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Trace forms over finite fields of characteristic 2
with prescribed invariants

Robert W. Fitzgerald

Abstract

Set F = F2 and K = F2k . Let

R(x) =
m∑

i=0

εix
2i

,

with each εi ∈ {0, 1}. Our trace forms are the quadratic forms QK
R : K → F

given by QK
R (x) = trK/F (xR(x)). These trace forms have appeared in a

variety of contexts. They have been used to compute weight enumerators
of certain binary codes [1, 2], to construct curves with many rational points
and the associated trace codes [5], as part of an authentication scheme [3],
and to construct certain binary sequences in [7, 8, 6].

In each of these applications one wants the number of solutions (in K) to
QK

R (x) = 0, denoted by N(QK
R ). This is easily worked out (see [10], 6.26,6.32)

in terms of the standard classification of quadratic forms:

N(QK
R ) = 1

2
(2k + Λ(QK

R )
√

2k+r(QK
R )), (1)

where r(QK
R ) = dim rad(QK

R ) and

Λ(QK
R ) =





0, if QK
R ' z2 +

∑v
i=1 xiyi

1, if QK
R ' ∑v

i=1 xiyi

−1, if QK
R ' x2

1 + y2
1 +

∑v
i=1 xiyi.

However, given R and K, there is no simple way to determine the invari-
ants r(QK

R ) and Λ(QK
R ). The only known results cover the case of one-term
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R [8] and two-term R [4]. Here we solve the inverse problem: Given K, de-
termine all possible pairs of invariants (r, Λ) and construct the R with these
invariants. We use this to construct new maximal Artin-Schreier curves.

1 General Results

We fix the notation. When R is fixed, we write r(k) for dim rad(QK
R ) and

Λ(k) for Λ(QK
R ). For a linearized polynomial L(x) =

∑
aix

2i
over K, we

set Ldn(x) =
∑

aix
i. And for a polynomial `(x) =

∑
aix

i over K, we set
`up(x) =

∑
aix

2i
.

Given R(x) =
∑h

i=0 aix
2i

, we set

R∗(x) =
h∑

i=1

ai(x
2h+i

+ x2h−i

).

Note that (R∗)dn(1) = 0. Set f (r)(x) = xdf(1/x), where d = deg f . Then f
is self-reciprocal iff f(x) = f (r)(x).

Let d be odd. We need to distinguish two cases. We say d is in Case 1
when −1 is a power of 2 modulo d. We write η(d) = 1 to indicate Case 1 and
let w(d) be the least positive integer with 2w ≡ −1 (mod d). We say d is in
Case 2 when −1 is not a power of 2 modulo d. We write η(d) = 0 to indicate
Case 2 and let w(d) be the least positive integer with 2w ≡ 1 (mod d). Note
that

2w(d) ≡ (−1)η(d) (mod d)

in either case.
We summarize the known results on factors of xk + 1.

Lemma 1.1. 1. If k = tn where t is a 2-power and n is odd then xk +1 =∏
d|n Qd(x)t, where Qd is the cyclotomic polynomial of order d.

2. Let d be odd. Set ν(d) = ϕ(d)/(2w(d)).

(a) In Case 1, Qd(x) factors as a product of ν(d) many (distinct)
irreducible, self-reciprocal polynomials of degree 2w(d).
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(b) In Case 2, Qd(x) factors as a product of ν(d) many (distinct)
pairs f(x)f (r)(x), where f(x) is irreducible, degree w(d), and not
self-reciprocal.

Proof: (1) follows from xk +1 = (xn +1)t and (2) follows from [13].
We will use the term self-reciprocal factor of Qd(x), d odd, to mean ir-

reducible, self-reciprocal factors in Case 1 and pairs f(x)f (r)(x) with f(x)
irreducible in Case 2. Thus, in either case, Qd(x) is a product of ν(d) many
(distinct) self-reciprocal factors of degree 2w(d).

The key result is:

Proposition 1.2. dim rad(QK
R ) = deg(xk + 1, (R∗)dn(x)).

Proof: Now α ∈ rad(QK
R ) iff α ∈ K and R∗(α) = 0 by [6] Lemma 8.

Since the roots of x2k
+ x are distinct, we have

|rad(QK
R )| = deg(x2k

+ x, R∗(x))

= deg(xk + 1, (R∗)dn(x))up

= 2deg(xk+1,(R∗)dn(x)).

