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FACTORING POSITIVE BRAIDS VIA BRANCHED

MANIFOLDS

MICHAEL C. SULLIVAN

Abstract. We show that a positive braid is composite if
and only if the factorization is “visually obvious” by placing
the braid k in a specially constructed smooth branched 2-
manifold B(k) and studying how a would-be cutting sphere
meets B(k). This gives an elementary proof of a theorem due
to Peter Cromwell.

Peter Cromwell has shown that positive braids can only be fac-
tored in the visually obvious ways [3]. This proved a conjecture
by Bob Williams that positive braids with a full twist are prime
[8]. The present author independently proved Williams’ conjec-
ture in [7] using techniques different from Cromwell’s. Here we
prove Cromwell’s stronger result using the techniques developed in
[7] and [8]. The essential difference is that Cromwell studies the
ways cutting spheres intersect a spanning surface of a knot while
we will place knots in a smooth branched 2-manifold, an annulus
with “tabs,” and study the intersection with cutting spheres.

Makoto Ozawa [6] has also proven Cromwell’s theorem, and ex-
tended to positive knots. His work uses the machinery of incom-
pressible surfaces. The present proof, although tedious, could in
principle be followed be an undergraduate.

In [5] Bill Menasco proved that alternating knots only factor in
visually obvious ways. Cromwell modeled his theorem, though not
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2 Michael C. Sullivan

his proof, on Menasco’s. Interestingly, Menasco’s proof is based on
placing the knot in a branched 2-manifold, a sphere with “bubbles”,
though he does not exploit smoothness. This leads us to wonder
if there is a unified approach to the two results or even a general
algorithm for knot factoring based on placing a knot in a suitable
branched manifold.

Knot and braid theory is described very briefly in the Appendix.

Definition 0.1. A knot is a positive braid if it can be represented
as a braid, all of whose crossing are of the same type.

Definition 0.2. A braid diagram is irreducible if it has no cut
points.

Definition 0.3. A braid diagram D is decomposable if there is a
simple closed curve C meeting D just twice, transversely, such that
neither D ∩ D1 nor D ∩ D2 is an arc, where D1 and D2 are the
two disks bounding C. If there is no such closed curve the braid
diagram is indecomposable.

Theorem 0.4 (Cromwell). Let D be a positive irreducible braid

diagram for a knot k. Then k is prime if and only if D is indecom-

posable.

Proof. If an irreducible positive braid diagram D = D(k) is
decomposable then it is obvious how to construct a nontrivial fac-
torization of k.

Let k be a knot with a braid diagram D(k) that is indecom-
posable, positive, and irreducible. We associate to k a branched
surface, B = B(D(k)). The surface is an annulus A, with half
disks or tabs attached along their diameters. There is one tab for
each crossing of D(k). The attachings are smooth and all tabs come
into the A from the same direction. The smoothness is needed so
that B will have a well defined normal bundle.

We can find in B a knot of knot type k using one tab for each
crossing. Figure 1 gives an example. The embedding of k into B is
piecewise smooth with one cusp point on each branch line.

Suppose that k is a composite knot. Then there is a 2-sphere S
that factors k. We can take S to be transverse to B. Further, we
can require them to be perpendicular. Let I = B∩S. Let β be the
union of the branch lines of B. Divide I into segments whose end
points are in ∂B ∪ β.
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Assume that the number of segments in I is minimal over all the
transverse cutting spheres for k. We will give an algorithm that
traces out a path in I with infinitely many segments, contradicting
transversality, and thus proving the theorem.

Minimality tells us that in I there are no trivial loops that miss
β or arcs that connect a segment of ∂B to itself. (We regard the
trivial loops as segments for counting proposes.) Also, segments of
I that connect one segment of ∂A to another without meeting β
would be pierced by the knot more than once from the same side.

Here are the remaining types of segments that could be in I:

• Same branch segments:
– ∪-joints connect two points on the same branch line

from below.

Figure 1. A braid in a branch surface
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– ∩-joints connect two points on the same branch line
from above.

• Branch to edge segments:
– b-joints connect a branch point to a point on ∂A below

and to the right.
– c-joints connect a branch point to a point on ∂A below

and to the left.
– d-joints connect a branch point to a point on ∂A above

and to the right.
– e-joints connect a branch point to a point on ∂A above

and to the left.
– |-joints connect a branch point to a point on ∂B − A.

• bb-segments, or branch-to-branch segments connect one branch
line to another.

