
Southern Illinois University Carbondale
OpenSIUC

Articles and Preprints Department of Mathematics

2-2009

Trace Forms over Finite Fields of Characteristic 2
with Prescribed Invariants
Robert W. Fitzgerald
Southern Illinois University Carbondale, rfitzg@math.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles

Part of the Mathematics Commons
Published in Finite Fields and Their Applications, 15(1), 69-81.

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles
and Preprints by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Fitzgerald, Robert W. "Trace Forms over Finite Fields of Characteristic 2 with Prescribed Invariants." (Feb 2009).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenSIUC

https://core.ac.uk/display/60525002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.ffa.2008.08.002
http://www.elsevier.com/wps/find/journaldescription.cws_home/622831/description#description
mailto:opensiuc@lib.siu.edu


Trace forms over finite fields of characteristic 2
with prescribed invariants

Robert W. Fitzgerald

Abstract

Set F = F2 and K = F2k . Let

R(x) =
m∑

i=0

εix
2i

,

with each εi ∈ {0, 1}. Our trace forms are the quadratic forms QK
R : K → F

given by QK
R (x) = trK/F (xR(x)). These trace forms have appeared in a

variety of contexts. They have been used to compute weight enumerators
of certain binary codes [1, 2], to construct curves with many rational points
and the associated trace codes [5], as part of an authentication scheme [3],
and to construct certain binary sequences in [7, 8, 6].

In each of these applications one wants the number of solutions (in K) to
QK

R (x) = 0, denoted by N(QK
R ). This is easily worked out (see [10], 6.26,6.32)

in terms of the standard classification of quadratic forms:

N(QK
R ) = 1

2
(2k + Λ(QK

R )
√

2k+r(QK
R )), (1)

where r(QK
R ) = dim rad(QK

R ) and

Λ(QK
R ) =





0, if QK
R ' z2 +

∑v
i=1 xiyi

1, if QK
R ' ∑v

i=1 xiyi

−1, if QK
R ' x2

1 + y2
1 +

∑v
i=1 xiyi.

However, given R and K, there is no simple way to determine the invari-
ants r(QK

R ) and Λ(QK
R ). The only known results cover the case of one-term
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R [8] and two-term R [4]. Here we solve the inverse problem: Given K, de-
termine all possible pairs of invariants (r, Λ) and construct the R with these
invariants. We use this to construct new maximal Artin-Schreier curves.

1 General Results

We fix the notation. When R is fixed, we write r(k) for dim rad(QK
R ) and

Λ(k) for Λ(QK
R ). For a linearized polynomial L(x) =

∑
aix

2i
over K, we

set Ldn(x) =
∑

aix
i. And for a polynomial `(x) =

∑
aix

i over K, we set
`up(x) =

∑
aix

2i
.

Given R(x) =
∑h

i=0 aix
2i

, we set

R∗(x) =
h∑

i=1

ai(x
2h+i

+ x2h−i

).

Note that (R∗)dn(1) = 0. Set f (r)(x) = xdf(1/x), where d = deg f . Then f
is self-reciprocal iff f(x) = f (r)(x).

Let d be odd. We need to distinguish two cases. We say d is in Case 1
when −1 is a power of 2 modulo d. We write η(d) = 1 to indicate Case 1 and
let w(d) be the least positive integer with 2w ≡ −1 (mod d). We say d is in
Case 2 when −1 is not a power of 2 modulo d. We write η(d) = 0 to indicate
Case 2 and let w(d) be the least positive integer with 2w ≡ 1 (mod d). Note
that

2w(d) ≡ (−1)η(d) (mod d)

in either case.
We summarize the known results on factors of xk + 1.

Lemma 1.1. 1. If k = tn where t is a 2-power and n is odd then xk +1 =∏
d|n Qd(x)t, where Qd is the cyclotomic polynomial of order d.

