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Robust Regression with High Coverage

David J. Olive and Douglas M. Hawkins∗
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Abstract

An important parameter for several high breakdown regression algorithm esti-

mators is the number of cases given weight one, called the coverage of the estimator.

Increasing the coverage is believed to result in a more stable estimator, but the price

paid for this stability is greatly decreased resistance to outliers. A simple modifi-

cation of the algorithm can greatly increase the coverage and hence its statistical

performance while maintaining high outlier resistance.
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1 INTRODUCTION

Consider the regression model

Y = Xβ + e (1.1)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of errors. The ith

case (yi, x
T
i ) corresponds to the ith row xT

i of X and the ith element yi of Y .

Most regression methods attempt to find an estimate b for β which minimizes some

criterion function Q(b) of the residuals where the ith residual ri = ri(b) = yi−xT
i b. Two

of the most used classical regression methods are ordinary least squares (OLS) and least

absolute deviations (L1). OLS and L1 choose β̂ to minimize

QOLS(b) =
n∑

i=1

r2
i and QL1(b) =

n∑

i=1

|ri|, (1.2)

respectively. The less frequently used Chebyshev (L∞) method minimizes the maximum

absolute residual.

Some high breakdown (HB) robust regression methods can fit the bulk of the data even

if certain types of outliers are present. Let |r|(i)(b) denote the absolute residuals sorted

from smallest to largest. The least quantile of squares (LQS(cn)) estimator minimizes

the criterion

QLQS(b) = r2
(cn)(b). (1.3)

When cn/n → 1/2, the LQS(cn) estimator is also known as the least median of squares

(LMS) estimator (Hampel 1975). The least trimmed sum of squares (LTS(cn)) estimator
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(Rousseeuw 1984) minimizes the criterion

QLTS(b) =
cn∑

i=1

r2
(i)(b), (1.4)

and the least trimmed sum of absolute deviations (LTA(cn)) estimator (Hawkins and

Olive 1999) minimizes the criterion

QLTA(b) =
cn∑

i=1

|r|(i)(b). (1.5)

These three estimators all “cover” a set of fixed size cn = cn(p) ≥ n/2 cases, fitting a

classical estimator to the covered cases. LQS uses the Chebyshev fit, LTA uses L1, and

LTS uses OLS. If cn is a sequence of integers such that cn/n → τ ≥ 0.5, then 1− τ is the

approximate amount of trimming. For the LTA and LTS estimators there is a tradeoff

in that the Gaussian efficiency increases as τ tends to 1, but the breakdown value 1 − τ

decreases to zero. Let [x] denote the greatest integer function. Hence [7.7] = 7. The

integer valued parameter cn is called the coverage of the estimator and the choice

cn = [n/2] + [(p + 1)/2] (1.6)

corresponding to τ = 1
2

maximizes the breakdown of the estimator.

We will use the unifying notation LTx(τ) for the LTx(cn) estimator where x is A, Q,

or S for LTA, LQS, and LTS, respectively. Since the exact algorithms for the LTx criteria

have very high computational complexity, approximations based on iterative algorithms

are generally used. We will call the algorithm estimator β̂A the ALTx(τ) estimator.

Historically, the workhorse of high breakdown algorithms has been the “basic re-

sampling”, or “elemental set” algorithm. This uses Kn “starts” – randomly selected
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“elemental” subsets of p from which the residuals are computed for all n cases. The algo-

rithm returns the elemental fit that optimizes the criterion. The efficiency and resistance

properties of the ALTx estimator turn out to depend strongly on the number of starts

Kn used – see Hawkins and Olive (2002). For a fixed choice of Kn, increasing the cover-

age cn in the LTx criterion seems to result in a more stable ALTA or ALTS estimator.

For this reason, Splus has increased the default coverage of the ltsreg function to 0.9n

while Rousseeuw and Hubert (1999) recommend 0.75n. The price paid for this stability

is greatly decreased resistance to outliers.

Rather than using a fixed coverage such as 0.75, we suggest using a highly resistant

initial estimator to determine the variable trimming proportion. Section 2 defines the

estimator and Section 3 provides some theory. Earlier work on combining efficiency and

high breakdown includes Jureckova and Portnoy (1987) and He (1991).

