ = .  If 01 <ρ  for an AR(1) process, the impulse 

response jψ  oscillates between positive and negative values, and the half- life is not well-

defined.   

Given a sample of size n, the half- life of an AR(1) process is usually estimated by 

 
1ˆlog

2logˆ
ρ

−=h  , (2) 

where 1ρ̂  is the least squares estimator of 1ρ .  From the first order Taylor series 

expansion, we obtain  

 2
11 )(log

ˆ)2(logˆ
ρρ
δ

≈− hh , (3) 

where 11ˆˆ ρρδ −= .  It is well known that nVar /)1()ˆ( 2
11 ρρ −≈ .  Therefore  

 
n

hhVar
2
1

2

2
11

1
)(log

)2(log
)ˆ(

ρ
ρρ

−









≈− .  (4) 
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Using this, we tabulate the (approximate) coefficient of variation (CV) of ĥ  in Table 1 

for 95.08.0 1 ≤≤ ρ  and for the sample size n=100 and 200.  Within the range of 1ρ  the 

CV varies 33% to 64% for the sample of size 100, which amounts to 100 years of annual 

data.  More specifically, for the AR(1) process with 9.01 =ρ , the half- life is 6.58.  With  

n=100 the CV  of ĥ  is 46% and the standard error of ĥ  is 3.02.  Therefore an estimate of 

the half- life of 3.6 years or less is as likely as that of the half- life of 9.6 years or more for 

annual data.  This illustrates that half- life estimates are very sensitive to the sampling 

error. 

 

3.  Precision of the approximate formula 

More often than not, the process of interest is not just an AR(1) process.  Rather it is 

a higher order AR process or a mixed process such as an autoregressive moving-average 

(ARMA) process.  For such models the aforementioned half- life formula serves as an 

approximation, and the quality of this approximation needs investigation. 

For an autoregressive process of order p, AR(p), ty  satisfying 

 t

p

j
jtjt yy εφ += ∑

=
−

1

, (5) 

the impulse response jψ  satisfies the linear difference equation 

 0)1(111 =−−−− −−−− ppjpjj φψφψφψ L , (6) 

and the half- life h is obtained by solving 2/1=hψ .  It is well known that the impulse 

response jψ  is obtained from the roots of the auxiliary equation 

 01
1

1 =−−−− −
−

pp
pp mmm φφφ L . (7) 
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As the jψ  does not necessarily decay monotonically, the half- life is not always well-

defined.  Often employed practice in economics literature is to approximate the half- life 

based on the formula,  

 
)1log(

2log
β+

−=h  (8) 

without regard to existence of the well-defined half- life, by obtaining the ‘convergence 

speed’ β  from the following error correction representation of the AR(p) model 

 t

p

j
jtjtt yyy εφβ +∆+=∆ ∑

−

=
−−

1

1

*
1 , (9) 

where 1
1

−= ∑
=

p

j
jφβ  and ∑

+=

−=
p

jk
kj

1

* φφ .  We note that for an AR(1) process 11 −= ρβ  

and the formula in (8) is equivalent to that in (2).   

For ease of exposition, we assess the quality of this approximation using the 

following  AR(2) process 

 tttt yyy εφφ ++= −− 2211 . (10) 

It is well known that the impulse response of this process is 

 
04
04

if
if)2/)(1(

2
2
1

2
2

1

2211

1

≠+
=+





+
+

=
φφ
φφ

λλ
φ

ψ
jj

j

j cc
j

 , (11) 

where 
2

4 2
2
11

1

φφφ
λ

++
= , 

2
4 2

2
11

2

φφφ
λ

+−
= , )/( 2111 λλλ −=c , and )/( 1222 λλλ −=c . 

For the AR(2) process to be stationary, it is well known (see p. 60 of Box, Jenkins, and 

Reinsel, 1994) that the AR coefficients 1φ  and 2φ  lie in the triangular region 

 112 <+ φφ , 112 <− φφ , 11 2 <<− φ . (12) 
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Within this triangular region, the impulse response jψ  decreases monotonically only in 

the region for 01 >φ  and 04 2
2

1 >+ φφ .  Therefore, in the other region the half- life is not 

well-defined.  However, the approximate formula yields a ‘half- life’ as long as 

012 >+ φφ .   Even in the region where the half- life is well defined, the approximate 

formula can be quite inaccurate.  The region where the difference between the half- life by 

(11) and the approximate half- life of (8) is more than 3 is shaded in Fig. 1.   