Lemma 0.5. If p ∈ I ∩ β then either p is the lower end point of a

branch-to-branch segment or it is the right end point of a ∩-joint.

Proof. Consider a ∩-joint. Label its left and right end points p and
q respectively. We may take it to be innermost. This implies that
I does not meet the arc in β bounded by p and q. Call this arc pq.

Since k does not meet pq then we can deform S so as to push the
∩-joint through the branch line and reduce the number of segments
without gaining or losing intersection points between the knot and
the sphere. That is we have a new transverse cutting sphere with
fewer segments in I; see Figure 2.

Moreover, if the only points in k∩ pq come from arcs of the knot
that hit the ∩-joint, then we can do the same move as before; the
single intersection point is dragged along with the deformation of
S. The same is true if the only point in k ∩ pq is a cusp point;
see Figure 3. We summarize this discussion by saying: A ∩-joint

must be guarded by an arc of k from the opposite branch. Similarly,
d-joints must be guarded by an arc of k on the corresponding tab.

We will now show that there are no e-joints in I. Suppose that
there is one and let its end point on β be p and the left end point
of this component of β be e. Call the open arc from e to p, ep.
Assume the e-joint to be left-most. If I meets ep there would have
to be a ∩-joint on the annulus A that cannot be guarded. This is
because the only way to guard the ∩-joint would force k to cross
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the e-joint twice from the same side. But then k would pierce S
twice from the same side; see Figure 4.

Since k can meet our e-joint at most once, there are only three
possibilities to consider: k misses the joint and hence misses ep, k
meets ep at a cusp point, or k meets ep transversely. In each case,
we can deform S so as to reduce the number of segments in I; see
Figure 5. (We might say that it is impossible to guard a e-joint.)

Let p ∈ I ∩ β, and assume the lemma is false. Then one of the
three cases below must occur, yet each leads to a contradiction.

CASE 1: Suppose p is the common left end point of two ∩-
joints. We assume the structure is innermost. Then I must miss
the interior of the arc of the branch line connecting the end points
of the shorter ∩-joint.

If the right end points are equal, it is impossible to guard both
∩-joints without puncturing the sphere twice from the same side.

Suppose the that the front ∩-joint’s right end point falls short
of the back ∩-joint’s right end point. In order to guard the front
∩-joint a single arc of k must pass under it and hence pierce the
other ∩-joint. We see in Figure 6 a that we can still deform S so
as to reduce the number of segments even though the ∩-joint was
guarded. The joint wasn’t guarded well enough.

If the back ∩-joint is the shorter than we must have the over-
crossing arc of k to guard it, but again we just can’t guard it well
enough. This is shown in Figure 6b.

CASE 2: Suppose a d-joint meets the left end point of a ∩-joint
at p. Then the only way to guard the ∩-joint forces k to pierce the
d-joint. Figure 7 shows how to deform S.

CASE 3: Suppose a |-joint and a d-joint meet at p. Assume this
is the right-most such case. If I meets the open interval in β from
p to the right end point, then one of the combinations of cases 1 or
2 must occur. Thus, I misses this interval.

The only way to guard the d-joint is by the arc of k that comes
up from the cusp point onto the tab. However, the cusp point is to
the right of p, since otherwise the d-joint is pierced twice by k from
the same side. Just draw the picture. But now k pierces the |-joint.
The reader can check that as before, the d-joint isn’t guarded well
enough; see Figure 8. �
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The algorithm. Pick a point p in I ∩ β. Such a point exists
since segments that miss β where ruled out. Choose one of the two
segments meeting p from above according to the following rules: If
possible choose a ∩-joint to the left and repeat the algorithm from
its other end point. If not, then at least one of the two segments is
a bb-segment. Choose it and repeat from the point where it meets
the branch line above.

Lemma 0.5 guarantees that the algorithm is valid and gives a
path P that misses ∂B. It only remains to show that P has no loops,
for this will imply that P has infinitely many distinct segments.

Lemma 0.6. There are no loops in P .

Proof. Suppose L is a closed loop in P . Then L is made up of bb-
segments and ∩-joints. At times it will be useful abuse terminology
and regard L as a braid with the same braid axis as k. Let n be
the number of strands in L when it is so regarded.

Suppose that there are no ∩-joints in L. Then n = 1, since L
cannot cross itself. We consider three cases. If L never passes under
a crossing of k, then k is a separable link. If L passes under exactly
one crossing then D(k) has a cut point. Suppose L passes under
two or more crossings of k. Then for each time L passes under k,
there must be a point where L crosses k from right to left. But
if such a crossing occurs more than once k will have entered (or
exited) the sphere twice. This is impossible. Thus, we conclude
that there are ∩-joints in our would-be loop L.