2 Obtaining Stability and Resistance

Combining the two concepts of variable coverage and a two–stage process of identification

followed by estimation leads to a class of regression estimators. Define a set of L = 5

estimators ALTx(cn,j) corresponding to coverages τj ∈ G = {0.5, 0.75, 0.9, 0.99, 1.0}. The

exact coverages c are defined by cn,1 ≡ cn as given by equation (1.6); and cn,2 = [.75 n],

cn,3 = [.90 n], cn,4 = [.99 n], and cn,5 = n. (This choice of L and G is for illustration.)

Then the RLTx(k) estimator is the ALTx(τR) estimator where τR is the largest τj ∈ G
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such that [τj n] ≤ Cn(β̂ALTx(cn)) where

Cn(b) =
n∑

i=1

I[|r|(i)(b) ≤ k |r|(cn)(b)] =
n∑

i=1

I[r2
(i)(b) ≤ k2 r2

(cn)(b)]. (2.1)

Notice that although L estimators ALTx(cn,j) were defined, there is no need to com-

pute all of them; only two are needed – ALTx(0.5) to get a resistant scale and define the

coverage needed, and the final estimator ALTX(τR).

Section 3 will show that the RLTx estimator has a high degree of resistance along

with high stability. The tuning parameter k ≥ 1 controls the amount of trimming. The

inequality k ≥ 1 implies that Cn ≥ cn, so the RLTx(k) estimator has coverage at least as

high as the LTx(0.5), and in “clean” data will commonly have 100% coverage.

The behavior of the RLTx estimator is easy to understand. Compute the most re-

sistant ALTx estimator β̂ALTx(cn) and obtain the corresponding residuals. Count the

number Cn of absolute residuals that are no larger than k |r|(cn) ≈ kMED(|r|i). Then

find the corresponding τR ∈ G and compute the RLTx estimator. If k = 6, and the

regression model holds, the RLTx estimator will be the classical estimator or the ALTx

estimator with 99% coverage for a wide variety of data sets. The method has the “exact

fit” property – if β̂ALTx(cn) fits cn cases exactly, then |r|(cn) = 0 and RLTx = ALTx(cn).

The RLTx estimator has the same breakdown point as its starting ALTx(0.5) estima-

tor. Hence the RLTx estimator for x = A and S is simultaneously more stable and more

resistant than the fixed–coverage ALTx estimators with τ = 0.75 or τ = 0.9, but takes

about twice as long to compute. Increasing the coverage for the LQS criterion is possible

but inadvisable since the Chebyshev fit tends to have less efficiency than the LMS fit.
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3 Theoretical properties

Many regression estimators β̂ satisfy

√
n(β̂ − β)

D→ N(0, V (β̂, F ) W ) where
XT X

n
→ W−1,

and the errors ei are iid with zero median and have a distribution F with symmetric

unimodal density f . When the variance V (ei) exists,

V (OLS, F ) = V (ei) = σ2 while V (L1, F ) =
1

4f 2(0)
.

See Bassett and Koenker (1978). Broffitt (1974) compares OLS, L1, and L∞ in the

location model and shows that the rate of convergence of the Chebyshev estimator is

often very poor.

Obtaining asymptotic theory for LTA and LTS is a very challenging problem and there

are currently no results outside of the location model – see Hawkins and Olive (2002)

for further discussion. For the location model, Butler (1982) derived asymptotic theory

for LTS while Tableman (1994ab) derived asymptotic theory for LTA. In the regression

setting, it is known that LQS(τ) converges at a cube root rate to a non-Gaussian limit

(Davies 1990, Kim and Pollard 1990).

Some negative results are immediate; if the “shortest half” is not unique, then LQS,

LTA, and LTS are inconsistent. For example, the shortest half is not unique for the

uniform distribution.

Surprisingly, some useful asymptotic theory for RLTx is easily derived. The following

lemma will be useful for estimating the coverage of the RLTx estimator given the error

distribution F.
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Lemma 3.1. Assume that the errors are iid with a density f that is symmetric about

0 and positive and continuous in neighborhoods of F−1(0.75) and kF−1(0.75). If the

predictors x are bounded in probability and β̂n is consistent for β, then

Cn(β̂n)

n
P→ τF = τF (k) = F (k F−1(0.75)) − F (−k F−1(0.75)). (3.1)

Proof. See appendix.

