Trace Forms over Finite Fields of Characteristic 2 with Prescribed Invariants

Robert W. Fitzgerald
Southern Illinois University Carbondale, rfitzg@math.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles
Part of the Mathematics Commons
Published in Finite Fields and Their Applications, 15(1), 69-81.

[^0]
Trace forms over finite fields of characteristic 2 with prescribed invariants

Robert W. Fitzgerald

Abstract

Set $F=\mathbf{F}_{\mathbf{2}}$ and $K=\mathbf{F}_{\mathbf{2}^{\mathbf{k}}}$. Let $$
R(x)=\sum_{i=0}^{m} \epsilon_{i} x^{2^{i}}
$$

with each $\epsilon_{i} \in\{0,1\}$. Our trace forms are the quadratic forms $Q_{R}^{K}: K \rightarrow F$ given by $Q_{R}^{K}(x)=\operatorname{tr}_{K / F}(x R(x))$. These trace forms have appeared in a variety of contexts. They have been used to compute weight enumerators of certain binary codes $[1,2]$, to construct curves with many rational points and the associated trace codes [5], as part of an authentication scheme [3], and to construct certain binary sequences in $[7,8,6]$.

In each of these applications one wants the number of solutions (in K) to $Q_{R}^{K}(x)=0$, denoted by $N\left(Q_{R}^{K}\right)$. This is easily worked out (see [10], 6.26,6.32) in terms of the standard classification of quadratic forms:

$$
\begin{equation*}
N\left(Q_{R}^{K}\right)=\frac{1}{2}\left(2^{k}+\Lambda\left(Q_{R}^{K}\right) \sqrt{2^{k+r\left(Q_{R}^{K}\right)}}\right) \tag{1}
\end{equation*}
$$

where $r\left(Q_{R}^{K}\right)=\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)$ and

$$
\Lambda\left(Q_{R}^{K}\right)= \begin{cases}0, & \text { if } Q_{R}^{K} \simeq z^{2}+\sum_{i=1}^{v} x_{i} y_{i} \\ 1, & \text { if } Q_{R}^{K} \simeq \sum_{i=1}^{v} x_{i} y_{i} \\ -1, & \text { if } Q_{R}^{K} \simeq x_{1}^{2}+y_{1}^{2}+\sum_{i=1}^{v} x_{i} y_{i}\end{cases}
$$

However, given R and K, there is no simple way to determine the invariants $r\left(Q_{R}^{K}\right)$ and $\Lambda\left(Q_{R}^{K}\right)$. The only known results cover the case of one-term
$R[8]$ and two-term $R[4]$. Here we solve the inverse problem: Given K, determine all possible pairs of invariants (r, Λ) and construct the R with these invariants. We use this to construct new maximal Artin-Schreier curves.

1 General Results

We fix the notation. When R is fixed, we write $r(k)$ for $\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)$ and $\Lambda(k)$ for $\Lambda\left(Q_{R}^{K}\right)$. For a linearized polynomial $L(x)=\sum a_{i} x^{2^{i}}$ over K, we set $L_{d n}(x)=\sum_{2^{i}} a_{i} x^{i}$. And for a polynomial $\ell(x)=\sum a_{i} x^{i}$ over K, we set $\ell_{u p}(x)=\sum a_{i} x^{2^{i}}$.

Given $R(x)=\sum_{i=0}^{h} a_{i} x^{2^{i}}$, we set

$$
R^{*}(x)=\sum_{i=1}^{h} a_{i}\left(x^{2^{h+i}}+x^{2^{h-i}}\right)
$$

Note that $\left(R^{*}\right)_{d n}(1)=0$. Set $f^{(r)}(x)=x^{d} f(1 / x)$, where $d=\operatorname{deg} f$. Then f is self-reciprocal iff $f(x)=f^{(r)}(x)$.

Let d be odd. We need to distinguish two cases. We say d is in Case 1 when -1 is a power of 2 modulo d. We write $\eta(d)=1$ to indicate Case 1 and let $w(d)$ be the least positive integer with $2^{w} \equiv-1(\bmod d)$. We say d is in Case 2 when -1 is not a power of 2 modulo d. We write $\eta(d)=0$ to indicate Case 2 and let $w(d)$ be the least positive integer with $2^{w} \equiv 1(\bmod d)$. Note that

$$
2^{w(d)} \equiv(-1)^{\eta(d)} \quad(\bmod d)
$$

in either case.
We summarize the known results on factors of $x^{k}+1$.
Lemma 1.1. 1. If $k=$ tn where t is a 2-power and n is odd then $x^{k}+1=$ $\prod_{d \mid n} Q_{d}(x)^{t}$, where Q_{d} is the cyclotomic polynomial of order d.
2. Let d be odd. Set $\nu(d)=\varphi(d) /(2 w(d))$.
(a) In Case 1, $Q_{d}(x)$ factors as a product of $\nu(d)$ many (distinct) irreducible, self-reciprocal polynomials of degree $2 w(d)$.
(b) In Case 2, $Q_{d}(x)$ factors as a product of $\nu(d)$ many (distinct) pairs $f(x) f^{(r)}(x)$, where $f(x)$ is irreducible, degree $w(d)$, and not self-reciprocal.

Proof: (1) follows from $x^{k}+1=\left(x^{n}+1\right)^{t}$ and (2) follows from [13].
We will use the term self-reciprocal factor of $Q_{d}(x), d$ odd, to mean irreducible, self-reciprocal factors in Case 1 and pairs $f(x) f^{(r)}(x)$ with $f(x)$ irreducible in Case 2. Thus, in either case, $Q_{d}(x)$ is a product of $\nu(d)$ many (distinct) self-reciprocal factors of degree $2 w(d)$.