2. Let d be odd. Set ν(d) = ϕ(d)/(2w(d)).

(a) In Case 1, Qd(x) factors as a product of ν(d) many (distinct)
irreducible, self-reciprocal polynomials of degree 2w(d).
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(b) In Case 2, Qd(x) factors as a product of ν(d) many (distinct)
pairs f(x)f (r)(x), where f(x) is irreducible, degree w(d), and not
self-reciprocal.

Proof: (1) follows from xk +1 = (xn +1)t and (2) follows from [13].
We will use the term self-reciprocal factor of Qd(x), d odd, to mean ir-

reducible, self-reciprocal factors in Case 1 and pairs f(x)f (r)(x) with f(x)
irreducible in Case 2. Thus, in either case, Qd(x) is a product of ν(d) many
(distinct) self-reciprocal factors of degree 2w(d).

The key result is:

Proposition 1.2. dim rad(QK
R ) = deg(xk + 1, (R∗)dn(x)).

Proof: Now α ∈ rad(QK
R ) iff α ∈ K and R∗(α) = 0 by [6] Lemma 8.

Since the roots of x2k
+ x are distinct, we have

|rad(QK
R )| = deg(x2k

+ x, R∗(x))

= deg(xk + 1, (R∗)dn(x))up

= 2deg(xk+1,(R∗)dn(x)).

We have used that for linearized L1 and L2 that (L1, L2) = ((L1)dn, (L2)dn)up,
by [10], p. 111. Hence the result follows.

The following is a substantial improvement over [4] Theorem 3.3.

Theorem 1.3. Write k = tn with t a 2-power and n odd. Set T = F2t and
D = {d : d|n, d > 1}. Then:

1. r(QK
R ) = s1 +

∑
d∈D 2sdw(d) for some sd such that

(a) if t = 1 then s1 = 1;

(b) if t > 1 then s1 is even and 0 < s1 ≤ t;

(c) for d ∈ D, 0 ≤ sd ≤ tν(d).

2. Λ(QK
R ) = (−1)

∑
D sdη(d)

(
2
n

)t
Λ(QT

R). Here
(

2
n

)
is the Jacobi symbol,

detecting whether or not 2 is a square modulo n.

Proof: (1) If irreducible f divides (R∗)dn then so does f (r) since (R∗)dn

is self-reciprocal. Hence Lemma 1.1 yields:

(xk + 1, (R∗)dn) = (x + 1)s1

∏

d∈D

ν(d)∏
i=1

gd
i (x)ui(d),
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where the gd
i are the self-reciprocal factors of Qd and 0 ≤ ui(d) ≤ t. Set

sd =
∑ν(d)

i=1 ui(d). Note that 0 ≤ sd ≤ tν(d). Then 1.2 gives

r(QK
R ) = s1 +

∑

d∈D

sd · 2w(d).

We check the bounds on s1. First, (R∗)dn and xk + 1 are both divisible
by x + 1 so that s1 ≥ 1. And s1 ≤ t as t is the highest power of x + 1
dividing xk + 1. If t = 1 then s1 = 1. Suppose t > 1. Suppose, by way of
contradiction, that s1 is odd. In particular, s1 < t so that (x+1)s1+1 divides
xk +1 = (xn +1)t. Write (R∗)dn = h(x) · (xk +1, (R∗)dn) for some h(x). Then
h(x) is self-reciprocal and deg h(x) is odd. Then h(1) = 0 and so (x + 1)s1+1

also divides (R∗)dn, contrary to the assumption that s1 is the highest power
of x + 1 dividing both xk + 1 and (R∗)dn. Hence s1 is even.

(2) Let p be an odd prime dividing n. Write n = p`m where (p,m) = 1.
Note that k = p`tm. Set

D0 = {d ∈ D : p|d}
D1 = {d ∈ D : p - d} = {divisors d > 1 of m}.

For E = F2e recall that we write r(e) for r(QE
R) and Λ(e) for Λ(QE

R). By
[4] Theorem 3.1,

Λ(k)2
1
2
(r(k)−r(tm)) ≡

(
2

p`

)t

Λ(tm) (mod p).

