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GLOBALLY OPTIMAL COMPUTABLE DISTRIBUTED DECISION FUSION

Stelios C.A. Thomopoulos, Ramanarayanan Viswanathan
and Dimitri X. Bougoulias

Department of Electrical Engineering
Southern Illinois University
Carbondale, IL 62901

ABSTRACT

The problem of distributed decision fusion in
parallel sensor configuration is considered. It is
shown that the optimal combining scheme is the Neyman-
Pearson test at the sensors and the decision fusion.
Computationally efficient algorithms that allow the
determination of near-to-optimal solutions are
developed. The algorithms are shown to perform very
close to the optimal solution in all the examined
cases.

INTRODUCTION

The problem of distributed decision fusion
where a number of sensors transmit a compact form of
information about a common observation space has
attracted considerable attention recently, [1] through
[7]J. 1In this paper we consider the optimal decision
scheme for the parallel sensor configuration, Fig. 1.
According to this scheme, a number of sensors
monitoring the same geographical volume, transmit their
decisions in regards with the nature of the true
(binary) hypothesis to the fusion center which is
responsible for combining the sensor decisions into a
final one. We assume that the sensor decisions are
independent. Under these conditions, it was shown by
Thomopoulos and al. [4], [5] that, if a sensor employs
a Neyman-Pearson test, the same test can improve the
performance of the fusion center beyond that of the
best sensor provided that there are more than two
sensors.

MAIN RESULTS

In [7] it was shown that the optimal combining
rule in a parallel sensor configuration is the N-P test
at the fusion and the sensors. The proof in [7] is
general and does not depend on the Lagrange multipliers
method [6] which fails to maintain optimality of the
solution when the solution lies on the boundaries of
the optimization space [7].

Due to the limitations in space in this paper
we focus mainly on two numericallly efficient
algorithms for the solution of the optimal decision
scheme. The algorithms are based on the sequential
optimization of the Lagrangian w.r.t. the different
sensors assuming that the thresholds of previously
optimized sensors are set so that the sensors operate
at either zero or one probdability of detection. The
two algorithms will be refered as SOFA 1 and SQOFA 2
respectively and are presented next.

SOFA 1 ALGORITHM: Let 1, 2, ..., N be an
arbitrary ordering of N sensors. Starting from the N-
th sensor, the threshold of the k-th sensor as

determinegN?K_§9§e.1kls given by
A = Ay 20 1
CT,N—1,...,k
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is %he decision function at the fusion center with u
designating the binary decision of the i-th sensor ané
u. the decision at the fusion, H,, 1L = 1, 0 is the true
hypothesis and the alternative,” and U

-1 is
the set of decisions of all the sensors %k@ludfﬁg @ﬁose
(decisions) of the N, N=1, k sensors whose
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thresholds have already been determined. Furthermore,
for the first sensor

A, o= A (4)
where AO 1s the threshold at the fusion center.

SOFA 2 ALGORITHM: Let 1, 2, ..., N be an
artitrary ordering of N sensors. Starting from the N-
th sensor, the threshold of the k-th sensor as

determlnedN?&_§OFA 2le given by

g0y

A = Ao 20 (5)
DN,N—1,...,k
where !
Dﬂ,ﬁ-1,...,k )
i
Uy §E1 [d(l’1""’1’1'UN,N-1,...,k)
, e .
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where A, designates the threshold of the k-th sensor,
A, is the threshold at the fusion,
d?u y Ugy eees Uy = Pr(u, =1 | u,, Ups ey uN) (7)
is the éecision yunction at the fusion center with u,

designating the binary decision of the i-th sensor an
u. the decision at the fusion, H,, i = 1, 0 is the true
hypothesis and the alternative, and U N-1 is the
set of decisions of all the sensors ¢xclidihg those
(decisions) of the N, N-1, k sensors whose
thresholds have already been determined. Furthermore,
for the first sensor

A, o= A (8)

1s thé threshold at the fusion center.
The derivation of the equations that define the
two algorithms can be found in [7]. ]

The Lagrange multipliers method fails when the
decision at the fusion involves logical (Boolean)
products of the sensor decisions. This is due to the
fact that the permissible decision functions are
monotonic functions of their arguments [7]. Hence,
presence of a logical product in the decision function
forces the decision to lie at the boundaries of the
decision space at which point the differentiability
required by the Lagrange multipliers method seizes to
exist. The SOFA 1 Algorithm exhibits the same singular
behavior as the Lagrange multipliers method when the
decision lies at the boundaries of the decision space.
However, the SOFA 2 Algorithm exhibits stable behavior
even when the decision rule is singular. The stable
behavior of SOFA 2 is attributed to the faect that, in
the determination of the sensor thresholds, sensors
whose thresholds have been previously determined, are
neglected in the determination of the remaining
thresholds by setting their operational points at
probability of false alarm PF = probability of
detection P_ = 1. Thus, a logical product in the
decision rule does not affect the fusion rule since the
effect of a product term is always eliminated by
setting the operating point of the particular sensor at

Poo= Py =1

v sy

where )

NUMERICAL RESULTS
Several numerical results from the application
of the two algorithms in distributed decision fusion
with various numbers of sensors are given and the
performance of the algorithms is compared with the
globally optimal solution obtained by direct
optimization., Figures 2 through 6 summarize the
performance of SOFA 1 whereas Figures 7 through 11
summarize the performance of SOFA 2. It is seen that
the two algorithms yield almost ldentical results very
close to the optimal ones. However, the thresholds
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obtained by SJOFA 2 are asymmetric as opposed to the
thnresholds of SOFA 1 and that of the optimal solution.
Figures 6 and 11 depict a singular case [7] where tne
Lagrange multipliers method and SOFA 1 fail to yield
the correct answer, whereas SCFA 2 remains robust and
gives a solution whicnh 1s close to the optimal ona.
Additional numerical results can bve found in [7].
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