We have used that for linearized L1 and L2 that (L1, L2) = ((L1)dn, (L2)dn)up,
by [10], p. 111. Hence the result follows.

The following is a substantial improvement over [4] Theorem 3.3.

Theorem 1.3. Write k = tn with t a 2-power and n odd. Set T = F2t and
D = {d : d|n, d > 1}. Then:

1. r(QK
R ) = s1 +

∑
d∈D 2sdw(d) for some sd such that

(a) if t = 1 then s1 = 1;

(b) if t > 1 then s1 is even and 0 < s1 ≤ t;

(c) for d ∈ D, 0 ≤ sd ≤ tν(d).

2. Λ(QK
R ) = (−1)

∑
D sdη(d)

(
2
n

)t
Λ(QT

R). Here
(

2
n

)
is the Jacobi symbol,

detecting whether or not 2 is a square modulo n.

Proof: (1) If irreducible f divides (R∗)dn then so does f (r) since (R∗)dn

is self-reciprocal. Hence Lemma 1.1 yields:

(xk + 1, (R∗)dn) = (x + 1)s1

∏

d∈D

ν(d)∏
i=1

gd
i (x)ui(d),
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where the gd
i are the self-reciprocal factors of Qd and 0 ≤ ui(d) ≤ t. Set

sd =
∑ν(d)

i=1 ui(d). Note that 0 ≤ sd ≤ tν(d). Then 1.2 gives

r(QK
R ) = s1 +

∑

d∈D

sd · 2w(d).

We check the bounds on s1. First, (R∗)dn and xk + 1 are both divisible
by x + 1 so that s1 ≥ 1. And s1 ≤ t as t is the highest power of x + 1
dividing xk + 1. If t = 1 then s1 = 1. Suppose t > 1. Suppose, by way of
contradiction, that s1 is odd. In particular, s1 < t so that (x+1)s1+1 divides
xk +1 = (xn +1)t. Write (R∗)dn = h(x) · (xk +1, (R∗)dn) for some h(x). Then
h(x) is self-reciprocal and deg h(x) is odd. Then h(1) = 0 and so (x + 1)s1+1

also divides (R∗)dn, contrary to the assumption that s1 is the highest power
of x + 1 dividing both xk + 1 and (R∗)dn. Hence s1 is even.

(2) Let p be an odd prime dividing n. Write n = p`m where (p,m) = 1.
Note that k = p`tm. Set

D0 = {d ∈ D : p|d}
D1 = {d ∈ D : p - d} = {divisors d > 1 of m}.

For E = F2e recall that we write r(e) for r(QE
R) and Λ(e) for Λ(QE

R). By
[4] Theorem 3.1,

Λ(k)2
1
2
(r(k)−r(tm)) ≡

(
2

p`

)t

Λ(tm) (mod p).

As xtm + 1 divides xk + 1, we have

(xm + 1, (R∗)dn) = (x + 1)s1

∏

d∈D1

ν(d)∏
i=1

gd
i (x)ui(x),

for the same s1 and ui(d) as before. So

r(m) = s1 +
∑

d∈D1

sd · 2w(d)

r(k)− r(m) =
∑

d∈D0

sd · 2w(d)

2
1
2
(r(k)−r(m)) = 2

∑
D0

sdw(d) ≡ (−1)
∑

D0
sdη(d) (mod p),
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as p divides each d ∈ D0. Then

Λ(k) =

(
2

p`

)t

(−1)
∑

D0
sdη(d)Λ(tm).

A simple induction argument completes the proof.
The proof of 1.3 shows that every possible pair of invariants (r, Λ) does

in fact arise. We record this as:

Corollary 1.4. Write d = tn as before. Suppose s1 and sd, d ∈ D satisfy
the conditions of Theorem 1.3. Then r(QK

R ) = s1 +
∑

D 2sdw(d) iff

(R∗)dn = h(x)(x + 1)s1

∏

d∈D

ν(d)∏
i=1

gd
i (x)ui(d),

where the gd
i are self-reciprocal factors of Qd(x), sd =

∑ν(d)
i=1 ui(d) and h(x)

is self-reciprocal and prime to (xk + 1)/(
∏

D

∏
gd

i (x)ui(d)).