As xtm + 1 divides xk + 1, we have

(xm + 1, (R∗)dn) = (x + 1)s1

∏

d∈D1

ν(d)∏
i=1

gd
i (x)ui(x),

for the same s1 and ui(d) as before. So

r(m) = s1 +
∑

d∈D1

sd · 2w(d)

r(k)− r(m) =
∑

d∈D0

sd · 2w(d)

2
1
2
(r(k)−r(m)) = 2

∑
D0

sdw(d) ≡ (−1)
∑

D0
sdη(d) (mod p),
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as p divides each d ∈ D0. Then

Λ(k) =

(
2

p`

)t

(−1)
∑

D0
sdη(d)Λ(tm).

A simple induction argument completes the proof.
The proof of 1.3 shows that every possible pair of invariants (r, Λ) does

in fact arise. We record this as:

Corollary 1.4. Write d = tn as before. Suppose s1 and sd, d ∈ D satisfy
the conditions of Theorem 1.3. Then r(QK

R ) = s1 +
∑

D 2sdw(d) iff

(R∗)dn = h(x)(x + 1)s1

∏

d∈D

ν(d)∏
i=1

gd
i (x)ui(d),

where the gd
i are self-reciprocal factors of Qd(x), sd =

∑ν(d)
i=1 ui(d) and h(x)

is self-reciprocal and prime to (xk + 1)/(
∏

D

∏
gd

i (x)ui(d)).

We note that if the coefficients, ai, of R are allowed to take on any
value in K then every quadratic form over K arises as a QK

R (for some R)
[5] Proposition 1.1, and so all invariant pairs are possible. Thus 1.3 gives
the restrictions on the quadratic forms QK

R that follow from restricting the
coefficients to 0, 1.

2 When k is prime

Example 2.1. Suppose k = 43. Here we are in Case 1, w(k) = 7 and 2 is
not a square modulo k. Say R(1) = 0 so that Λ(1) = 1 (see [4] Corollary
3.4). The possible values of (r(QK

R ), Λ(QK
R )) are:

(1,−1) (15, +1) (29,−1) (43, +1).

We construct all R(x) of degree 29 with r(QK
R ) = 15 and Λ(QK

R ) = +1. First,
x43 + 1 = (x + 1)f1f2f3 where

f1 = x14 + x13 + x11 + x7 + x3 + x + 1

f2 = x14 + x12 + x10 + x7 + x4 + x2 + 1

f3 = x14 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 1.
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Then (R∗)dn = h(x)fi for some i and some self-reciprocal h of degree 4
with h(1) = 0. There are only two choices for h, namely, h1 = x4 + 1 and
h2 = x4 + x3 + x2 + x + 1. So there are six choices for (R∗)dn. Note that
R and R + x yield the same R∗, so we take whichever of R, R + x satisfies
R(1) = 0. We obtain:

(R∗)dn R

h1f1 x29
+ x26

+ x24
+ x23

h2f1 x29
+ x28

+ x25
+ x23

h1f2 x29
+ x28

+ x26
+ x25

+ x24
+ x

h2f2 x29
+ x27

+ x25
+ x24

+ x23
+ x2

h1f3 x29
+ x27

+ x23
+ x22

+ x2 + x

h2f3 x29
+ x28

+ x27
+ x23

.

The goal of this section is to imitate the example and count the number
of R with a given pair of invariants (r, Λ).

Lemma 2.2. Let d be even. Let f(x) ∈ F [x] be self-reciprocal of degree d
and satisfy f(1) = 1. Let N > d be even. The number of self-reciprocal
g(x) ∈ F [x] which are multiples of f , degree N and satisfy g(1) = 0 is

2
1
2
(N−d)−1.