Under the same conditions of Lemma 3.1,

|r|(cn)(β̂n)
P→ F−1(0.75).

This result can be used as a diagnostic – compute several regression estimators including

OLS and L1 and compare the corresponding median absolute residuals.

A competitor to RLTx is to compute ALTx, give zero weight to cases with large

residuals, and fit OLS to the remaining cases. He and Portnoy (1992) prove that this

two–stage estimator has the same rate as the initial estimator. Theorem 3.2 gives a

similar result for the RLTx estimator, but the RLTx estimator could be an OLS, L1

or L∞ fit to a subset of the data. In particular, if the exact LTx estimators are used,

Theorem 3.2 shows that the RLTQ estimator has an OP (n−1/3) rate but suggests that

the RLTA and RLTS estimators converge at an OP (n−1/2) rate.

Theorem 3.2. If ‖β̂ALTx(τj)
− β‖ = OP (n−δ) for all τj ∈ G, then ‖β̂RLTx − β‖ =

OP (n−δ).

Proof. Since G is finite, this result follows from Pratt (1959). QED

Theorem 3.3 shows that the RLTx estimator is asymptotically equivalent to an LTx

estimator that typically has high coverage.
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Theorem 3.3. Assume that τj, τj+1 ∈ G. If P [Cn(β̂ALTx(0.5))/n ∈ (τj, τj+1)]
P→ 1, then

the RLTx estimator is asymptotically equivalent to the ALTx(τj) estimator.

Choosing a suitable k for a target distribution F is simple. Assume equation (3.1)

holds where τF is not an element of G. If n is large, then with high probability τR

will equal the largest τi ∈ G such that τi < τF . Small sample behavior can also be

predicted. For example, if the errors follow a N(0, σ2) distribution and n = 1000, then

P (−4σ < ei < 4σ, i = 1, ..., 1000) ≈ (0.9999)1000 > 0.90, while |r|(cn) is converging to

Φ−1(0.75)σ ≈ 0.67σ. Hence if k ≥ 6.0, n < 1000, and the errors are Gaussian, the RLTS

estimator will cover all cases with high probability. To include heavier tailed distributions,

increase k. For example, similar statements hold for distributions with lighter tails than

the double exponential distribution if k ≥ 10.0 and n < 200.

Table 1 presents the results of a small simulation study. We compared ALTS(τ) for

τ = 0.5, 0.75, and 0.9 with RLTS(6) for 6 different error distributions – the normal(0,1),

Laplace, uniform(−1, 1) and three 60% N(0,1) 40 % contaminated normals. The three

contamination scenarios were: N(0,100) for a “scale” contaminated setting; and two

“location” contaminations – N(5.5,1) and N(12,1). The shift of 5.5 is perhaps a worst

case for the RLTS estimator, as these contaminants are just small enough that many pass

the k = 6 screen. The shift of 12 tests the estimators under catastrophic contamination.

The simulation used n = 100 and p = 6 (5 slopes and an intercept) over at least 1000

runs and computed ‖β̂ − β‖2/6 for each run. Note that for the three CN scenarios the

number of contaminants is a binomial random variable which, with probability 6% will

exceed the 47 that the maximum breakdown setting can accommodate.
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The means from the 1000 values are displayed. Their standard errors are at most 5%

of the mean. The last column shows the percentage of times that τR was equal to .5,

.75, .9, .99 and 1.0. Two fitting algorithms were used. One was a traditional elemental

algorithm with 3000 starts. As discussed in Hawkins and Olive (2002) this choice, chosen

to match much standard practice, is far fewer than we would recommend with a raw

elemental algorithm.

The other was a concentration algorithm. This used 300 starts for the location conta-

mination distributions, and 50 starts for all others, preliminary experimentation having

indicated that this many starts were sufficient. Comparing the ‘conc’ mean squared er-

rors with the corresponding ‘elem’ confirms the recommendations in Hawkins and Olive

(2002) that far more than 3000 elemental starts are necessary to achieve good results.