We note that if the coefficients, ai, of R are allowed to take on any
value in K then every quadratic form over K arises as a QK

R (for some R)
[5] Proposition 1.1, and so all invariant pairs are possible. Thus 1.3 gives
the restrictions on the quadratic forms QK

R that follow from restricting the
coefficients to 0, 1.

2 When k is prime

Example 2.1. Suppose k = 43. Here we are in Case 1, w(k) = 7 and 2 is
not a square modulo k. Say R(1) = 0 so that Λ(1) = 1 (see [4] Corollary
3.4). The possible values of (r(QK

R ), Λ(QK
R )) are:

(1,−1) (15, +1) (29,−1) (43, +1).

We construct all R(x) of degree 29 with r(QK
R ) = 15 and Λ(QK

R ) = +1. First,
x43 + 1 = (x + 1)f1f2f3 where

f1 = x14 + x13 + x11 + x7 + x3 + x + 1

f2 = x14 + x12 + x10 + x7 + x4 + x2 + 1

f3 = x14 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 1.
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Then (R∗)dn = h(x)fi for some i and some self-reciprocal h of degree 4
with h(1) = 0. There are only two choices for h, namely, h1 = x4 + 1 and
h2 = x4 + x3 + x2 + x + 1. So there are six choices for (R∗)dn. Note that
R and R + x yield the same R∗, so we take whichever of R, R + x satisfies
R(1) = 0. We obtain:

(R∗)dn R

h1f1 x29
+ x26

+ x24
+ x23

h2f1 x29
+ x28

+ x25
+ x23

h1f2 x29
+ x28

+ x26
+ x25

+ x24
+ x

h2f2 x29
+ x27

+ x25
+ x24

+ x23
+ x2

h1f3 x29
+ x27

+ x23
+ x22

+ x2 + x

h2f3 x29
+ x28

+ x27
+ x23

.

The goal of this section is to imitate the example and count the number
of R with a given pair of invariants (r, Λ).

Lemma 2.2. Let d be even. Let f(x) ∈ F [x] be self-reciprocal of degree d
and satisfy f(1) = 1. Let N > d be even. The number of self-reciprocal
g(x) ∈ F [x] which are multiples of f , degree N and satisfy g(1) = 0 is

2
1
2
(N−d)−1.

Proof: Write g(x) = h(x)f(x). We require that h(x) be self-reciprocal,
degree N −d and have h(1) = 0. The last condition implies that h(x) has no
middle term (that is, x(N−d)/2). Thus h(x) is determined by the coefficients
of xi, 1 ≤ i < 1

2
(N − d), giving the result.

Lemma 2.3. Let f1, f2, . . . , ft be pairwise prime, self-reciprocal polynomials
in F [x] of even degree d that satisfy fi(1) = 1. Let N be even and set

` = min

{⌈
N

d

⌉
− 1, t

}
.

The number of self-reciprocal h(x) ∈ F [x] of degree N , prime to f1 ·f2 · · · · ·ft

and satisfying h(1) = 0 is:

∑̀
m=0

(−1)m

(
t

m

)
2

1
2
(N−dm)−1.
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Proof: Let M(f) denote the set of self-reciprocal polynomials h(x) ∈
F [x] of degree N with h(1) = 0 and f |h. Let

M(fi1 , fi2 , . . . , fim) =
m⋂

j=1

M(fij),

where m ≤ t. If N ≤ dm then M(fi1 , . . . , fim) = ∅ (if N = dm then we
must have h(1) = 1), Otherwise, dm < N so that m ≤ `. Apply 2.2 to
f = fi1 · fi2 · · · fim to get

|M(fi−1, fi2 , . . . , fim)| =
{

2
1
2
(N−dm)−1, if m ≤ `

0, if m > `.

The total number of self-reciprocal h(x) of degree N with h(1) = 0 is 2
1
2
N−1.

So the number of h(x) of the statement is:

2
1
2
N− − |

t⋃
i=1

M(fi)| = 2
1
2
N−1 −

t∑
m=1

∑
i1<···im

|M(fi1 , . . . , fim)|

= 2
1
2
N−1 −

∑̀
m=1

(−1)m+1

(
t

m

)
2

1
2
(N−dm)−1

=
∑̀
m=0

(−1)m

(
t

m

)
2

1
2
(N−dm)−1.

We continue to write ν(k) for ϕ(k)/(2w(k)).

Theorem 2.4. Let k be a prime. For any R:

1. dim rad(QK
R ) = 1 + 2sw(k) for some 0 ≤ s ≤ v(k).