Proof: Write g(x) = h(x)f(x). We require that h(x) be self-reciprocal,
degree N −d and have h(1) = 0. The last condition implies that h(x) has no
middle term (that is, x(N−d)/2). Thus h(x) is determined by the coefficients
of xi, 1 ≤ i < 1

2
(N − d), giving the result.

Lemma 2.3. Let f1, f2, . . . , ft be pairwise prime, self-reciprocal polynomials
in F [x] of even degree d that satisfy fi(1) = 1. Let N be even and set

` = min

{⌈
N

d

⌉
− 1, t

}
.

The number of self-reciprocal h(x) ∈ F [x] of degree N , prime to f1 ·f2 · · · · ·ft

and satisfying h(1) = 0 is:

∑̀
m=0

(−1)m

(
t

m

)
2

1
2
(N−dm)−1.
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Proof: Let M(f) denote the set of self-reciprocal polynomials h(x) ∈
F [x] of degree N with h(1) = 0 and f |h. Let

M(fi1 , fi2 , . . . , fim) =
m⋂

j=1

M(fij),

where m ≤ t. If N ≤ dm then M(fi1 , . . . , fim) = ∅ (if N = dm then we
must have h(1) = 1), Otherwise, dm < N so that m ≤ `. Apply 2.2 to
f = fi1 · fi2 · · · fim to get

|M(fi−1, fi2 , . . . , fim)| =
{

2
1
2
(N−dm)−1, if m ≤ `

0, if m > `.

The total number of self-reciprocal h(x) of degree N with h(1) = 0 is 2
1
2
N−1.

So the number of h(x) of the statement is:

2
1
2
N− − |

t⋃
i=1

M(fi)| = 2
1
2
N−1 −

t∑
m=1

∑
i1<···im

|M(fi1 , . . . , fim)|

= 2
1
2
N−1 −

∑̀
m=1

(−1)m+1

(
t

m

)
2

1
2
(N−dm)−1

=
∑̀
m=0

(−1)m

(
t

m

)
2

1
2
(N−dm)−1.

We continue to write ν(k) for ϕ(k)/(2w(k)).

Theorem 2.4. Let k be a prime. For any R:

1. dim rad(QK
R ) = 1 + 2sw(k) for some 0 ≤ s ≤ v(k).

2. If R(1) = 1 then Λ(QK
R ) = 0.

3. If R(1) = 0 then Λ(QK
R ) = (−1)sη(k)( 2

k
).

4. The number of R of degree 2N with R(1) = 0 and dim rad(QK
R ) =

1 + 2sw(k) is:

(
ν(k)

s

) ∑̀
m=0

(−1)m

(
ν(k)− s

m

)
2N−w(k)(s+m)−1,
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where

` = min

{⌈
N

w(k)

⌉
− s− 1, ν(k)− s

}
.

Proof: (1), (2) and (3) follow from Theorem 1.3. To prove (4), fix
s. By Corollary 1.4, (xk + 1, (R∗)dn) is x + 1 times a product of s self-
reciprocal factors of Qk(x), each of degree 2w(k). Qk(x) has ν(k) many self-
reciprocal factors. Choose s of them, call their product g and let f1, f2, . . . , ft,
t = ν(k)− s, be the other self-reciprocal factors. Then R∗ = h(x)g(x) where
h(x) is self-reciprocal, h(1) = 0 (so that x + 1 is a factor of R∗), of degree
2N − 2sw(k) (as deg R = 2N iff deg R∗ = 2N) and h(x) is prime to g. Given
this choice of the s factors then Lemma 2.3 gives the number of such h’s as:

∑̀
m=0

(−1)m

(
ν(k)− s

m

)
2

1
2
(2N−2sw(k)−m·2w(k))−1,

where

` = min

{⌈
2N − 2sw(k)

2w(k)

⌉
− 1, ν(k)− s

}

= min

{⌈
N

w(k)

⌉
− s− 1, ν(k)− s

}
.