When an AR(1) process at  a higher frequency is aggregated and observed at a lower 

frequency, this observed process becomes an ARMA (1,1) process 

 11 −− −+= tttt yy θεεφ , (13) 

see Wei (1996) and Chambers (2004).  The impulse response jψ is obtained by 

 1)( −−= j
j φθφψ  (14) 

and the exact half- life h is  

 1
log

)log(
log

2log
+

−
−−=

φ
θφ

φ
h   (15) 

by solving 2/1)( 1 =− −hφθφ , provided θφ >  and 0>φ .  Since the lag one 

autocorrelation of the ARMA(1,1) process is 

 
)21(
))(1(

21 θθφ
θφθφ

ρ
+−

−−
= ,  (16) 

the approximate formula (based on an AR(1) model) yields a half- life of 

 








+−
−−

−
)21(
))(1(

log/2log 2θθφ
θφθφ

. (17) 

Also one could consider an approximated model of AR(2) instead of an AR(1) model.  In 

such case the approximate formula based on an AR(2) model yields a half- life of  



8 

 








++−
−−

− 2)1(1
))(1(

log/2log
θθφ
θφθφ

, (18) 

where the proof is given in Appendix.  

In order to illustrate inaccuracies of the approximate formulas, the region where the 

difference between the half- life by (15) and the approximate half- lives (17) or (18) is 

more than 3 is shaded in Fig. 2., even when the parameters are known.  Although not 

pursued here, the inaccuracy is worse when models are estimated. 

 

4.  The effect of structural breaks 

It is well known that the Dickey-Fuller unit root test lacks the power, when a true 

process is trend stationary with structural breaks, see Perron (1989).  This implies that the 

LSE (of the Dickey-Fuller type) estimator of 1ρ  in (1), or β  in (9) is over-estimated.  

Macro economic data, such as price indices and exchange rates, often go through 

structural breaks in the trend (or level) so that the analysis without such breaks 

incorporated yields over-estimated half- lives. 

To assess the effect of a structural break in the trend (at a single point of time) on the 

estimation of half- lives, we conduct a small Monte Carlo experiment.  We generated 

10,000 replications of a series }{ ty  of length 100=T  defined by  

 tttt eyDy ++= −1αγ  (19) 

where 0TtDt −=  if  0Tt > , and 0 otherwise, representing a structural break in trend at 0T .  

For simplicity, we assume 500 =T  and the innovations te  are i.i.d. )1,0(N .  For various 

values of α  and γ , we take 0.9 0.8, 0.6,=α  and 4.0,2.0,1.0=γ .  For 0.9 0.8, 0.6,=α , 

the corresponding half- lives are 1.36, 3.11, and 6.58.   
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As an estimation of half- life where a structural break is not considered, we 

computed the half- life, )ˆln(/)2ln(ˆ
11 α−=h based on the following model  

 ttt eyty ~
1111 +++= −αγµ . (20) 

And, as the calculation of half- life where a structural break is considered, we computed 

the half- life, )ˆln(/)2ln(ˆ
22 α−=h , based on the following model, 

 tttt eyDy ~
122 ++= −αγ . (21) 

We assume 0T  is known so that the  comparison is not affected by the estimation of break 

point, 0T . 

In Table 2, we compare the results of the estimation from the models of (20) and 

(21).  From the fourth and the sixth columns, it is observed, as in Andrews (1993) and 

Murray and Papell (2005), that all the estimators 2α̂  are biased downward.  Therefore the 

half- life estimators, 2ĥ , are all under-estimated even though the structural breaks are 

considered.  

