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THEORY TO DYNAMIC PERFORMANCE.  
 
MAJOR PROFESSOR:  Eric A. Jacobs, Ph.D. 

 

The area of perceptual decision-making research seeks to understand how our 

perception of the world affects our judgment. Laboratory investigations of perceptual 

decision-making concentrate on observers’ ability to discriminate among stimuli and 

their biases towards reporting one stimulus more frequently than others. Choice 

theories assume that these performance measures are determined by generalization of 

reinforcement along both stimulus and response dimensions. Historically the majority 

of research has addressed situations in which the difference among stimuli and 

resulting consequences of a perceptual decision are static. Consequently, little is 

known about the dynamics of stimulus and response generalization. The present 

research investigated the dynamics of discrimination accuracy and response bias by 

frequently varying differences among stimuli and the outcomes for correct decisions. 

In Experiment 1, four rats responded in a two-stimulus, two-response 

detection procedure employing temporal stimuli (short vs. long houselight 

presentations). Sample stimulus difference was varied over two levels across 

experimental conditions. A rapid acquisition procedure was employed in which 

relative reinforcer frequency varied daily. Shifts in response bias were well described 

by a behavioral model of detection (Davison & Nevin, 1999). Within sessions, bias 

adjusted rapidly to current reinforcer ratios when the sample stimulus difference was 
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large, but not when the difference was small. In Experiment 2, three rats responded in 

a five-stimulus, two-response detection procedure employing temporal stimuli. 

Relative reinforcer frequency was again varied daily. Control by current session 

reinforcer ratios increased rapidly within sessions in a nearly monotonic fashion. 

Furthermore, response bias following each sample stimulus was observed within the 

first few trials of an experimental session. The speed of changes in response bias, 

especially following an unreinforced probe stimulus, provide strong support for an 

effective reinforcement process and suggest that this process may operate at a trial-

by-trial level. In Experiment 3, three rats responded in a six-stimulus, two-response 

classification procedure. A repeated-acquisition procedure was employed in which 

the relationship between classes of short and long sample stimuli and their respective 

correct comparison locations reversed every 15 sessions. After several reversals, the 

probabilities of reinforcement for correct classification were also manipulated. In the 

majority of conditions across subjects, response bias reached half-asymptotic levels 

more rapidly than did discrimination accuracy. These findings provide some support 

for a backward chaining account of the acquisition of signal detection performance. 

An attention-augmented behavioral detection model accurately described the 

acquisition data; however parameter estimates expressing the probability of attending 

to sample and comparison stimuli differed widely among subjects. 

The results of these experiments support the adaptation of dynamic research 

methodologies to the study of learning in perceptual decision-making tasks. 

Furthermore, discrimination performance and response bias adapt rapidly to frequent 

changes in reinforcement contingencies. Quantitative models formulated to describe 
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static performance in detection procedures can be extended to predict dynamic 

performance. Some theoretical assumptions of these models were supported and 

others were violated. Overall, this research supports a renewed emphasis on learning 

in signal detection procedures and suggests that stable behavioral endpoints are at 

least as much a function of contingency variables as they are of sensory variables. 
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CHAPTER 1 

PSYCHOPHYSICS, SIGNAL DETECTION, AND OPERANT BEHAVIOR 

 

 Most would agree that if the world were exactly as we perceive it, then all our 

decisions would be perfectly accurate and the resulting consequences would be those 

we desire most. However, with experience, most of us become aware that the world 

often differs greatly from our perceptions. Moreover, we are aware that all too often 

our actions do not produce their intended effects. From our personal lives to our 

professional, the consequences of our decisions affect us as well as others. At times, 

the stakes are low; however, at other times the consequences of our actions can be 

dire. Many decisions require one to make a positive or negative decision based on the 

presence or absence of a particular event or piece of evidence. In this type of 

decision-making scenario, two types of mismatch between the true state of the world 

and our perceptions of it are possible. We can incorrectly conclude that the evidence 

for the event is satisfactory when it in fact is not and we can conclude the evidence is 

insufficient when it is actually adequate. The first error is called a false positive (false 

alarm) and the second a false negative (miss). Both are false assertions about the true 

state of the world and may be costly. Two independent facets of the world produce 

perceptual errors, the similarity of individual pieces of evidence and the consequences 

of positive and false judgments. For example, a quality control inspector must decide 

whether a textile meets or exceeds customer expectations. Clearly, no two pieces of 

fabric are identical and different customer bases have diverse demands. As a result, 

what the inspector judges to be of good quality depends on existing expectations and 
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the fiscal consequences of incorrect designation of quality. Incorrect assignment of 

quality to a defective fabric will hurt the brand name. However, too high of a quality 

criterion is costly as much valuable material is discarded. The quality inspector must 

adopt a criterion that is neither too lenient nor to restrictive. To be successful, the 

individual must strike the right balance between erroneous judgments of poor quality 

fabric being treated as though it were high and high quality fabric mistakenly judged 

as poor. That is, the inspector must accept a certain frequency of errors; however, 

market forces will ultimately determine how strict the criterion must be if the 

manufacturer is to succeed. In other situations, the cost associated with each type of 

error is asymmetrical. For example, prognosis of a fatal disease and diagnosis of 

developmental disabilities carry with them greater costs of false judgments. 

 The area of perceptual decision-making research seeks to understand how the 

disparity between the world and our perceptions of it affect our judgments and how 

we might go about bringing the two into better alignment. This area of decision-

making research has historically addressed situations in which the evidence and 

resulting consequences of a perceptual decision are static. The present dissertation 

attempts to study the dynamics of decision criteria by frequently varying evidence 

and decision outcomes. Specifically, by employing identification and categorization 

paradigms to study nonhuman behavior in a laboratory setting I hope to better 

understand how individuals learn to adopt a particular decision criterion. 

Additionally, a systematic understanding of the perceptual decision process may shed 

light on why individuals frequently make less than optimal judgments.  
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The following is intended to provide the reader with an introduction to the 

breadth of topics that inform the present work and simultaneously bring the goals of 

the present research into sharper focus. These topics include: research on choice 

(Herrnstein, 1970; Luce, 1963a), stimulus control (Dinsmoor, 1995; Guttman & 

Kalish, 1956; Honig & Urcuioli,1981), detection and identification (Luce & Galanter, 

1963a; Luce & Green, 1974; Green, 1960), psychophysical scaling (Luce & Galanter, 

1963; Thurstone, 1927a, 1927b), and mathematical treatments of the temporal 

patterning of responses (Blough, 1963; Killeen, Hall, Reilly, & Kettle, 2002; Luce, 

1986; Link, 1992, McGill, 1963; Palya, 1992; Shull, 1991; Shull, Gaynor, & Grimes, 

2001). Each topic has been studied extensively within two distinct, yet 

complementary traditions, the experimental analysis of behavior and psychophysics. 

Put most broadly, the focus of this research area is the processes by which distal 

environmental consequences come to have an affect upon an organism’s behavior in a 

particular context. The present work is aimed at contributing to the methodological 

and empirical study of the dynamics of reinforcer effects of behavior-produced 

consequences that extend through stimulus and response dimensions to affect 

different classes of behavior at other times and in the presence of different stimuli 

(Hineline, 1993; Killeen, 1992; 1994).  

This first chapter is intended to provide a general background on an area of 

research that has evolved over the last 40 years out of a union of psychophysics and 

the experimental analysis of behavior. First, I provide an overview of some 

commonly employed procedures and introduce prominent measures of performance 

taken from signal detection theory. Next, I will discuss research and theory that has 
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mostly been informed by non-human research conducted in the tradition of the 

experimental analysis of behavior. These sections concentrate on theory development, 

specifically quantitative formulations of performance in signal detection, 

identification, and matching-to-sample procedures. The introductory section 

concludes with a discussion of the goals of this dissertation and outlines future 

research. Each subsequent chapter contains a review of the literature deemed most 

pertinent to each experiment.  

Signal Detection: Accuracy and Bias. 

One of the simplest psychophysical procedures is sometimes called a 

correspondence experiment (Macmillan & Creelman, 1991). In such a procedure, a 

correspondence is said to exist between the stimuli presented and responses available. 

That is, for each stimulus presented to the subject, a single response corresponds to 

that stimulus. The simplest form of correspondence experiment is the one-interval 

design. In the one-interval design, a single stimulus representing one of two possible 

classes of stimuli is presented to the subject on every trial. The subject’s task is to 

identify the stimulus as being a member of one class or the other. The one-interval 

design is equivalent to the “yes-no” detection experiment. The “yes-no” task has been 

historically labeled as such due to its early use in absolute identification, where 

subjects were sometimes presented with a stimulus plus background noise or just 

background noise alone. 

In Figure 1.1, the “yes-no” or “go, no-go” task is diagrammed as the classic 

absolute identification task where a stimulus plus noise is presented or noise alone is 

presented to the subject. In the absolute identification task, however, the concurrently 
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available response (B2) indicating noise alone is sometimes not explicitly measured.  

Alternatively, in a standard 2-stimulus, 2-response recognition task (Figure 1.1), 

subjects are presented with one of the two possible stimuli (S1 or S2) on each trial. 

One type of response (a B1 response, e.g., a right button press) is deemed correct on 

S1 trials and the other type of response (a B2 response, e.g., a left button press) is 

deemed correct on S2 trials. Feedback on the accuracy of the subjects’ performance is 

typically given in the form of payoffs for correct responses and/or penalties for 

incorrect responses. 

There are two key measures of performance in such procedures: the frequency 

with which subjects respond correctly and the frequency with which subjects make 

one type of response more frequently than others. The former measure is accuracy 

which ostensibly relates to the sensory aspects of the procedure, and the latter 

measure is called response bias and relates to decision variables such as payoffs or 

information feedback for correct and incorrect responses, respectively. These two 

primary measures of performance in a “yes-no” task can be visualized by plotting a 

receiver operating characteristic (ROC) function. Briefly, the ROC curve is a plot of 

the probability of the subject responding “yes” a signal was present plotted on the y- 

axis and the probability of saying “yes” when the noise alone was present plotted on 

the x-axis. The top graph of Figure 1.2 is a plot of a standard ROC curve with four 

levels of accuracy or sensitivity. The hit and false alarm probabilities have been 

plotted as their z transforms and are thus linear in these coordinates. Perhaps the most 

widely used measure of sensitivity (assuming an equal variance model) is d' as 
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indexed by the distance of each line from the major diagonal and given by the 

equation: 

                                       ' ( ) ( )d z H z FA= −                                                      (1.1) 

where z is the inverse of the Gaussian probability density function and H and FA are 

the hit and false alarm probabilities (see Fig. 1.1), respectively (MacMillan & 

Creelman, 1991; Swets, 1986a, 1986b). The points lying along each line in Figure 1.2 

would result from biasing manipulations such as instructions, unequal payoffs, or 

unequal penalties (Voss, McCarthy, & Davison, 1993). Each data point lying upon 

the same line indicates varying degrees of bias with a constant level of accuracy or 

sensitivity; a condition called isosensitivity (Luce, 1963a). Specifically, the measure 

of bias used to generate the points in Figure 1.2 is given by the criterion location 

measure c. This measure is calculated as: 

                                          [ ]1 ( ) ( )
2

c z H z FA= − +                                              (1.2) 

where all notation is as above. The bottom graph of Figure 1.2 is a plot of a z-

transformed ROC curve with four levels of bias given by c indicated in the figure. 

The distance from the minor diagonal, which is indicated as a criterion value of zero, 

indexes the degree of bias and points lying the same distance from the minor diagonal 

at different levels of sensitivity satisfy a condition called isobias. Thus, the isobias 

curve is the complement of the isosensitivity curve. Isobias curves result from a 

biasing manipulations being held constant, while the signal to noise ratio is varied 

across experimental conditions.  
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Signal Detection as Operant Behavior. 

Nevin’s (1969) review of Green and Swets’ (1966) foundational text on signal 

detection theory provided the conceptual bridge between the human psychophysics 

and nonhuman learning laboratories that continues to provide a framework for the 

study of the discriminated operant (Davison & Nevin, 1999; Shull, 1999; White & 

Wixted, 1999). Nevin pointed out important methodological similarities between the 

two disciplines and provided an analysis of response bias by extending the matching 

law treatment of choice in concurrent schedules of reinforcement (Catania, 1963a, 

1963b, 1966; Herrnstein, 1961; Pliskoff, Shull, and Gollub, 1968).  

Nevin recognized that the standard “yes-no” signal detection experiment of 

psychophysics (Bush, Galanter, & Luce, 1963) resembles a complex schedule of 

reinforcement (Ferster & Skinner, 1957). The 2x2-detection task is commonly treated 

as a variant of the matching-to-sample (MTS) task in the learning literature (Catania, 

1998). Nevin suggested that the “yes-no” procedure is a concurrent schedule of 

reinforcement (B1 and B2 available simultaneously) within the context of a multiple 

or mixed schedule of reinforcement depending on the similarity of S1 and S2, 

respectively (see also Nevin, 1981). Multiple and mixed schedules of reinforcement 

(Ferster & Skinner, 1957) are composed of successively presented component 

reinforcement schedules, in which the transitions between each schedule are either 

signaled (i.e., multiple schedule) or unsignaled (i.e., mixed schedule). Thus, the “yes-

no” task exists within the continuum of multiple-to-mixed concurrent schedules of 

reinforcement. When S1 is not discriminable form S2, conditions approximate a mixed 
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schedule. When S1 is highly discriminable from S2, conditions approximate a multiple 

schedule. 

The most enduring contribution of Nevin’s (1969) review was his reanalysis 

of some data presented by Green and Swets (1966). The data reported by Green and 

Swets were obtained from a single subject in an auditory “yes-no” task. In the 

procedure from which the data were taken, the strength of an auditory signal 

remained constant while the probability of signal presentation or the relative payoffs 

for responding “yes” were varied to generate a receiver operating characteristic 

(ROC) function. Nevin’s reanalysis demonstrated that the probability of a “yes” 

response was approximately equal to the relative frequency of payoff for responding 

“yes”. Nevin speculated that the matching relation he found must depend in some 

way on the strength of the signal presented to the subject. The demonstration of 

matching of response to reinforcer proportions in a signal detection procedure by 

Nevin (1969) would form the basis of modeling efforts for the next two decades. 

However, his suggestion that the strength of the signal and reinforcement 

contingencies be treated similarly would not be investigated for many years (Davison 

& Nevin, 1999; Nevin, 1981). 

A Matching Model of Detection. 

Following Nevin’s (1969) lead, Davison and Tustin (1978) presented a model 

for performance in signal detection procedures based upon the generalized matching 

law (Baum, 1974; 1979; Herrnstein, 1961). Davison and Tustin provided a choice-

based model of detection performance that assumes that stimulus and payoff 

manipulations are independent sources of response bias. Therefore, the isosensitivity 
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curve (Fig. 1.2), which is often obtained from subjects in studies of detection 

performance (Green & Swets, 1966; Macmillan & Creelman, 1991; Nevin, 1969; 

1981), is the result of variation in payoffs at a constant level of stimulus difference, 

while the isobias curve results from variation in stimulus differences at constant 

relative payoffs. Although the model has been shown to be inadequate, it is an 

important historical development and thus foreshadows future efforts to model bias 

from a matching law-based approach. 

Davison and Tustin’s (1978) model predicts that choice among response 

alternatives in a 2-stimulus, 2-response detection task is independently determined by 

the reinforcer frequency ratio and the physical difference between the sample stimuli. 

The equation for predicting performance on S1 trials is 

                                 dc
R

R
ra

B

B
loglog

22

11log
12

11log ++
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
                                    (1.3a) 

and the equation for performance on S2 trials is 

                                 dc
R

R
ra

B

B
loglog

22

11log
22

21log −+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
                                      (1.3b) 

where Bij and Rij are the response and reinforcer frequencies identified by the 

stimulus (S1 or S2) and response alternative (B1 or B2) to which it occurs (see Fig. 

1.2). The parameter ar, measures the extent to which variation in the reinforcer 

frequency ratio produces changes in the response ratio. Note that the log d and log c 

parameters are not the same as the d' and c parameters of detection theory, although 

the parameters do measure somewhat similar aspects of performance. The parameter 

log d, measures a constant preference towards making a correct response, which 

depends upon the difference between S1 and S2. Thus, the signs are opposite in the 
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two equations. In the generalized matching approach, log c measures any constant 

bias towards one response alternative that is independent of variation in the reinforcer 

frequency ratio (i.e., side or comparison color preference, unequal response force 

requirements; see Baum, 1974; 1979). The parameters log d and log c are assumed to 

be independent sources of preference in a detection task. That is, discrimination, as 

measured by log d, must be equal in both equations and log c is a measure of any 

residual preference due to variables other than reinforcer frequency or stimulus 

difference.  

The chief prediction following from Davison and Tustin’s (1978) formulation 

is that stimulus and reinforcer variables are independent sources of bias in a detection 

task. This assumption of independence can be seen when Equations 1.3a and 1.3b are 

added to produce an equation that predicts overall response bias, log B. Davison and 

Tustin’s equation for measuring overall response bias, after algebraic simplification, 

is: 

                          c
R

R
ra

BB

BB
B log

22

11log
2212

2111log5.0log +=
⋅

⋅
= ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
                               (1.4) 

where all variables, variable subscripts, and parameters are as above. Note that in the 

derivation of Equation 1.4, the stimulus bias term (log d) has dropped out of the 

equation. Therefore, Davison and Tustin’s equation for bias states that the relative 

frequency of making a B1 or B2 response in the presence of S1 or S2 is a linear 

function of the relative frequency of reinforcers for correct responses and 

uncontrolled sources of bias. Furthermore, the equation predicts that bias is 

independent of discrimination between S1 and S2. While adding Equations 1.3a and 



 

 

 

11

1.3b provides an overall measure of bias in a detection task, subtraction of the two 

equations gives an overall measure of discrimination. Davison and Tustin’s equation 

for measuring discrimination performance is: 

                                       ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅

⋅
=

2112
2211log5.0log

BB
BB

d                                                       (1.5) 

where Bij are the response frequencies as defined above. The measure log d is the 

geometric mean of the ratio of correct and error responses. The antilog of this 

measure of discrimination is the inverse of the confusion measure η derived from 

choice theory (Luce, 1963; Shepard, 1957, 1958a). Note that the terms indicating the 

frequencies of reinforcers for each correct response do not appear in Equation 1.5.  

Therefore, the detection model of Davison and Tustin predicts independence between 

bias and discrimination performance in a detection task.  

 Initial research conducted and analyzed according to Davison and Tustin’s 

model supported the predicted independence of bias and discriminability. McCarthy 

and Davison (1979) reported a study in which the physical difference between S1 and 

S2 was held constant and the frequency of reinforcement for correct responses was 

varied across several conditions. They reported that as bias (log b) varied directly 

with the reinforcer ratio, point estimates of log d were constant; therefore bias and 

discrimination were independent. McCarthy and Davison (1980a) again varied the 

relative frequency of reinforcers for correct responses, but over two levels of stimulus 

difference across conditions. They also reported that bias (log b) and discrimination 

(log d) were independent. Subsequently, McCarthy and Davison (1980b) reported that 

these measures were independent over a larger range of variation in stimulus 

difference.  
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 Although early research supported the independence assumption of Davison 

and Tustin’s model (for review see Davison & McCarthy, 1988; McCarthy & 

Davison, 1981a, 1981b), later, more extensive studies reported interactions between 

bias and discriminability. McCarthy and Davison (1984) carried out a large 

parametric study in which they varied the reinforcer ratio across three levels at each 

of five levels of difference between S1 and S2 in a detection task with pigeons. 

McCarthy and Davison also studied the effects of two procedures for scheduling 

reinforcers for correct responses (see also Stubbs, 1976). The first procedure called a 

controlled reinforcer ratio procedure, sets up a reinforcer for a correct response and 

assigns no further reinforcers until the appropriate response occurs and the assigned 

reinforcer is obtained. In the uncontrolled reinforcer ratio procedure, the scheduling 

of reinforcers for each correct response is independent of the other. In the choice 

literature, these two procedures for scheduling reinforcers concurrently are referred to 

as independent (Herrnstein, 1961) and dependent schedules (Stubbs & Pliskoff, 

1969), respectively. McCarthy and Davison (1984) found that the relation between 

bias and discriminability depended upon the scheduling arrangement. In their 

controlled reinforcer ratio procedure (dependent schedule), estimates of bias remained 

constant as the sample stimuli where made more different, thus replicating previous 

work. In the uncontrolled reinforcer ratio procedure (independent schedule), however, 

bias was greater in the conditions of lower stimulus difference. That is, under the 

uncontrolled procedure, subjects showed a stronger bias towards the response 

alternative with the higher reinforcer rate when discrimination was poor.  



 

 

 

13

 Two points should be made regarding the findings of McCarthy and Davison 

(1984) and others like them (Alsop & Davison, 1991; Godfrey, 1997; Nevin, Cate, & 

Alsop, 1993). Although McCarthy and Davison’s (1984) study was the first to show 

an interaction between bias and discriminability, other studies subsequently replicated 

these findings (Alsop & Davison, 1991; Godfrey, 1997). Currently, the reasons for 

this interaction are not well understood (Alsop, 1991, 1998; Alsop & Rowley, 1996; 

Alsop & Porritt, 2006). First, the interaction between bias and discriminability has 

subsequently been obtained using both uncontrolled (McCarthy & Davison, 1984) 

and controlled (Alsop & Davison, 1991) reinforcer ratio procedures (for discussion 

see Alsop & Porritt, 2006). Second, the sensitivity parameter, ar in Equation 1.4 

provides no insight into the possible mechanisms responsible for changes in bias. 

Although the Davison-Tustin model had some early success, recent research has 

shown the model to have serious limitations. 

 The fact that the assumption of independence has not held in at least some 

circumstances however, is troubling. Furthermore, the model cannot account for data 

from studies in which reinforcers for error responses have been arranged (Davison & 

McCarthy, 1980b; Nevin, Jenkins, Whittaker, & Yarensky, 1982). Perhaps most 

importantly, there is no obvious way to extend the model to procedures with more 

than two stimuli (Davison, 1991; Davison & McCarthy, 1987; 1989).  

A Detection model of Choice. 

 Alsop (1991) and Davison (1991) independently introduced a detection model 

that predicts an interaction between bias and discriminability (Davison & Nevin, 

1999). Their model is based upon an earlier model of choice proposed by Davison 
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and Jenkins (1985). The model assumes that each response available to the subject in 

the detection task is affected by reinforcement for correct responses to the extent that 

the sample stimuli and response alternatives are similar to one another. For the case 

of 2-stimulus, 2-response detection, the equation describing performance in the 

presence of S1 is written: 
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and for performance in S2:  
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where Bij and Rij are the response and reinforcer frequencies as defined above. The 

parameters ds and dr are discriminability or distance measures and represent the  

discriminability between the stimuli ds and response alternatives dr, respectively (see 

Figure 1.1). The ds and dr parameters range from 1.0 to ∞, representing no 

discrimination to perfect control by the stimuli or response alternatives. Again, the 

constant log c is included to account for the biasing effects of any extraneous, 

constant choice-affecting variable.  