Hence the number of R∗ of degree 22N with (xk +1, (R∗)dn) = (x+1)g(x) is:

(
ν(k)

s

) ∑̀
m=0

(−1)m

(
ν(k)− s

m

)
2N−w(k)(s+m)−1.

Both R and R + x yield the same R∗ and exactly one of R,R + x maps 1
to 1. So the number of R with R(1) = 1 and dim rad(QK

R ) = 1 + 2sw(k) is
given by the same formula.

One may easily check the formula on Example 2.1. There k = 43, w(k) =
7 and so ν(k) = 3. The example considered R of degree 29 and r = 15 (which
is s = 1). Then ` = min{d9

7
− 1 − 1, 6 − 1} = 0 and the number of such R

is:
(
3
1

)
(−1)0

(
6−1
0

)
29−7−1 = 6, which agrees with the example.
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3 When k is a product of two primes

The values of w(d), over divisors of k, are not independent. Thus the formulas
for dim rad(QK

R ) and Λ(QK
R ) of Theorem 1.3 simplify. But the underlying

number theory is complicated. We illustrate these points by considering the
easy case of k being a product of two primes.

Lemma 3.1. Let p be an odd prime and let ε = ±1.

1. If 2w ≡ ε (mod p) then 2wp ≡ ε (mod p2).

2. p2 is in Case 1 iff p is.

3. w(p2) = w(p) or pw(p).

Proof: (1) We have:

2wp − ε = (2w − ε)(2w(p−1) + ε2w(p−2) + · · ·+ εp−22w + εp−1).

Modulo p, the second factor is pεp−1. Thus p2 divides 2wp − ε.
(2) If p is in Case 1 then 2w ≡ −1 (mod p) for some w. Then (1) shows

p2 is also in Case 1. And if p2 is in Case 1 then 2v ≡ −1 (mod p2) for some
v. So 2v ≡ −1 (mod p) and p is in Case 1.

(3) We have w(p)|w(p2) and by (1), w(p2)|pw(p).

Remark 3.2. It is possible for w(p2) to equal w(p), but exceedingly rare. If
w(p2) = w(p) then p is a Wieferich prime, meaning that 2p−1 ≡ 1 (mod p2)
(see [11]). A computer search [9] has shown that the only Wieferich primes
less than 1.25× 1015 are 1093 and 3511. Both 1093 and 3511 satisfy w(p) =
w(p2) (this can easily be checked with a computer). Further, 1093 is in Case
1 (with w(1093) = 182) and 3511 is in Case 2 (with w(3511) = 1755).

A typical simplification of Theorem 1.3 is:

Corollary 3.3. Let k = p2, with p and odd prime that is not a Wieferich
prime. Then

dim rad(QK
R ) = 1 + (2s1 + 2ps2)w(p)

Λ(QK
R ) = (−1)(s1+s2)η(p)Λ(1).

The simplification for Wieferich primes can also be easily worked out. In
the next result, v2(n) denotes the highest power of 2 dividing n.
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Proposition 3.4. Let p and q be distinct odd primes.

1. pq is in Case 1 iff p and q are in Case 1 and also v2(w(p)) = v2(w(q)).
In this case, w(pq) = lcm(w(p), w(q)).

2. If p and q are in Case 1 and v2(w(p)) 6= v2(w(q)) then w(pq) =
2lcm(w(p), w(q)).

3. If p is in Case 1 and q is in Case 2 then w(pq) = lcm(2w(p), w(q)).

4. If p and q are in Case 2 then w(pq) = lcm(w(p), w(q)).

Proof: (1) Suppose pq is in Case 1. Then 2w(pq) is -1 modulo pq,
hence modulo p and q. So both p and q are in Case 1. We want to show
that v2(w(p)) = v2(w(q)). Suppose instead that v2(w(p)) < v2(w(q)). Let
L = lcm(w(p), w(q)); note that L/w(p) is even. Now w(p) and w(q) di-
vide w(pq) so L divides w(pq). Hence w(pq)/w(p) is even. But 2w(pq) =
(2w(p))w(pq)/w(p) ≡ 1 (mod p) while 2w(pq) ≡ −1 (mod pq), a contradiction.
So v2(w(p)) = v2(w(q)).