From the third and fifth columns, we see that estimators of 1α̂  are biased upward 

except for ),( γα =(0.8, 0.1), (0.9, 0.1) and (0.9, 0.2), and all the estimators of half- life, 1̂h , 

are over-estimated except for ),( γα =(0.9, 0.1).  Also from the last two columns it is 

observed that all mean squared errors (MSEs), of 1̂h  are larger than those of 2ĥ .  In the 

cases for ),( γα =(0.8, 0.1), (0.9, 0.1) and (0.9, 0.2), 1̂h  has larger MSE than 2ĥ  does, 

although  the corresponding 1α̂  is less biased than 2α̂ .  This can be explained from Fig. 3 

which shows the distributions of 1α̂ , 2α̂ , 1̂h , and 2ĥ  when ),( γα =(0.9, 0.2).  The 
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distribut ion of 1α̂  has a higher concentration near one than that of 2α̂  which makes the 

right tail of 1̂h  longer than that of 2ĥ .  

These over-estimation phenomenon are not surprising results because 1α̂ ’s are ready 

to converge to one as sample size becomes larger regardless of the value of α , see 

Perron (1989).  Therefore when structural breaks are in doubt, it is desirable that the 

model with the breaks is considered. 

 

5. Conclusions 

Researchers identified a number of sources of bias in half- life estimation, namely, 

cross-sectional aggregation, temporal aggregation, and mis-specified models.  However, 

we identified a few other sources of instability of the conventional half- life estimation.  

We found that even for AR(1) process, the sampling bias cannot be ignored.  For higher 

order or mixed time series process, the biases resulting from the use of conventional 

formula is quite large.  The presence of structural breaks in time series creates additional 

noise in half- life calculation.  Thus, a more appropriate calculation of half- life requires 

adequate attention paid to these issues. 
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Appendix.  Proof of (18) 

Assume we consider an AR(2) as approximate model for ARMA(1,1).  By a 

property of the partial autocorrelation function, we can find the coefficients ( 2212,φφ ) of 

the AR(2) using 

 















=








−

2

1
1

1

1

22

12

1
1

ρ
ρ

ρ
ρ

φ
φ

.  

Then we obtain 

)(
1

1 2
122112

1
22 ρρρρρ

ρ
φφ −+−

−
=+12  

1

1

1
)1(

ρ
ρ

φ
+

+=  

2)1(1
))(1(

θθφ
θφθφ

++−
−−

=  

since 12 φρρ =  and }21/{))(1( 2
1 θθφθφθφρ +−−−= .  Therefore, we can deduce  

 








++−
−−

−=
+

−
2

2212 )1(1
))(1(

log/2log
)log(

2log
θθφ
θφθφ

φφ
.  
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Table 1 

Approximate standard errors and coefficient of variations of the half- life estimates for 

selected AR(1) process with sample sizes 100 and 200 

 

100=n  200=n  
1ρ  h  

)ˆ( hhVar −  CV (%) )ˆ( hhVar −  CV (%) 

0.800 3.1063 1.0440 33.61 0.7382 23.77 
0.805 3.1955 1.0857 33.98 0.7677 24.02 
0.810 3.2894 1.1302 34.36 0.7991 24.29 
0.815 3.3884 1.1777 34.76 0.8327 24.58 
0.820 3.4928 1.2285 35.17 0.8687 24.87 
0.825 3.6032 1.2830 35.61 0.9072 25.18 
0.830 3.7200 1.3416 36.07 0.9487 25.50 
0.835 3.8439 1.4047 36.54 0.9933 25.84 
0.840 3.9755 1.4728 37.05 1.0415 26.20 
0.845 4.1156 1.5465 37.58 1.0935 26.57 
0.850 4.2650 1.6264 38.13 1.1500 26.96 
0.855 4.4247 1.7133 38.72 1.2115 27.38 
0.860 4.5958 1.8081 39.34 1.2785 27.82 
0.865 4.7795 1.9117 40.00 1.3518 28.28 
0.870 4.9773 2.0255 40.69 1.4322 28.78 
0.875 5.1909 2.1508 41.43 1.5209 29.30 
0.880 5.4223 2.2894 42.22 1.6189 29.86 
0.885 5.6737 2.4433 43.06 1.7277 30.45 
0.890 5.9480 2.6149 43.96 1.8490 31.09 
0.895 6.2484 2.8073 44.93 1.9851 31.77 
0.900 6.5788 3.0242 45.97 2.1384 32.50 
0.905 6.9439 3.2700 47.09 2.3122 33.30 
0.910 7.3496 3.5506 48.31 2.5106 34.16 
0.915 7.8030 3.8732 49.64 2.7387 35.10 
0.920 8.3130 4.2471 51.09 3.0032 36.13 
0.925 8.8909 4.6846 52.69 3.3125 37.26 
0.930 9.5513 5.2017 54.46 3.6782 38.51 
0.935 10.3133 5.8205 56.44 4.1157 39.91 
0.940 11.2023 6.5711 58.66 4.6465 41.48 
0.945 12.2528 7.4965 61.18 5.3008 43.26 
0.950 13.5134 8.6593 64.08 6.1231 45.31 
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Fig. 1. The region where the difference between the half- life by (11) and the approximate 