Figure 1.3 demonstrates how the Alsop-Davison model predicts the 

interaction between Davison-Tustin measures of bias (log b) and discriminability (log 

d). The plot was generated by varying the relative frequency of reinforcers for correct 

responses over a wide range (100:1 to 1:100) while holding dr constant and varying 
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ds, over three levels (25, 50, and 100). Next, the Davison-Tustin model of detection 

was fit to the data simulated by the Alsop-Davison model. The obtained values of 

sensitivity, which is an index of bias relative to the ratio of reinforcers (cf. Equation 

1.4), and discriminability obtained from the fits of Equation 1.3 to the data generated 

by Equation 1.6, are plotted in Figure 1.3. Therefore, the model proposed by Alsop 

(1991) and Davison (1991), which treats discriminability among stimuli and 

responses symmetrically, predicts that the extent of bias observed depends on the 

level of discrimination given by ds and can be seen if an overall measure of bias, 

analogous to log B in Equation 1.5, is obtained using Equation 1.6 and 1.6b (see 

Equation 8 of Davison & Nevin, 1999, for the derivation).  

The most important theoretical difference between the model proposed by 

Alsop and Davison and the early Davison-Tustin model is the way in which stimulus 

distances produces changes in the frequency of error responses (B12 & B21, 

respectively). According to the Davison-Tustin model, error responses are a function 

of reinforcers for correct responses (measured by ar) and a constant level of bias 

towards the correct responses, given by a parameter relating the difference between 

the sample stimuli (log d). The model implies that error responses are due to the 

degree of stimulus generalization and does not include a role for response 

generalization or induction. Consequently, the model proposed by Davison and Tustin 

(1978) maintains the assumption of classical signal detection theory (Green & Swets, 

1966) of independence between sensory and decision variables. 

According to Alsop and Davison’s model however, error responses are the 

result of the spread of reinforcement from other stimuli (ds) and response classes (dr). 
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To make the model’s assumptions more explicit and to extend the model to more than 

two stimulus and response classes, the terms in Equations 1.6a and 1.6b can be 

replaced by primed variables, where for any cell (m, n) of a matrix (Fig. 1.1) with s 

stimuli and r responses: 
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with ds and dr ranging from 1 to ∞, so any cell is maximally similar to itself (i.e., dsn,i 

= 1 and drm,j = 1). The primed reinforcer terms are the effective reinforcement for each 

response alternative. Therefore, Alsop and Davison’s model assumes symmetrical 

effects on behavior when the disparity or physical difference among the sample 

stimuli and response definitions are manipulated. The logic dictated by Equations 1.6 

and 1.7 follows up on the suggestions made by Nevin (Nevin, 1969; 1981) and 

discussed briefly above. To recognize Nevin’s contributions, the model presented in 

Equations 1.6 and 1.7 will be referred to as the Davison-Nevin-Alsop (DNA) model 

hereafter (Davison & Nevin, 1999). 

Alsop and Davison (1991) conducted a large parametric study in which they 

studied seven pairs of light intensities, which served as both samples in a detection 

procedure, and discriminative stimuli in a concurrent schedule of reinforcement. 

Across each procedure and within each stimulus set, the relative frequency of 

reinforcement was varied across at least three levels. Alsop and Davison reported that 

the DNA model provided an excellent fit to their data; however, they obtained a u-

shaped relationship between ds and dr. Thus, although the model provides a good fit 

to the data, a consistent finding of parameter invariance has been lacking. 
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Furthermore, the finding of parameter covariation in the 2x2-detection procedure is 

perplexing, because the most successful extension of the DNA model has been from 

the simpler identification task to classification and related procedures involving more 

than two stimuli (Davison, 1991; 1996; Davison & McCarthy, 1987; 1988; 1994; 

Davison & Nevin, 1999; Krägeloh, Elliffe, & Davison, 2006).  

Variations in Attending. 

 The most recent modification of the DNA model has been the addition of 

parameters measuring the probability with which subjects are assumed to attend to the 

relevant stimuli in stimulus detection and matching-to-sample procedures (MTS). 

Assuming that subjects do not attend to sample and comparison stimuli on every trial, 

Nevin, Davison, and Shahan (2005) provided a modified version of the DNA model 

that could account for : 1) previous data sets showing parameter covariation (Alsop & 

Davison, 1991), 2) effects of overall rate of reinforcement on stimulus 

discriminability (Schaal, Odum, & Shahan, 2000; Nevin, Milo, Odum, & Shahan, 

2003), and 3) could be readily extended to describe performance in studies employing 

delayed matching-to-sample (DMTS) and related procedures (Nevin, Davison, Odum, 

& Shahan, 2007).  

 The modification of the DNA model presented by Nevin, Davison, and 

Shahan (2005) assumes that subjects’ attend to the relevant sample and choice stimuli 

in a detection procedure depending on the rate of reinforcement for doing so. 

Specifically, the probability of attending to the sample stimuli p(As) is given by the 

expression: 

       b
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where x is a parameter representing background distraction, scaled in units of the 

particular disruptor imposed (e.g., sessions of extinction), that interferes with 

attending to the sample and b is a sensitivity parameter (Nevin, 1992; Nevin & Grace, 

2000). The term ra is the session-based obtained overall rate of reinforcement. The 

term rs is the rate of reinforcement for attending to the samples and is given by 

dividing the total number of reinforcers obtained in a session by the sum of the 

intertrial intervals (ITI) and sample duration. Thus, the time required to make a 

comparison choice is excluded from calculation of the rate of reinforcement for 

attending to the samples. A similar equation is used to predict the probability of 

attending to the choice alternatives or comparison stimuli, p(Ac):  

       b
sc

c rr
zAp

)/(
exp)( −

=                                                 (1.9) 

where all parameters except z and rc are as defined above. The parameter z represents 

background distraction, analogous to x in Equation 1.8, which interferes with 

attending to the comparison stimuli. The term rc is the rate of reinforcement for 

attending to the choice or comparison stimuli and is given by dividing the total 

number of reinforcers obtained in a session by mean response latencies, plus the 

average retention interval in a DMTS procedure. Thus, the time required for sample 

presentation and the intertrial interval are excluded from calculation of the rate of 

reinforcement for attending to the comparison stimuli. 

 The model presented by Nevin and colleagues (2005) assumes that when 

subjects do not attend to the sample stimuli, ds in Equation 1.6 is effectively 1.0. 

Likewise when subjects do not attend to the choice or comparison stimuli, dr is 1.0. 

Behavior in a detection task, according to the model, is assumed to result from the 
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subjects’ behavior being governed by a combination each of the four possible states 

corresponding to attending to and not attending to the sample and choice stimuli. 

Therefore, as the session wide reinforcer rate increases, subjects are assumed to 

attend to sample and choice stimuli with greater frequency and behavior is governed 

by the original DNA equations.  

 Although the modification provided by Nevin and colleagues allows the 

original DNA model to account for some discrepant data sets and is consistent with 

some previous literature on attending in detection tasks (Berryman, Cumming, 

Cohen, & Johnson, 1965; Heinemann, Avin, Sullivan, & Chase, 1969; Wright & 

Sands, 1981), it is uncertain as of yet whether the extra parameters pay their way 

outside of applications to DMTS procedures. Moreover, in their reanalysis of archival 

data sets, Nevin and colleagues assumed only that p(As) was less than 1.0 without 

consideration of the actual obtained response latencies, which dictate p(Ac). Their 

insight, however, that on any given trial the subjects’ behavior may not be under the 

control of either ds, dr, or both, is consistent with previous findings (Alsop & Rowley, 

1996; Blough, 1996; Edhouse & White, 1998) and is taken up in the next section.  

Learning and Detection. 

The previous sections have discussed various models that have been proposed 

for signal detection performance. Obviously, each of them has had difficulties in 

accounting for some data sets (Alsop, 1998; Davison, 1991; Dusoir, 1975). 

Modifications to each of the models originating from the operant choice literature 

(Davison & McCarthy, 1988; Williams, 1988; 1994) have been made to the way in 

which the model quantifies biasing variables. In fact, it was originally thought that 
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these models would provide a better treatment of bias than those developed by 

detection theorists (Nevin, 1969; Davison & Tustin, 1978; Davison & McCarthy, 

1981).   

It may be helpful to define three time scales over which the various models 

assume the sensory and decision variables operate in a detection situation. The origin 

of most modeling efforts in the operant choice tradition can be traced to classical 

signal detection theory (Green & Swets, 1966) and the matching law (Herrnstein, 

1961; 1970). Both of these theoretical approaches are static and focus exclusively on 

aggregate or molar effects of stimulus similarity and relative payoff on performance 

measures obtained from highly trained observers. Other approaches highlight the role 

of between-trial sequential dependencies in detection procedures (Speeth & Mathews, 

1961) and offer dynamic accounts of detection performance (Atkinson, Carterette, & 

Kinchla, 1962; Atkinson & Kinchla, 1965; Friedman, Carterette, Nakatani, & 

Ahumada, 1968). Many of these attempts however, have been limited to either 

restricted procedures or highly experienced subjects (e.g., Luce & Green, 1974). 

Finally, other accounts emphasize activities within a single trial in a signal detection 

task (Nevin, Davison, & Shahan, 2005; Link & Heath, 1975; Wright, 1991; 1992). 

The assumed operative temporal scale of each model originating in the operant choice 

literature is summarized below. 

The model proposed by Davison and Tustin (1978) assumed that the variables 

affecting discrimination and bias are independent. Therefore, this model follows 

directly from signal detection theory as proposed by Green, Swets, Tanner, and 

Birdsall (Green, 1960; Tanner & Swets, 1954; Swets, Tanner, & Birdsall, 1961). 
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From the outset, signal detection theory has assumed that the sensory/perceptual and 

decision processes involved in signal detection and psychophysical experiments were 

independent of one another. Davison and Tustin’s model followed this logic, but 

replaced previous measures of bias with one developed directly from the steady-state 

analysis of choice (Herrnstein, 1961; 1970). The model of Davison and Tustin (1978) 

is silent on the dynamics of detection performance. For present purposes, however, 

we may assume that the Davison-Tustin model predicts independent effects of 

sensory and decision variables on performance during any given trial. 

Perhaps the greatest departure in theorizing in the operant choice literature 

comes from the DNA model (Alsop, 1991; Davison, 1991; Davison & Nevin 1999; 

Nevin, 1969; Nevin, 1981). The DNA model predicts that measures of bias will 

depend on discrimination performance (see Fig. 1.3). This model assumes that the 

perceptual and decision-making components of detection are derived from the same 

process, namely the spread of reinforcement across dimensions of stimulus and 

behavior. That is, the DNA model suggests a hierarchical behavioral unit (cf., 

Rescorla, 1992), in which the effect of response-produced reinforcing stimuli spread 

to other response and stimulus classes by virtue of similarity along those two 

dimensions. Therefore, a dynamic implementation of the DNA model suggests a 

diffusion or spread of effect of reinforcement along the dimensions of stimulus and 

response that depends on the local reinforcer value. 

While the DNA model is the most successful and widely applicable model 

developed thus far in the operant-detection literature, it too has proven to be deficient 

in some cases (Nevin, Davison, & Shahan, 2005). The specific modifications to the 
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DNA model, rather than the authors’ rationale for them, are most germane to the 

present discussion. The modified attending-augmented DNA model assumes that on a 

certain proportion of trials within an experimental session, the subject fails to attend 

to the sample stimuli, comparison stimuli or choice alternatives, or both. The 

consequences of this failure depend upon which stimulus is ignored. In their review, 

Nevin and colleagues needed to modify the probability of attending to the sample 

stimuli p(As) to account for data from detection and MTS procedures with no delay 

between sample presentation and availability of the choice alternatives. The effect of 

changes in this parameter is to make ds in Equation 1.6 equal to 1.0 (i.e., no sample 

discrimination) on some proportion of trials. If on some proportion of trials in each 

experimental session, a subject’s behavior is not under control of the sample stimuli 

(p(As) < 1.0), then are these trials of unvarying character or dependent on previous 

events? That is, do we assume that on some proportion of trials subjects disengage 

from the task or that performance on any trial is determined by events on the current 

trial as well as events on previous trials? Clearly then, we are obliged to study the 

circumstances under which subjects make choices completely based on biasing 

variables. 

It may be that the earliest conceptualizations of psychophysical and signal 

detection performance were premature concerning the effects of biasing 

manipulations. That is, the assumption of independent sensory and decision processes 

may have been more a product of researcher’s interests, rather than the determinants 

of the subject’s performance. That is, early researchers in psychophysics were often 

exclusively interested in the pure sensory process and saw biasing variables as a 
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nuisance that must to be controlled to reveal the true nature of the sensation. This 

suggestion may find support in discussions on the form of the psychometric function 

(Guilford, 1954; Thurstone, 1928). As suggested by Luce (1964), it was the advent of 

new methods in what came to be called local psychophysics that began to shift the 

prevailing view. On this view, methods such as those used to generate a receiver 

operating characteristic (ROC) suggested the importance of bias or contingency 

variables in determining performance in psychophysical tasks. Therefore, it is not 

surprising that many researchers did turn their attention to an analysis of the local 

effects of trial outcomes. 

Early in the study of local psychophysics, a number of researchers suggested 

that under certain situations, performance on some trials is dependent on events in the 

preceding trial (Cross, 1973; Freidman & Carterette, 1964). In fact, several 

researchers proposed quantitative models to account for sequential dependencies and 

learning effects in signal detection procedures (Atkinson, 1963; Luce, 1963b; 1964). 

It seems quite strange that these effects have been largely ignored in the nonhuman 

laboratory. Furthermore, only now that steady state or molar performance models 

suggest the importance of local effects in detection procedures are these processes 

beginning to receive attention (Alsop & Rowley, 1996; Lie & Alsop, 2007; Ward & 

Odum, 2008).  

It was the observation that on some occasions (Norman, 1963; Senders & 

Sowards, 1952; Shipley, 1961) sequential dependencies arise in detection 

performance and the great lengths experimenters went to in order to control response 

bias that led Luce (1964) to suggest a more thorough experimental analysis of the 
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learning that takes place in psychophysical and detection experiments. Specifically, 

Luce suggested that at least two classes of learning models for detection studies could 

be examined. Two-process models are those which assume that learning involves 

both perceptual and decision changes across the course of a detection experiment 

(Atkinson, 1963; Kac, 1962). This type of model follows from the assumptions of 

classical signal detection theory (Green & Swets, 1966) which assumes that 

sensitivity and bias are independent. Therefore, according to Luce’s classification 

scheme, the Davison-Tustin model is a steady-state version of a multi-process model. 

Another class of model, Luce called single-process models, are those which assume 

that the perceptual aspect of detection performance is subordinate to the feedback-

driven learning process (Bush, Luce, & Rose, 1964; Schoeffler, 1965). Thus, 

according to Luce’s classification scheme, the DNA model and its offspring are 

single process models.  

The present research 

The goal of the present work is to develop methods that allow for the study of 

the learning that takes place in signal detection and related procedures. The methods 

employed in the experiments presented here have been successful in recent attempts 

to study the dynamics of operant choice (Hunter & Davison, 1985; Mazur, 1996; 

Schofield & Davison, 1997; Grace, 2002a, 2002b; Grace, Bragason, & McLean, 

2003). The experimental designs that have yielded some insight into the dynamics of 

choice typically vary choice affecting variables over a much shorter time scale than 

do steady-state counterparts (cf. Sidman, 1960). Such designs include varying relative 

reinforcer frequency every few sessions (Mazur, 1992, 1995, 1997), potentially each 
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session (Hunter & Davison, 1985; Schofield & Davison, 1997; Grace, Bragason, & 

McLean 2003), or once or more within a single experimental session (Davison & 

Baum, 2000, 2002, 2003; Gallistel, Mark, King, & Latham, 2001). Findings from 

each of these designs have shown that choice may adapt at an extremely high rate to 

abrupt signaled and unsignaled changes in the relative frequency of reinforcement. 

Moreover, such methods have stimulated theoretical developments that encompass 

effects seen in both dynamic and traditional steady state procedures (Christensen & 

Grace, 2008; 2009; Grace & McLean, 2006). The present experiments were 

conducted with the expectation that similar methodological developments applied to 

the study of signal detection performance will reopen a once promising line of inquiry 

and produce similar advances. The research is composed of three experiments each 

employing similar methods to investigate dynamic aspects of signal detection 

performance. 

The second chapter, “Rapid Acquisition of Bias in Signal Detection” presents 

the first attempt to implement a procedure that yields session-to-session changes in 

relative reinforcer frequency in a simple detection task. In Experiment 1, only 2 

stimuli were presented in an experimental session, across conditions, however the 

durations of the sample stimuli were changed to create a condition in which 

discriminating the stimuli would be relatively easy and more difficult, respectively. 

The novel methodological contribution of the study was that relative reinforcer 

probability for correct detections varied randomly across sessions according to a 

pseudorandom binary sequence (PRBS). The first experiment suggests that this 

design, which has been implemented in simpler choice paradigms (Schofield & 
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Davison, 1997; Grace, Bragason, & McLean, 2003) may be useful in studying the 

dynamic properties of bias in a detection situation. 

The third chapter, “Rapid Shifts in the Psychometric Function for Time” is an 

extension of the first experiment. Experiment 2 extends the application of the PRBS 

design from the simpler identification design to a classification task in which more 

than one stimulus is mapped to each of two available responses. The goal of 

Experiment 2 is to produce a psychometric function for each session under conditions 

of differential payoff. This experiment will allow a comparison between the speed of 

bias changes in simple and complex detection procedures. The design of Experiment 

2 may prove to be the most expedient method to study large ranges of stimulus 

disparity and relative reinforcement variables in a signal detection task. 

The fourth chapter, “Dynamics of Attending in the Repeated Acquisition of a 

Temporal Discrimination” again employs a classification design. The correct 

response location given a stimulus from one of two different classes and the relative 

frequency of reinforcement are varied every 15 sessions. This experiment is intended 

to provide information on the speed of repeated temporal discrimination acquisition 

between transitions of equal and unequal payoff for correct responses. In addition, 

Experiment 3 attempts to dissociate two hypotheses regarding the role of sample and 

choice stimuli in the repeated learning of a temporal discrimination. 

Table 1.1 provides an outline of the experiments to be reported in the 

following chapters. Each experiment employed a detection task in which the duration 

of a stimulus presentation served as a sample stimulus. Common to all experiments is 

manipulation of the relative frequency of reinforcement for correct responses. In 
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Experiments 1 and 2, the relative frequency of reinforcement for correct responses 

was changed each session. Therefore, these two experiments explored the speed of 

changes in response bias when the relative frequency of reinforcement changed each 

session. In Experiment 3, both the relative frequency of reinforcement for correct 

responses and the mapping between stimulus class and correct response location 

changed every 15 sessions. Therefore, the first two experiments explored the speed 

and extent of changes in response bias while the stimuli to be discriminated are held 

constant and the third experiment manipulated stimulus and reinforcement variables 

simultaneously in order to investigate the development of both facets of detection 

performance. 

In conclusion, the intended contribution of this dissertation is to begin a new 

research program utilizing considerably more dynamic experimental designs in the 

study of non-human signal detection performance. To this end, the goal of the 

research program consists of two phases: first to provide methodological advances 

and second to foreshadow the potential theoretical developments that are warranted 

by the present studies. The methodological goals can be met by obtaining aggregate 

data that are largely consistent with previous non-human studies of signal detection 

performance. The secondary goal of this work is to provide an accurate 

characterization of the time course of repeated acquisition of discrimination and bias 

in widely used variants of the classic “yes-no” detection procedure. Furthermore, the 

present experiments will provide substantial data sets on the local effects of both 

sensory and decision variables on detection performance, and perhaps provide a 

framework for an exclusively dynamic quantitative account of local reinforcer value 
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on stimulus and response generalization (Shepard, 1958a) in various psychophysical 

choice procedures. 
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CHAPTER 2 

RAPID ACQUISITION OF BIAS IN SIGNAL DETECTION. 

 

Behavior allocation, measured as relative response rate, in concurrent 

variable-interval (VI), VI schedules of reinforcement is well described by the 

generalized matching law (Baum, 1974, 1979; Davison & McCarthy, 1988). For a 

two-alternative concurrent schedule the model is  
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where B1 and B2 are the response frequencies and R1 and R2 are the frequencies of 

reinforcers obtained at alternatives 1 and 2. The parameter a is termed sensitivity to 

reinforcement (Baum, 1974; Lobb & Davison, 1975) and the parameter log c is 

inherent bias. Equation 2.1 has provided a very accurate description of choice in 

concurrent schedules of reinforcement, accounting for over 90% of the variance in 

log response ratios (Baum, 1979). Typically, the range of sensitivity to reinforcement 

is between 0.8-1.0 and inherent bias varies unsystematically around zero (Myers & 

Myers, 1979; Wearden & Burgess, 1982).   

 Miller, Saunders, and Bourland (1980) exposed pigeons to a switching-key 

concurrent schedule (Findley, 1958) and varied the relative frequency of 

reinforcement for responding to each alternative across conditions of the experiment. 

Between different groups of subjects, Miller and colleagues arranged different line 

orientations on the food key correlated with the various VI schedules. For the 

different groups of subjects the difference in line orientations was 0, 15, and 45 

degrees. Miller and colleagues applied Equation 2.1 to their data and reported 



 

 

 

30

increasing estimates of sensitivity to reinforcement of 0.17, 0.32, and 1.0 with 

increasing differences in the line orientations correlated with the VI schedules. Alsop 

and Davison (1991) systematically replicated and extended Miller, Saunders, and 

Bourland’s (1980) findings of changes in sensitivity to reinforcement with changes in 

the disparity of the discriminative stimuli correlated with the concurrent alternatives. 

Alsop and Davison (1991) analyzed their data according to both the generalized 

matching law and a contingency discriminability model proposed by Davison and 

Jenkins (1985). 

 Davison and Jenkins (1985) introduced a model for choice in concurrent VI, 

VI schedules that they argued was conceptually superior to the generalized matching 

law. Their model for a two-alternative concurrent schedule is written: 
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where responses, reinforcers, and log c are as above. The parameter dr is termed 

contingency discriminability and measures the extent to which the response-

reinforcer relations control differential responding to each response alternative. Thus, 

as contingency discriminability decreases, reinforcers earned from each alternative 

have an increasingly non-differential effect on responding. The dr parameter ranges 

from 1.0 to infinity, indicating zero to perfect discriminative control by the response 

reinforcer relations. Davison and Jenkins (1985) showed how their model could 

provide as accurate an account of concurrent schedule data as the generalized 

matching law. They further discussed how their model provided a conceptual 
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mechanism to account for the findings of Miller and colleagues (1980; see also Alsop 

and Davison, 1991). That is, the contingency discriminability model explains the 

effects of stimulus control on choice as response generalization or induction between 

the two alternatives engendered by less that perfect discriminability between the 

concurrent response reinforcer relations.  