Conversely, suppose p and q are in Case 1 and v2(w(p)) = v2(w(q)). Then
L/w(p) and L/w(q) are odd. So 2L is -1 modulo p and q, hence modulo
pq. Thus pq is in Case 1. Note that w(pq)|L and clearly L|w(pq). So
w(pq) = lcm(w(p), w(q)).

(2) Here pq is in Case 2 so that w(pq) is the order of 2 modulo pq. As
p and q are in Case 1, the order of 2 modulo p is 2w(p) and modulo q it is
2w(q). Hence w(pq) = 2lcm(w(p), w(q)). Parts (3) and (4) are similar.

Examples (1) We consider k = 11 · 43. We have p = 11 is in Case 1
(with w(p) = 5) and q = 43 is also in Case 1 (with w(q) = 7). Thus by (1)
of Proposition 3.4 we have that k is in Case 1 and w(k) = 35. Theorem 1.3
becomes:

dim rad(QK
R ) = 1 + 10s1 + 14s2 + 70s3

Λ(QK
R ) = (−1)s1+s2+s3Λ(1),

where 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 3 and 0 ≤ s3 ≤ 6. Each choice of si occurs for
some R.

(2) The case k = 21 was considered in [4] where a computer search showed
that dim rad(QK

R ) = 5 was not possible. We may now easily check this. Here
w(3) = 1, w(7) = 3 and w(21) = 6. Hence dim rad(QK

R ) = 1+2s1+6s2+12s3

10



with each si ∈ {0, 1}. Thus 5,11 and 17 are precisely the odd values missed
by dim rad(QK

R ).
(3) The value of dim rad(QK

R ) does not always determine Λ(QK
R ), even

when R(1) = 0 (so that Λ(1) = 1). Consider k = 19 · 73. Here p = 19 is in
Case 1 with w(p) = 9 and 2 not a square modulo p. And q = 73 is in Case 2
with w(q) = 9 and 2 a square modulo q. So

dim rad(QK
R ) = 1 + 18s1 + 18s2 + 36s3

Λ(QK
R ) = (−1)s1+1Λ(1),

where 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 4 and 0 ≤ s3 ≤ 36. Then dim rad(QK
R ) = 19 has

two solutions, namely (s1, s2, s3) = (1, 0, 0) and (0, 1, 0), that yield different
values of Λ(QK

R ). We can construct specific examples using Corollary 1.4.
We can take Q19 or (x9 + x + 1)(x9 + x8 + 1) (a self-reciprocal factor of Q73)
for (xk + 1, (R∗)dn). Assuming R(1) = 0 so that Λ(1) = 1, these yield

R1 = x210

+ x29

R2 = x210

+ x29

+ x28

+ x27

+ x22

+ x2.

Both give radicals of dimension 19 but Λ(QK
R1

) = +1 while Λ(QK
R2

) = −1.

4 Maximal Artin-Schreier Curves

The Artin-Schreier curves considered here are:

CR(K) : y2 + y = xR(x),

where x, y ∈ K. This has genus g = 1
2
deg R(x) by [12] VI.4.1. The number

of points in K-projective space on CR is:

#CR(K) = 2N(QK
R ) + 1 = 2k + 1 + Λ(QK

R )
√

2k+r,

where r = dim rad(QK
R ) and we have used Equation 1. The curve is maximal

if equality holds in the Hasse-Weil bound

#CR(K) ≤ 2k + 1 + 2g
√

2k = 2k + 1 + deg R(x)
√

2k.

Clearly equality holds only if k is even. Maximal curves yield the best alge-
braic geometry codes.
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Lemma 4.1. Let k be even and r = dim rad(QK
R ). Then CR(K) is maximal

iff

1. deg R(x) = 2r/2 and

2. Λ(QK
R ) = +1.