The ‘elem’ runs also verify that second-stage refinement, as supplied by the RLTS ap-

proach, is not sufficient to overcome the deficiencies in the poor initial estimates provided

by the raw elemental approach.

The RLTS estimator was, with one exception, either the best of the 4 estimators or

barely distinguishable from the best. The single exception was the concentration algo-

rithm with the contaminated normal distribution F (x) = 0.6Φ(x)+0.4Φ(x− 5.5), where

most of the time it covered all cases. We already noted that location contamination with

this mean and this choice of k is about the worst possible for the RLTS estimator, so

that this worst-case performance is still about what is given by the more recent recom-

mendations for ALTx coverage – 75% or 90% – is positive. This is reinforced by RLTS’

excellent performance with 12σ location outliers.
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The simulation therefore supports the use of the RLTx method as an approach that

can provide the resistance of a traditional 50% high breakdown estimator with the greater

stability and statistical efficiency associated with higher coverage.

Appendix

Proof of Lemma 3.1. First assume that the predictors are bounded. Hence ‖x‖ ≤ M

for some constant M . Let 0 < γ < 1, and let 0 < ε < 1. Since β̂n is consistent, there

exists an N such that

P (A) = P (β̂j,n ∈ [βj −
ε

4pM
, βj +

ε

4pM
], j = 1, ..., p) ≥ 1 − γ

for all n ≥ N. If n ≥ N , then on set A,

sup
i=1,...,n

|ri − ei| = sup
i=1,...,n

|
p∑

i=1

xi,j(βj − β̂j,n)| ≤
ε

2
.

Since ε and γ are arbitrary,

ri − ei
P→ 0.

This result also follows from Rousseeuw and Leroy (1987, p. 128). In particular,

|r|(cn)
P→ MED(|e1|) = F−1(0.75).

Now there exists N1 such that

P (B) ≡ P (|ri − ei| <
ε

2
, i = 1, ..., n & | |r|(cn) − MED(|e1|)| <

ε

2k
) ≥ 1 − γ

for all n ≥ N1. Thus on set B,

1

n

n∑

i=1

I[−kMED(|e1|) + ε ≤ ei ≤ kMED(|e1|) − ε] ≤ Cn(β̂n)

n

≤ 1

n

n∑

i=1

I[−kMED(|e1|) − ε ≤ ei ≤ kMED(|e1|) + ε],
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and the result follows since γ and ε are arbitrary and the three terms above converge to

τF almost surely as ε goes to zero.

When x is bounded in probability, fix M and suppose Mn of the cases have predictors

xi such that ‖xi‖ ≤ M. By the argument above, the proportion of absolute residuals of

these cases that are below |r|(cMn) converges in probability to τF . But by increasing M ,

the proportion of such cases can be made arbitrarily close to one as n increases. QED
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Table 1: ‖β̂ − β‖2/p, 1000 runs

pop. alg. ALTS(.5) ALTS(.75) ALTS(.9) RLTS(6) % of runs that τR

= .5,.75,.9,.99 or 1

Normal conc 0.0648 0.0350 0.0187 0.0113 0,0,6,18,76

Laplace conc 0.1771 0.0994 0.0775 0.0756 0,0,62,23,15

uniform conc 0.0417 0.0264 0.0129 0.0039 0,0,2,6,93

scale CN conc 0.0560 0.0622 0.2253 0.0626 2,96,2,0,0

5.5 loc CN conc 0.0342 0.7852 0.8445 0.8417 0,4,19,9,68

12 loc CN conc 0.0355 3.5371 3.9997 0.0405 85,3,2,0,9

normal elem 0.1391 0.1163 0.1051 0.0975 0,0,1,6,93

Laplace elem 0.9268 0.8051 0.7694 0.7522 0,0,20,28,52

uniform elem 0.0542 0.0439 0.0356 0.0317 0,0,0,1,98

scale CN elem 4.4050 3.9540 3.9584 3.9439 0,14,40,18,28

5.5 loc CN elem 1.8912 1.6932 1.6113 1.5966 0,0,1,3,96

12 loc CN elem 8.3330 7.4945 7.3078 7.1701 4,0,1,2,92
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