 Alsop (1987) and Alsop and Davison (1991) extended the contingency 

discriminability model to performance in signal detection procedures. In a standard 2-

stimulus, 2-response detection task, subjects are presented with one of the two 

possible sample stimuli (S1 or S2) on each trial. One type of response (a B1 response, 

e.g., a right lever press) is intermittently reinforced on S1 trials and the other type of 

response (a B2 response, e.g., a left lever press) is intermittently reinforced on S2 

trials. Figure 2.1 shows a 2x2 signal detection matrix and the effective reinforcer 

allocation according to Alsop and Davison’s model (see also Davison & Nevin, 

1999). Reinforcers are subscripted according to the cell of the matrix in which they 

occur, therefore reinforcers for B1│S1 are designated R11 and B2│S2 reinforcers are 

designated R22. As in Davison and Jenkins model, the term dr indicates the extent of 

discriminative control by the response reinforcer relations. The signal detection 

model involves a further parameter ds, which is a measure of the degree of sample 

stimulus-based generalization of reinforcer effects on detection performance. 

Therefore, the Alsop-Davison detection model provides two sources for the 

generalization of the effects of reinforcement, one source based on the response-

reinforcer relations and the other on the stimulus-response relations.   
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 Alsop and Davison (1991) reported an extensive experiment, carried out with 

pigeons serving as subjects, in which they varied the stimulus difference between S1-

S2 pairs in both a concurrent schedule and a detection task. In the signal detection 

conditions, they varied the difference between stimuli in a 2-stimulus, 2-response 

detection task across seven levels by holding the intensity of S1 constant and 

changing the intensity of S2 across conditions. The relative frequency of 

reinforcement for correct responses was varied over at least three levels at each level 

of stimulus difference. They reported that the contingency discriminability model 

gave an excellent account of their data. However, the dr parameter varied in an 

inverse-U shaped pattern across levels of stimulus difference. That is, contingency 

discriminability varied as a function of variables that should only affect stimulus 

discriminability, ds. Therefore, in Alsop and Davison’s (1991) study, the model was 

unable to provide a parameter invariant account of their data (Nevin, 1984).  

 Recently, investigations of choice in concurrent schedules have been reported 

in which the relative frequency of reinforcement changes rapidly either within or 

between sessions (Davison & Baum, 2000; Hunter & Davison, 1985). Generally, 

these studies have found that relative response rate can adapt quickly to abrupt, 

unsignaled changes in relative reinforcer frequency. In Davison and Baum’s (2000, 

2002) procedure, where relative reinforcer frequency varies across seven levels 

within session, preference for the more frequently reinforced response emerges after 

the occurrence of a few reinforcers. Reports of control by changing reinforcement 

contingencies within a single session are also consistent with those that have shown 
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control by contingencies changing from session to session (Schofield & Davison, 

1997).  

 Hunter and Davison (1985) introduced a procedure for investigating rapid 

changes in preference where relative reinforcer frequency changes randomly between 

two values across sessions. Hunter and Davison found that variation of the relative 

frequency of reinforcers in a concurrent schedule according to a pseudorandom 

binary sequence (PRBS) produced rapid changes in preference. They also found that 

after several sessions of exposure to the PRBS that preference was only sensitive to 

the current session reinforcer ratio, with little discernable effects of previous sessions. 

Schofield and Davison (1997) reported a replication and extension of Hunter and 

Davison’s (1985) study by extending the PRBS procedure to several reinforcer ratios 

and dependent versus independent schedules. Schofield and Davison (1997) provided 

an extended generalized matching model to describe control over responding in the 

current session by the current and previous nine sessions’ reinforcer ratios. They 

reported that performance in the current session was mostly determined by the current 

session’s reinforcer ratio and to a smaller degree by previous session reinforcer ratios. 

Schofield and Davison also reported that sensitivity to current session reinforcer 

ratios increased with extended exposure to the PRBS procedure. Finally, they 

reported no effect of the size of reinforcer ratio (8:1, 4:1, 2:1, 1:2, 1:4. 1:8) on 

sensitivity to current session reinforcer ratios. Based on these findings, Schofield and 

Davison (1997) argued that the PRBS design was a useful method for quick 

determination of sensitivity to reinforcement.  
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 More recently, Grace, Bragason, and McLean (2003) have extended the PRBS 

design to concurrent-chained schedules of reinforcement. Specifically, in the first 

experiment of their study they varied the delay to reinforcement in one terminal link 

while holding the other constant. Thus, the immediacy ratio (reciprocal of delay ratio) 

changed randomly between sessions from 1:2 to 2:1. Grace and colleagues exposed 

their pigeons to three, 31-session sequences of the PRBS and reported that across 

sequences, preference came under increasing control of current session immediacy 

ratios (see also Grace & McLean, 2006). Extension of the PRBS design to concurrent 

chained schedules is important because it shows that preference is not only sensitive 

to random changes in primary reinforcer rate ratios, but also to changes in the value 

of stimuli correlated with primary reinforcement (Grace, 1994; Mazur, 2001, Nevin, 

Davison, & Shahan, 2005; Shahan, Podlesnik, & Jimenez-Gomez, 2006).  

 The present study sought to extend the PRBS method of varying relative 

reinforcer frequency to a signal detection procedure. Specifically, the relative 

frequency of reinforcement for correct responses in 2-stimulus, 2-response detection 

task employing temporal stimuli (short vs. long houselight presentations) was varied 

according to a 31-session PRBS. Across different PRBS presentations, the difference 

between the temporal sample stimuli was varied, creating two levels of discrimination 

difficulty. We asked whether detection performance and specifically if bias could 

come under control or random changes in the reinforcer ratio for correct responses. 

We also sought to determine the relationship between bias and discrimination under 

the PRBS design and these measures in studies employing designs that are more 

typical in this literature.  
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Hypotheses 

1) Stimulus discriminability, measured as log d, will be lowest in conditions 

where the sample stimulus durations are 3.5 and 5.5 seconds, respectively. 

2) By the end of each PRBS, response bias, measured as log b, will be primarily 

under control of the current session reinforcer ratio. 

3) Within experimental sessions, bias will gradually shift from control by the 

previous sessions’ to the current sessions’ reinforcer ratio. 

4) Based on previous findings, the speed and extent of changes in bias will be 

greater when discrimination accuracy is lower (i.e., stimulus durations of 3.5 

& 5.5-s).  

METHOD 

Subjects 

 The subjects were four male Long Evans Hooded rats J85, J86, J87, and J88. 

All subjects were experimentally naïve at the beginning of the experiment. Food 

deprivation was held constant for each subject by post-session feeding (15g). The rats 

were housed individually and had free access to water when in their home cages in a 

vivarium with a 12:12 hr light/dark cycle (lights on at 6:00 a.m.). Sessions were 

conducted daily, at approximately the same time with few exceptions. Experimental 

sessions were conducted during the rats’ light period. 

Apparatus 

 The experiment was conducted in two standard operant conditioning 

chambers (Colbourn Instruments H10-11R-TC) measuring 29 cm high by 29 cm wide 
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by 24 cm deep. The chambers were enclosed in a sound attenuating cubicle with 

white noise masking extraneous sounds. 

 On the front wall were two identical response levers, one 2.2 cm from the left 

wall and the other 2.2 cm from the right wall, 6 cm above the grid floor. The levers 

were 3.5 cm across and extended 2 cm into the chamber. A downward force on the 

lever of at least 0.3 N operated a switch that was connected to the lever and thereby 

generated a recordable response. Three small lights arranged in a horizontal row 3.5 

cm apart center to center were located 2.5 cm above each lever. Only the center light 

was used in the current experiment. In the first chamber, the light above the left lever 

was lit white and the light above the right lever was lit blue. In the second chamber, 

the light above the left lever was lit red and the light above the right lever was lit 

green. A houselight, located centrally, at the top of the intelligence panel, provided 

general illumination of the chamber. 

 Centered on the front wall, 1.5 cm above the floor was a rectangular opening 

(4.1 cm high and 6.3 cm wide) through which the rat could obtain the reinforcer 

(sweetened condensed milk). The liquid dipper normally rested in a reservoir outside 

the chamber. The size of the dipper cup was 0.05 ml. The milk solution was made by 

diluting ordinary commercial sweetened condensed milk with tap water to make a 

milk and water mixture (one part milk/ three parts water).  

One digital I/O card (Computer Boards, Inc.) Model # CIO-PDISO16 

interfaced to an IBM-compatible computer located in an adjacent room controlled all 

experimental events and recorded data. All control software was written and compiled 

in Quickbasic®. 
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Procedure 

Preliminary Training. Initially, left and right lever pressing was established via 

autoshaping. Once lever pressing was established, the rats were placed directly on the 

basic temporal discrimination procedure. Initially, each subject was trained on a 

procedure in which each correct short and long response was reinforced (FR1). That 

is, each right lever press following a 2-s houselight presentation and each left lever 

press following an 8-s houselight presentation were reinforced. Training sessions 

involved 150 discrete trials in which each trial began with illumination of the 

houselight for either 2 or 8 seconds. Upon termination of the houselight, the lights 

above each lever were lit and trials ended after either a lever press or 5 seconds, 

whichever occurred first. Each sample stimulus was presented 75 times in each 

session and stimulus presentation was randomized every block of 30 trials. Correct 

responses were reinforced with two, 2-s milk deliveries, followed by the intertrial 

interval (ITI) and incorrect responses led directly to the ITI.  During the ITI all 

stimulus lights were turned off for a duration of 15-s, the ITI duration was constant 

throughout the experiment. Initial pretraining on the 2 versus 8 second stimulus 

durations lasted approximately 50 sessions. During the 50 pretraining sessions, the 

overall probability of reinforcement for correct responses was gradually decreased to 

0.70. As the overall density of reinforcement was decreased, reinforcers were now 

arranged dependently (Stubbs & Pliskoff, 1969) such that a reinforcer assigned to a 

particular correct response was held and no other response could be reinforced until 

that reinforcer was obtained. Correct responses that were not eligible for 

reinforcement and incorrect responses led directly to the ITI. Between the first and 
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second PRBS presentations, subjects were returned to the pretraining conditions and 

the stimulus durations were changed to 3 and 5.5 seconds. This training continued for 

approximately 25 sessions for each subject.   

PRBS conditions. When accuracy on the 2 versus 8-s duration discrimination 

stabilized, as judged by visual inspection of graphical representations of the data, 

subjects were exposed to the first PRBS presentation. Under this condition, correct 

short (right lever presses following 2-s houselight presentation) and correct long (left 

lever presses following 8-s houselight presentation) responses continued to be 

reinforced according to a dependent schedule with an overall reinforcement 

probability of 0.70. Sessions lasted for 150 trials (75 of each type) and the ITI 

duration was 15-s. The PRBS arranged for reinforcement of correct short responses at 

a probability of either 0.75 or 0.25 across different sessions. The probability of 

reinforcement of correct long responses was the compliment of the above 

probabilities. Immediately following the 31-sessions under the first PRBS, subjects 

were returned to the final pretraining conditions noted above and the durations were 

changed to 3 and 5.5-s and the probability of reinforcement for correct responses was 

0.50. The correspondence between right-left lever presses and short-long stimulus 

presentations remained constant. Once accuracy stabilized at these durations, subjects 

were again exposed to a 31-session PRBS with the same reinforcement probabilities 

as noted above. Three of the four subjects were exposed to a third PRBS presentation 

(J88 died shortly after completion of the second PRBS). Subjects J85 and J86 were 

exposed a PRBS under 2 and 8–s stimulus durations, and J88 was a PRBS under 3 

and 5.5-s stimulus durations.  
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RESULTS 

 First, to demonstrate that the different stimulus conditions produced different 

levels of accuracy, Figure 2.2 shows accuracy expressed as log D (Davison & Tustin, 

1978). To display discrimination performance for each condition simultaneously, the 

data plotted in Figure 2.2 are from the final five sessions at each relative reinforcer 

probability for each PRBS condition. Discrimination accuracy (log D) is plotted as a 

function of the logarithm of the reinforcer frequency ratio of the session from which 

the measure is calculated. This measure is calculated as: 
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where Bij refers to the frequency of response in the different cells of the matrix of 

Figure 2.1. This measure of discrimination performance is the geometric mean of the 

logarithm (base 10) of the ratio of correct to error responses and indicates the overall 

tendency for a subject to make a correct response independent of any response bias 

(Davison & Tustin, 1978). Figure 2.2 indeed shows that the different pairs of 

temporal durations produced changes in the propensity to make a correct response 

(supporting Hypothesis 1). Note that log D is not plotted for sessions where subjects 

made zero errors (this occurred in two sessions one subject, J85, following 

presentation of the 2-s stimulus). 

Overall, changes in relative reinforcer probability for correct responses 

arranged according to the PRBS produced between session changes in response bias, 

log B (Davison & Tustin, 1978). Figure 2.3 shows response bias plotted as a function 

of PRBS sessions completed by each subject. Bias (log B) is calculated as: 
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were Bij refers to the frequency of response in the different cells of the matrix of 

Figure 2.1. This measure of bias is the geometric mean of the logarithm (base 10) of 

the ratio of right and left responses and indicates the overall tendency for a subject to 

make a right (B1) or left (B2) lever press (Davison & Tustin, 1978). Each data point in 

Figure 2.3 represents performance in a single session. Inspection of Figure 2.3 reveals 

that bias tracked changes in the reinforcer frequency (supporting Hypothesis 2). 

Individual differences in performance are also readily apparent. One rat, J85, showed 

an overall tendency to respond more on the right lever (B1) regardless of the relative 

frequency of reinforcement or stimulus conditions. The performance of rat J86 

showed greater control by the changing reinforcer ratios that of the other subjects. 

Levels of response bias as measured by log B for subjects J87 and J88 were 

intermediate compared to that observed for the other two subjects. 

 Previous studies employing the PRBS design have sought to determine the 

extent to which performance in a given session is determined by that session’s 

reinforcer ratio and the reinforcer ratios in previous sessions (Davison & McCarthy, 

1988; Grace, Bragason, & McLean, 2003; Schofield & Davison, 1997). These 

analyses have been based on a generalized matching model where performance in the 

current session is predicted by including the current and previous sessions’ reinforcer 

ratios. Such an analysis of the current data set requires extension of the detection 

model of Davison-Nevin-Alsop (Alsop, 1991; Davison; 1991; Davison & Nevin, 

1999) to include previous session reinforcer ratios. The reinforcer matrix in Figure 

2.1 gives the effective reinforcer terms used to predict detection performance 
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according to the model. The notation used to describe the effective reinforcer 

frequency in each cell of the matrix is ijR′ , where ij corresponds to the cells of the 2x2 

matrix. The present analysis extended the model by using the current and previous 

three sessions’ reinforcer ratios to predict current session performance, as previous 

studies have shown little effect of greater lags (Grace, Bragason, & McLean, 2003; 

Kyonka & Grace, 2008; Schofield & Davison, 1997). We employed perhaps the 

simplest extension of the model, assuming an additive effect of current and previous 

sessions’ effective log reinforcer ratios on current session performance (see also 

Davison & Baum, 2207). This model may be written:      
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where Bi1, B i2, R' i1, and R' i2 refer to the right and left response frequencies and 

effective reinforcer frequencies following S1 and S2 presentations, respectively.  

Reinforcer frequencies are subscripted by n for the current session, n-1 for the 

previous session, and so on. In Equation 2.5 the parameter log c represents a constant 

bias towards one response that is independent of changes in the reinforcer frequency 

ratio. Equation 2.5 was applied to the data from the fourth session on of each PRBS 

presentation. Each fit required one ds parameter, one log c parameter, and four dr(n-i) 

parameters measuring the contribution of each past sessions’ reinforcer ratios (n = 0-

4) to current session performance. Equation 2.5 was fit to the log response ratios 

following each stimulus (S1 and S2) simultaneously by nonlinear least squares 

regression using the Solver tool in Microsoft Excel©. 
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Figure 2.4 shows contingency discriminability (dr) estimates for each session 

lag and each PRBS presentation obtained from fits of Equation 2.5. In general, 

Equation 2.5 provided an excellent description of the data, on average accounting for 

93% of the variance (all %VAC > 0.87) in the log response ratios across subjects and 

conditions. Contingency discriminability for the current session (lag 0) reinforcer 

ratio was highest and previous session reinforcer ratios had little effect on 

performance. For all subjects contingency discriminability was higher when stimulus 

discriminability was highest (disconfirming Hypothesis 4). That is, behavior came 

under greater control of the current session reinforcer frequency ratio when 

discrimination accuracy was higher (Fig. 2.2). When subjects J85 and J86 were 

returned to the easier discrimination (2:8-s stimulus presentations), lag 0 contingency 

discriminability increased to similar, albeit lower levels than the first PRBS 

presentation. For subject J87 the PRBS replication of the easier discrimination (3:5-s 

stimulus presentations) produced slightly higher estimates of lag 0 contingency 

discriminability. 

 Although the previous analysis showed that behavior in a given session was 

largely under control of the current session reinforcer ratio, it is likely that the 

previous sessions’ reinforcer ratio has some effect at the beginning of the current 

session. Therefore, I sought to assess control over current session performance by 

current and past reinforcer ratios by estimating values of contingency discriminability 

(dr) within an experimental session as a function of the current and previous sessions’ 

reinforcer ratios. Therefore, an analysis similar to the session-aggregate lag 

contingency discriminability analyses were performed, however for the within-
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session analyses log response ratios were calculated over 5 30-trial blocks. 

Regressions were then carried out using the current and immediately prior sessions’ 

programmed reinforcer ratio to predict performance in each fifth of the current 

session (see, Davison & Baum, 2000; Grace, Bragason, & McLean, 2003). Equations 

similar to Equation 2.6 were fit simultaneously to log behavior ratios following S1 

and S2, respectively for each session fifth using the programmed reinforcer ratio from 

the previous and current sessions. Data from each session of the first and second 

PRBS were used to estimate the model parameters. Each fit required a fixed ds and 

log c parameter and a contingency discriminability (dr(n) and dr(n-1)) parameter 

estimated for each block, representing the within session adjustment to the current 

reinforcer ratio. The results of the within session changes in contingency 

discriminability are displayed for the first and second PRBS exposures separately in 

Figures 2.5 and 2.6.  

Figure 2.5 shows that in the first PRBS, where the S1-S2 difference was 

greater, control by the current session reinforcer ratio was acquired rapidly with little 

discernable effect by the previous sessions’ reinforcer ratio (supporting Hypothesis 

3).. Figure 2.5 shows that there was little effect of the previous sessions’ reinforcer 

ratio, as assessed by dr values of approximately 1.0, the minimum value of this 

parameter. Furthermore, some control by the current session reinforcer ratio was 

apparent within the first session fifth for 3 of 4 subjects (J87, being the exception) as 

evidenced by dr values above 1.0. Estimates of contingency discriminability 

continued to increase throughout the session and appeared to stabilize for each subject 
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about midway through the session. Finally, the regression fits from which the dr 

estimates in Figure 2.5 are based were quite good (all VAC > 0.90). 

 Figure 2.6 shows the results of the within session analyses for the second 

PRBS in which the sample stimuli were 3 and 5.5-s, producing a less accurate 

discrimination (Figure 2.2) than in the first PRBS. Overall, the regressions carried out 

on the data from the second PRBS, resulted in relatively low percentages of variance 

accounted for across subjects (mean VAC = 0.66). The deviations from predicted 

response ratios, however, were small (mean MSE = 0.02) and unsystematic. 

Regressions conducted on the obtained versus predicted data from each subject gave 

slopes and y-intercepts not appreciably different from 1.0 and 0, respectively. 

Inspection of Figure 2.6 shows that estimates of within-session contingency 

discriminability were much lower in the second PRBS, where the difference in 

sample stimulus duration was only 2.5 seconds (see Figs. 2.3-2.4). More notable 

though was the finding that for each subject the estimates of contingency 

discriminability for the previous session remained above 1.0 throughout most of the 

session for most of the subjects. Furthermore, control by the previous sessions’ 

reinforcer ratio was sometimes greater than that of the current session by the end of a 

session (partially disconfirming Hypothesis 3). This relationship is especially 

apparent in the parameter estimates obtained from J85. For this subject, control over 

response allocation seemingly switched approximately midway through a session 

from the current to previous sessions’ reinforcer ratio, often producing indifference 

between the response alternatives (Fig. 2.3).  
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DISCUSSION 

 In the present study, the pseudorandom binary sequence method of varying 

relative reinforcer frequency was extended to a signal detection procedure. The 

findings presented here demonstrate that response bias (log B) in a signal detection 

task can change rapidly when the relative frequency of reinforcement changes 

between sessions. An extended form of the DNA detection model provided an 

accurate description of the effects of current and previous session reinforcer ratios on 

current session performance. In the first PRBS presentation, under large differences 

in the temporal durations defining S1 and S2, bias changed rapidly between sessions. 

Contingency discriminability was greatest at lag 0 and was largely unaffected by 

previous session reinforcer ratios. In the second PRBS presentation the S1 and S2 

stimulus durations were changed such that accuracy, measured as log D, decreased 

(Figure 2.2). Under lower levels of discrimination accuracy, variation of the 

reinforcer ratio had a smaller effect on bias. Contingency discriminability was higher 

at lag 0 reinforcer ratios however, relative to reinforcer ratios in previous sessions. 

Estimates of contingency discriminability changed however, as the discrimination 

was made more difficult (Fig. 2.4). It is unclear why contingency discriminability 

decreased in the second PRBS exposure when accuracy decreased.  

The more typical finding in studies of detection performance is that 

contingency discriminability is either constant or increases when stimulus 

discriminability decreases (for a review see Alsop & Porritt, 2006). It might be 

argued that the decrease in contingency discriminability seen here is the result of the 

use of a PRBS procedure to vary relative reinforcer frequency per se. However, at 
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least two arguments can be made against this conclusion. First, previous studies that 

have varied relative reinforcer frequency or immediacy in concurrent and concurrent-

chained schedules have typically shown an increased sensitivity to the conditions of 

reinforcement with increasing exposure to the PRBS (Grace, Bragason, & McLean, 

2003; Grace & McLean, 2006; Kyonka & Grace, 2007; Schofield & Davison, 1997).  