Let f be the number of ∩-joints of L in the tabs and let b be the
number of ∩-joints of L in the annulus A. Call these front and back

∩-joints, respectively. Any back ∩-joint in P must be followed by
a front ∩-joint. Thus, f ≥ b.

Consider a unit normal bundle to L. Think of it as a ribbon
R. Since the sphere is normal to B, we can place R in the sphere.
Hence R must be untwisted. When we travel up along L and meet
a ∩-joint we are going from right to left. When we get to the other
end point and proceed upward from there, a half twist is created
in R. If we go from front to back we get a + 1

2
twist, while if we

go from back to front we get a − 1

2
twist; see Figure 9. (Figure 9

actually shows tangent bundles. These are easier to draw but have
the same twist as the normal bundles.)
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Suppose n > 1. Then L crosses itself at least n− 1 times as it is
an unknotted braid on n strands. There are three ways L may cross
itself. These are illustrated in Figure 10. The first involves a ∩-joint
and a bb-segment and is positive. The next two involve two ∩-joints.
The center one is positive while the last one is negative. However,
in the cases involving two ∩-joints the crossing must be quickly
“undone” by another crossing of the opposite sign. Thus, along
any branch line the contribution to the singed crossing number of
L is nonnegative. Since “essential” crossings must be positive we
see that L has n − 1 essential crossings. Thus, the net twisting in
the ribbon R is given by the formula

T = n − 1 + (f − b)/2.

But this number is positive, a contradiction. We conclude that
n = 1. It also follows that f = b.

The linking number of L and k is not defined in general since they
may intersect. However, we can deform L in a small neighborhood
of each intersection point, staying within the cutting sphere S, and
produce a new loop L̄ ⊂ S. If L crosses k from right to left (going
down) we will push L below k. If L crosses k from left to right we
will push L over k. The linking number of L̄ and k is well defined
and determined by L. We call this linking number the adjusted

linking number of L and k, and point out that it must be 0 or
±1. We claim this forces f + b = 2, that is that there is a single
front-back pair of ∩-joints in L.

Consider a front-back ∩-joint pair. We will show that it either
contributes positively to the adjusted linking number. But, since
intersection can only give nonnegative contribution to the adjusted
linking number and L can only cross over k at front-back ∩-joint
pairs, there can only be one such pair.

Label the three points where a front-back ∩-joint pair meet the
branch line a, b and c, from left to right as in Figure 12. Label
the cusp point of k on this branch line p. If p is to the right of b
then we cannot guard the back ∩-joint. If p is in between a and b
the adjusted linking number is too large; see Figure 12 and notice
that L and k must meet in this case. Thus p is to the left of a
as in Figure 12. This contributes a plus 1 to the adjusted linking
number between L and k. Since there is no way to reduce the
adjusted linking number this can happen at most once.
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Assume L is a loop in P that has a single pair of ∩-joints. Note
that L cannot cross k going down from left to right since this would
force the adjusted linking number above 1. Also, L cannot cross k
from right to left more than once, since to do so would force L to
cross k from left to right. Likewise L can cross under k at most
once. Further, if L does cross under k it cannot intersect k and vice
verse. An obvious projection into the plane shows that the diagram
is decomposable. �

Appendix A. Knots and Braids

A knot k is an embedding of the oriented circle S1 into R3; k :
S1 → R3. Although technically a knot is a function, it is common
practice to confound k with its its image k(S1). A knot diagram

is a projection D of k(S1) into some plane such that D(k(S1)) is
in general position, that is, it has no triple points and any double
points are transverse. The double points are called crossings and
come in two types, positive or negative.

Knots are classified up to ambient isotopy of R3. It was shown by
Reidemeister that ambient isotopies are generated by certain moves
on knot diagrams. These are now called Reidemeister moves.

Let D be a knot diagram in a plane P . If there is a point a ∈ P\D
and a positive integer n such that every ray starting at a meets D n
times, counting double points twice, then D is a braid on n strands.
A key fact, proved by Alexander, is that any knot diagram can be
deformed via Reidemeister moves into a braid.

There are many textbooks on the theory of knots and braids:
[1, 2, 4].
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Figure 2. a) Removing an unguarded front ∩-
joint. b) Removing an unguarded back ∩-joint. c)
Guarded ∩-joints. (Next page.)
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Figure 11. Computing adjusted linking numbers
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