The key result is:
Proposition 1.2. $\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)=\operatorname{deg}\left(x^{k}+1,\left(R^{*}\right)_{d n}(x)\right)$.
Proof: Now $\alpha \in \operatorname{rad}\left(Q_{R}^{K}\right)$ iff $\alpha \in K$ and $R^{*}(\alpha)=0$ by [6] Lemma 8. Since the roots of $x^{2^{k}}+x$ are distinct, we have

$$
\begin{aligned}
\left|\operatorname{rad}\left(Q_{R}^{K}\right)\right| & =\operatorname{deg}\left(x^{2^{k}}+x, R^{*}(x)\right) \\
& =\operatorname{deg}\left(x^{k}+1,\left(R^{*}\right)_{d n}(x)\right)_{u p} \\
& =2^{\operatorname{deg}\left(x^{k}+1,\left(R^{*}\right)_{d n}(x)\right)}
\end{aligned}
$$

We have used that for linearized L_{1} and L_{2} that $\left(L_{1}, L_{2}\right)=\left(\left(L_{1}\right)_{d n},\left(L_{2}\right)_{d n}\right)_{u p}$, by [10], p. 111. Hence the result follows.

The following is a substantial improvement over [4] Theorem 3.3.
Theorem 1.3. Write $k=$ tn with t a 2-power and n odd. Set $T=\mathbf{F}_{\mathbf{2}^{\mathbf{t}}}$ and $D=\{d: d \mid n, d>1\}$. Then:

1. $r\left(Q_{R}^{K}\right)=s_{1}+\sum_{d \in D} 2 s_{d} w(d)$ for some s_{d} such that
(a) if $t=1$ then $s_{1}=1$;
(b) if $t>1$ then s_{1} is even and $0<s_{1} \leq t$;
(c) for $d \in D, 0 \leq s_{d} \leq t \nu(d)$.
2. $\Lambda\left(Q_{R}^{K}\right)=(-1)^{\sum_{D} s_{d} \eta(d)}\left(\frac{2}{n}\right)^{t} \Lambda\left(Q_{R}^{T}\right)$. Here $\left(\frac{2}{n}\right)$ is the Jacobi symbol, detecting whether or not 2 is a square modulo n.

Proof: (1) If irreducible f divides $\left(R^{*}\right)_{d n}$ then so does $f^{(r)}$ since $\left(R^{*}\right)_{d n}$ is self-reciprocal. Hence Lemma 1.1 yields:

$$
\left(x^{k}+1,\left(R^{*}\right)_{d n}\right)=(x+1)^{s_{1}} \prod_{d \in D} \prod_{i=1}^{\nu(d)} g_{i}^{d}(x)^{u_{i}(d)}
$$

where the g_{i}^{d} are the self-reciprocal factors of Q_{d} and $0 \leq u_{i}(d) \leq t$. Set $s_{d}=\sum_{i=1}^{\nu(d)} u_{i}(d)$. Note that $0 \leq s_{d} \leq t \nu(d)$. Then 1.2 gives

$$
r\left(Q_{R}^{K}\right)=s_{1}+\sum_{d \in D} s_{d} \cdot 2 w(d)
$$

We check the bounds on s_{1}. First, $\left(R^{*}\right)_{d n}$ and $x^{k}+1$ are both divisible by $x+1$ so that $s_{1} \geq 1$. And $s_{1} \leq t$ as t is the highest power of $x+1$ dividing $x^{k}+1$. If $t=1$ then $s_{1}=1$. Suppose $t>1$. Suppose, by way of contradiction, that s_{1} is odd. In particular, $s_{1}<t$ so that $(x+1)^{s_{1}+1}$ divides $x^{k}+1=\left(x^{n}+1\right)^{t}$. Write $\left(R^{*}\right)_{d n}=h(x) \cdot\left(x^{k}+1,\left(R^{*}\right)_{d n}\right)$ for some $h(x)$. Then $h(x)$ is self-reciprocal and $\operatorname{deg} h(x)$ is odd. Then $h(1)=0$ and so $(x+1)^{s_{1}+1}$ also divides $\left(R^{*}\right)_{d n}$, contrary to the assumption that s_{1} is the highest power of $x+1$ dividing both $x^{k}+1$ and $\left(R^{*}\right)_{d n}$. Hence s_{1} is even.
(2) Let p be an odd prime dividing n. Write $n=p^{\ell} m$ where $(p, m)=1$. Note that $k=p^{\ell}$ tm. Set

$$
\begin{aligned}
& D_{0}=\{d \in D: p \mid d\} \\
& D_{1}=\{d \in D: p \nmid d\}=\{\text { divisors } d>1 \text { of } m\}
\end{aligned}
$$

For $E=\mathbf{F}_{2^{\text {e }}}$ recall that we write $r(e)$ for $r\left(Q_{R}^{E}\right)$ and $\Lambda(e)$ for $\Lambda\left(Q_{R}^{E}\right)$. By [4] Theorem 3.1,

$$
\Lambda(k) 2^{\frac{1}{2}(r(k)-r(t m))} \equiv\left(\frac{2}{p^{\ell}}\right)^{t} \Lambda(t m) \quad(\bmod p)
$$

As $x^{t m}+1$ divides $x^{k}+1$, we have

$$
\left(x^{m}+1,\left(R^{*}\right)_{d n}\right)=(x+1)^{s_{1}} \prod_{d \in D_{1}} \prod_{i=1}^{\nu(d)} g_{i}^{d}(x)^{u_{i}(x)}
$$

for the same s_{1} and $u_{i}(d)$ as before. So

$$
\begin{aligned}
r(m) & =s_{1}+\sum_{d \in D_{1}} s_{d} \cdot 2 w(d) \\
r(k)-r(m) & =\sum_{d \in D_{0}} s_{d} \cdot 2 w(d) \\
2^{\frac{1}{2}(r(k)-r(m))} & =2^{\sum_{D_{0}} s_{d} w(d)} \equiv(-1)^{\sum_{D_{0}} s_{d} \eta(d)} \quad(\bmod p),
\end{aligned}
$$

as p divides each $d \in D_{0}$. Then

$$
\Lambda(k)=\left(\frac{2}{p^{\ell}}\right)^{t}(-1)^{\sum_{D_{0}} s_{d} \eta(d)} \Lambda(t m)
$$