Second, at least one study that we are aware of has shown a similar effect on 

bias under similar procedures. McCarthy and Davison (1980) conducted a study 

similar to the present one in which stimulus presentations of different durations 

served as samples in a 2-stimulus, 2-response detection procedure. McCarthy and 

Davison varied the reinforcer ratio for correct responses across two levels of stimulus 

duration difference across several conditions with pigeons serving as subjects. In their 

first set of conditions, a 5-second illumination of the center key served as S1 and a 30-

second center key illumination served as S2. In their second set of conditions, S1 and 

S2 were 20- and 30-second center key light presentations, respectively. As expected, 

discrimination accuracy was higher in the first condition, however for some subjects; 

sensitivity to reinforcement, as estimated from the Davison & Tustin, (1978) 

detection model, was also higher in this condition. Such a result would be consistent 

with the present findings; however, McCarthy and Davison (1980) reported that any 

apparent changes were not statistically significant according to a Sign test. However, 

McCarthy and Davison (1980) analyzed their data according to a detection model 

based on the generalized matching law and a more direct comparison of the results of 

their study with the current findings might be achieved be a reanalysis of their data 

according to the DNA model (i.e., Fig. 2.1). 
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Figure 2.7 presents parameter estimates from the present study and a 

reanalysis of McCarthy and Davison’s (1980) data fit by the DNA detection model. In 

Figure 2.7, estimates of stimulus discriminability (ds) are plotted as a function of 

estimates of contingency discriminability (ds) from both studies. It is apparent that the 

results of the present study are consistent with the findings of McCarthy and Davison 

(1980) employing a similar detection task. Furthermore, the data from both studies 

suggest a degree of generality in these findings in that the studies differed in the 

procedure used to vary relative frequency of reinforcement and species of subject.  

 The present findings suggest that the PRBS method of varying relative 

reinforcement variables may be extended to signal detection tasks. Whether these 

findings hold for more complex detection procedures (Davison & McCarthy, 1989) 

and other stimulus dimensions will be informed by future research. However, in a 

research area of that has seen a large degree of quantification (Davison, 1991; 

Davison & Nevin, 1999), procedures that produce high quality data and rapid 

determination of parameter estimates are needed. Furthermore, recent research 

employing procedures in which contingencies change randomly have shed some light 

on some of the local processes governing simple concurrent choice (Krägeloh, 

Davison, & Elliffe, 2005). Perhaps with the further procedural development, similar 

advances can be made in the study of signal detection. 
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CHAPTER 3 

RAPID SHIFTS IN THE PSYCHOMETRIC FUNCTION FOR TIME 

 

In recent years, a considerable body of literature on the performance of non-

human animals in signal detection and conditional discrimination procedures has 

emerged (for reviews see Davison & McCarthy, 1988; Davison & Nevin, 1999; 

Nevin, Davison, & Shahan, 2005). A number of studies have employed tasks in 

which only two stimuli are presented in a given experimental session (McCarthy & 

Davison, 1979; 1980b; Nevin, Olson, Mandell, & Yarensky, 1975). Although the 2-

stimulus, 2-response detection procedure has been employed more frequently and has 

served to guide theoretical development (Alsop & Davison, 1991; McCarthy & 

Davison, 1984), far fewer studies have been reported in which several stimuli are 

presented within a single session. 

 In a standard 2-stimulus, 2-response detection task, subjects are presented 

with one of the two possible stimuli (S1 or S2) on each trial. One type of response (a 

B1 response, e.g., a right lever press) is deemed correct and intermittently reinforced 

on S1 trials and the other type of response (a B2 response, e.g., a left lever press) is 

deemed correct and intermittently reinforced on S2 trials. In the n-stimulus, 2-

response detection task, subjects are presented with one of n possible stimuli on each 

trial. With only two responses available to the subject, each response (B1 or B2) is 

correct and intermittently reinforced following presentation of more than one 

stimulus. Thus, the n-stimulus, 2-response detection procedure involves a many-to-

one mapping between stimulus classes and responses.  
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 Davison (1991) provided a model to describe performance in n-stimulus, m-

response detection procedures (see also Davison & McCarthy, 1989). The model 

offered by Davison (1991) was an extension of an earlier contingency 

discriminability model for concurrent schedule performance (Davison & Jenkins, 

1985) and in the 2-stimulus, 2-response procedure is the same model proposed by 

Alsop (1991). The model for a 4-stimulus, 2-response detection procedure is outlined 

in Figure 3.1. As suggested by Davison (1991) the model assumes that in a signal 

detection task, reinforcers delivered for a correct response in the presence of one 

stimulus generalize to other stimulus-response pairs to the extent that they are similar 

to one another. In Figure 3.1, dsij and drij represent the inverse of generalization (i.e. 

discriminability) between the stimulus-response and response-reinforcer pairs, 

respectively. 

Davison and Nevin (1999) expanded upon the quantitative model of detection 

introduced by Alsop (1991) and Davison (1991) (DNA model hereafter) and detailed 

a theory of effective reinforcement. Effective reinforcement, in Davison and Nevin’s 

(1999) account is an intervening variable (analogous to the subjective or discounted 

value of a reinforcer) representing the sum of direct and generalized reinforcement for 

a particular response class. Their theory proposes that response allocation in signal 

detection and related procedures strictly matches the effective reinforcer ratio. Thus, 

Davison and Nevin’s (1999) theory is a matching law (Baum & Rachlin, 1969; 

Killeen, 1972; Rachlin, 1971), where the transformation of various reinforcer 

dimensions are assumed to result from imperfect discriminative control on one or 

more dimensions of the concurrent three-term contingencies under investigation.  
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 Davison and McCarthy (1989) conducted the most extensive evaluation of 

Davison’s (1991) model that has been reported to date. In the major portion of their 

study, pigeons were presented one of eight different wavelengths of light (measured 

in nanometers, nm) on each trial. Responses to the left key (B1) were intermittently 

reinforced following a wavelength of 574 nm or less (559, 564, 569, 574 nm) and 

right responses (B2) were intermittently reinforced after stimulus presentations of 579 

nm or greater (579, 584, 589, 594 nm). Across several conditions, the relative 

frequency of reinforcement for correct responses following a shorter wavelength was 

varied from 0.1-0.9. Davison and McCarthy (1989) reported that the logarithm of the 

left/right response ratio (B1/B2) plotted as function of wavelength was an ogive, the 

functional form typically observed in psychophysical studies. Furthermore, the 

horizontal ordering of the curves depended on the relative frequency of reinforcement 

such that subjects demonstrated an overall bias to report the stimulus with the higher 

relative reinforcer frequency. Davison and McCarthy (1989) reported that Davison’s 

(1991) model provided an excellent description of their data. Moreover, the model 

provided estimates of stimulus discriminability (dsij) for adjacent wavelengths that 

were in approximate agreement with previous work on the pigeon’s sensitivity to 

wavelength (Wright & Cumming, 1971).  

   While the literature on performance in simple 2x2 detection procedures 

continues to expand (Davison & Nevin, 1999) and extensions of models for 

performance in such procedures have shown some promise in more complex 

situations (Nevin, Davison, Odum, and Shahan, 2007), little is currently known about 

detection performance in transition. An important question concerns the temporal 
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scale at which stimulus and contingency discriminability operates in order to produce 

an effective reinforcer value for each response alternative. Davison and Nevin 

suggested that their account is sequential and dynamic, implying that effective 

reinforcement is determined at a local level. Therefore, their theory suggests a 

renewed research emphasis concerned with characterizing detection performance in 

transition. 

Recently, several investigators have employed a design to investigate choice 

in which the relative rates, delays, or magnitudes of reinforcement change from 

session to session. Hunter and Davison (1985) adapted a systems identification 

technique from engineering to present stochastic changes in input, in this case relative 

reinforcer frequency, to pigeons responding for food in a concurrent schedule of 

reinforcement. This procedure, called a pseudorandom binary sequence (PRBS), 

consists of presenting one of two reinforcer rate ratios each session. The sequence of 

reinforcer ratios is random, thus a current session’s reinforcer ratio cannot be 

predicted from that of the previous session. Hunter and Davison’s (1985) analysis 

showed that pigeons’ relative response rates adapted to abrupt changes in the 

reinforcer rate ratio in approximately five sessions, although the pigeons were less 

sensitive to these changes than in more typical steady-state experimental designs.  

 The findings of Hunter and Davison (1985), as well as several others to follow 

(Mazur, 1992, 1995, 1997; Schofield & Davison, 1997), are somewhat surprising in 

light of most research on choice (see Davison & McCarthy, 1988). That is, the use of 

traditional steady-state designs, in which a single reinforcer rate ratio is in effect for 

many sessions (20-30) until preference is relatively stable, seems to suggest that 
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behavior in several choice paradigms is slow to change. Numerous studies, 

employing what may be considered as variations on the PRBS design have shown 

that choice adapts rapidly to frequent changes in outcomes (Davison & Baum, 2000, 

2002, 2003; Gallistel, Mark, King, & Latham, 2001; Landon, Davison, & Elliffe, 

2003) 

 Some recent work employing the PRBS design or other means of producing 

frequent changes in reinforcer parameters, has shown that preference not only adapts 

rapidly to abrupt changes in relative rates of primary reinforcement, but also to 

changes in conditioned reinforcement value (Grace, 2002; Grace, Bragason, & 

McLean, 2003; Mazur 2002; Mazur, Blake, & McManus, 2001). The concurrent 

chains procedure involves a choice period or initial link in which repeated choices are 

made between two options. Occasionally, choice of one option produces an outcome 

period or terminal link, signaled by a change in stimulus conditions, in which further 

responding leads to the availability of food. Responding in the choice or initial link 

phase is usually assumed to be maintained by conditioned reinforcing value of access 

to the terminal link stimuli (Fantino, 1969; 1977; Herrnstein, 1964; Mazur, 2001). 

These studies have manipulated the value of terminal link stimuli in concurrent chains 

procedures by varying the frequency of encountering the stimuli and by varying the 

delays to primary reinforcement in the presence of the terminal link stimuli.  

Grace, Bragason, and McLean (2003) showed that pigeons’ response 

allocation, measured, as relative response rate in the initial links of a concurrent 

chain, is sensitive to changes made to primary reinforcement delays in the terminal 

links according to a 31-session PRBS. In their Experiment 1, Grace and colleagues 
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held the delay to primary reinforcement constant in one terminal link (8-s), while the 

delay to reinforcement in the other terminal link varied from session to session 

between two values (4- or 16-s). After the first 31-sessions of exposure, the pigeon’s 

sensitivity to the relative terminal link delays to reinforcement was largely under 

control of the current sessions’ relative delays. Grace and colleagues exposed their 

pigeons to the PRBS twice more and showed that control by current session 

reinforcement conditions continued to increase for all four subjects. Subsequent 

analyses, from the third PRBS, showed that the birds’ preference adapted to the 

current session reinforcer delay ratio within approximately one third of the session or 

24 choice cycles. In their Experiment 2, Grace et al. held the delay to reinforcement 

in one terminal link constant (8-s) while varying the other delay each session between 

2-s and 32-s. Thus, according to this arrangement the delay to reinforcement for one 

alternative is sampled from a potentially infinite population each session. Grace et al. 

showed that under these conditions, pigeons’ choices adapted to the session-to-

session changes in delays to reinforcement in a very similar manner to the delays in 

their Experiment 1.  

Following Grace et al (2003, see also Grace & McLean, 2006; Kyonka & 

Grace, 2007), Kyonka and Grace (2008) presented data, again on pigeons’ choices in 

concurrent chains schedules, under more complex variations in reinforcer parameters 

according to the PRBS design. In their Experiment 1, Kyonka and Grace employed a 

concurrent chains procedure in which the relative delays and magnitudes of 

reinforcement in the terminal links varied from session to session each according to a 

separate PRBS. Kyonka and Grace’s findings were entirely consistent with their 
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previous work in that pigeons’ choices adapted rapidly each session to both 

dimensions of reinforcement. Kyonka and Grace’s data supported the assumption that 

reinforcer rate and magnitude ratios have independent effects on choice. Additionally, 

these results are consistent with published findings obtained from more traditional 

designs previously employed to test the assumption of the generalized matching law 

(Killeen, 1972; Rachlin, 1971) that different dimensions of reinforcement combine 

independently to determine reinforcer value.  

The studies reviewed here provide support for the use of designs employing 

dynamic changes in reinforcer parameters to investigate choice behavior in transition. 

However, no such studies employing a PRBS design to investigate choice in a signal 

detection procedure have been published. The present study sought to extend the 

PRBS design to a 5-stimulus, 2-response signal detection procedure to determine the 

extent to which response bias following a particular stimulus develops within a single 

experimental session. The experiment reported here provides both an extension of the 

PRBS design to signal detection and conditional discrimination procedures, as well as 

a much-needed systematic replication of Davison and McCarthy (1989). Furthermore, 

we sought to extend Davison’s (1991; see also Davison & Nevin, 1999) n-stimulus 

model of detection to quantify the extent of carryover from previous sessions’ 

reinforcer ratios on current session response ratios. In addition, one of the sample 

stimuli presented each session was never followed by food presentation regardless of 

which response was made; analogous to a maintained generalization procedure 

(Blough, 1969). I asked whether performance following this stimulus (technically an 

SΔ) was similarly biased towards the higher reinforcer probability response alternative 
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as was responding that actually produced reinforcer deliveries. If so, this would 

provide some support for Davison and Nevin’s (1999) notion of effective 

reinforcement.  

Hypotheses 

1) By the end of the first PRTS, the current session response bias, assessed by 

lag dr, will be primarily under control of the current session reinforcer ratio. 

Contingency discriminability at lag 0 will increase across PRTS presentations. 

2) Within experimental sessions, bias will gradually shift from control by the 

previous sessions’ to the current sessions’ reinforcer ratio. 

3) The response ratio following presentation of S3 will be biased towards the 

response alternative correlated with the higher probability of reinforcement. 

4) Modeling within-session adjustment to the current session reinforcer ratio by 

changes in contingency discriminability will produce orderly shifts in the 

psychometric function according to the programmed relative reinforcer 

probabilities. 

METHOD 

Subjects 

 The subjects were three female Long Evans Hooded rats J93, J94, and J99. 

Rats J94 and J99 had prior exposure to a free-operant temporal discrimination 

procedure. Food deprivation was held constant for each subject by post-session 

feeding (12g). The rats were housed individually and had free access to water when in 

their home cages in a vivarium with a 12:12 hr light/dark cycle (lights on at 6:00 
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a.m.). Sessions were conducted daily, at approximately the same time with few 

exceptions. Experimental sessions were conducted during the rats’ light period. 

Apparatus 

 Same as the second chamber described in Experiment 1. 

Procedure 

Preliminary Training. Prior to discrimination training, J94 and J99 were placed on a 

concurrent  random-ratio (RR), RR schedule of reinforcement. For rat J93, lever 

pressing was shaped by the method of successive approximation and then placed on 

the concurrent RR, RR schedule. Throughout this preliminary lever-press training, 

reinforcers were programmed for each response according to a dependent schedule 

(Stubbs & Pliskoff, 1969) such that in the event that a reinforcer was assigned to one 

response alternative, no other reinforcer could be assigned until the previously 

allocated reinforcer was obtained by the subject. Subjects were exposed to this 

procedure for approximately four weeks and the ratio requirements for both levers 

were increased to a terminal value of RR 3.  

 Subsequently, each subject was exposed to the basic temporal discrimination 

procedure. On each trial, the houselight was illuminated for one of five durations (2, 

3.5, 4.5, 5.5, or 8-s). Following the sample stimulus presentation, both lever lights 

were illuminated and responses to the right lever were reinforced following sample 

durations of 2 and 3.5-s and responses to the left lever were reinforced following 

sample durations of 5.5 and 8-s. Left and right lever presses following a 4.5-s sample 

presentation were never reinforced. Initially, each correct response was followed by 

two, 2-s presentations of the dipper, with a 0.5-s delay between the presentations. 
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Incorrect responses led directly to the intertrial interval (ITI) in which all lights in the 

chamber were extinguished for 7-s. Each session consisted of 200 trials, with 40 

presentations of each sample. Following approximately 30 sessions for each subject, 

the overall density of reinforcement was decreased by implementing a dependent 

schedule of reinforcement. The dependent schedule or controlled reinforcer ratio 

procedure (McCarthy & Davison, 1984) ensured an approximately equal number of 

reinforcers were obtained for responding to both correct response alternatives. No 

attempt to equate the number of reinforcers within a stimulus class (2.0-3.5 and 5.5-

8.0-s) was made. Upon transition to the dependent schedule correct responses that 

were not eligible for reinforcement had the same consequences as error responses (7-s 

ITI) and correct responses that were eligible for reinforcement continued to produce 

4-s of access to the dipper followed by a 2.5-s blackout. This training phase continued 

for each subject until the percentage of correct responses following each stimulus was 

deemed stable by visual inspection of the data. For rats J94 and J99 training was 

deemed complete after 45 sessions and for J93 after 80 sessions.  

 Upon completion of training on the dependent schedule phase, each subject 

was exposed to a procedure in which the relative probabilities of reinforcement 

changed each session. The relative probability of reinforcement for correct responses 

following one of the shorter stimulus durations was 0.25, 0.5, or 0.75. This is in effect 

a pseudorandom ternary sequence (PRTS). The sequence lasted for a total of 36 

sessions; each reinforcer probability was allowed to occur three times in each block 

of nine sessions. The order of reinforcer probability session was determined 

separately for each of the four blocks of nine sessions according to the random 
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number generator tool in Microsoft© Excel. Figure 3.2 illustrates one 36 session 

PRTS, where the logarithm (base 10) of the programmed relative reinforcer frequency 

ratio (RR/RL) is plotted according to session. 

Each subject was exposed to the 36-session PRTS three times.  

RESULTS 

As in Experiment 1 and previous studies employing the pseudorandom 

sequence design (cf. Schofield & Davison, 1997), it is important to quantify the 

extent of control by the present and past reinforcer frequency ratios on current session 

performance. The data from Experiment 2 can be fit by Equation 2.5, but require the 

addition of a stimulus discriminability (dsij) estimate for each pair of sample stimuli. 

Following Davison and Nevin (1999), we fit Equation 2.5 to the present data with 

four stimulus discriminability parameters for each adjacent pair of stimuli: ds12, ds23, 

ds34, and ds45. Estimates of dsij for all other combinations of stimuli were obtained by 

multiplying the above estimates, so that for example, ds14 is the product of ds12, ds23, 

and ds34 (see also, Davison & Nevin, 1999; Krägeloh, Elliffe, & Davison, 2006). A 

matrix of the summed reinforcer frequencies divided by the appropriate 

discriminability parameters were created for each session giving the effective 

reinforcer frequency for each response alternative. The logarithm of the ratio of the 

effective reinforcer frequencies was used to predict log response ratios following each 

stimulus. For example, following sample S3, the effective reinforcer frequency for 

each response is: 
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The log effective reinforcer ratio (R'31/R'32) obtained in the current and previous three 

sessions were used to predict the response ratio following each stimulus in each 

session of the three PRTS exposures. The effect of each sessions’ effective reinforcer 

ratio on current session response ratios were assumed to additive as in Experiment 1. 

Therefore, fits of Equation 2.5 to the data of Experiment 2 required that four stimulus 

discriminability parameters, an inherent bias term (log c), and four contingency 

discriminability parameters be estimated.  

Figure 3.2 shows lag contingency discriminability estimates obtained from fits 

of Equation 2.6 for each rat and PRTS. Overall, contingency discriminability was 

highest at lag 0 and near 1.0 at greater lags. Between the first and second PRTS 

presentations the effects of previous sessions’ reinforcer ratios decreased for each 

subject. For J94 and J99, lag 0 contingency discriminability increased from the first 

and second PRTS exposures and then decreased on the final PRTS to levels similar to 

the first exposure. For J93, little change in lag 0 contingency discriminability 

occurred between the first two PRTS exposures, however, lag 0 contingency 

discriminability increased to high levels on the third PRTS exposure for this subject. 

Therefore, the data from Experiment 2 conform to previous studies (supporting 

Hypothesis 1) employing the PRBS design showing that the extent of control by the 

current session reinforcer ratio primarily occurs in the first two exposures (Schofield 

& Davison, 1997; Grace, Bragason, & McLean, 2003). 

 To examine within-session changes in contingency discriminability as in 

Experiment 1, the data from each session of the third PRTS exposure of Experiment 2 
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were divided in fifths (or 8 presentations of each stimulus). Because aggregating the 

data in this way may frequently lead to exclusive preference for a response 

alternative, we fit a proportional version of the DNA model to the session fifth data 

(see Davison & McCarthy, 1989). These fits require that several parameters be 

estimated for each session fifth: four stimulus discriminability parameters (dsij), an 

inherent bias term (log c), and a contingency discriminability parameter (dr(n-i)) 

measuring the effect of reinforcer frequency ratios from the current and previous 

session. The stimulus discriminability and inherent bias terms were, however, 

constrained to have the same value for each session fifth as variables affecting these 

parameters were held constant. A contingency discriminability term was estimated for 

the current and previous sessions’ reinforcer ratio at each session block, totaling ten 

contingency discriminability free parameters. An effective reinforcer frequency was 

obtained for each response alternative and session fifth as in Equations 3.1 and 3.2 

above. The effective reinforcer frequencies from the current and previous session 

were multiplied to give an overall effective reinforcer term. Therefore, using 

Equations 3.1 and 3.2 to obtain effective reinforcer frequencies for each response 

following each stimulus, the effective reinforcer terms for the current and previous 

sessions were concatenated: 

∏
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where R''ij is the overall effective reinforcer frequency including any effect of past 

reinforcers, then used to predict relative response frequency following each stimulus 
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were c is again an overall bias towards a response alternative. Equation 3.4 therefore 

assumes that response allocation strictly matches the relative effective reinforcer 

frequency, which is a function of current and past contingencies of reinforcement. 

This model was fit to individual subject data so as to minimize the sum of squared 

error between the obtained and predicted response proportions of all stimulus 

presentations and within session blocks.   

Figure 3.4 shows the within session changes in contingency discriminability 

for each subject from the third PRTS exposure. An effect of the previous sessions’ 

reinforcer ratio is evident in the first block of trials for each subject. The influence of 

previous sessions’ reinforcer ratios decreased gradually across the session (supporting 

Hypothesis 2). For each subject, lag 0 contingency discriminability increased in a 

nearly monotonic fashion within the session and approaches asymptotic levels in the 

final two blocks of trials. Therefore, Figure 3.4 demonstrates that response allocation 

moves from near indifference to relatively stable preference for the higher reinforcer 

frequency alternative about midway through a session or following approximately 

twenty presentations of each stimulus. As in Experiment 1, the model used to assess 

within-session changes in contingency discriminability provided an adequate fit to the 

session fifth data. The average percentage of variance accounted for was modest 

(mean VAC = 73%), however, regressions performed on obtained versus predicted 

performance revealed no systematic deviations.  