2. If R(1) = 1 then Λ(QK
R ) = 0.

3. If R(1) = 0 then Λ(QK
R ) = (−1)sη(k)( 2

k
).

4. The number of R of degree 2N with R(1) = 0 and dim rad(QK
R ) =

1 + 2sw(k) is:

(
ν(k)

s

) ∑̀
m=0

(−1)m

(
ν(k)− s

m

)
2N−w(k)(s+m)−1,
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where

` = min

{⌈
N

w(k)

⌉
− s− 1, ν(k)− s

}
.

Proof: (1), (2) and (3) follow from Theorem 1.3. To prove (4), fix
s. By Corollary 1.4, (xk + 1, (R∗)dn) is x + 1 times a product of s self-
reciprocal factors of Qk(x), each of degree 2w(k). Qk(x) has ν(k) many self-
reciprocal factors. Choose s of them, call their product g and let f1, f2, . . . , ft,
t = ν(k)− s, be the other self-reciprocal factors. Then R∗ = h(x)g(x) where
h(x) is self-reciprocal, h(1) = 0 (so that x + 1 is a factor of R∗), of degree
2N − 2sw(k) (as deg R = 2N iff deg R∗ = 2N) and h(x) is prime to g. Given
this choice of the s factors then Lemma 2.3 gives the number of such h’s as:

∑̀
m=0

(−1)m

(
ν(k)− s

m

)
2

1
2
(2N−2sw(k)−m·2w(k))−1,

where

` = min

{⌈
2N − 2sw(k)

2w(k)

⌉
− 1, ν(k)− s

}

= min

{⌈
N

w(k)

⌉
− s− 1, ν(k)− s

}
.

Hence the number of R∗ of degree 22N with (xk +1, (R∗)dn) = (x+1)g(x) is:

(
ν(k)

s

) ∑̀
m=0

(−1)m

(
ν(k)− s

m

)
2N−w(k)(s+m)−1.

Both R and R + x yield the same R∗ and exactly one of R,R + x maps 1
to 1. So the number of R with R(1) = 1 and dim rad(QK

R ) = 1 + 2sw(k) is
given by the same formula.

One may easily check the formula on Example 2.1. There k = 43, w(k) =
7 and so ν(k) = 3. The example considered R of degree 29 and r = 15 (which
is s = 1). Then ` = min{d9

7
− 1 − 1, 6 − 1} = 0 and the number of such R

is:
(
3
1

)
(−1)0

(
6−1
0

)
29−7−1 = 6, which agrees with the example.
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3 When k is a product of two primes

The values of w(d), over divisors of k, are not independent. Thus the formulas
for dim rad(QK

R ) and Λ(QK
R ) of Theorem 1.3 simplify. But the underlying

number theory is complicated. We illustrate these points by considering the
easy case of k being a product of two primes.

Lemma 3.1. Let p be an odd prime and let ε = ±1.

1. If 2w ≡ ε (mod p) then 2wp ≡ ε (mod p2).

2. p2 is in Case 1 iff p is.

3. w(p2) = w(p) or pw(p).

Proof: (1) We have:

2wp − ε = (2w − ε)(2w(p−1) + ε2w(p−2) + · · ·+ εp−22w + εp−1).

Modulo p, the second factor is pεp−1. Thus p2 divides 2wp − ε.
(2) If p is in Case 1 then 2w ≡ −1 (mod p) for some w. Then (1) shows

p2 is also in Case 1. And if p2 is in Case 1 then 2v ≡ −1 (mod p2) for some
v. So 2v ≡ −1 (mod p) and p is in Case 1.

(3) We have w(p)|w(p2) and by (1), w(p2)|pw(p).

Remark 3.2. It is possible for w(p2) to equal w(p), but exceedingly rare. If
w(p2) = w(p) then p is a Wieferich prime, meaning that 2p−1 ≡ 1 (mod p2)
(see [11]). A computer search [9] has shown that the only Wieferich primes
less than 1.25× 1015 are 1093 and 3511. Both 1093 and 3511 satisfy w(p) =
w(p2) (this can easily be checked with a computer). Further, 1093 is in Case
1 (with w(1093) = 182) and 3511 is in Case 2 (with w(3511) = 1755).