A simple induction argument completes the proof.
The proof of 1.3 shows that every possible pair of invariants (r, Λ) does in fact arise. We record this as:

Corollary 1.4. Write $d=t n$ as before. Suppose s_{1} and $s_{d}, d \in D$ satisfy the conditions of Theorem 1.3. Then $r\left(Q_{R}^{K}\right)=s_{1}+\sum_{D} 2 s_{d} w(d)$ iff

$$
\left(R^{*}\right)_{d n}=h(x)(x+1)^{s_{1}} \prod_{d \in D} \prod_{i=1}^{\nu(d)} g_{i}^{d}(x)^{u_{i}(d)}
$$

where the g_{i}^{d} are self-reciprocal factors of $Q_{d}(x), s_{d}=\sum_{i=1}^{\nu(d)} u_{i}(d)$ and $h(x)$ is self-reciprocal and prime to $\left(x^{k}+1\right) /\left(\prod_{D} \prod g_{i}^{d}(x)^{u_{i}(d)}\right)$.

We note that if the coefficients, a_{i}, of R are allowed to take on any value in K then every quadratic form over K arises as a Q_{R}^{K} (for some R) [5] Proposition 1.1, and so all invariant pairs are possible. Thus 1.3 gives the restrictions on the quadratic forms Q_{R}^{K} that follow from restricting the coefficients to 0,1 .

2 When k is prime

Example 2.1. Suppose $k=43$. Here we are in Case $1, w(k)=7$ and 2 is not a square modulo k. Say $R(1)=0$ so that $\Lambda(1)=1$ (see [4] Corollary 3.4). The possible values of $\left(r\left(Q_{R}^{K}\right), \Lambda\left(Q_{R}^{K}\right)\right)$ are:

$$
(1,-1) \quad(15,+1) \quad(29,-1) \quad(43,+1)
$$

We construct all $R(x)$ of degree 2^{9} with $r\left(Q_{R}^{K}\right)=15$ and $\Lambda\left(Q_{R}^{K}\right)=+1$. First, $x^{43}+1=(x+1) f_{1} f_{2} f_{3}$ where

$$
\begin{aligned}
& f_{1}=x^{14}+x^{13}+x^{11}+x^{7}+x^{3}+x+1 \\
& f_{2}=x^{14}+x^{12}+x^{10}+x^{7}+x^{4}+x^{2}+1 \\
& f_{3}=x^{14}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+1 .
\end{aligned}
$$

Then $\left(R^{*}\right)_{d n}=h(x) f_{i}$ for some i and some self-reciprocal h of degree 4 with $h(1)=0$. There are only two choices for h, namely, $h_{1}=x^{4}+1$ and $h_{2}=x^{4}+x^{3}+x^{2}+x+1$. So there are six choices for $\left(R^{*}\right)_{d n}$. Note that R and $R+x$ yield the same R^{*}, so we take whichever of $R, R+x$ satisfies $R(1)=0$. We obtain:

$\left(R^{*}\right)_{d n}$	R
$h_{1} f_{1}$	$x^{2^{9}}+x^{2^{6}}+x^{2^{4}}+x^{2^{3}}$
$h_{2} f_{1}$	$x^{2^{9}}+x^{2^{8}}+x^{2^{5}}+x^{2^{3}}$
$h_{1} f_{2}$	$x^{2^{9}}+x^{2^{8}}+x^{2^{6}}+x^{2^{5}}+x^{2^{4}}+x$
$h_{2} f_{2}$	$x^{2^{9}}+x^{2^{7}}+x^{2^{5}}+x^{2^{4}}+x^{2^{3}}+x^{2}$
$h_{1} f_{3}$	$x^{2^{9}}+x^{2^{7}}+x^{2^{3}}+x^{2^{2}}+x^{2}+x$
$h_{2} f_{3}$	$x^{2^{9}}+x^{2^{8}}+x^{2^{7}}+x^{2^{3}}$.

The goal of this section is to imitate the example and count the number of R with a given pair of invariants (r, Λ).

Lemma 2.2. Let d be even. Let $f(x) \in F[x]$ be self-reciprocal of degree d and satisfy $f(1)=1$. Let $N>d$ be even. The number of self-reciprocal $g(x) \in F[x]$ which are multiples of f, degree N and satisfy $g(1)=0$ is $2^{\frac{1}{2}(N-d)-1}$.

Proof: Write $g(x)=h(x) f(x)$. We require that $h(x)$ be self-reciprocal, degree $N-d$ and have $h(1)=0$. The last condition implies that $h(x)$ has no middle term (that is, $x^{(N-d) / 2}$). Thus $h(x)$ is determined by the coefficients of $x^{i}, 1 \leq i<\frac{1}{2}(N-d)$, giving the result.