 Figure 3.5 shows psychometric functions obtained for each subject from the 

present experiment. The data were taken from the last two session-fifths (see Fig. 3.4) 

of the final PRTS because performance had reached a steady state by this point within 
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an experimental session. The proportion of “long” or left responses following each 

sample stimulus were averaged across sessions and grouped according to 

programmed reinforcer ratio (Fig. 3.2). Figure 3.5 shows that the proportion of 

responses to the left lever, indicating a long classification, increased as an ogival 

function of the preceding sample stimulus duration. Furthermore, each psychometric 

function shifted along the x-axis according to the programmed reinforcer ratio 

(supporting Hypothesis 4). Therefore, Figure 3.5 affirms that the data obtained from 

the present method of varying reinforcer frequency produces reliable psychometric 

functions and the shift in each curve produced by varying the relative frequency of 

reinforcement for correct responses is similar to that observed in traditional steady-

state procedures (Bizo & White, 1995; Davison & McCarthy, 1989).  

 As a further check on the adequacy of the extension of the DNA model 

proposed here to model within-session adjustments to a frequently varying reinforcer 

ratio we assessed the model’s ability to fit the psychometric data in Figure 3.5. 

Keeping in mind that the extended DNA model of Equations 3.3 and 3.4 were fit to 

all the data of the third PRTS from each block of 40 trials gave 900 data points per 

subject. The models’ predictions for the last two blocks of trials (trials 161-200) were 

averaged in the same manner as the obtained data (Fig. 3.5). Table 3.1 gives the 

parameters of the DNA model along with goodness of fit indices for the data from 

blocks four and five. The fits of the DNA model incorporating carryover from the 

previous session’s reinforcer ratio were excellent. Furthermore, the assumption of 

constant stimulus discriminabilities and an increasing contingency discriminability, 



 

 

 

63

and thus increasing bias towards the higher reinforcer frequency alternative, provided 

an accurate description of the individual subject data. 

Finally, a measure of response allocation following each sample stimulus 

presentation was sought that characterizes the changing response allocations as a 

function of the opportunity to observe them. Cumulative response proportion was 

chose as a measure of preference because this measure naturally smoothes the data 

(for discussion see Gallistel et al, 2007). Data from the third PRTS were used for 

theses analyses and response totals were summed across each session by order of 

stimulus presentation. Therefore, cumulative relative response frequency is plotted as 

a function of successive presentations of a particular sample stimulus. 

 The cumulative proportions of B1 choices (p) for each subject have been 

converted to a logit p (logit p = log(p/(1-p)) and are plotted in Figures 3.6-3.8. The 

cumulative choice proportion plots in Figures 3.6-3.8 show changes in preference 

within experimental sessions that were similar to those reported in other studies 

employing similar procedures (Krägeloh & Davison, 2003; Krägeloh, Elliffe, & 

Davison, 2006). Figures 3.6-3.8 shows that a preference for the higher reinforcer 

frequency alternative typically emerged within five to ten presentations of a sample 

stimulus duration. A relatively large degree of variability in response allocation in the 

first few trials is evident for each subject as expected. Recall that responding 

following S3 never produced a food presentation throughout the experiment yet 

choice is governed by the overall reinforcer frequency ratio. The cumulative choice 

proportions, therefore suggest a fairly rapid local process by which effective 

reinforcer allocation operates on response allocation (supporting Hypothesis 3). 
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DISCUSSION 

In the current experiment, bias changed rapidly when the reinforcer frequency 

ratio for correct choices changed between sessions. An extension of the DNA model 

that incorporated the effects of current and previous sessions’ effective reinforcer 

ratios provided a good description of both aggregate and within-session changes in 

response bias. Control by the current sessions’ reinforcer ratio generally increased 

with increasing exposure to the PRTS, particularly with respect to effects of previous 

sessions’ reinforcer ratios decreasing between the first and second exposures. Within-

session adjustment to the current session reinforcer ratio was most rapid between the 

first and second session fifths (Fig. 3.4).  

The session-aggregate lag contingency discriminability estimates portrayed in 

Figure 3.3 are consistent with previous data obtained from the pseudorandom 

sequence method of varying relative reinforcer frequency in a simple detection task 

and in simple concurrent and concurrent chained schedules of reinforcement 

(Experiment 1; Schofield & Davison, 1997; Grace, Bragason, & McLean, 2003; 

Grace & McLean, 2006; Kyonka & Grace, 2008). The model employed here assumed 

an additive effect of previous sessions’ reinforcer ratios, which is consistent with 

previous modeling; however all previous studies have employed a generalized 

matching law analysis of carryover effects in the pseudorandom sequence procedure 

(Davison & Hunter, 1979; Davison & McCarthy, 1988). The extension of the 

generalized matching law to account for the effects of previous sessions’ reinforcer 

ratios was inspired by research in which multiple reinforcer dimensions (i.e., rate and 

magnitude) have been varied simultaneously and the assumption of an additive effect 
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of each dimension has provided an accurate account of choice between alternatives 

differing on multiple reinforcer dimensions (Davison & Baum, 2003; Keller & 

Gollub, 1977; McLean & Blampied, 2001; but see Elliffe, Davison, & Landon, 2008). 

Therefore, the present use of an additive version of the DNA model may be a possible 

means of extending this model to multiple reinforcer dimensions (Alsop & Porritt, 

2006; Davison & Nevin, 1999). 

The within-session adjustments to the current session reinforcer frequency 

ratio were fairly rapid, occurring mostly between the first and second session fifths.  

The finding of rapid within-session adjustment to current reinforcer ratios is 

consistent with previous findings (Grace, Bragason, & McLean, 2003; Grace& 

McLean, 2006) and suggests that behavior is effected by both short- and long-term 

effects of the reinforcer ratio. The adaptation of within-session responding to current 

reinforcer frequency ratios was the product of two processes; an increase in control 

by current session contingencies and a decrease by previous session contingencies 

(Fig. 3.4). Therefore, at the beginning of a session, there was little or no overall bias 

towards a particular response alternative. That is, between sessions behavior 

regressed toward indifference, consistent with previous findings that in rapidly 

changing environments, preference reverts to levels reflecting long-term reinforcer 

allocations (Landon, Davison, & Elliffe, 2003). Because the present procedure 

employed reinforcer ratios that varied symmetrically around 1:1, the finding of 

approximate indifference at the beginning of an experimental session was expected. 

Although the within-session changes in behavior (Fig. 3.5) are well 

summarized by changes in the estimates in contingency discriminability, the changes 
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in behavior allocation displayed in Figure 3.6 highlight the speed of changes in bias 

and the spread of effect of the reinforcer ratio across stimuli. The cumulative 

preference data showed that responding following each stimulus was often biased 

towards the higher reinforcer frequency alternative before ten presentations. 

Therefore, as suggested by the DNA model, reinforcers delivered following a 

particular response and following one stimulus effected behavior following all other 

stimuli. Given that the stimuli were presented randomly, it is possible that preference 

for a response alternative could be observed on the first presentation of a particular 

stimulus. Krägeloh, Elliffe, and, Davison (2006; see also Krägeloh & Davison, 2003) 

reported similar effects when they varied the reinforcer ratio across several seven 

values within session and each reinforcer ratio was signaled by a different stimulus. 

The present findings and those of Krägeloh and colleagues suggest that the spread of 

reinforcer effects along stimulus and response dimensions can be observed at a local 

level and that any serious attempt to model behavior at this level will require 

incorporating such findings. 

Finally, as discussed previously the DNA model performed well in several 

respects as applied to the present experiment. An extension of the model 

incorporating previous sessions’ reinforcer ratios described both session-aggregate 

and within-session changes in bias (Figs. 3.3-3.4). The changes in response allocation 

following each sample stimulus were rapid and showed evidence of generalization 

across both stimulus and response dimensions, as suggested by the DNA model. Of 

special interest, the changes in bias following presentation of S3 were similar to that 

observed following other stimuli in which responding actually produced reinforcer 
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deliveries. Therefore, the present study provides a strong demonstration of an 

important assumption of the DNA model. According to the model reinforcers 

delivered following one stimulus or response will have an effect on behavior 

following all other stimuli to the extent that the stimuli or responses in question are 

similar to one another. The spread of reinforcer effect along stimulus and response 

dimensions produces an effective or perceived number of reinforcers that may differ 

from that actually delivered by the experimenter (Davison & Jenkins, 1985; Killeen, 

1994). In the case of behavior following presentation of S3, the effective allocation of 

reinforcers produced a preference for a response alternative when no reinforcers were 

ever actually delivered for either response following presentation of this stimulus. 

Therefore, the present results lend support to the theoretical assumption that behavior 

in detection procedures is determined by the effective allocation of reinforcement 

(Davison & Nevin, 1999). Furthermore, these findings suggest not only that a 

reinforcement-based theoretical approach to understanding signal detection 

performance may be of some value to those studying perception, but also that 

studying perceptual phenomena may provide important insights into the process of 

reinforcement itself. 
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CHAPTER 4 

DYNAMICS OF ATTENDING IN THE 

REPEATED ACQUISITION OF A TEMPORAL DISCRIMINATION 

 

The role of attending has long been recognized as an important feature in the 

establishment of stimulus control of operant behavior (Hull, 1950; Wyckoff, 1952, 

1969). Dinsmoor (1985) pointed to the decrease in induction or transfer between 

stimuli correlated with reinforcement and those that are not as training progresses to 

be the hallmark of discrimination learning. On this view, it is the differential 

correlation between discriminative stimuli and the training context with 

reinforcement that comes to exert control over behavior in the formation of stimulus 

control.  

Early work by Heinemann and colleagues (Heinemann, Avin, Sullivan, and 

Chase, 1969) showed that once asymptotic levels of performance on a sound intensity 

generalization task had been achieved, accuracy at the tested end points (65 and 100 

dB, respectively) of the intensity continuum was less than perfect. Their 

generalization testing procedure entailed brief presentations of white noise followed 

by the availability of two response alternatives. In different experiments, responses to 

one key following a class of stimuli less than a critical value were reinforced and 

responses to the other key following a class of stimuli greater than a critical value 

were reinforced. Psychometric functions of the proportion of responses to the “high 

intensity” key as a function of intensity of white noise were obtained for each subject. 

Heinemann and colleagues found that the proportion of responses to the high intensity 
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key were often greater than zero and less than one at the extreme lower (65 dB) and 

upper (100 dB) ends of the intensity values tested, respectively.  

 To account for the less than unit range of their obtained psychometric 

functions, Heinemann and colleagues provided a theoretical treatment based on 

attention. Specifically, they assumed that on some trials, their subjects’ choices were 

controlled by unspecified stimuli other than the auditory dimension. To assess the 

degree to which stimuli other than auditory stimuli controlled the subjects’ behavior, 

Heinemann and colleagues used the following equation as a correction for inattention  
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where p(R│A) is the probability of a response p(R) given attention (A) to the prior 

stimulus. The terms p(Ru) and p(R1) denote the obtained upper and lower asymptotes 

of the psychometric function. With this correction, Heinemann and colleagues fit 

normal ogives to the obtained psychometric functions and showed that the probability 

of attending depended on training conditions prior to generalization testing. 

Specifically, subjects trained on a more difficult discrimination before generalization 

testing gave steeper (i.e., more step like) psychometric functions than those subjects 

who had been trained on an easier discrimination.  

 Heinemann & Avin (1973) trained pigeons on a maintained generalization 

procedure, in which right or left key pecks following different intensities of white 

noise produced access to food. In their experiment 2, subjects were presented one of 

ten possible intensities ( 60-96 dB, in 4 dB steps) of white noise on each trial and 

were required to peck the left key given an intensity of 76 dB or less and a peck to the 

right key given an intensity of 80 dB or greater. Heinemann and Avin analyzed 
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psychometric curves from separate 10 session blocks of training (100 sessions total). 

Applying the same asymptote correction as above (Eq. 4.1), Heinemann and Avin 

(1973) showed that the probability of attending to the sample stimuli increased in a 

negatively accelerated fashion towards 1.0 across training blocks.  

Blough (1996) attempted to isolate different factors that contribute to errors in 

the matching-to-sample (MTS) performance of pigeons. He distinguished three 

separate sources of error that may occur in various stimulus control procedures. 

Blough’s analyses were based on fitting a normal ogive to psychometric functions, 

which provide an estimate of mean and standard deviation. The standard deviation or 

slope of the obtained psychometric curve is commonly referred to as sensitivity or 

d ′ in signal detection theory terminology (Green & Swets, 1966). The mean or point 

of subjective equivalence (PSE) of the psychometric curve is an estimate of response 

bias or the propensity to report one stimulus more frequently than the other. Finally, 

Blough provided estimates of the lower and upper asymptotes of the obtained 

psychometric functions. These different error sources are analogous to those provided 

by Heinemann et al (1969) with their attention-corrected ogive fits. In a series of 

experiments, Blough (1996) showed that some manipulations, such as sample 

duration and the length of a retention interval, produced independent effects on the 

parameters of the psychometric function.  

More recently, Nevin, Davison, and Shahan (2005) provided an account of 

attending in conditional discriminations partly informed by the observing response 

literature. Their model is an extension of a previous model of signal detection and 

conditional discrimination (Alsop & Davison, 1991; Davison & Nevin, 1999), 
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furthermore, the model is more general than previous attempts in that it can provide 

estimates of attending in the absence of obtaining a complete psychometric function. 

The model provided by Alsop and Davison (the DNA model) is presented in Figure 

4.1. This model of detection and conditional discrimination performance assumes that  

reinforcers delivered for correct responses (corresponding to cells 11 and 22) 

generalize to the other cells via the psychometric distances between the responses and 

stimuli present in the task. The parameters used to estimate psychometric distances 

are dr and ds, the distance between the responses, as defined by the comparison 

stimuli or locations, and sample stimuli, respectively. It is important to note that these 

parameters are assumed to represent the physical differences among stimuli and the 

sensory capacities of the organism under study.  

Nevin, Davison, and Shahan (2005) showed that with the addition of 

parameters representing the probability of attending to the sample and comparison 

stimuli, the model could account for previous data sets that the DNA model, which 

assumed perfect attending, could not. Nevin, Davison, & Shahan (2005) provided 

equations derived from behavioral momentum theory (Grace & Nevin, 1997; Nevin 

& Grace, 2000) which predict that the probability of attending is related to the rates of 

reinforcement correlated with the sample and comparison stimuli relative to the 

background reinforcer rate in the experimental context. In essence, the equations 

predict that higher rates of reinforcement will produce a negatively accelerated 

increase in rates of attending (Shahan, 2002), analogous to free-operant response rates 

(Catania & Reynolds, 1968; Herrnstein, 1970). Although precise prediction requires 

the use of the attending equations (i.e., Eq. 1.8 & 1.9), an illustration of the role of 
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attending in the model does not require the equations, therefore, those equations will 

not be repeated here. The model assumes that the subject attends to the sample and 

the comparison stimuli with probability p(As) and p(Ac) on each trial. This process 

may be represented by a Markov chain as in Nevin, Davison, and Shahan’s (2005) 

Figure 4 (presented here in Fig. 4.2). The Markov chain consists of four states 

corresponding to complete attention (State 1) or inattention (State 4) to the samples 

and comparisons, attention to the samples, but not the comparisons (State 2), and 

inattention to the samples, but attention to the comparisons (State 3). If the subject 

attends to the sample stimulus and the comparisons on a given trial (i.e., p(As) = 

p(Ac) = 1), then behavior is assumed to be governed by the equations presented in 

State 1 of Figure 4.2 (i.e., the DNA model). If the subject attends to the sample 

stimuli, but does not attend to the comparisons, then behavior is governed by the 

equations for State 2 in Figure 4.2. States 3 and 4 correspond to trials in which the 

subject does not attend to the sample and either attends (State 3) or does not attend 

(State 4) to the comparisons. Note that only in States 1 and 3, do the parameters 

estimating psychometric distances contribute to predicting differential responding to 

the comparisons. States 2 and 4 both predict that the subject responds with equal 

probability to either comparison. Nevin, Davison, & Shahan (2005) showed that by 

assuming that subjects do not attend to the samples on every trial (p(As) < 1.0; p(Ac) 

= 1.0) their model was able to account for findings that were discrepant with the DNA 

model. Therefore, their analysis suggests that in many conditional discrimination and 

signal detection procedures without a retention interval, behavior is governed by 

States 1 and 3 of the model as illustrated in Figure 4.2.  
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As mentioned above, Nevin, Davison, and Shahan’s (2005) account of 

attending is predicated on the functional similarity between attending in conditional 

discrimination procedures and behavior in observing response procedures. Research 

with observing response procedures (Wyckoff, 1952, 1969; Fantino, 1977) has been 

the empirical basis for behavior analytic accounts of attending. An extensive 

empirical literature (Dinsmoor, 1983) has shown that observing responses are 

acquired (Dinsmoor, Mueller, Martin, & Bowe, 1982; Dinsmoor et al., 1983) and 

maintained (Dinsmoor, Brown, & Lawrence, 1972) by the conditioned reinforcing 

value of stimuli (SD) correlated with primary reinforcement. Therefore, the account of 

Nevin et al. suggests that the probability of a subject observing the sample and 

comparison stimuli in a conditional discrimination is determined by the conditioned 

reinforcing value (Fantino, 1969; Herrnstein, 1964, Grace, 1994; Mazur, 2001) of 

those stimuli. That is, the extent to which differences among the sample stimuli and 

comparison stimuli actually exert discriminative control over behavior exists on a 

continuum ranging from no control to that determined by maximal conditioned 

reinforcing value, limited by psychophysical differences among the stimuli. 

The present research provides a systematic replication and extension of the 

work of Heinemann and Avin (1973). Rather than provide a single acquisition curve 

for each subject, however, the present work seeks to provide within subject 

replications by employing a successive reversal or repeated acquisition design 

(Boren, 1969; Thompson, 1970; 1971). Specifically, subjects will learn a temporal 

classification task in which stimuli from the short duration class is correctly identified 

by one of two responses (for example, a right response) and stimuli from the long 
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duration class are correctly identified by the other response alternative (for example, a 

left response). Following a fixed number of experimental sessions, the relation 

between the short and long stimulus classes and the correct comparison response 

location is reversed. Furthermore, the present experiment sought to characterize 

repeated acquisition under conditions in which each correct response is reinforced 

with both equal and unequal probabilities. 

The present experiment also provides a test of the predictions of Nevin et al.’s 

model of attending and perhaps may shed some light on the role of conditioned 

reinforcement in conditional discriminations. As discussed above, it is clear that the 

acquisition of a conditional discrimination may be understood as the gradual increase 

in control by the relevant stimulus dimension correlated with reinforcement 

(Heinemann & Avin, 1973). The approach of Nevin et al. provides two possible 

sources of control over the subjects’ discrimination performance; attending to the 

sample and the comparison stimuli, respectively. Assuming that these processes can 

be dissociated, the repeated acquisition of a conditional discrimination may be 

inferred to result predominately from changes in the probability of attending to either 

the sample stimuli or the comparison stimuli as training progresses.  

Research on the acquisition of preference in the concurrent-chains procedure 

has shown that evidence of control by primary reinforcement occurs before any 

preference is observed (Grace, 2001; Grace & Nevin, 1999). That is, initial link 

preference for the shorter terminal link delay, which is assumed to be mediated by the 

value of the terminal link stimuli as conditioned reinforcers, develops once subjects 

have already learned the delays to primary reinforcement in the respective terminal 
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links. If conditional discrimination performance is mediated by the value of the 

sample and comparison stimuli, one might expect to see the development of 

preference among comparisons in a conditional discrimination emerge before 

evidence of conditional stimulus control by the samples, analogous to backward 

chaining. Consequently, the goal of the present study is to assess the degree of 

independence in the acquisition of attending to the sample and comparison stimuli by 

manipulating the relative value of these stimuli by varying the relative probabilities of 

reinforcement for correct comparison choices.  

Hypotheses 

1) Subjects will show rapid repeated acquisition of a temporal discrimination. 

Furthermore, changing the location across repeated-acquisitions of the correct 

response following each stimulus class will have no effect on the speed of 

acquisition. 

2) When the probabilities of reinforcement for correct responding are unequal, 

biased responding will approach asymptotic levels at a rate higher than that of 

discrimination accuracy.  

3) The attending-augmented DNA model will portray the differences in the 

speed of acquisition between bias and discrimination as a difference in the 

probabilities of attending to the sample and comparison stimuli, respectively. 

Specifically, attending to the comparison stimuli will increase at a rate higher 

than that of attending to the sample stimuli. 
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METHOD 

Subjects 

 The subjects were five male Long Evans Hooded rats (J105, J106, J107, J08, 

and J109). All subjects were experimentally naïve at the beginning of the experiment. 

Food deprivation was held constant for each subject by post-session feeding (15g). 

The rats were housed individually and had free access to water when in their home 

cages in a vivarium with a 12:12 hr light/dark cycle (lights on at 6:00 a.m.). Sessions 

were conducted daily, at approximately the same time with few exceptions. 

Experimental sessions were conducted during the rats’ light period. 

Apparatus 

 Same as the first chamber described in Experiment 1. 

Procedure 

Preliminary Training. Initially, left and right lever pressing was established via 

autoshaping. Subsequently, subjects were exposed to a discrete trials procedure in 

which the light above either the left or the right lever was lit and a response to the 

appropriate lever ended the trial with a 3 second milk presentation. This training 

phase lasted approximately five days or until each rat was reliably pressing each 

lever. Next, each subject was exposed to a similar procedure although both lever 

lights were illuminated on each trial and reinforcers were programmed for responses 

to only one lever on each trial. Reinforcers were equally likely to be programmed for 

each alternative, and once set up for a particular response, held until that reinforcer is 

obtained. Thus, during this portion of training, subjects were exposed to a dependent 
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concurrent fixed-ratio (FR) 1, FR 1. This training procedure was conducted daily for 

approximately twenty days for each subject.  

Repeated Acquisition. After subjects were reliably responding on each lever, 

switching between levers within a trial, and pressing each lever with near equal 

frequency, they were placed on the initial temporal discrimination procedure. On each 

trial the houselight was illuminated and sonalert were turned on for one of six 

durations (2, 2.6, 3.48, 4.6, 6.1, or 8-s). Following the sample stimulus, both lever 

lights were illuminated and responses to one lever were reinforced following sample 

durations less than 4-s and responses to the other lever will be reinforced following 

sample durations greater than 4-s. The mapping of stimulus class to the correct 

response location was counter-balanced across subjects. The mapping between 

stimulus class and correct response locations will be denoted by whether the short or 

long classes of durations are correct following B1 (right) responses, thus (S)B1 

signifies that right responses are correct following one of the short duration samples 

and left (B2)  responses are correct following one of the long duration samples. 