Proof: We require Λ(QK
r )
√

2k+r = deg R(x)
√

k, which yields the result.

In [5] we found all R and K with CR(K) maximal and k − r = 2 (note:
the codimension k− r is necessarily even). We also gave one example, found
by computer search, of a maximal CR(K) with k − r = 4. As Lemma 4.1
prescribes the invariants of QK

R , we may now find all codimension 4 maximal
curves, at least for a wide range of k.

As k must be even, Theorem 1.3 reduces the computation of Λ(QK
R ) to

that of Λ(QT
R) where T = F2t for t, the highest 2-power dividing k. We have

been unable to do this in general, hence our restrictions on k.
Define

for 0 ≤ i ≤ 1 Si = number of εj = 1 with j ≡ i (mod 2)

for 0 ≤ i ≤ 3 Ti = number of εj = 1 with j ≡ i (mod 4).

Lemma 4.2. 1. Suppose K = F4. Then:

Λ(QK
R ) =

{
0, if S0 is odd

+1, if S0 is even.

2. Suppose K = F16. Then:

Λ(QK
R ) =





0, if T0 is odd and T1 + T3 is even

+1, if T0 ≡ T1 + T3 (mod 2)

−1, T0 is even and T1 + T3 is odd.

Proof: We check (2). If x ∈ K then x2i
= x2j

when i ≡ j (mod 4).
Hence, as a function on K, R = T0x + T1x

2 + T2x
4 + T3x

8. Further, x3 ∈ F4

so that tr(x3) = 0 and

tr(x9) = tr(x18) = tr(x3).
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Thus QR(x) = tr(T0x
2 + (T1 + T3)x

3) for all x ∈ K. A simple computation
shows that

N(QK
R ) =





4, if T0 even, T1 + T3 odd

8, if T0 odd, T1 + T3 even

12, if T0 odd, T1 + T3 odd

16, if T0 even, T1 + T3 even.

Comparing with Equation 1 gives the result. The proof of (1) is similar and
easier.

Lemma 4.3. Let r = dim rad(QK
R ). If CR(K) is maximal with k − r = 4

then k is divisible by 3 or 8. Further, if k is divisible by 5 but not 8 then s5

is its maximal value.

Proof: Assume k is not divisible by 8. Write k = tn with n odd and
t = 2 or 4. By 1.3

k − 4 = s1 +
∑

d|n
2sdw(d), (2)

with s1 ∈ {2, t} and 0 ≤ sd ≤ tν(d). Note that the maximum values, s1 = t
sd = tν(d), make the right side of Equation 2 equal to k. We are looking for
a solution just below the maximum.

If w(d) ≤ 2 then d divides 22± 1, 2± 1 and so d = 3 or 5. Thus if no d is
3 or 5 then every w(d) > 2 and there is no solution to Equation 2.

Suppose, if possible, that 3 does not divide k. Then k = 5m for some
even m. Write m = 2m0. The only solution to Equation 2 is:

s1 = t s5 = t− 1 sd = tν(d) for d 6= 5.

This is also the only solution if s5 is not maximal (whether or not 3 divides
k). Our construction, Corollary 1.4, shows that

(xk + 1, (R∗)dn) = (x + 1)tQt−1
5

∏

d6=5

Qt
d = (xk + 1)/Q5.

By Lemma 4.1, deg R = 2(k−4)/2 and so deg(R∗)dn = k − 4. Hence

R∗ =
xk + 1

Q5

=
(x + 1)(xk + 1)

x5 + 1
= (x + 1)

m−1∑
i=0

x5i.
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And so

R = εx +

m0−1∑
i=0

(
x25(m0−i)−2

+ x25(m0−i)−3
)

,

for ε ∈ {0, 1}.
Lemma 4.1 gives Λ(QK

R ) = +1 while Theorem 1.3 gives Λ(QK
R ) = −Λ(t).