Lemma 2.3. Let $f_{1}, f_{2}, \ldots, f_{t}$ be pairwise prime, self-reciprocal polynomials in $F[x]$ of even degree d that satisfy $f_{i}(1)=1$. Let N be even and set

$$
\ell=\min \left\{\left\lceil\frac{N}{d}\right\rceil-1, t\right\} .
$$

The number of self-reciprocal $h(x) \in F[x]$ of degree N, prime to $f_{1} \cdot f_{2} \cdots \cdots f_{t}$ and satisfying $h(1)=0$ is:

$$
\sum_{m=0}^{\ell}(-1)^{m}\binom{t}{m} 2^{\frac{1}{2}(N-d m)-1}
$$

Proof: Let $M(f)$ denote the set of self-reciprocal polynomials $h(x) \in$ $F[x]$ of degree N with $h(1)=0$ and $f \mid h$. Let

$$
M\left(f_{i_{1}}, f_{i_{2}}, \ldots, f_{i_{m}}\right)=\bigcap_{j=1}^{m} M\left(f_{i_{j}}\right)
$$

where $m \leq t$. If $N \leq d m$ then $M\left(f_{i_{1}}, \ldots, f_{i_{m}}\right)=\emptyset$ (if $N=d m$ then we must have $h(1)=1$), Otherwise, $d m<N$ so that $m \leq \ell$. Apply 2.2 to $f=f_{i_{1}} \cdot f_{i_{2}} \cdots f_{i_{m}}$ to get

$$
\left|M\left(f_{i-1}, f_{i_{2}}, \ldots, f_{i_{m}}\right)\right|= \begin{cases}2^{\frac{1}{2}(N-d m)-1}, & \text { if } m \leq \ell \\ 0, & \text { if } m>\ell\end{cases}
$$

The total number of self-reciprocal $h(x)$ of degree N with $h(1)=0$ is $2^{\frac{1}{2} N-1}$. So the number of $h(x)$ of the statement is:

$$
\begin{aligned}
2^{\frac{1}{2} N-}-\left|\bigcup_{i=1}^{t} M\left(f_{i}\right)\right| & =2^{\frac{1}{2} N-1}-\sum_{m=1}^{t} \sum_{i_{1}<\cdots i_{m}}\left|M\left(f_{i_{1}}, \ldots, f_{i_{m}}\right)\right| \\
& =2^{\frac{1}{2} N-1}-\sum_{m=1}^{\ell}(-1)^{m+1}\binom{t}{m} 2^{\frac{1}{2}(N-d m)-1} \\
& =\sum_{m=0}^{\ell}(-1)^{m}\binom{t}{m} 2^{\frac{1}{2}(N-d m)-1}
\end{aligned}
$$

We continue to write $\nu(k)$ for $\varphi(k) /(2 w(k))$.
Theorem 2.4. Let k be a prime. For any R :

1. $\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)=1+2 s w(k)$ for some $0 \leq s \leq v(k)$.
2. If $R(1)=1$ then $\Lambda\left(Q_{R}^{K}\right)=0$.
3. If $R(1)=0$ then $\Lambda\left(Q_{R}^{K}\right)=(-1)^{s \eta(k)}\left(\frac{2}{k}\right)$.
4. The number of R of degree 2^{N} with $R(1)=0$ and $\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)=$ $1+2 s w(k) i s:$

$$
\binom{\nu(k)}{s} \sum_{m=0}^{\ell}(-1)^{m}\binom{\nu(k)-s}{m} 2^{N-w(k)(s+m)-1}
$$

where

$$
\ell=\min \left\{\left\lceil\frac{N}{w(k)}\right\rceil-s-1, \nu(k)-s\right\} .
$$

Proof: (1), (2) and (3) follow from Theorem 1.3. To prove (4), fix s. By Corollary 1.4, $\left(x^{k}+1,\left(R^{*}\right)_{d n}\right)$ is $x+1$ times a product of s selfreciprocal factors of $Q_{k}(x)$, each of degree $2 w(k) . Q_{k}(x)$ has $\nu(k)$ many selfreciprocal factors. Choose s of them, call their product g and let $f_{1}, f_{2}, \ldots, f_{t}$, $t=\nu(k)-s$, be the other self-reciprocal factors. Then $R^{*}=h(x) g(x)$ where $h(x)$ is self-reciprocal, $h(1)=0$ (so that $x+1$ is a factor of R^{*}), of degree $2 N-2 \operatorname{sw}(k)$ (as $\operatorname{deg} R=2^{N}$ iff $\operatorname{deg} R^{*}=2 N$) and $h(x)$ is prime to g. Given this choice of the s factors then Lemma 2.3 gives the number of such h 's as:

$$
\sum_{m=0}^{\ell}(-1)^{m}\binom{\nu(k)-s}{m} 2^{\frac{1}{2}(2 N-2 s w(k)-m \cdot 2 w(k))-1}
$$

where

$$
\begin{aligned}
\ell & =\min \left\{\left\lceil\frac{2 N-2 s w(k)}{2 w(k)}\right\rceil-1, \nu(k)-s\right\} \\
& =\min \left\{\left\lceil\frac{N}{w(k)}\right]-s-1, \nu(k)-s\right\} .
\end{aligned}
$$

Hence the number of R^{*} of degree $2^{2 N}$ with $\left(x^{k}+1,\left(R^{*}\right)_{d n}\right)=(x+1) g(x)$ is:

$$
\binom{\nu(k)}{s} \sum_{m=0}^{\ell}(-1)^{m}\binom{\nu(k)-s}{m} 2^{N-w(k)(s+m)-1}
$$

Both R and $R+x$ yield the same R^{*} and exactly one of $R, R+x$ maps 1 to 1 . So the number of R with $R(1)=1$ and $\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)=1+2 s w(k)$ is given by the same formula.

One may easily check the formula on Example 2.1. There $k=43, w(k)=$ 7 and so $\nu(k)=3$. The example considered R of degree 2^{9} and $r=15$ (which is $s=1$). Then $\ell=\min \left\{\left\lceil\frac{9}{7}-1-1,6-1\right\}=0\right.$ and the number of such R is: $\binom{3}{1}(-1)^{0}\binom{6-1}{0} 2^{9-7-1}=6$, which agrees with the example.