formula of (8) is more than 3 
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Fig. 2. The region where the difference between the half- life by (15) and the approximate 

formula by (17): AR(1) or (18): AR(2) is more than 3 

 

0 0.5 1
-1

-0.5

0

0.5

1
Approx. by AR(1)

 φ

 θ

0 0.5 1
-1

-0.5

0

0.5

1
Approx. by AR(2)

 φ

 θ

 



17 

Table 2 

Averages and standard deviations of the estimated half- lives and other statistics 

depending on the structural change 

 

α  γ  
1α̂  2α̂  

1̂h  2ĥ  1MSE  2MSE  

0.67 0.55 1.83 1.23 0.52 0.13 0.1 (0.08) (0.09) (0.54) (0.33) (0.86) (0.18) 
0.81 0.55 3.58 1.23 5.99 0.12 0.2 (0.05) (0.09) (1.02) (0.33) (5.72) (0.18) 
0.93 0.55 10.65 1.21 94.68 0.13 

0.6 

0.4 (0.02) (0.09) (2.89) (0.32) (70.95) (0.16) 
0.78 0.74 3.22 2.57 1.58 1.09 0.1 

(0.07) (0.07) (1.25) (0.89) (3.78) (1.54) 
0.86 0.74 5.24 2.56 9.41 1.06 0.2 (0.05) (0.07) (2.20) (0.87) (23.91) (1.46) 
0.94 0.74 13.51 2.51 141.94 1.17 

0.8 

0.4 
(11) (0.02) (0.07) (5.80) (0.90) (217.81) (1.98) 

0.85 0.83 5.29 4.54 10.10 9.12 0.1 
(1) (0.06) (0.06) (2.90) (2.23) (41.04) (22.82) 

0.89 0.83 7.52 4.54 23.13 9.28 0.2 
(10) (0.06) (0.06) (4.72) (2.26) (100.53) (21.26) 

0.95 0.83 16.03 4.59 175.23 13.43 

0.9 

0.4 
(175) (0.03) (0.07) (9.27) (3.08) (377.13) (64.79) 

 
Note: 1. 1α̂  and 2α̂  are the estimators of α  in the model (19) by the estimated models 

(20) and (21), respectively. 

2. )ˆln(/)2ln(ˆ
jjh α−=  for 2,1=j  denotes the estimator of half- life (not adjusted to 

integers) and 2
0 )ˆ( hhMSE jj −=  for 2,1=j , where 0h  is the true half- life, 1.36, 

3.11, and 6.58 corresponding to the α =0.6, 0.8, and, 0.9, respectively. 

3. The parentheses in the second column denote the number of the cases where 

1ˆ1 >=α  or 1ˆ 2 >=α .  We do not consider these cases in the results because the 

corresponding half- lives cannot be calculated.  The parentheses in the other 

columns denote the corresponding standard deviations. 
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Fig. 3. Histograms for 1α̂ , 1̂h , 2α̂ , and 2ĥ  which correspond to (i), (ii), (iii), and (iv), 

respectively, when )2.0,9.0(),( =γα  
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Note:  1. The y -axis in each histogram denotes the relative frequency. 

2. The mark of arrows denotes an existing range of the histograms. 
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