A typical simplification of Theorem 1.3 is:

Corollary 3.3. Let k = p2, with p and odd prime that is not a Wieferich
prime. Then

dim rad(QK
R ) = 1 + (2s1 + 2ps2)w(p)

Λ(QK
R ) = (−1)(s1+s2)η(p)Λ(1).

The simplification for Wieferich primes can also be easily worked out. In
the next result, v2(n) denotes the highest power of 2 dividing n.

9



Proposition 3.4. Let p and q be distinct odd primes.

1. pq is in Case 1 iff p and q are in Case 1 and also v2(w(p)) = v2(w(q)).
In this case, w(pq) = lcm(w(p), w(q)).

2. If p and q are in Case 1 and v2(w(p)) 6= v2(w(q)) then w(pq) =
2lcm(w(p), w(q)).

3. If p is in Case 1 and q is in Case 2 then w(pq) = lcm(2w(p), w(q)).

4. If p and q are in Case 2 then w(pq) = lcm(w(p), w(q)).

Proof: (1) Suppose pq is in Case 1. Then 2w(pq) is -1 modulo pq,
hence modulo p and q. So both p and q are in Case 1. We want to show
that v2(w(p)) = v2(w(q)). Suppose instead that v2(w(p)) < v2(w(q)). Let
L = lcm(w(p), w(q)); note that L/w(p) is even. Now w(p) and w(q) di-
vide w(pq) so L divides w(pq). Hence w(pq)/w(p) is even. But 2w(pq) =
(2w(p))w(pq)/w(p) ≡ 1 (mod p) while 2w(pq) ≡ −1 (mod pq), a contradiction.
So v2(w(p)) = v2(w(q)).

Conversely, suppose p and q are in Case 1 and v2(w(p)) = v2(w(q)). Then
L/w(p) and L/w(q) are odd. So 2L is -1 modulo p and q, hence modulo
pq. Thus pq is in Case 1. Note that w(pq)|L and clearly L|w(pq). So
w(pq) = lcm(w(p), w(q)).

(2) Here pq is in Case 2 so that w(pq) is the order of 2 modulo pq. As
p and q are in Case 1, the order of 2 modulo p is 2w(p) and modulo q it is
2w(q). Hence w(pq) = 2lcm(w(p), w(q)). Parts (3) and (4) are similar.

Examples (1) We consider k = 11 · 43. We have p = 11 is in Case 1
(with w(p) = 5) and q = 43 is also in Case 1 (with w(q) = 7). Thus by (1)
of Proposition 3.4 we have that k is in Case 1 and w(k) = 35. Theorem 1.3
becomes:

dim rad(QK
R ) = 1 + 10s1 + 14s2 + 70s3

Λ(QK
R ) = (−1)s1+s2+s3Λ(1),

where 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 3 and 0 ≤ s3 ≤ 6. Each choice of si occurs for
some R.

(2) The case k = 21 was considered in [4] where a computer search showed
that dim rad(QK

R ) = 5 was not possible. We may now easily check this. Here
w(3) = 1, w(7) = 3 and w(21) = 6. Hence dim rad(QK

R ) = 1+2s1+6s2+12s3

10



with each si ∈ {0, 1}. Thus 5,11 and 17 are precisely the odd values missed
by dim rad(QK

R ).
(3) The value of dim rad(QK

R ) does not always determine Λ(QK
R ), even

when R(1) = 0 (so that Λ(1) = 1). Consider k = 19 · 73. Here p = 19 is in
Case 1 with w(p) = 9 and 2 not a square modulo p. And q = 73 is in Case 2
with w(q) = 9 and 2 a square modulo q. So

dim rad(QK
R ) = 1 + 18s1 + 18s2 + 36s3

Λ(QK
R ) = (−1)s1+1Λ(1),

where 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 4 and 0 ≤ s3 ≤ 36. Then dim rad(QK
R ) = 19 has

two solutions, namely (s1, s2, s3) = (1, 0, 0) and (0, 1, 0), that yield different
values of Λ(QK

R ). We can construct specific examples using Corollary 1.4.
We can take Q19 or (x9 + x + 1)(x9 + x8 + 1) (a self-reciprocal factor of Q73)
for (xk + 1, (R∗)dn). Assuming R(1) = 0 so that Λ(1) = 1, these yield

R1 = x210

+ x29

R2 = x210

+ x29

+ x28

+ x27

+ x22

+ x2.

Both give radicals of dimension 19 but Λ(QK
R1

) = +1 while Λ(QK
R2

) = −1.