3 When k is a product of two primes

The values of $w(d)$, over divisors of k, are not independent. Thus the formulas for $\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)$ and $\Lambda\left(Q_{R}^{K}\right)$ of Theorem 1.3 simplify. But the underlying number theory is complicated. We illustrate these points by considering the easy case of k being a product of two primes.

Lemma 3.1. Let p be an odd prime and let $\epsilon= \pm 1$.

1. If $2^{w} \equiv \epsilon(\bmod p)$ then $2^{w p} \equiv \epsilon\left(\bmod p^{2}\right)$.
2. p^{2} is in Case 1 iff p is.
3. $w\left(p^{2}\right)=w(p)$ or $p w(p)$.

Proof: (1) We have:

$$
2^{w p}-\epsilon=\left(2^{w}-\epsilon\right)\left(2^{w(p-1)}+\epsilon 2^{w(p-2)}+\cdots+\epsilon^{p-2} 2^{w}+\epsilon^{p-1}\right) .
$$

Modulo p, the second factor is $p \epsilon^{p-1}$. Thus p^{2} divides $2^{w p}-\epsilon$.
(2) If p is in Case 1 then $2^{w} \equiv-1(\bmod p)$ for some w. Then (1) shows p^{2} is also in Case 1. And if p^{2} is in Case 1 then $2^{v} \equiv-1\left(\bmod p^{2}\right)$ for some v. So $2^{v} \equiv-1(\bmod p)$ and p is in Case 1 .
(3) We have $w(p) \mid w\left(p^{2}\right)$ and by (1), w($\left.p^{2}\right) \mid p w(p)$.

Remark 3.2. It is possible for $w\left(p^{2}\right)$ to equal $w(p)$, but exceedingly rare. If $w\left(p^{2}\right)=w(p)$ then p is a Wieferich prime, meaning that $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$ (see [11]). A computer search [9] has shown that the only Wieferich primes less than 1.25×10^{15} are 1093 and 3511 . Both 1093 and 3511 satisfy $w(p)=$ $w\left(p^{2}\right)$ (this can easily be checked with a computer). Further, 1093 is in Case 1 (with $w(1093)=182)$ and 3511 is in Case $2($ with $w(3511)=1755)$.

A typical simplification of Theorem 1.3 is:
Corollary 3.3. Let $k=p^{2}$, with p and odd prime that is not a Wieferich prime. Then

$$
\begin{aligned}
\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right) & =1+\left(2 s_{1}+2 p s_{2}\right) w(p) \\
\Lambda\left(Q_{R}^{K}\right) & =(-1)^{\left(s_{1}+s_{2}\right) \eta(p)} \Lambda(1)
\end{aligned}
$$

The simplification for Wieferich primes can also be easily worked out. In the next result, $v_{2}(n)$ denotes the highest power of 2 dividing n.

Proposition 3.4. Let p and q be distinct odd primes.

1. $p q$ is in Case 1 iff p and q are in Case 1 and also $v_{2}(w(p))=v_{2}(w(q))$. In this case, $w(p q)=\operatorname{lcm}(w(p), w(q))$.
2. If p and q are in Case 1 and $v_{2}(w(p)) \neq v_{2}(w(q))$ then $w(p q)=$ $2 l c m(w(p), w(q))$.
3. If p is in Case 1 and q is in Case 2 then $w(p q)=\operatorname{lcm}(2 w(p), w(q))$.
4. If p and q are in Case 2 then $w(p q)=\operatorname{lcm}(w(p), w(q))$.

Proof: (1) Suppose $p q$ is in Case 1. Then $2^{w(p q)}$ is -1 modulo $p q$, hence modulo p and q. So both p and q are in Case 1. We want to show that $v_{2}(w(p))=v_{2}(w(q))$. Suppose instead that $v_{2}(w(p))<v_{2}(w(q))$. Let $L=\operatorname{lcm}(w(p), w(q))$; note that $L / w(p)$ is even. Now $w(p)$ and $w(q)$ divide $w(p q)$ so L divides $w(p q)$. Hence $w(p q) / w(p)$ is even. But $2^{w(p q)}=$ $\left(2^{w(p)}\right)^{w(p q) / w(p)} \equiv 1(\bmod p)$ while $2^{w(p q)} \equiv-1(\bmod p q)$, a contradiction. So $v_{2}(w(p))=v_{2}(w(q))$.

Conversely, suppose p and q are in Case 1 and $v_{2}(w(p))=v_{2}(w(q))$. Then $L / w(p)$ and $L / w(q)$ are odd. So 2^{L} is -1 modulo p and q, hence modulo $p q$. Thus $p q$ is in Case 1. Note that $w(p q) \mid L$ and clearly $L \mid w(p q)$. So $w(p q)=\operatorname{lcm}(w(p), w(q))$.
(2) Here $p q$ is in Case 2 so that $w(p q)$ is the order of 2 modulo $p q$. As p and q are in Case 1, the order of 2 modulo p is $2 w(p)$ and modulo q it is $2 w(q)$. Hence $w(p q)=2 \operatorname{lcm}(w(p), w(q))$. Parts (3) and (4) are similar.