Subjects J105, J107, and J109 were initially assigned to (S)B1, in which B1 responses 

were deemed correct and reinforced following short durations and B2 responses 

following long durations were deemed correct and reinforced. The mapping between 

short and long stimuli and correct response locations was the opposite [(L)B1] for 

subjects J106 and J108. All correct responses produced 3-s access to milk followed 

by 2-s of blackout. Errors led directly to an intertrial interval (ITI) lasting 5-s during 

which the chamber was dark. Each sample stimulus duration was presented 42 times 

per session, resulting in 252 trials total per session. After 20 sessions of training, the 
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sample-stimulus correct-response mappings were reversed for each subject. The first 

reversal was carried out for 20 experimental sessions.  

Once each subject had been exposed to a complete reversal (i.e., both levers 

being correct following short (or long) durations for 20 sessions), the scheduling 

arrangement for correct responses was changed to a dependent schedule (Stubbs & 

Pliskoff, 1969). Thus, reinforcers were scheduled for each correct response with equal 

probability and once a reinforcer was assigned to a particular correct response, no 

other reinforcers could be obtained until that particular correct response was made.  

Two subjects J105 and J106 required several more sessions than the others to 

learn the initial discriminations. These subjects also demonstrated took considerably 

longer to relearn the discriminations after reversals. Subsequently these subjects were 

trained using a procedure in which all correct responses resulted in feedback (brief-

paired stimulus presentations). After multiple reversals with a correction procedure 

these subjects fell behind the others considerably and their data will not be reported. 

Prior to being exposed to experimental conditions, the remaining subjects 

were exposed to five reversals such that they experienced (S)B1 and (L)B1 twice. 

Each reversal lasted at least 15 sessions, but where changed before behavior 

completely stabilized.  

Unequal reinforcer probabilities. The primary conditions of the experiment consisted 

of exposing subjects to a series of discrimination reversals ((S)B1 & (L)B1) in which 

reinforcer probabilities are equal in some conditions (p(RL) = 0.5) or favor the left or 

right response alternative (p(RL)) = 0.8 or p(RL)) = 0.2) in other conditions. Each 

condition lasted 15 sessions. The sequence of experimental conditions, sample-to-
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comparison mapping, and reinforcer probabilities for each subject are displayed in 

Table 4.1. Note that conditions in which correct responses were reinforced with equal 

probability intervened between each condition of unequal reinforcer probabilities. 

These equal reinforcer probability conditions served as an effective baseline in 

attempt to reestablish unbiased discriminative performance. According to this design, 

unequal reinforcer probability conditions occur with the sample stimulus-class, 

correct-response location mapping for each subject, but differ between subjects (see 

in Table 4.1). Note that for J108 the same unequal reinforcer probabilities were ran 

due to an experimenter error. 

RESULTS 

Repeated Acquisition Performance: Equal reinforcer probability conditions 

Each subject experienced ten total discrimination reversals; therefore the two 

response alternatives were correct following short and long stimulus durations on five 

separate exposures. Figure 4.3 shows percent correct plotted as a function of session, 

averaged across the last three exposures to a particular type of reversal. The figure 

shows that discrimination accuracy increased across sessions for each subject and that 

whether B1 responses were correct following either short or long stimulus durations 

had little effect on the rate of relearning the discrimination or the asymptotic levels of 

accuracy achieved (supporting Hypothesis 1). Furthermore, each subject exhibited 

strong carryover effects which manifest as a percent correct for a particular session 

that falls below 0.5. For subject J107 there was some difference in learning rate 

across the first three sessions of a reversal when B1 was correct following short 

stimulus durations (especially for sessions 2-3) however, this difference disappeared 
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by session five and asymptotic accuracies were similar. For subject J109 there 

appears to be a difference in the abruptness with which performance reached 

asymptote. That is, discrimination was similar across the first three sessions for (S)B1 

and (L)B1, but during (L)B1 correct responding abruptly reached asymptotic levels at 

session five.  

Although percent correct provides an overall measure of discrimination 

performance, this measure does not give an indication of the acquisition of stimulus 

control following any particular sample stimulus duration. Figures 4.4-6 show 

psychometric functions obtained for each subject, which plot the relative frequency of 

responses to the correct response location following long stimulus durations as a 

function of stimulus duration. The data in Figures 4.4-6 come from the same 

preliminary training sessions as used to construct the percent correct functions 

portrayed in Figure 4.3. The psychometric functions in Figures 4.4-6 have been 

grouped by successive blocks of three sessions and have been plotted separately for 

(S)B1 (top) and (L)B2 (bottom).  

Although Figures 4.4-6 give the impression that the psychometric functions 

were flat at the beginning of a reversal, in fact during the first session (and sometimes 

subsequent sessions, see Fig. 4.3) each rats’ performance exhibited strong carryover 

effects. The upper plot [(S)B1] for J107 in Figure 4.4 provides evidence of this effect, 

where responding following a stimulus is in accordance with the previous relation 

between stimulus duration and correct response location. Therefore, following a 

reversal, subjects demonstrated a hysteresis effect followed by a fairly smooth rate of 

learning. Overall, across training sessions the major effect on the psychometric 



 

 

 

81

functions is an increase in the range of the function. Comparison of each subjects’ 

psychometric function along with the overall percent correct data presented in Figure 

4.3 demonstrate that even at the shortest and longest durations, discrimination was not 

errorless.   The data from the training conditions, in which correct responses were 

reinforced with equal probability, is therefore consistent with the acquisition data 

reported by Heinemann and colleagues (Heinemann, Avin, Sullivan, & Chase, 1969; 

Heinemann & Avin, 1973).  

Unequal Reinforcer Probabilities 

The major goal of the present study was to track changes in accuracy and 

response bias (defined as preference for the response alternative with the higher 

probability of reinforcement) and compare the onset of these performance measures 

during the course of repeated acquisition. Therefore, beginning with the first session 

of a reversal, a cumulative percent correct and percent bias measure was calculated 

for each subject. These curves should converge on the condition-wide percent correct 

and percent bias as more and more data are included in the calculation. Figures 4.7-

4.9 present the cumulative accuracy [Cumulative Correct/(Cumulative Correct + 

Cumulative Error)] and bias [Cumulative BRich/(Cumulative BRich + Cumulative 

BLean)] measures for each subject separately for each condition in which reinforcer 

probabilities for correct responses were unequal (see Table 4.1). Each percent bias 

plot has been constructed so that percent biased responding is for the alternative with 

the higher reinforcer probability (i.e., location is ignored). Also, the percent bias 

measure was normalized so that a bias of zero represents equal responding to each 

alternative. 
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Figures 4.7-4.9 demonstrate that both discrimination and bias changed in 

orderly ways as function of training and that these measures were quite consistent 

within subjects. Discrimination accuracy increased at a high rate within the first three 

experimental sessions (Mdn = 231 reinforcers) and approached asymptotic values 

after approximately the fifth session. Bias also changed rapidly within the first few 

sessions of a reversal. Visual inspection of the cumulative bias plots suggests that this 

aspect of performance approached asymptotic levels faster than discrimination 

accuracy. 

To provide a quantitative summary and comparison of the discrimination and 

bias measures for each subject a Weibull function was fit to each subjects’ data (see 

Gallistel, Fairhurst, & Balsam, 2004). Applied to the cumulative percent correct and 

bias data, the function is written: 

                                                 )])/[(1(
sLReAy −=                                              (4.2) 

where y equals the cumulative performance measure under consideration, R is the 

cumulative number of reinforcers, and e is the base of natural logarithms. The 

parameters A, L, and S are the asymptote, latency, and shape of the function. The 

asymptote and latency parameters are straightforward, as they represent the 

asymptotic performance level achieved and the number of reinforcers to half the 

asymptotic value, respectively. The shape parameter is a measure of the abruptness of 

onset normalized to latency and allows the Weibull to assume very different 

functional forms. Small values of the shape parameter (S < 1.0) produce a function 

that is monotonically increasing and resembles other functions used to model 

acquisition data such as the exponential and hyperbolic. As the shape parameter 
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increases above 1.5, it becomes sigmoidal in shape; asymmetrically so for values less 

than 2.0 and symmetrically for values of 4.0 and higher.  

 The best fitting Weibull functions for each subject and condition to the 

cumulative accuracy and bias measures are also presented in Figures 4.7-4.9. The 

Weibull functions were fit to each subjects’ data via nonlinear least squares 

regression. Table 4.2 provides parameter estimates and measures of goodness of fit. 

In general the Weibull function provided an adequate fit to the cumulative 

performance measures with the exception of the data from J108 in two conditions 

(conditions 2 & 4). Across subjects and conditions, the onset latency or number of 

reinforcers to half asymptotic performance was smaller for cumulative bias in seven 

of nine comparisons, the exceptions being J108 in the second and fourth conditions 

(partially supporting Hypothesis 2). The shape parameter was greater for the 

cumulative bias measure in all cases. A closer analysis of the data for J108 revealed 

that this subject often showed bidirectional changes in bias. That is, this subject often 

showed a bias towards the higher reinforcer frequency alternative in the first post-

reversal session, which dissipated only to appear again a few sessions later. Overall, 

the analysis of the cumulative discrimination and bias data via fits of the Weibull 

function demonstrates that the onset of bias appeared before discrimination in the 

majority of cases and that the onset of bias appeared more abruptly. 

Theoretical Analyses of Attending 

 The primary theoretical motivation of the current study has two parts: 1) to 

provide a novel test of the attending-augmented DNA model (Nevin, Davison, & 

Shahan, 2005) by fitting the model to acquisition data and 2) to examine the degree of 
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independence in the models’ attending parameters. As stated in the introduction, 

research using the concurrent-chains procedure to study the acquisition of choice has 

shown that control over behavior by primary reinforcement and over choice by 

conditioned reinforcement can be dissociated (Grace, 2002). Specifically, this 

research has shown that preference which is assumed to be mediated by conditioned 

reinforcing value develops slower than that maintained by primary reinforcement. 

The analog of this finding in the present procedure would presumably correspond to 

observing biased responding to the comparison stimuli before discriminative control 

by the sample stimuli. The present data are largely consistent with a dissociation 

among bias and discrimination in signal detection performance. Therefore, the 

attending version of the DNA model was fit to the obtained data in order to assess the 

independence of its attending parameters. 

The present procedure employed a 6-stimulus, 2-response detection procedure 

and fitting the DNA model (Fig.4.1) requires 5 parameters measuring the 

discriminabilities between each pair of sample stimuli (d12, d23, d34, d45, d56), a single 

parameter measuring the discriminability between the two comparison responses (dr), 

and an inherent bias term (c) measuring any preference towards a particular response 

alternative that is independent of the biasing effects of the relative frequency of 

reinforcement for correct responses. Furthermore, to fit the model to the data from 

each session of the present experiment requires estimates of the probability of 

attending to the sample p(As)  and comparison stimuli p(Ac), respectively as a 

function of training.  
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 In their original proposal of the attending-augmented DNA model, Nevin, 

Davison, and Shahan (2005) proposed equations from behavioral momentum theory 

(Nevin & Grace, 2000) to describe the changes in attending to the sample and 

comparison stimuli as a function of the rate of reinforcement correlated with these 

stimuli. Preliminary analyses with these equations suggested that the obtained rate of 

reinforcement did not vary substantially over the course of a condition. That is, 

although accuracy decreased in the first few sessions of a condition and then rose to 

high levels thereafter, the rate of reinforcement did not differ enough to produce the 

large changes in attending probabilities needed to fit the present data. Therefore, 

rather than using the momentum equations to produce changes in attending 

parameters, two other candidate functions were employed and compared in their 

ability to fit the data. 

 The first equation is the Weibull presented above as Equation 4.2 and its 

parameters may be interpreted similarly. The second candidate function used to 

model changes in attending was a simple linear-operator model which has been 

exploited many times in the study of learning (e.g., Bush & Mosteller, 1955; Rescorla 

& Wagner, 1972). The Weibull equation again contains three free parameters and 

these parameters were adjusted such that the probability of attending increased as a 

function of sessions. The linear-operator equation employed is 

                                           )()1( nasympnx AAA −=Δ + α                                              (4.3) 

where ΔAx(n+1) is the change in attending probability resulting from a single session of 

training. The term Aasymp represents the asymptotic probability of attending, which 
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was set to 1.0 in the fits, and An representing the attending probability in the previous 

session. The parameter α determines the rate of increase in attending probability.  

Note that two separate equations are needed to model increases in the 

probability of attending to the sample stimuli and comparison stimuli, respectively. 

Therefore, the Weibull fits require 6 more parameters to be estimated, while the 

linear-operator requires 2 extra parameters be estimated. The data used for the model 

fits were the proportion of responses to the alternative deemed correct following a 

long duration stimulus and were taken from each session from all conditions, 

providing 270 data points per subject for the fits. 

 The fits of the DNA model using a Weibull and linear-operator function to 

describe the increase in attending was carried out by nonlinear least squares 

regression using the Solver tool in Microsoft© Excel. The parameter estimates and 

goodness of fit measures for the fits are presented in Table 4.3. The table shows that 

generally the fits were satisfactory, with small estimates of root mean squared error 

(RMSE). Furthermore, little difference in the quality of fits was obtained when either 

the Weibull or linear-operator equations were used to estimate the attending 

probabilities. Because these models differed in the number of free-parameters k 

employed, the Akaike (AIC) and Bayesian (BIC) information criteria were used to 

assess quantitatively the tradeoff in goodness of fit and difference in free parameters 

between the models (Burnham & Anderson, 2002; Pitt & Myung, 2003). The major 

difference between these criteria is that the BIC penalizes a model more strictly for 

more free parameters. For both indices, a smaller (more negative) value indicates the 

model to be preferred. Although the differences between AIC and BIC values were 
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small, each gave a smaller value for the attending model employing the Weibull 

function. Therefore, further results presented will focus on this model. 

 Figure 4.10 provides the estimated changes in attending to the sample and 

comparison stimuli through the course of training plotted as a function of sessions 

since transition as estimated by the Weibull function. Across subjects, the attending 

parameters varied considerably. According to the attending model parameters, the 

probability of attending to the comparison stimuli increased at high rate for subjects 

J107 and J108, however the opposite effect occurred for subject J109. For all 

subjects, the probability of attending to the sample stimuli increased either gradually 

(J107 and J108) or abruptly (J109) with training (partially supporting Hypothesis 3). 

Attending to the sample stimuli corresponds to States 1 and 2 of Figure 4.2, however 

only in State 1 can the sample stimuli exert discriminative control over responding. 

Because the probability of entering State 1 is given by the product of p(As)  and p(Ac) 

these values must both increase in order for discrimination performance to improve 

with training. To the extent that p(Ac) is greater than p(As),behavior is governed by 

State 3 of Figure 4.2 in which behavior is solely controlled by differential 

reinforcement to the extent that the response alternatives are discriminable from one 

another. For subject J107, the change in attending probabilities given by the model 

accounts for the early onset of bias before accurate discriminative control reappears 

(supporting Hypothesis 3). For subject J108, the probability of attending to the 

comparisons rises quickly, but then is overtaken by attending to the samples 

(disconfirming Hypothesis 3). Therefore, the model describes the brief appearance of 

bias in the first few sessions of a reversal, as well as the slightly poorer discrimination 
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for this subject. The probability of attending to the samples appears maximally within 

the first reversal session for subject J109 (disconfirming Hypothesis 3). The 

probability of attending to the comparisons then increases monotonically across 

sessions. These parameter values imply that for J109, States 1 and 2 governed this 

subject’s performance, which gives a mixture of random responding to the 

comparisons, and behavior controlled jointly by both sample and comparison stimuli, 

respectively. The fact that bias appeared before discrimination accuracy for J109, 

much like that of subject J107, yet the attending parameters differed greatly between 

these subjects might be accounted for by the much greater values of contingency 

discriminability dr obtained for J109 (Table 4.3) which means that reinforcer 

differences had a greater impact on this subject’s performance. 

DISCUSSION 

 The present experiment employed a successive – or repeated-acquisition 

procedure in which the relationship between classes of short and long sample stimuli 

and their respective correct comparison location were changed every few sessions. 

After subjects had experienced several reversals, the probabilities of reinforcement 

for correct responses following each stimulus class were manipulated. The 

simultaneous discrimination reversal and reinforcer probability manipulations 

provided the opportunity to observe the acquisition of both discrimination and bias 

within individual subjects. The purpose of the experiment was to track changes in 

both discrimination and bias over the course of acquisition in order to compare the 

rate of acquisition among these two measures. The secondary goal of the present 

study was to provide a novel test of a behavioral model of signal detection 
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performance that includes separate theoretical terms representing the probabilities of 

attending to sample and comparison stimuli, respectively (Nevin, Davison, & Shahan, 

2005).  Specifically the theoretical goal of the present study was to apply a steady-

state performance model to acquisition data. Therefore, it was asked if discrimination 

and bias can be dissociated during the course of acquisition, then could the model 

provide independent changes in parameters representing attending to sample and 

comparison stimuli.  

 The results from training conditions in which the probabilities of 

reinforcement for correct responses were equal provided a systematic replication 

previous of a report by Heinemann and Avin (1973). The present study however, 

provided within subject replications using a repeated reversal design. The 

psychometric functions presented in Figures 4.4-4.6 are consistent with Heinemann 

and Avin’s finding that the primary effect of continued training is on the range of the 

psychometric functions. Heinemann and Avin (1973) also showed that both the 

midpoint (PSE) and slope of psychometric functions changed throughout the course 

of acquisition. Although the same quantitative analyses were not performed in this 

study, the present data are consistent with Heinemann and Avin’s contention that the 

principal effects of continued training are to increase attention to the relevant stimulus 

dimension.  

 Over the primary conditions of the experiment, the relation between stimulus 

class and correct response location were reversed every fifteen sessions. Every other 

condition also introduced a biasing manipulation in which the relative frequency of 

reinforcement for correct responses was unequal. These two manipulations allowed 
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for the simultaneous assessment of the acquisition of discrimination and bias. The key 

dependent variables were the cumulative percent of responses correct and the 

cumulative percent of responses to the alternative with the higher probability of 

reinforcement. To provide a quantitative assessment of acquisition, a Weibull 

function including estimates of asymptotic performance, latency to half-asymptote, 

and the abruptness of the onset were fit to each subjects’ acquisition curves. The 

Weibull analyses (Table 4.2) showed that the onset of bias occurred before 

discrimination as measured by latency in seven of nine cases and that the onset of 

bias was more abrupt on all nine occasions. These data are the first, to my knowledge, 

to demonstrate a dissociation between discrimination and bias during acquisition in a 

signal detection procedure. 

 Nevin, Davison, and Shahan (2005) provided an extension of an earlier model 

of signal detection performance (see Davison & Nevin, 1999) which includes a role 

for attending based on the rate of reinforcement correlated with sample and 

comparison stimuli. This model was fit to the acquisition data of the present 

experiment. Fitting the model to the present data required modification of the 

originally proposed equations that modulate the probabilities of attending. Nevin et 

al. suggested that attending in conditional discrimination procedures increased with 

the rate of reinforcement correlated with sample and comparison stimuli according to 

equations derived from behavioral momentum theory (Nevin, 1992; Nevin, Mandell, 

& Atak, 1983; Nevin & Grace, 2000). The discrimination reversals produced only 

small changes in the obtained rate of reinforcement in the present experiment. 

Therefore, two other candidate functions were used to model the changes in attending 
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probabilities as training within a condition progressed. A comparison of both 

candidate functions showed that the increase in attending probabilities by a three-

parameter Weibull function provided a better account of the present data than did a 

one parameter linear-operator equation.  

 The overall performance of the attending-augmented version of the DNA 

model were good considering the model was developed for steady-state application 

and the present data are the first attempt to apply the model to acquisition data. The 

parameters measuring the discriminability among sample stimuli and comparison 

stimuli were largely consistent with results from Experiments 1-2. The major 

discrepancy between the data and model predictions arose from the first few sessions 

after a transition (not shown). This is because the DNA model with attending 

probabilities set at zero produce flat psychometric functions; whereas the data from 

the first post-reversal sessions resembled an inverse S-shaped functions. The model 

might be adapted to account for these carryover effects, but this would require the 

addition of further parameters. It is not exactly clear how best to incorporate 

carryover in the present procedure, so no attempt will be made here. 

 It should be noted that while the attending version of the DNA model applied 

to the present experiment contains several free parameters (13 were required in the 

Weibull function fits), other models would require a similar number if not many more 

parameters. An attempt to model the present data using, for example, a four-

parameter cumulative normal function would require several times the number of 

parameters used here. Although not reported, the analysis reported by Heinemann and 

Avin (1973) using a cumulative normal function with lower and upper asymptotes, 
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likely employed forty free-parameters per subject. Perhaps a simplification of 

Heinemann and Avin’s analysis could be achieved by holding some parameters 

constant, but it is unclear which should be held constant and such an attempt was not 

made here. Furthermore, the DNA model provided an account of the present data 

with parameters representing the discriminability among sample stimuli and 

comparison stimuli, respectively that remained fixed across conditions and training 

sessions and is therefore a more parsimonious treatment. 

 Finally, the constancy of stimulus and contingency discriminability 

parameters across the course of acquisition has several implications for discrimination 

learning. The attending-augmented DNA model implies that the discriminability 

among sample stimuli and comparison stimuli do not change across reversals. 

According to the model, discriminability terms are psychometric distances which are 

long-term structural features of the environment and the sensory capacities of the 

specific species and individual organism under study. What changes across training, 

according to this model, is the probability with which subjects attend or engage in 

observing behavior directed towards the sample and comparison stimuli. In turn the 

probability of observing the relevant stimuli is a function of their correlation with 

primary reinforcement, the conditioned reinforcing value of these stimuli. In the 

present study, reinforcer rates were not directly manipulated, however the correlation 

between a class of sample stimuli and the correct comparison location were reversed 

every few sessions. Thus, the correlation between a particular sample stimulus and its 

correct comparison was disrupted. The attempt to model the changes in attending 

probabilities as a function of training directly parallels that of associative learning 
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models that describe the acquisition of a conditioned response (e.g., Rescorla & 

Wagner, 1972; for recent reviews see Pearce & Bouton, 2001; Wasserman & Miller, 

1997). Therefore, the present analyses suggest that the learning process in signal 

detection may be primarily due to contingency variables and future research on 

discrimination learning should be directed towards an analysis of these processes. 
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CHAPTER 5 

GENERAL DISCUSSION 

 

  The research reported in this dissertation was conducted with two 

general aims: 1) to develop a dynamic research methodology that allows for a 

characterization of learning in signal detection procedures, and 2) to apply static 

models of detection performance to performance in transition and therefore provide a 

test of some of the assumptions of these models. Such a research methodology would 

allow for the dynamic characterization of the key performance measures in a signal 

detection procedure: discrimination and bias. In turn, a dynamic characterization of 

discrimination and bias would presumably shed light on whether these measures are 

truly independent as well as the basic learning mechanisms that produce these 

asymptotic performance measures. Chapters 2 and 3 reported experiments examining 

the extent of within-session changes in response bias in both simple and complex 

signal detection tasks when the consequences for correct responses changed randomly 

from session to session. Chapter 4 reported an attempt to study learning of 

discrimination and response bias simultaneously by employing a successive reversal 

design in which the correct response location following a stimulus class was changed 

every few sessions.  