4 Maximal Artin-Schreier Curves

The Artin-Schreier curves considered here are:

CR(K) : y2 + y = xR(x),

where x, y ∈ K. This has genus g = 1
2
deg R(x) by [12] VI.4.1. The number

of points in K-projective space on CR is:

#CR(K) = 2N(QK
R ) + 1 = 2k + 1 + Λ(QK

R )
√

2k+r,

where r = dim rad(QK
R ) and we have used Equation 1. The curve is maximal

if equality holds in the Hasse-Weil bound

#CR(K) ≤ 2k + 1 + 2g
√

2k = 2k + 1 + deg R(x)
√

2k.

Clearly equality holds only if k is even. Maximal curves yield the best alge-
braic geometry codes.
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Lemma 4.1. Let k be even and r = dim rad(QK
R ). Then CR(K) is maximal

iff

1. deg R(x) = 2r/2 and

2. Λ(QK
R ) = +1.

Proof: We require Λ(QK
r )
√

2k+r = deg R(x)
√

k, which yields the result.

In [5] we found all R and K with CR(K) maximal and k − r = 2 (note:
the codimension k− r is necessarily even). We also gave one example, found
by computer search, of a maximal CR(K) with k − r = 4. As Lemma 4.1
prescribes the invariants of QK

R , we may now find all codimension 4 maximal
curves, at least for a wide range of k.

As k must be even, Theorem 1.3 reduces the computation of Λ(QK
R ) to

that of Λ(QT
R) where T = F2t for t, the highest 2-power dividing k. We have

been unable to do this in general, hence our restrictions on k.
Define

for 0 ≤ i ≤ 1 Si = number of εj = 1 with j ≡ i (mod 2)

for 0 ≤ i ≤ 3 Ti = number of εj = 1 with j ≡ i (mod 4).

Lemma 4.2. 1. Suppose K = F4. Then:

Λ(QK
R ) =

{
0, if S0 is odd

+1, if S0 is even.

2. Suppose K = F16. Then:

Λ(QK
R ) =





0, if T0 is odd and T1 + T3 is even

+1, if T0 ≡ T1 + T3 (mod 2)

−1, T0 is even and T1 + T3 is odd.

Proof: We check (2). If x ∈ K then x2i
= x2j

when i ≡ j (mod 4).
Hence, as a function on K, R = T0x + T1x

2 + T2x
4 + T3x

8. Further, x3 ∈ F4

so that tr(x3) = 0 and

tr(x9) = tr(x18) = tr(x3).
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Thus QR(x) = tr(T0x
2 + (T1 + T3)x

3) for all x ∈ K. A simple computation
shows that

N(QK
R ) =





4, if T0 even, T1 + T3 odd

8, if T0 odd, T1 + T3 even

12, if T0 odd, T1 + T3 odd

16, if T0 even, T1 + T3 even.

Comparing with Equation 1 gives the result. The proof of (1) is similar and
easier.

Lemma 4.3. Let r = dim rad(QK
R ). If CR(K) is maximal with k − r = 4

then k is divisible by 3 or 8. Further, if k is divisible by 5 but not 8 then s5

is its maximal value.

Proof: Assume k is not divisible by 8. Write k = tn with n odd and
t = 2 or 4. By 1.3

k − 4 = s1 +
∑

d|n
2sdw(d), (2)

with s1 ∈ {2, t} and 0 ≤ sd ≤ tν(d). Note that the maximum values, s1 = t
sd = tν(d), make the right side of Equation 2 equal to k. We are looking for
a solution just below the maximum.

If w(d) ≤ 2 then d divides 22± 1, 2± 1 and so d = 3 or 5. Thus if no d is
3 or 5 then every w(d) > 2 and there is no solution to Equation 2.

Suppose, if possible, that 3 does not divide k. Then k = 5m for some
even m. Write m = 2m0. The only solution to Equation 2 is:

s1 = t s5 = t− 1 sd = tν(d) for d 6= 5.

This is also the only solution if s5 is not maximal (whether or not 3 divides
k). Our construction, Corollary 1.4, shows that

(xk + 1, (R∗)dn) = (x + 1)tQt−1
5

∏

d6=5

Qt
d = (xk + 1)/Q5.