Examples (1) We consider $k=11 \cdot 43$. We have $p=11$ is in Case 1 (with $w(p)=5$) and $q=43$ is also in Case 1 (with $w(q)=7$). Thus by (1) of Proposition 3.4 we have that k is in Case 1 and $w(k)=35$. Theorem 1.3 becomes:

$$
\begin{aligned}
\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right) & =1+10 s_{1}+14 s_{2}+70 s_{3} \\
\Lambda\left(Q_{R}^{K}\right) & =(-1)^{s_{1}+s_{2}+s_{3}} \Lambda(1),
\end{aligned}
$$

where $0 \leq s_{1} \leq 1,0 \leq s_{2} \leq 3$ and $0 \leq s_{3} \leq 6$. Each choice of s_{i} occurs for some R.
(2) The case $k=21$ was considered in [4] where a computer search showed that $\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)=5$ was not possible. We may now easily check this. Here $w(3)=1, w(7)=3$ and $w(21)=6$. Hence dim $\operatorname{rad}\left(Q_{R}^{K}\right)=1+2 s_{1}+6 s_{2}+12 s_{3}$
with each $s_{i} \in\{0,1\}$. Thus 5,11 and 17 are precisely the odd values missed by $\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)$.
(3) The value of dim $\operatorname{rad}\left(Q_{R}^{K}\right)$ does not always determine $\Lambda\left(Q_{R}^{K}\right)$, even when $R(1)=0$ (so that $\Lambda(1)=1$). Consider $k=19 \cdot 73$. Here $p=19$ is in Case 1 with $w(p)=9$ and 2 not a square modulo p. And $q=73$ is in Case 2 with $w(q)=9$ and 2 a square modulo q. So

$$
\begin{aligned}
\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right) & =1+18 s_{1}+18 s_{2}+36 s_{3} \\
\Lambda\left(Q_{R}^{K}\right) & =(-1)^{s_{1}+1} \Lambda(1)
\end{aligned}
$$

where $0 \leq s_{1} \leq 1,0 \leq s_{2} \leq 4$ and $0 \leq s_{3} \leq 36$. Then $\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)=19$ has two solutions, namely $\left(s_{1}, s_{2}, s_{3}\right)=(1,0,0)$ and $(0,1,0)$, that yield different values of $\Lambda\left(Q_{R}^{K}\right)$. We can construct specific examples using Corollary 1.4. We can take Q_{19} or $\left(x^{9}+x+1\right)\left(x^{9}+x^{8}+1\right)$ (a self-reciprocal factor of Q_{73}) for $\left(x^{k}+1,\left(R^{*}\right)_{d n}\right)$. Assuming $R(1)=0$ so that $\Lambda(1)=1$, these yield

$$
\begin{aligned}
& R_{1}=x^{2^{10}}+x^{2^{9}} \\
& R_{2}=x^{2^{10}}+x^{2^{9}}+x^{2^{8}}+x^{2^{7}}+x^{2^{2}}+x^{2}
\end{aligned}
$$

Both give radicals of dimension 19 but $\Lambda\left(Q_{R_{1}}^{K}\right)=+1$ while $\Lambda\left(Q_{R_{2}}^{K}\right)=-1$.

4 Maximal Artin-Schreier Curves

The Artin-Schreier curves considered here are:

$$
C_{R}(K): y^{2}+y=x R(x),
$$

where $x, y \in K$. This has genus $g=\frac{1}{2} \operatorname{deg} R(x)$ by [12] VI.4.1. The number of points in K-projective space on C_{R} is:

$$
\# C_{R}(K)=2 N\left(Q_{R}^{K}\right)+1=2^{k}+1+\Lambda\left(Q_{R}^{K}\right) \sqrt{2^{k+r}}
$$

where $r=\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)$ and we have used Equation 1. The curve is maximal if equality holds in the Hasse-Weil bound

$$
\# C_{R}(K) \leq 2^{k}+1+2 g \sqrt{2^{k}}=2^{k}+1+\operatorname{deg} R(x) \sqrt{2^{k}}
$$

Clearly equality holds only if k is even. Maximal curves yield the best algebraic geometry codes.

Lemma 4.1. Let k be even and $r=\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)$. Then $C_{R}(K)$ is maximal iff

1. $\operatorname{deg} R(x)=2^{r / 2} \quad$ and
2. $\Lambda\left(Q_{R}^{K}\right)=+1$.

Proof: We require $\Lambda\left(Q_{r}^{K}\right) \sqrt{2^{k+r}}=\operatorname{deg} R(x) \sqrt{k}$, which yields the result.
In [5] we found all R and K with $C_{R}(K)$ maximal and $k-r=2$ (note: the codimension $k-r$ is necessarily even). We also gave one example, found by computer search, of a maximal $C_{R}(K)$ with $k-r=4$. As Lemma 4.1 prescribes the invariants of Q_{R}^{K}, we may now find all codimension 4 maximal curves, at least for a wide range of k.

As k must be even, Theorem 1.3 reduces the computation of $\Lambda\left(Q_{R}^{K}\right)$ to that of $\Lambda\left(Q_{R}^{T}\right)$ where $T=\mathbf{F}_{\mathbf{2}^{\mathbf{t}}}$ for t, the highest 2-power dividing k. We have been unable to do this in general, hence our restrictions on k.

Define

$$
\begin{array}{lll}
\text { for } 0 \leq i \leq 1 & S_{i}=\text { number of } \epsilon_{j}=1 \text { with } j \equiv i & (\bmod 2) \\
\text { for } 0 \leq i \leq 3 & T_{i}=\text { number of } \epsilon_{j}=1 \text { with } j \equiv i & (\bmod 4) .
\end{array}
$$

Lemma 4.2. 1. Suppose $K=\mathbf{F}_{4}$. Then:

$$
\Lambda\left(Q_{R}^{K}\right)= \begin{cases}0, & \text { if } S_{0} \text { is odd } \\ +1, & \text { if } S_{0} \text { is even }\end{cases}
$$

2. Suppose $K=\mathbf{F}_{\mathbf{1 6}}$. Then:

$$
\Lambda\left(Q_{R}^{K}\right)= \begin{cases}0, & \text { if } T_{0} \text { is odd and } T_{1}+T_{3} \text { is even } \\ +1, & \text { if } T_{0} \equiv T_{1}+T_{3}(\bmod 2) \\ -1, & T_{0} \text { is even and } T_{1}+T_{3} \text { is odd. }\end{cases}
$$