 The experiment reported in Chapter 1 was the first attempt to apply a method 

of frequently varying the relative frequency of reinforcement among concurrently 

available response alternatives to a signal detection task. Specifically, Experiment 1 

employed a pseudorandom binary sequence where the probability of reinforcement 
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for correct responses can change between two reciprocal values (3:1 and 1:3) each 

session. Across two conditions, the difference between sample stimulus durations was 

manipulated such that in one condition the discrimination was more difficult than in 

the other. The DNA model of detection (Alsop & Davison, 1991; Davison & Nevin, 

1999) was extended to incorporate the possible effects of previous sessions’ 

reinforcer frequency ratios and thus quantify any carryover effects of response bias. 

The two major findings of Experiment 1 were that at the session-aggregate level, 

response bias was largely unaffected by previous sessions’ reinforcer ratios (Fig. 2.4) 

and that the degree of adaptation to the current session reinforcer ratio differed across 

conditions (i.e., discrimination difficulty). In the condition were discrimination was 

most accurate, response bias increased monotonically within experimental sessions 

(Fig. 2.5), which according to the model, was due a decrease in the effect of the 

previous session’s reinforcer ratio and an increase in control by the current session 

reinforcer rate ratio. In the condition were discrimination performance was less 

accurate, session-aggregate response bias was also reduced. Within-session analyses 

revealed little difference between the effects of previous and current session 

reinforcer ratio (Fig. 2.6). The condition 2 data of Experiment 1 provide no indication 

as to whether something about the within-session dynamics themselves or the 

difference among sample stimuli contributed to the reduced response bias observed in 

the second condition. It is unlikely that the within-session dynamics are the reason for 

the difference as the data from the first condition of Experiment 1 and data from 

Experiment 2 suggest an orderly within-session adjustment to current session 

reinforcer ratios. It is possible that if subjects mediated the to-be-timed stimuli by 
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their own behavior, then contingency discriminability decreased as a result of 

similarity of classes of mediating behavior. While this suggestion is plausible, as 

behavioral mediation of temporal intervals is well established in the literature (Laties, 

Weiss, & Weiss, 1969; Killeen & Fetterman, 1988; Richelle & Lejeune, 1980; 

Staddon & Simmelhag, 1971), no systematic observations of behavior during sample 

presentations were made in Experiment 1. 

Experiment 2, reported in Chapter 3, provided a systematic replication of 

Experiment 1. Rather than presenting different stimuli across experimental 

conditions, however Experiment 2 employed an n-stimulus procedure in which five 

different sample stimuli were presented in each session.  Again, like Experiment 1, 

the probability of reinforcement for correct responses varied from session-to-session 

according to a pseudorandom sequence, however in some sessions of Experiment 2 

the reinforcer probabilities were equal. The extension of the pseudorandom sequence 

design to an n-stimulus procedure is important because it allows for simultaneous 

assessment of response bias at a range of discrimination accuracies. Furthermore, 

Experiment 2 provided a test of an n-stimulus model of detection proposed by 

Davison (Davison, 1991; Davison & Nevin, 1999) which asserts that each reinforcer 

delivery contingent on a particular correct response in such procedures affect all other 

stimulus-response pairs to the extent that each are similar to one another. The major 

results of Experiment 2 replicated the findings of Experiment 1 in that, after sufficient 

exposure to the pseudorandom sequence, aggregate performance in a given 

experimental session was predominately under control of the current session’s 

reinforcer ratio (Fig. 3.3). Analyses of within-session performance showed an 
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approximately monotonic decrease in control by the previous session’s reinforcer 

ratio along with an increase in control by the current session reinforcer ratio (Fig. 

3.4). Further analyses, at a trial-by-trial level, showed that response bias appeared 

very early in a session, often within a few presentations of a given sample stimulus 

(Figs. 3.6-8). The ability of an extended form of Davison’s n-stimulus detection 

model to capture both session-aggregate and within-session changes in control by 

previous and current reinforcer ratios, in addition to the rapid changes in bias 

following each sample stimulus, suggest that assumptions of the model may be 

profitably extended to dynamic performance.  

Finally, in Chapter 4, an experiment was reported in which the development 

of both discrimination and bias were examined simultaneously. Experiment 3 

employed a 6-stimulus classification task in which one response was correct 

following the three shorter stimulus durations and another response was correct 

following the three longer durations. The correct response location following each 

stimulus class was switched across successive blocks of sessions. In the major 

conditions of the experiment, the reversal between stimulus class and correct response 

location continued, however every other reversal included unequal reinforcer 

probabilities for correct responding following the two stimulus classes. Therefore, 

these experimental conditions allowed for a simultaneous assessment of the speed of 

acquisition of discrimination and bias simultaneously. Although asymptotic levels of 

discrimination and bias differed, the time to half-asymptotic levels was shorter for 

bias on seven of nine occasions. Analyses of the development of performance by an 

attending-augmented version of the Davison-Nevin-Alsop model of detection were 
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performed. This model includes separate roles for the sample and comparison stimuli 

in determination of detection performance. The test of this model involved assessing 

whether the attending parameters of the model took on consistent values across 

subjects in order to predict the faster onset of bias that was observed. Although the 

model gave an accurate quantitative description of the development of discrimination 

and response bias, the model’s attending parameters differed widely across subjects. 

Therefore, the data from Experiment 3 showed a clear dissociation of discrimination 

and bias during acquisition, however theoretical analyses based on the attending-

augmented DNA model did not reveal a common mechanism that might be 

hypothesized to bring about the observed performance dynamics. 

There were a few notable differences between the findings of Experiments 1 

and 2. Both session aggregate estimates of lag 0 dr and within-session control by the 

current session reinforcer ratio were highest in the easier discrimination condition of 

Experiment 1 and lowest in the more difficult discrimination condition. The estimates 

of control by current session reinforcer ratios were intermediate in Experiment 2 

relative to that observed in the two conditions of Experiment 1; also a small effect of 

the previous sessions’ reinforcer ratio was evident throughout most of the session. It 

remains puzzling that in Experiment 1, contingency discriminability was lower when 

the S1-S2 difference was small, however, in Experiment 2 the same stimuli were all 

presented within session yet a constant value of dr provided an adequate description 

of the effects of the reinforcer frequency ratio. Godfrey and Davison (1999) showed 

that the DNA model provided consistent estimates of both ds and dr when different 

sample and comparison stimuli were added and removed from a set of up to five 
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sample and comparison stimuli. Of course, comparing estimates of contingency 

discriminability across Experiments 1 and 2 of the present study is difficult as 

different subjects were used in each and exposure to the PRBS was much shorter in 

Experiment 1.  

Perhaps the most consistent finding across each experiment reported was the 

speed of changes in bias. In Experiments 1 and 2, where reinforcer ratios changed 

each session, rapid changes in bias were expected (Schofield & Davison, 1997). The 

observed changes in bias in Experiment 3 were however, at least as fast when taking 

into account the speed of environmental change in that experiment. A review of 

recent studies investigating choice behavior in transition suggests that the speed of 

behavior change is partly dependent on the frequency of environmental change. These 

studies have varied the reinforcer ratio either within each session (Davison & Baum, 

2000), between sessions (Hunter & Davison, 1985), or across several sessions 

(Mazur, 1997) and the speed of behavioral adaptation is faster when change is more 

frequent. Therefore, it would seem likely that response bias should have been much 

slower to develop in Experiment 3. This was not the case. Across subjects, the 

number of reinforcers to 50% of eventual asymptotic response bias was 120 

reinforcers, which corresponds to the second post-reversal session. Thus, even when 

reinforcer contingencies changed at a much slower rate in Experiment 3, bias still 

adapted very quickly.  While the broader implications of the speed of changes in bias 

will require further research, these findings may prove to be consistent with a single-

process learning view where sensory processes are secondary to a locally driven, 

reinforcement-dependent behavioral mechanism. 
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Finally, the most notable differences among the present experiments is that 

stimulus variables were held constant in Experiments 1 and 2, while the 

discriminative function of the stimulus classes and biasing variables were both 

manipulated in Experiment 3. Therefore, Experiments 1 and 2 only investigated 

acquisition of bias with stimulus conditions held constant and Experiment 3 

investigated acquisition of discrimination and bias. Future research may employ 

designs like that of Experiments 1 and 2 in order to compare acquisition of bias under 

manipulations other than reinforcer frequency. Designs like that of Experiment 3, 

however are indispensable when investigating the concurrent development of 

discrimination and bias, and thus the independence of learning mechanisms 

responsible for both performance measures. 

Assessment of Dynamic Methodology 

 Overall, the methodology employed in the experiments reported here was 

successful in that the transition data were orderly and aggregate data replicated 

previous findings. Therefore, the methods employed here may prove to be viable 

alternatives to traditional steady-state experimental designs employed in the 

experimental analysis of behavior (Sidman, 1960). The use of more dynamic 

experimental designs allow for the manipulation of several independent variables in a 

substantially shorter time frame. Furthermore, such designs are excellent for rats, 

which are short-lived, or people, who have limited time to participate in experiments. 

Rats also provide a mammalian model, which may be useful for investigating the 

biological bases of learning. Moreover, the use of dynamic designs which produce 
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rapid adjustment to experimental contingencies provide numerous possibilities for the 

investigation of behavior in transition. 

 The ability to conduct large parametric studies within a reasonable time frame 

is of increasing importance. Researchers in the area of signal detection, like those 

investigating simple choice in other paradigms, are typically interested in 

understanding the effects of several variables on performance simultaneously (i.e., 

Elliffe, Landon, & Davison 2008). Therefore, it may be reasonable to ask how many 

variables may be manipulated in a random fashion across experimental sessions (i.e., 

pseudorandom sequence designs) while being able to maintain experimental control. 

A recent study reported by Kyonka and Grace (2008) manipulated two (Experiment 

1) and three (Experiment 2) dimensions of reinforcement according to independent 

pseudorandom sequences in the context of a concurrent-chains procedure. They found 

that control by each reinforcer dimension developed within each session and that both 

session aggregate and local measure of performance supported the assertion of molar 

models that each reinforcer dimension has an independent effect on behavior.  

 The report of independent effects by different dimensions of reinforcement by 

Kyonka and Grace (2008) is an important one as quantitative analyses become more 

pervasive (Mazur, 2006). Schofield and Davison (1997) argued that the PRBS 

methodology may be a profitable way of measuring sensitivity to reinforcement. Thus 

designs like the PRBS are critically important for future advances where model 

parameters become fundamental dependent measures. Therefore, it seems that rapid 

estimation of higher-order dependent measures is of special importance in the area of 

signal detection research. Experiment 3 suggests that the usual model parameters that 
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have been estimated in detection experiments may not even be the most critical 

determinants of performance. That is to say, measures such as stimulus and 

contingency discriminability may be best conceptualized as long-term structural 

features of the task and subject. Whereas performance variables, such as the 

conditioned reinforcing value of the sample and comparison stimuli, may ultimately 

determine the level of discrimination or bias observed with stimulus differences held 

constant. 

Implications for Theory 

 The central theoretical goal of the present experiments was to extend current 

theory to detection performance in transition. This was done by extending previous 

quantitative models of signal detection performance to the present studies in which 

both stimulus and reinforcer variables were manipulated over much shorter time 

scales than that of experiments typically reported in the literature. In other words, 

most prominent models of detection performance have been formulated to describe 

stable performance; however the present research sought to extend these models to 

detection performance in transition. As discussed in Chapter 1, a model proposed by 

Davison, Nevin, and Alsop (Alsop & Davison, 1991; Davison & Nevin, 1999) is 

currently the most prominent model of detection and conditional discrimination 

performance in the non-human literature. Although some failures of this model have 

been noted (Jones, 2003), and modifications have been proposed (Nevin, Davison, & 

Shahan, 2005), the model is more broadly applicable and its assumptions are more 

easily testable than its generalized matching-based predecessor(s) (Davison, 1991; 

Davison & Jenkins, 1985; Davison & Jones, 1998; Jones & Davison, 1998). The 
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success of extending this theory was evaluated both in the ability of the model to fit 

transition data and by the extent to which the assumptions of the model were upheld. 

Furthermore, applying the most widely utilized model in the literature to detection 

performance in transition should prove advantageous in pointing out gaps in current 

understanding. 

 Beginning with Experiment 1, reported in Chapter 2, the DNA model of 

detection performance was extended to incorporate the effects of previous sessions’ 

reinforcer ratios on current session performance. This was done by assuming that the 

effect of current and previous sessions’ effective reinforcer ratios combined 

additively to produce current session levels of bias. Because within an experimental 

condition the difference among sample stimuli were held constant, the parameter 

measuring stimulus discriminability ds were held constant across sessions. The 

influence of current and previous effective reinforcer ratios on response bias in the 

current session was modeled by allowing for individual contingency discriminability 

parameters (dr) in determining each session’s effective reinforcer ratio. With stimulus 

discriminability held constant, an increase in contingency discriminability results in a 

negatively accelerated increase in response bias for the higher reinforcer frequency 

alternative.  

 The extension of the DNA model to both session aggregate (Fig. 2.4) and 

within session (Fig. 2.5-6) changes in bias provided an accurate description of the 

data from both conditions of Experiment 1.  Furthermore, the degree of control by 

current and previous sessions’ reinforcer ratios was similar to that reported in 

research were the PRBS method has been used to study preference in concurrent and 
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concurrent-chained schedules and similar analyses were performed (Davison & 

McCarthy, 1988; Grace, Bragason, & McLean, 2003; Kyonka & Grace, 2008; 

Schofield & Davison, 1997).  

Perhaps the most notable result of Experiment 1 was that estimates of 

contingency discriminability decreased across conditions when the difference among 

sample stimuli was manipulated. Thus, as the sample stimuli were made more similar, 

the parameter measuring the difference among comparison stimulus locations 

changed. A reanalysis of an experiment reported by McCarthy and Davison (1980) 

suggests that the observed parameter covariation was not due to the use of the 

pseudorandom sequence procedure. While other studies have reported parameter 

covariation (Nevin, Cate, & Alsop, 1993), it may be possible that this finding is due 

to the use of temporal stimuli (Ward, 2008). The DNA model has only been applied 

to a few detection studies employing temporal stimuli, but to my knowledge each has 

found some parameter covariation. Therefore, further analyses of temporal 

discrimination performance by the DNA model are warranted before a definitive 

conclusion can be offered. This is not to suggest that temporal stimuli are necessarily 

unique, the majority of research suggests that the psychophysics of time are similar to 

other stimulus dimensions (Gibbon, 1977; Killeen & Weiss, 1987). It may be, 

however that the unequal delays to reinforcement that are inherent in temporal 

discrimination procedures pose difficulties for the contemporary models as it is 

uncertain how to relate the value and discriminability of reinforcers (Alsop & Porritt, 

2006; Davison & Nevin, 1999; Nevin, Davison, Odum, & Shahan, 2007).  
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 The experiment reported in Chapter 3 provided another opportunity to 

evaluate an extension of the DNA model to account for possible carry-over effects. 

The extension of the model to Experiment 2 provided a more challenging assessment 

because the study employed an n-stimulus procedure. Application of the DNA model 

to an n-stimulus procedure allows for a more thorough evaluation of the way in which 

the model conceptualizes the spread of effect of reinforcement between sample 

stimuli and comparison responses. The DNA model was applied to the data of 

Experiment 2 as above with the following modification: four ds parameters were used 

to estimate discriminabilities between each pair of stimuli. As in Experiment 1, 

separate contingency discriminability parameters were used to assess the effects of 

past and present effective reinforcer ratios, and the stimulus discriminability 

parameters used to estimate effective reinforcer ratios were constrained to be 

constant. Again the extension of the DNA model including past effective reinforcer 

ratios provided an accurate account of the data. Both session-aggregate and within-

session changes in bias were well accounted for. Additionally, the predicted changes 

in control by the current and previous sessions’ reinforcer ratios provided an excellent 

description of the psychometric functions obtained from the latter portion of 

experimental sessions.  

 Although the analyses conducted in Experiments 1 and 2 and discussed above 

provided a reasonable way of characterizing the rapid changes in bias observed in 

those studies. It is important here to note that modeling the observed changes in bias 

with different estimates of contingency discriminability is incoherent given the 

particular theoretical interpretation offered here. Recall that contingency 
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discriminability (dr) is assumed to be a measure of the psychological distance 

between comparison responses.  In the present experiments dr is assumed to be a 

function of the difference in the spatial locations of the levers. Therefore, as dr is 

defined, suggesting that the discriminative impact of the distance between levers 

changed within an experimental session or as a function of changes in the reinforcer 

ratio makes little theoretical sense. 

 It is important to note that dr has been interpreted differently throughout the 

development of the DNA model (Davison & Nevin, 1999; Nevin, Davison, Odum, & 

Shahan, 2007; Nevin, Davison, & Shahan, 2005). The interpretation of dr assumed in 

the present work is based on the model’s forbearers from the psychophysics literature 

(Luce, 1959; Shepard, 1958a, 1958b) as different interpretations have been given 

(Davison & Nevin, 1999). In their original presentations of the model, Alsop (1991) 

and Davison (1991) suggested that dr was a measure of the discriminability among 

response alternatives in standard detection (i.e., “yes-no”) procedures, which is 

consistent with Shepard’s (1957) and Luce’s (1959) interpretations. When Davison 

and Nevin (1999) extended the model to conditional discrimination procedures where 

response location and comparison stimuli varied across trials, they suggested that dr 

could also provide a measure of discriminability among comparison responses.  They 

assumed that response location and comparison stimulus disparity produce 

functionally equivalent effects on behavior and, thus, that a single parameter (dr) was 

sufficient. Jones (2003, personal communication, May 22, 2009) has argued that the 

contingencies in matching-to-sample procedures are more complex than simple 

detection and involve multidimensional comparison stimuli (see Alsop & Jones, 
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2008). It may be that previous modeling efforts have all allowed the effects of several 

different independent variables all of which may contribute to contingency 

discriminability to be absorbed by a single free parameter, dr (c.f., Davison & Baum, 

2007; Jones & Davison, 1998; Nevin, Cate, & Alsop, 1993). Although these 

theoretical objections were anticipated, the modeling reported seemed to be the most 

reasonable means of communicating the effect of the experimental manipulations. In 

addition, it may be argued that the ability of the DNA model to account for changes 

in bias with changes in contingency discriminability with comparison stimulus 

differences held constant suggests that the model may be too flexible. I will return to 

the issue of model flexibility after discussing the attending version of the DNA 

model. 

 The data presented in Experiment 3 were modeled by employing the DNA 

detection model assuming that attending to the sample and comparison stimuli were 

disrupted following each reversal of the discrimination. As discussed in Chapter 4, 

the attending-augmented DNA model assumes that the probability of attending to 

sample and comparison stimuli, respectively is a function of the rate of reinforcement 

correlated by those stimuli (Nevin, Davison, & Shahan, 2005). Because the rate of 

reinforcement was only indirectly affected by the discrimination reversal and the 

range of variation in overall reinforcer rate was too small to produce the changes in 

attending probabilities required to fit the data, other equations assuming increases in 

attending probabilities with continued training were used to model the data.  

Assuming probabilities of attending to the sample and comparison stimuli 

increasing as a function of amount of training according to a sigmoidal acquisition 
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function provided an accurate description of the data. Therefore, the analyses reported 

in Experiment 3 provide mixed support for the attending-augmented DNA model. 

First, the analyses provide support for an attending model. Because subjects had 

substantial experience with the procedure, employing various stimulus and 

contingency parameters to model discrimination acquisition is theoretically 

incoherent. What seems to change during the learning of a discrimination is the 

behavioral impact or expression of the psychological distances among the sample and 

comparison stimuli as learning progresses. Whether a learning-performance 

distinction in signal detection performance is warranted awaits further research. 

Second, the present research suggests that the probability of attending to the relevant 

stimuli in a discrimination task, particularly during learning, is not only affected by 

stable rates of reinforcement but to changes in the conditional relation between 

discriminative stimuli and reinforcement. For this reason, formulations of attending 

based on stable rates of reinforcement may be successfully applied to steady-state 

performance; however other ways of defining the value of discriminative stimuli 

(Wixted, 1989) are worth exploring to extend current theory to the learning processes. 

 Finally, I will comment briefly on the flexibility of the DNA model, in 

particular with respect to the addition of attending parameters to the model. In their 

initial presentation of the attending-augmented model, Nevin, Davison, and Shahan 

(2005) discussed the degree to which changes in the attending parameters and 

discriminability parameters produced similar effects in predicted discrimination 

accuracy and response bias. Furthermore, they illustrated via simulated plots that 

while the probability of attending to the sample p(As) and stimulus discriminability ds 
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produced distinguishable affects, variation in comparison attending p(Ac) and 

contingency discriminability dr parameters did not lead to distinguishable predicted 

functions. Thus, the similar abilities of the two parameters to produce similar 

predictions was noted from the outset, however Nevin and colleagues suggested that 

because attending to the comparisons and contingency discriminability are identified 

with different experimental operations the effects of each parameter should be 

empirically distinguishable. The present discussion suggest that at the very least, 

future research should specifically address the role of comparison stimuli in detection 

performance and perhaps the most proximal increases in understanding will come 

from the resolution of this issue. 

The Spread of Effect 

 The present research has several implications for other research domains as 

well as direct application. To study signal detection performance in the laboratory 

necessitates an analysis of several fundamental determinants of behavior. Thus, it 

should not be surprising that basic laboratory research on detection performance can 

be informative to both researchers and practitioners in a number of areas. Historically, 

signal detection methods and analytic techniques have been applied to a number of 

areas in decision making and diagnostics (Swets, 1988, 1992; Swets, Dawes, & 

Monahan, 2000). While these areas of application remain important and the present 

research can contribute, here I will instead outline some implications that specifically 

relate to an improved understanding of detection and discrimination learning. 

 A historically important area of application of basic behavior analytic 

principles has been in the domain of developmental disabilities. Laboratory research 
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on stimulus control has had a prominent role in the transfer of technology to applied 

settings (Skinner, 1953; Stokes & Baer, 1977). More recently, a number of 

investigators have become increasingly concerned with the basic processes involved 

in discrimination learning (Dube & McIlvane, 2002; McIlvane & Dube, 2003; 

McIlvane, Dube, & Callahan, 1999). With the hope that a more thorough 

understanding of the role of attention in the acquisition of a discrimination may 

provide caregivers with better tools for more effective instruction for individuals with 

severe developmental disabilities (McIlvane, Dube, & Callahan, 1999). For example, 

the concept of stimulus control shaping (Sidman & Stoddard, 1967), which directly 

parallels response shaping, has been used to train individuals with developmental 

disabilities to discriminate among different forms (i.e., an upright versus inverted T). 