By Lemma 4.1, deg R = 2(k−4)/2 and so deg(R∗)dn = k − 4. Hence

R∗ =
xk + 1

Q5

=
(x + 1)(xk + 1)

x5 + 1
= (x + 1)

m−1∑
i=0

x5i.
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And so

R = εx +

m0−1∑
i=0

(
x25(m0−i)−2

+ x25(m0−i)−3
)

,

for ε ∈ {0, 1}.
Lemma 4.1 gives Λ(QK

R ) = +1 while Theorem 1.3 gives Λ(QK
R ) = −Λ(t).

Hence t = 4 since, by Lemma 4.2, Λ(2) 6= −1. So Lemma 4.2 gives T0 is
even and T1 + T3 is odd. We have R explicitly so we compute the Ti, writing
m0 = 4` + u:

u T0 T1 T2 T3

0 2` + ε 2` 2` 2`
1 2` + ε 2` 2` + 1 2` + 1
2 2` + 1 + ε 2` 2` + 1 2` + 2
3 2` + 2 + ε 2` + 1 2` + 1 2` + 2

(3)

If ε = 1 then only u = 2 gives T0 even, but the T1 + T3 is even. Hence ε = 0
and we must have u odd. But then k = 5 · 2m0 = 5 · 2(4`+u) is not divisible
by t = 4, a contradiction. Hence k is divisible by 3.

Example 4.4. Lemma 4.3 can fail when k− r = 6. We use Corollary 1.4 to
construct an example with k = 20. We need r = 14 = s1 + 4s5 so we take
s1 = 2 and s5 = 3. Then

(xk + 1, (R∗)dn) = (x + 1)2Q3
5 = (x10 + 1)(x4 + x3 + x2 + x + 1)

R = x27

+ x26

+ x25

+ x24

+ x23

+ εx.

As before, Λ(QK
R ) = −Λ(4) so that we require T0 to be even and T1+T3 to be

odd. Thus taking ε = 1 gives an example of a maximal curve with k− r = 6
and k not divisible by either 3 or 8.

Theorem 4.5. Suppose k is even but not a multiple of 8. Let r = dim rad(QK
R ).

Then the maximal curves CR(K) with k − r = 4 are precisely:

1. k = 6m with m odd and

R = x2 +

3(m−1)/2∑
i=1

(
x26i+1

+ x26i−1
)

.

2. k = 12m with m odd and

R = x +
m−1∑
i=0

(
x26i+4

+ x26i+2
)

.

14



3. k = 12m with m odd and

R = x +
m−1∑
i=0

(
x26i+4

+ x26i+3

+ x26i+2
)

.

Proof: From Lemma 4.3 we have k = 6m or 12m with m odd. We first
do the case k = 6m. Equation 2 becomes:

k − 4 = 2 + 2s3 +
∑

d|3m,d 6=3

2sdw(d),

for 0 ≤ s3 ≤ 2 and 0 ≤ sd ≤ 2ν(d). The only solution is s3 = 0 and
sd = 2ν(d) for d 6= 3, since all w(d) > 2 except for d = 5 when s5 is its
maximal value 2 by Lemma 4.3. Thus

(xk + 1, (R∗)dn) =
xk + 1

Q2
3

= (x2 + 1)
m−1∑
i=0

x6i.

Lemma 4.1 gives deg R = 2(k−4)/2 and deg(R∗)dn = k − 4. Hence R∗ is this
gcd and

R = εx +

3(m−1)/2∑
i=1

(
x26i+1 − x26i−1

)
.

Lastly, Λ(QK
R ) = +1 by Lemma 4.1 while Λ(QK

R ) = Λ(2) by Theorem 1.3.
Hence ε = 0 by Lemma 4.2.

Now suppose k = 12m with m odd. Equation 1 becomes:

k − 4 = s1 + 2s3 +
∑

d|3m,d6=3

2sdw(d),

where s1 ∈ {2, 4}, 0 ≤ s3 ≤ 4 and 0 ≤ sd ≤ 4ν(d). As before, each sd,
d 6= 1, 3, is its maximal value. So there are two solutions, (s1, s3) = (4, 2)
and (2, 3). In the first case, (R∗)dn = (xk + 1)/Q2

3 and R has the form (2).
Here Lemma 4.2 is used to determine the coefficient of x. In the second case,
(R∗)dn = (xk + 1)/(x6 + 1) and R has the form (3).

We note that the example of [5] is statement (2) of Theorem 4.5 with
m = 1.
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