Proof: We check (2). If $x \in K$ then $x^{2^{i}}=x^{2^{j}}$ when $i \equiv j(\bmod 4)$. Hence, as a function on $K, R=T_{0} x+T_{1} x^{2}+T_{2} x^{4}+T_{3} x^{8}$. Further, $x^{3} \in \mathbf{F}_{4}$ so that $\operatorname{tr}\left(x^{3}\right)=0$ and

$$
\operatorname{tr}\left(x^{9}\right)=\operatorname{tr}\left(x^{18}\right)=\operatorname{tr}\left(x^{3}\right)
$$

Thus $Q_{R}(x)=\operatorname{tr}\left(T_{0} x^{2}+\left(T_{1}+T_{3}\right) x^{3}\right)$ for all $x \in K$. A simple computation shows that

$$
N\left(Q_{R}^{K}\right)= \begin{cases}4, & \text { if } T_{0} \text { even, } T_{1}+T_{3} \text { odd } \\ 8, & \text { if } T_{0} \text { odd, } T_{1}+T_{3} \text { even } \\ 12, & \text { if } T_{0} \text { odd, } T_{1}+T_{3} \text { odd } \\ 16, & \text { if } T_{0} \text { even, } T_{1}+T_{3} \text { even }\end{cases}
$$

Comparing with Equation 1 gives the result. The proof of (1) is similar and easier.

Lemma 4.3. Let $r=\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)$. If $C_{R}(K)$ is maximal with $k-r=4$ then k is divisible by 3 or 8 . Further, if k is divisible by 5 but not 8 then s_{5} is its maximal value.

Proof: Assume k is not divisible by 8 . Write $k=t n$ with n odd and $t=2$ or 4 . By 1.3

$$
\begin{equation*}
k-4=s_{1}+\sum_{d \mid n} 2 s_{d} w(d) \tag{2}
\end{equation*}
$$

with $s_{1} \in\{2, t\}$ and $0 \leq s_{d} \leq t \nu(d)$. Note that the maximum values, $s_{1}=t$ $s_{d}=t \nu(d)$, make the right side of Equation 2 equal to k. We are looking for a solution just below the maximum.

If $w(d) \leq 2$ then d divides $2^{2} \pm 1,2 \pm 1$ and so $d=3$ or 5 . Thus if no d is 3 or 5 then every $w(d)>2$ and there is no solution to Equation 2.

Suppose, if possible, that 3 does not divide k. Then $k=5 \mathrm{~m}$ for some even m. Write $m=2 m_{0}$. The only solution to Equation 2 is:

$$
s_{1}=t \quad s_{5}=t-1 \quad s_{d}=t \nu(d) \quad \text { for } d \neq 5 .
$$

This is also the only solution if s_{5} is not maximal (whether or not 3 divides k). Our construction, Corollary 1.4, shows that

$$
\left(x^{k}+1,\left(R^{*}\right)_{d n}\right)=(x+1)^{t} Q_{5}^{t-1} \prod_{d \neq 5} Q_{d}^{t}=\left(x^{k}+1\right) / Q_{5}
$$

By Lemma 4.1, $\operatorname{deg} R=2^{(k-4) / 2}$ and so $\operatorname{deg}\left(R^{*}\right)_{d n}=k-4$. Hence

$$
R^{*}=\frac{x^{k}+1}{Q_{5}}=\frac{(x+1)\left(x^{k}+1\right)}{x^{5}+1}=(x+1) \sum_{i=0}^{m-1} x^{5 i}
$$

And so

$$
R=\epsilon x+\sum_{i=0}^{m_{0}-1}\left(x^{2^{5\left(m_{0}-i\right)-2}}+x^{2^{5\left(m_{0}-i\right)-3}}\right)
$$

for $\epsilon \in\{0,1\}$.
Lemma 4.1 gives $\Lambda\left(Q_{R}^{K}\right)=+1$ while Theorem 1.3 gives $\Lambda\left(Q_{R}^{K}\right)=-\Lambda(t)$. Hence $t=4$ since, by Lemma $4.2, \Lambda(2) \neq-1$. So Lemma 4.2 gives T_{0} is even and $T_{1}+T_{3}$ is odd. We have R explicitly so we compute the T_{i}, writing $m_{0}=4 \ell+u$:

u	T_{0}	T_{1}	T_{2}	T_{3}
0	$2 \ell+\epsilon$	2ℓ	2ℓ	2ℓ
1	$2 \ell+\epsilon$	2ℓ	$2 \ell+1$	$2 \ell+1$
2	$2 \ell+1+\epsilon$	2ℓ	$2 \ell+1$	$2 \ell+2$
3	$2 \ell+2+\epsilon$	$2 \ell+1$	$2 \ell+1$	$2 \ell+2$

If $\epsilon=1$ then only $u=2$ gives T_{0} even, but the $T_{1}+T_{3}$ is even. Hence $\epsilon=0$ and we must have u odd. But then $k=5 \cdot 2 m_{0}=5 \cdot 2(4 \ell+u)$ is not divisible by $t=4$, a contradiction. Hence k is divisible by 3 .
Example 4.4. Lemma 4.3 can fail when $k-r=6$. We use Corollary 1.4 to construct an example with $k=20$. We need $r=14=s_{1}+4 s_{5}$ so we take $s_{1}=2$ and $s_{5}=3$. Then

$$
\begin{aligned}
\left(x^{k}+1,\left(R^{*}\right)_{d n}\right) & =(x+1)^{2} Q_{5}^{3}=\left(x^{10}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right) \\
R & =x^{2^{7}}+x^{2^{6}}+x^{2^{5}}+x^{2^{4}}+x^{2^{3}}+\epsilon x .
\end{aligned}
$$