Hence t = 4 since, by Lemma 4.2, Λ(2) 6= −1. So Lemma 4.2 gives T0 is
even and T1 + T3 is odd. We have R explicitly so we compute the Ti, writing
m0 = 4` + u:

u T0 T1 T2 T3

0 2` + ε 2` 2` 2`
1 2` + ε 2` 2` + 1 2` + 1
2 2` + 1 + ε 2` 2` + 1 2` + 2
3 2` + 2 + ε 2` + 1 2` + 1 2` + 2

(3)

If ε = 1 then only u = 2 gives T0 even, but the T1 + T3 is even. Hence ε = 0
and we must have u odd. But then k = 5 · 2m0 = 5 · 2(4`+u) is not divisible
by t = 4, a contradiction. Hence k is divisible by 3.

Example 4.4. Lemma 4.3 can fail when k− r = 6. We use Corollary 1.4 to
construct an example with k = 20. We need r = 14 = s1 + 4s5 so we take
s1 = 2 and s5 = 3. Then

(xk + 1, (R∗)dn) = (x + 1)2Q3
5 = (x10 + 1)(x4 + x3 + x2 + x + 1)

R = x27

+ x26

+ x25

+ x24

+ x23

+ εx.

As before, Λ(QK
R ) = −Λ(4) so that we require T0 to be even and T1+T3 to be

odd. Thus taking ε = 1 gives an example of a maximal curve with k− r = 6
and k not divisible by either 3 or 8.

Theorem 4.5. Suppose k is even but not a multiple of 8. Let r = dim rad(QK
R ).

Then the maximal curves CR(K) with k − r = 4 are precisely:

1. k = 6m with m odd and

R = x2 +

3(m−1)/2∑
i=1

(
x26i+1

+ x26i−1
)

.

2. k = 12m with m odd and

R = x +
m−1∑
i=0

(
x26i+4

+ x26i+2
)

.

14



3. k = 12m with m odd and

R = x +
m−1∑
i=0

(
x26i+4

+ x26i+3

+ x26i+2
)

.

Proof: From Lemma 4.3 we have k = 6m or 12m with m odd. We first
do the case k = 6m. Equation 2 becomes:

k − 4 = 2 + 2s3 +
∑

d|3m,d 6=3

2sdw(d),

for 0 ≤ s3 ≤ 2 and 0 ≤ sd ≤ 2ν(d). The only solution is s3 = 0 and
sd = 2ν(d) for d 6= 3, since all w(d) > 2 except for d = 5 when s5 is its
maximal value 2 by Lemma 4.3. Thus

(xk + 1, (R∗)dn) =
xk + 1

Q2
3

= (x2 + 1)
m−1∑
i=0

x6i.

Lemma 4.1 gives deg R = 2(k−4)/2 and deg(R∗)dn = k − 4. Hence R∗ is this
gcd and

R = εx +

3(m−1)/2∑
i=1

(
x26i+1 − x26i−1

)
.

Lastly, Λ(QK
R ) = +1 by Lemma 4.1 while Λ(QK

R ) = Λ(2) by Theorem 1.3.
Hence ε = 0 by Lemma 4.2.

Now suppose k = 12m with m odd. Equation 1 becomes:

k − 4 = s1 + 2s3 +
∑

d|3m,d6=3

2sdw(d),

where s1 ∈ {2, 4}, 0 ≤ s3 ≤ 4 and 0 ≤ sd ≤ 4ν(d). As before, each sd,
d 6= 1, 3, is its maximal value. So there are two solutions, (s1, s3) = (4, 2)
and (2, 3). In the first case, (R∗)dn = (xk + 1)/Q2

3 and R has the form (2).
Here Lemma 4.2 is used to determine the coefficient of x. In the second case,
(R∗)dn = (xk + 1)/(x6 + 1) and R has the form (3).

We note that the example of [5] is statement (2) of Theorem 4.5 with
m = 1.
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