Thus, interventions that increase the conditioned value of stimuli should increase 

attending to them, which in turn ought to facilitate learning about stimulus function. 

 As with the direct application to teaching methods, another important 

contribution of the present work may be a more comprehensive understanding of the 

necessary conditions to establish more effective consequences and more persistent 

socially-appropriate behavior for individuals with developmental disabilities (Dube & 

McIlvane, 2002; Dube, McIlvane, Mazzitelli, & McNamara, 2003; Mace, Mauro, 

Boyajian, & Eckert, 1997). While the generalized matching law has proven to be of 

substantial applied importance (McDowell, 1981, 1982; Pierce & Epling, 1995), basic 

laboratory research had begun to question its conceptual value (cf. Davison & 

Jenkins, 1985; Krägeloh, Elliffe, & Davison, 2006). Therefore, considerations based 

on the contingency discriminability model would lead practitioners to different 
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conclusions about the insensitivity to concurrent sources of reinforcement in 

populations with developmental disabilities and therefore lead to other intervention 

strategies (McIlvane & Dube, 2003). For example, the contingency discriminability 

model may suggest where the disparity between the intervention and the actual 

environmental contingencies exist. To the extent that discriminative stimuli are 

improperly arranged for the individual, the developmental disabled individual’s 

perception of what behavior effectively produces reinforcement may differ from that 

of the practitioner. 

 The present research also has numerous applications in several areas of 

neuroscience. A rapidly growing subfield of neuroscience called neuroeconomics 

(Glimcher, 2002; 2003; Glimcher & Rustichini, 2004), has employed both similar 

procedures and analyses as those employed in the present research (Gold & Shadlen, 

2007; Sugrue, Corrado, & Newsome, 2004). As suggested by the name, the goal of 

neuroeconomics is to provide converging principles and experimental techniques 

toward the goal of understanding choice and decision making at both behavioral and 

neural levels. A number of researchers have utilized complex choice procedures and 

single cell recordings of neurons in various areas of nonhuman primate cortex in their 

work (Sugrue, Corrado, & Newsome, 2005). Moreover, Sugrue and colleagues (2005) 

have argued that the goals of such research are best served by combining an analysis 

of the local determinants of individual choices with momentary changes in the 

underlying neurophysiology. A critical aspect of this research involves correlating the 

activity of a given set of neurons with the estimation of the local value of an animal’s 

choices by various reinforcement learning algorithms (Barraclough, Conroy, & Lee, 
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2004; Lau & Glimcher, 2008; Sugrue, Corrado, & Newsome, 2005). Accordingly, 

future efforts to model learning processes in signal detection can easily be exported to 

aide researchers seeking to understand the neural mechanisms of perception and 

decision making. 

 Other active areas of research in the neurosciences are concerned with the 

neurobiology of reinforcement (Schultz, 1998, 2002, 2007) and changes in 

reinforcement due to disorders, lesions, and exposure to environmental contaminants.  

As in the study of neural mechanisms of choice and valuation discussed above, 

accurate characterizations of neurobiological mechanisms of reinforcement are 

frequently enhanced by well-established behavioral theories (Schultz, 2004, 2006; 

Schultz, Dayan, & Montague, 1997; Schultz & Dickinson, 2000). Formal behavioral 

theories of reinforcement are often advantageous, particularly when reinforcement 

processes are disrupted.  

For example, in laboratory animal models of attention-deficit/hyperactivity 

disorder (ADHD), Sagvolden and colleagues (Sagvolden, Johansen, Aase, & Russell, 

2005) have suggested that deficits in catecholamine function produce a reinforcement 

deficit. Sagvolden and colleagues have advanced a behavioral theory proposing that 

the changes in reinforcement functioning for ADHD diagnosed individuals may be a 

result of a steepened delay of reinforcement gradient. Their account suggests that the 

ability of reinforcers to couple with the responses that produce them may be altered in 

ADHD diagnosed individuals. That is, the delay of reinforcement gradient becomes 

shallower for these individuals. An alternative account would suggest that altered 

dopamine function may result in a decreased contingency discriminability value for 
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affected individuals. To bring a contingency discriminability account to bear on such 

a problem requires extending the model to estimate the discriminability among both 

concurrently and successively occurring instances of behavior. Johansen and 

colleagues (Johansen et al, 2009) suggest a number of interventions based on their 

proposed behavioral mechanism. Many of them consist of employing stimuli to 

bridge gaps between behavior and reinforcement and presenting stimuli that better 

capture attention. Basic laboratory research on changes in attending and contingency 

discriminability processes may suggest other intervention strategies. 

Future Directions 

 Each experiment reported here has made use of methods that are novel to the 

area of signal detection research. Consequently, these experiments have raised far 

more questions than they have answered.  The use of dynamic experimental 

procedures in the quantitative analysis of behavior has only really begun (Davison, 

1998). As a result, numerous avenues for future research on the dynamics of signal 

detection performance exist. Here I will briefly sketch what I think may be the most 

promising future directions. 

Several recent findings from Davison, Baum, and colleagues have highlighted 

the importance of the discriminative properties of reinforcer sequences in governing 

choice at the local level. In their procedure, (Belke & Heyman, 1994; Davison & 

Baum, 2000) subjects are exposed to seven different unsignaled relative reinforcer 

frequency ratios in different components, each of which is separated by a 10 s 

blackout and lasts until 10 reinforcers are obtained. Davison and Baum (2000) found 

that the rate of change in relative response rate as a function of the relative reinforcer 
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frequency increased as reinforcers were earned within a component. By the end of a 

component, the slope of the relation between relative response and reinforcer 

frequency was slightly less than that obtained in traditional steady-state designs 

(Baum, 1974, 1979; Wearden & Burgess, 1982). To investigate the choice dynamics 

within this procedure, Davison and Baum (2000) plotted the obtained preference level 

between each successive reinforcer obtained within components. That is, preference, 

scaled as the logarithm (base 10) of the left/right response ratio, was plotted for each 

possible sequence of reinforcers obtained from responding to the left and right 

response alternatives, respectively. Davison and Baum reported that the effect of a 

single reinforcer obtained from one alternative that interrupted (“discontinuation”) a 

sequence of reinforcers obtained from the other alternative had the greatest effect on 

choice. Thus, a single discontinuation produced large changes in preference towards 

indifference, whereas continuations or successive reinforcers obtained from the same 

alternative had diminishing effects upon preference.  

Findings such as those discussed above have important implications for 

models of performance in conditional discrimination and signal detection procedures. 

Existing models of conditional discrimination performance (Davison & Tustin, 1978; 

Davison & Nevin, 1999) do not directly address the issue of whether discriminative 

stimuli and reinforcers exert simultaneous control over behavior on each trial or 

whether behavior on any given trial is under control of only one these dimensions. 

The model offered by Davison and Tustin (1978) predicts that the effects of sample 

stimuli and relative reinforcer frequency have independent effects on performance. 

This might seem to imply that the model would predict that behavior is under joint 
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control by these two sources on each trial. However, the model is actually silent on 

the issue, as it was originally formulated for steady-state procedures and furthermore, 

the independence assumption has not held up in some studies (Alsop & Davison, 

1991). The model of Davison and Nevin (1999) predicts that the control exerted on 

behavior by the discriminative stimuli and relative reinforcer frequencies interact to 

determine performance. In fact, Davison and Nevin state (pp. 449) that the processes 

invoked by their model are sequential and dynamic, suggesting that discriminative 

stimuli and reinforcers interact to determine the effective value of each choice 

alternative on a trial-by-trial basis. Testing either of these sets of assumptions 

empirically is made difficult by the nature of conditional discrimination procedures. 

Signal detection and conditional discrimination procedures involve discrete trials in 

which only a single response is made at a time. Thus, analyses of behavior at a local 

level in these procedures are more difficult than in other procedures used to 

investigate choice (Davison & Baum, 2000). Other measures of performance in signal 

detection and conditional discrimination procedures may, however, produce orderly 

changes at a local level. 

Alsop and Rowley (1996) reported a series of analyses on the local effects of 

reinforcers on relative response frequency and choice latency in a simple detection 

task. They found that choice latencies tended to be faster on trials immediately 

following reinforcement. Further analyses of response bias on trials immediately 

following reinforcement showed some evidence of a preference for the response 

alternative correlated with a higher reinforcer frequency. Analyses at this level 

provided no systematic changes in discriminability. Therefore, the relation between 
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Alsop and Rowley’s (1996) findings on preference immediately following 

reinforcement differ from those in concurrent schedules (Davison & Baum, 2000; 

2002) and the lack of systematic data reported by the authors on trial sequence effects 

cannot be directly compared to those reported previously (White, Parkinson, Brown, 

& Wixted 2004).  

It seems that some particularly promising future directions involve designs 

like those employed in the present experiments and an even greater emphasis on 

analyses of local performance. The most important goal of this research would be to 

characterize subjects’ choices on a trial-to-trial level as a function of the effects of 

individual reinforcers and the generalization of these effects due to stimulus and 

contingency discriminability and local reinforcer value. The aforementioned 

experimental work may allow for the development of an exclusively local model to 

explain molar performance in signal detection procedures. 

Conclusion 

In conclusion, this dissertation has shown that dynamic research 

methodologies from other domains, adapted to the study of signal detection 

performance, are valid instruments by which to study aspects of conditional 

discrimination learning. Moreover, discrimination performance and response bias 

adapt rapidly to frequent changes in experimental contingencies. Extant quantitative 

models formulated to describe static signal detection performance can be readily 

adapted to describe such performances in transition. These models provide accurate 

quantitative descriptions of the transition data; however some theoretical assumptions 

are violated. Therefore, an emphasis on detection performance in transition will 
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require modification of current theory. Conventional thinking about which model 

parameters give rise to stable levels of discrimination accuracy and response bias, 

suggest that modifications to existing models must include a role for the conditioned 

reinforcing value of sample and comparison stimuli during the course of learning.  
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Table 1.1 
 
Outline of the Experiments presented in each Chapter. The number of stimuli presented in an 
experimental session and the mapping between stimuli and correct responding is indicated. Also 
indicated is the relative frequencies of reinforcement for correct responses that were studied in each 
experiment. The number of sessions for a given condition within each experiment is also given. The 
variables that either changed or were held constant for a condition is discussed in the text. 

 

 

 

 

 

 

 

 

 

 

 

 

Short Long Reinforcer Sessions per

Experiment Stimuli Correct Response Ratio Condition

1 2* B1 B2 1:3;3:1 31

2 5 B1 B2 1:3,1:1,3:1 36

3 6 B1 or B2 B1 or B2 1:4,1:1,4:1 15

* In Experiment 1, 2 stimulus durations were presented each session, but the durations 
changed across conditions.
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Table 3.1 
 
Parameter estimates from fits of the DNA model to the data shown in Figure 3.5. Estimates of 
contingency and stimulus contingency discriminability, inherent bias, and percent variance accounted 
for are shown for each subject. See text for further explanation. 
 
 
 
 
 
 
 

 
 
 

 
 

 

 

 

 

 

 

 

 

 J93 J94 J99 

ds12 1.0 1.0 1.0 
ds23 14.8 8.7 5.6 
ds34 3.0 4.4 2.6 
ds45 29.2 38.5 36.8 
c 0.5 0.8 0.7 

dr(n) 7.8 10.8 7.4 
dr(n-1) 1.0 1.1 1.4 

    
MSE 0.005 0.001 0.004 

R2 0.941 0.985 0.952 
m 1.07 1.01 0.98 
b -0.06 -0.02 -0.02 
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Table 4.1. 
 
Order of conditions for Experiment 3. Rows indicated the sample-to-comparison stimulus mapping for 
each condition and the probabilities of reinforcement for correct comparison responses. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
Note – Listed under B1 is the stimulus class for which responses to right lever are correct. Listed under 
“p(R|S)” is the probability of reinforcement for a correct response following a short stimulus.  
 

J107 J108 J109
Condition B1 p(R|s) B1 p(R|s) B1 p(R|s)

1 Short 0.5 Long 0.5 Short 0.5
2 Long 0.2 Short 0.2 Long 0.2
3 Short 0.5 Long 0.5 Short 0.5
4 Long 0.8 Short 0.2 Long 0.8
5 Short 0.5 Long 0.5 Short 0.5
6 Long 0.2 Short 0.2 Long 0.2
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Table 4.2. 
 
Parameter estimates and measures of goodness of fit for the fits of the Weibull function to the 
cumulative percent correct and bias data of Conditions 2, 4, and 6. 
 

 

 

 

 

 

 

 

 

 

Discrimination Bias

Subject Condition A L S R2 RMSE A L S R2 RMSE
J107 2 0.73 132.15 0.40 0.99 0.01 0.33 64.24 1.70 0.88 0.03

4 0.77 290.83 0.30 0.87 0.03 0.32 90.94 0.62 0.77 0.03
6 0.82 218.66 0.27 0.94 0.02 0.41 151.45 0.46 0.82 0.04

J108 2 0.66 113.72 0.22 0.86 0.02 0.27 221.25 1.54 0.79 0.04
4 0.79 125.70 0.18 0.71 0.03 0.27 1.57 0.27 -0.45 0.05
6 0.71 50.00 0.29 0.66 0.05 0.19 200.06 0.32 -0.05 0.07

J109 2 0.82 166.89 0.38 0.99 0.01 0.21 20.94 2.07 0.64 0.03
4 0.82 166.89 0.38 0.98 0.01 0.36 152.37 1.08 0.86 0.04
6 0.80 216.35 0.42 1.00 0.01 0.20 119.93 0.61 0.73 0.02
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Table 4.3. 
 
Parameter estimates from the fit of the DNA model. Parameter estimates and various indices of 
goodness of fit for two candidate attending equations (Weibull and Linear-operator) are also listed. 
 

 

 

 

 

 

 

 

 

 

 

Weibull Lin-op

J107 J108 J109 J107 J108 J109

ds12 5.03 9.47 2.99 ds12 5.23 9.78 4.04
ds23 16.68 9.65 4.14 ds23 27.07 27.69 4.50
ds34 4.13 2.58 2.73 ds34 5.07 2.94 2.72
ds45 19.00 7.07 22.41 ds45 20.63 28.38 17.27
ds56 19.03 1.00 1.47 ds56 54.93 48.11 1.00
dr 19.48 19.61 49.94 dr 49.15 47.06 100.02

bias 1.08 0.84 1.27 bias 1.08 0.87 1.18

p(As) p(Ac) p(As) p(Ac) p(As) p(Ac)

A 0.69 0.86 1.00 0.56 1.00 0.98 αsample 0.06 0.06 0.90
L 6.37 2.27 5.11 1.79 0.01 1.52 αcomp 0.15 0.08 0.23
S 3.33 1.46 2.65 2.40 2.14 0.88

k 13 13 13 k 9 9 9
AIC -1185.95 -1312.19 -1391.84 AIC -1169.90 -1268.85 -1361.59
BIC -1139.17 -1265.41 -1345.06 BIC -1137.51 -1236.46 -1329.21

n 270 270 270 n 270 270 270
RMSE 0.11 0.08 0.07 RMSE 0.11 0.09 0.08



 

 

 

123

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The 2-stimulus, 2-response signal detection matrix. Si refers to signal or 
noise and Bj refers to frequency of response (Bij) in the presence of or following Si. Rij 
refers to payoffs or reinforcer frequencies arranged for correct responses. See text for 
further details. 
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Figure 1.2. Isosensitivity (top) and Isobias (bottom) functions predicted from 
Equations 1.1 and 1.2. The top graph depicts four levels of sensitivity, given by the 
measure d’. The bottom graph depicts five levels of bias, given by the measure c. 
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Figure 1.3. Sensitivity to reinforcement (ar) plotted as a function of stimulus 
discriminability (log d) obtained from fits of the Davison-Tustin model (1978) to 
predictions of the model of Alsop and Davison (1991). All discriminabilities were 
generated assuming a constant level of dr and ds varied from 2.5 to 200 according to a 
geometric series. 
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Figure 2.1. Left: The 2-stimulus, 2-response signal detection matrix. Si refers to the 
sample presented on a given trial and Bj refers to frequency of response (Bij) in the 
presence of or following Si. Rij refers to reinforcer frequencies obtained for correct 
responses. Right:See text for further details.
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Figure 2.2. Discrimination accuracy expressed as log D (Eq. 3) as a function of 
obtained sessional reinforcer ratio. Estimates of log D are presented for each subject 
for the last ten sessions at each reinforcer ratio for each condition of Experiment 1.  
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Figure 2.3. Response bias (heavy lines, filled symbols), expressed as log B (Eq. 4), and log R (R11/R22), the programmed reinforcer 
frequency ratio (light lines) as a function of session number for PRBS presentations completed by each subject. See text for further 
explanation of individual subject condition order.  
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Figure2. 4. Contingency discriminability to current and previous session reinforcer 
ratios for each PRBS presentation of Experiment 1. The legend indicates the PRBS 
presentation from which the dbr12 estimate was obtained. The dotted lines across the 
bottom of the graphs show the lower limit of the parameter value. Conditions are 
labeled according to sample stimulus durations, R indicates a replication. 
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Figure 2.5. Contingency discriminability dr obtained for lags 0 through 1obtained for 
each session fifth (30 trials). Data are from the first PRBS with 2- and 8-s sample 
stimuli of Experiment 1. 
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Figure 2.6. Contingency discriminability dr obtained for lags 0 through 1obtained for 
each session fifth (30 trials). Data are from the second PRBS with 3- and 5.5-s sample 
stimuli of Experiment 1.  
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Figure 2.7. Estimates of contingency discriminability (dr) plotted as a function of 
stimulus discriminability (ds) from fits of the DNA detection model. The filled 
symbols are parameter estimates obtained from fits to the data of McCarthy and 
Davison (1980). The open symbols are parameter estimates obtained in the present 
study. Note double logarithmic axes. 
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Figure 3.1. The effective reinforcer allocation for the eight cells of the 4x2 signal 
detection matrix for a 4-stimulus, 2-response detection procedure assuming 
reinforcers for correct responses only. 
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Figure 3.2. Programmed reinforcer frequency ratios for each of the 36 sessions of the 
PRTS. 
 
 
 
 
 

PRTS Session

0 5 10 15 20 25 30 35

lo
g 

(R
ig

ht
/L

ef
t) 

R
ei

nf
or

ce
r R

at
io

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6



 

 

 

135

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3. Contingency discriminability dr to current and previous session reinforcer 
ratios for each PRTS presentation. The legend indicates the PRTS presentation from 
which the dr12 estimate was obtained. The dotted lines give the lower limit of the 
parameter value. 
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Figure 3.4. Contingency discriminability dr obtained for lags 0 and 1 obtained for 
each session fifth (40 trials). Data are from the third PRTS presentation of 
Experiment 2. Figure 3.5. Psychometric functions based on the data from the last two 
trial blocks of each session from the third PRTS. The proportion of long responses 
following each stimulus duration is plotted separately for each programmed reinforcer 
frequency ratio as indicated in the legend. Vertical bars represent standard error. 
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Figure 3.5. Psychometric functions based on the data from the last two trial blocks of 
each session from the third PRTS. The proportion of long responses following each 
stimulus duration is plotted separately for each programmed reinforcer frequency 
ratio as indicated in the legend. Vertical bars represent standard error. 
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Figure 3.6. The cumulative response ratio following each sample stimulus 
transformed to logit p and plotted as a function of successive presentations of each 
sample stimulus Si. Data are aggregated across each session of a given reinforcer ratio 
(indicated in the legend) from the third PRTS for subject J93. 
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Figure 3.7. The cumulative response ratio following each sample stimulus 
transformed to logit p and plotted as a function of successive presentations of each 
sample stimulus Si. Data are aggregated across each session of a given reinforcer ratio 
(indicated in the legend) from the third PRTS for subject J94. 
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Figure 3.8. The cumulative response ratio following each sample stimulus 
transformed to logit p and plotted as a function of successive presentations of each 
sample stimulus Si. Data are aggregated across each session of a given reinforcer ratio 
(indicated in the legend) from the third PRTS for subject J99. 
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                                                             B1                                 B2 
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  S2 

 
 
Figure 4.1. Above: the basic 2x2 detection matrix, cells are designated by row-
column notation. Below: the effective reinforcer allocation for the four cells of the 
2x2 signal detection matrix, assuming reinforcers for correct responses according to 
the model of Alsop and Davison (1991).  

 

 
rs dd

R
R 22

11 +  

 

   
sr d

R
d
R 2211 +   

 

rs d
R

d
R 2211 +  

 

rs dd
RR 11

22 +  



 

 

 

142

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. The equations of the model of Davison and Nevin (1999) modified by the 
probabilities of attention to the sample stimulus and attention (State 1) or inattention 
(State 2) to the comparison stimuli; inattention to the sample stimulus and attention 
(State 3) or inattention (State 4) to the comparison stimuli  
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Figure 4.3. Percent correct plotted as a function of session for each subject. The 
correct comparison  given a short stimulus duration is indicated in the legend. The 
data were averaged across the last three reversals for each subject. Vertical bars 
represent standard error.
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Figure 4.4. Psychometric functions plotting the proportion of long responses as a 
function of sample stimulus duration and session block for subject J107. The upper 
plots come from sessions in which B1 was correct following short stimulus durations 
and the lower plots from sessions in which B2 was correct following short stimulus 
durations.
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Figure 4.5. Psychometric functions plotting the proportion of long responses as a 
function of sample stimulus duration and session block for subject J108. The upper 
plots come from sessions in which B1 was correct following short stimulus durations 
and the lower plots from sessions in which B1 was correct following long stimulus 
durations.
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Figure 4.6. Psychometric functions plotting the proportion of long responses as a 
function of sample stimulus duration and session block for subject J109. The upper 
plots come from sessions in which B1 was correct following short stimulus durations 
and the lower plots from sessions in which B1 was correct following long stimulus 
durations. 
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Figure 4.7. The cumulative percentage of correct responses (left panel) and percent of 
responses to the higher frequency reinforcer alternative (right panel) plotted as a 
function of cumulative reinforcers earned. The data come from Condition 2. Thin 
lines are best fitting Weibull functions to the obtained data. 
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Figure 4.8. The cumulative percentage of correct responses (left panel) and percent of 
responses to the higher frequency reinforcer alternative (right panel) plotted as a 
function of cumulative reinforcers earned. The data come from Condition 4. Thin 
lines are best fitting Weibull functions to the obtained data. 
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Figure 4.9. The cumulative percentage of correct responses (left panel) and percent of 
responses to the higher frequency reinforcer alternative (right panel) plotted as a 
function of cumulative reinforcers earned. The data come from Condition 6. Thin 
lines are best fitting Weibull functions to the obtained data. 
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Figure 4.10. The probabilities of attending to the sample and comparison stimuli 
according the best fitting Weibull function to each subjects’ data. See text for further 
explanation. 
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