As before, $\Lambda\left(Q_{R}^{K}\right)=-\Lambda(4)$ so that we require T_{0} to be even and $T_{1}+T_{3}$ to be odd. Thus taking $\epsilon=1$ gives an example of a maximal curve with $k-r=6$ and k not divisible by either 3 or 8 .
Theorem 4.5. Suppose k is even but not a multiple of 8. Let $r=\operatorname{dim} \operatorname{rad}\left(Q_{R}^{K}\right)$.
Then the maximal curves $C_{R}(K)$ with $k-r=4$ are precisely:

1. $k=6 m$ with m odd and

$$
R=x^{2}+\sum_{i=1}^{3(m-1) / 2}\left(x^{2^{6 i+1}}+x^{2^{6 i-1}}\right) .
$$

2. $k=12 m$ with m odd and

$$
R=x+\sum_{i=0}^{m-1}\left(x^{2^{6 i+4}}+x^{2^{6 i+2}}\right)
$$

3. $k=12 m$ with m odd and

$$
R=x+\sum_{i=0}^{m-1}\left(x^{2^{6 i+4}}+x^{2^{6 i+3}}+x^{2^{6 i+2}}\right) .
$$

Proof: From Lemma 4.3 we have $k=6 m$ or $12 m$ with m odd. We first do the case $k=6 \mathrm{~m}$. Equation 2 becomes:

$$
k-4=2+2 s_{3}+\sum_{d \mid 3 m, d \neq 3} 2 s_{d} w(d),
$$

for $0 \leq s_{3} \leq 2$ and $0 \leq s_{d} \leq 2 \nu(d)$. The only solution is $s_{3}=0$ and $s_{d}=2 \nu(d)$ for $d \neq 3$, since all $w(d)>2$ except for $d=5$ when s_{5} is its maximal value 2 by Lemma 4.3. Thus

$$
\left(x^{k}+1,\left(R^{*}\right)_{d n}\right)=\frac{x^{k}+1}{Q_{3}^{2}}=\left(x^{2}+1\right) \sum_{i=0}^{m-1} x^{6 i}
$$

Lemma 4.1 gives $\operatorname{deg} R=2^{(k-4) / 2}$ and $\operatorname{deg}\left(R^{*}\right)_{d n}=k-4$. Hence R^{*} is this gcd and

$$
R=\epsilon x+\sum_{i=1}^{3(m-1) / 2}\left(x^{2^{6 i+1}}-x^{2^{6 i-1}}\right) .
$$

Lastly, $\Lambda\left(Q_{R}^{K}\right)=+1$ by Lemma 4.1 while $\Lambda\left(Q_{R}^{K}\right)=\Lambda(2)$ by Theorem 1.3. Hence $\epsilon=0$ by Lemma 4.2.

Now suppose $k=12 m$ with m odd. Equation 1 becomes:

$$
k-4=s_{1}+2 s_{3}+\sum_{d \mid 3 m, d \neq 3} 2 s_{d} w(d),
$$

where $s_{1} \in\{2,4\}, 0 \leq s_{3} \leq 4$ and $0 \leq s_{d} \leq 4 \nu(d)$. As before, each s_{d}, $d \neq 1,3$, is its maximal value. So there are two solutions, $\left(s_{1}, s_{3}\right)=(4,2)$ and $(2,3)$. In the first case, $\left(R^{*}\right)_{d n}=\left(x^{k}+1\right) / Q_{3}^{2}$ and R has the form (2). Here Lemma 4.2 is used to determine the coefficient of x. In the second case, $\left(R^{*}\right)_{d n}=\left(x^{k}+1\right) /\left(x^{6}+1\right)$ and R has the form (3).

We note that the example of [5] is statement (2) of Theorem 4.5 with $m=1$.

References

[1] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[2] P. Delsarte and J.-M. Goethals, Irreducible binary codes of even dimension, in: 1970 Proc. Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, Univ. North Carolina, Chapel Hill, NC, 1970, pp. 100-113.
[3] C. Ding, A. Salomaa, P. Solé and X. Tian, Three constructions of authentication/secrecy codes, in: M. Fossorier, T. Høholdt, A. Poli (Eds.), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Toulouse, 2003), Lecture Notes in Computer Science, vol. 2643, Springer, Berlin, 2003, pp. 24-33.
[4] R. Fitzgerald, Invariants of trace forms over finite fields of characteristic 2, preprint.
[5] R. Fitzgerald, Highly degenerate quadratic forms over finite fields of characteristic 2, Finite Fields and Their Applications 11 (2005) 165181.
[6] R. Fitzgerald and J. Yucas, Pencils of quadratic forms over GF(2), Discrete Math. 283 (2004) 71-79.
[7] K. Khoo, G. Gong and D. R. Stinson, New family of Gold-like sequences, in: IEEE International Symposium on Information Theory 02, 2002, p. 181.
[8] A. Klapper, Cross-correlation of geometric series in characteristic two, Des., Codes, and Cryptogr. 3 (1993) 347-377.
[9] J. Knauer and J. Richstein, The continuing search for Wieferich primes, Math. Comp. 74 (2005) 1559-1563.
[10] R. Lidl and H. Niederreiter, Finite Fields (second edition), Encyclopedia of Mathematics and Its Applications, vol 20, Cambridge University Press, Cambridge, 1997.
[11] P. Ribenboim, The Little Book of Big Primes, Springer, New York, 1991.
[12] H. Stichtenoth, Algebraic Function Fields and Codes, Universitext, Springer, Berlin, 1993.
[13] J. Yucas and G. Mullen, Self-reciprocal polynomials over finite fields, Des. Codes Cryptogr. 33 (2004) 275-281.

Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, Email: rfitzg@math.siu.edu

[^0]: Recommended Citation
 Fitzgerald, Robert W. "Trace Forms over Finite Fields of Characteristic 2 with Prescribed Invariants." (Feb 2009).

