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ABSTRACT

Wind speeds over the Baltic significantly increased over the second half of the 20th century (C20th), with the majority
of the increase being focused on the upper quartile of the wind speed distribution and in the southwest of the region.
These changes have potentially profound implications for the wind energy resource. For example, based on the National
Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data it is
shown that, owing to this non-stationarity, using the normalization period of 1987–98 to determine the wind resource
(as in the Danish wind index) leads to overestimation of the wind energy index (and hence the wind energy resource)
in western Denmark relative to 1958–2001 by approximately 10%. To address whether the increased prevalence of high
wind speeds at the end of the C20th will be maintained in the future, we provide a first prognosis of annual wind indices
from the HadCM3 coupled atmosphere–ocean general circulation model. The results suggest the 21st century (C21st)
will be similar to the 1958–2001 period with respect to the wind energy density, but that the northeastern Baltic will
exhibit slightly higher wind energy indices over the course of the C21st relative to the latter half of the C20th, whereas
the southwest of the Baltic exhibits some evidence of declining wind indices towards the end of the C21st. These changes
may indicate a tendency in HadCM3 towards more northerly tracking of mid-latitude cyclones in the future, possibly due
to evolution of the North Atlantic oscillation. As a caveat to this finding, it should be noted that the NCEP–NCAR and
European Centre for Medium-Range Weather Forecasts reanalysis data sets and HadCM3 simulations, although exhibiting
commonalities during the period of overlap, differ quantitatively in terms of the spatial fields and empirical cumulative
probability distributions at individual grid cells. Copyright  2005 Royal Meteorological Society.
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1. INTRODUCTION

1.1. Background

In the context of wind energy applications, where wind farms have typical lifetimes of the order of
30 years, the question that is often asked is ‘What is a normal wind year?’, or alternatively stated, ‘Over the
lifetime of the wind farm what is the average expected energy production?’ Recall energy density is 1/2ρU 3,
and hence the cumulative annual energy density is dominated by the upper percentiles of the wind speed
cumulative probability distribution. The question stated above can be extended to encompass the following:
‘Will non-stationarities in the global climate system cause the definition or magnitude of a normal wind year
to evolve on time scales of relevance to wind energy developments?’ The research presented herein is a
first attempt to address this question in the context of the Baltic Sea region using historical observations

* Correspondence to: S. C. Pryor, Atmospheric Science Program, Department of Geography, Indiana University, 701 E. Kirkwood
Avenue, Bloomington, IN 47405, USA; e-mail: spryor@indiana.edu
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736 S. C. PRYOR, R. J. BARTHELMIE AND J. T. SCHOOF

from reanalysis data sets and projected flow regimes from a coupled atmosphere–ocean general circulation
model (AOGCM). Most previous research in this field has focused on downscaling procedures of potential
future flow climates (Mengelkamp, 1999; Sailor et al., 2000). The research presented here adopts a different
approach to development of projected wind climates and energy density. It additionally provides context by
addressing concerns regarding the realism of near-surface flow regimes within AOGCMs and the magnitude
of differences between AOGCM simulations of current climate and those from reanalysis data sets relative
to differences between projected and current wind speed regimes.

1.2. Recent climate variability in the Baltic basin

The study region is the Baltic basin and extends from approximately 52.5 °N, 3.75 °E to 65 °N, 26.5 °E
(Figure 1). The climate of the Baltic is dominated by the passage of cyclones and, in agreement with studies
that indicate coherent variations in the frequency and intensity of transient eddies in the Northern Hemi-
sphere middle latitudes (Serreze et al., 1997; Ulbrich and Christoph, 1999; Geng and Sugi 2001), the annual
mean wind speed at 850 hPa over the Baltic as manifest in the National Centers for Environmental Pre-
diction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis project significantly increased
over the period 1953–99, particularly in the southwest of the region (Pryor and Barthelmie, 2003). The
majority of the wind speed increase was focused on the upper quartile of the wind speed distribution and,
hence, has implications for wind energy. These changes in wind speed are strongly linked to variations in
the synoptic-scale circulation (Pryor and Barthelmie, 2003) as manifest in the Grosswetterlagen catalogue
(Gerstengarbe and Werner, 1999) and the recent prevalence of the positive phase of the North Atlantic
oscillation (NAO; Greatbach, 2000; Hastenrath and Greischar, 2001; Marshall et al., 2001). Here, we extend
this work by assessing whether these wind speed trends are also evident at other levels in the atmosphere
and in another (independent) reanalysis data set, and by providing an analysis of projected changes from an
AOGCM simulation.

1.3. Objectives

The objectives of the research presented here are to:

Figure 1. Map of the study region showing the grid point locations for the NCEP–NCAR reanalysis data (°), the ECMWF reanalysis
data (+), and HadCM3 (♦). The grid cells referred to specifically in the text are labelled with the characters used in Table I

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 735–752 (2005)



NON-STATIONARITIES AND CLIMATE NORMALS OF BALTIC WIND SPEED 737

1. Quantify the degree of interannual variability of the wind speed and wind energy density in the historical
record for the 20th century (C20th) from the Baltic basin. Specifically, we quantify temporal variability
and trends in flow regimes and wind energy availability within the last 50 years in two reanalysis data
sets. A related objective is to compare and contrast the magnitude of spatial and temporal variability in
near-surface wind speeds from these two independent data sets.

2. Determine the degree to which an AOGCM captures recent spatio-temporal variability of recent wind
speeds in the Baltic and to extrapolate wind indices for the 21st century (C21st).

2. DATA

2.1. Reanalysis data

Reanalysis projects, such as those developed at NCEP–NCAR (Kalnay et al., 1996; Kistler et al., 2001)
and the European Centre for Medium-Renge Weather Forecasts (ECMWF; Simmons and Gibson, 2000), draw
data from a range of sources; these data are quality controlled and assimilated with a consistent data simulation
system (model). These reanalysis products thus comprise four-dimensional, homogenized and systematic data
sets. With regard to the current analysis, it is worth noting that neither project assimilates observations of 10 m
wind speeds over land, but both assimilate 10 m wind speeds as derived from satellite-borne scatterometer
instrumentation.

In this analysis we use 10 m wind speeds because, of the flow levels archived for AOGCMs, it most closely
approximates the flow that influences wind energy resources. Additionally, we focus on wind speeds in grid
cells that are spatially coincident or nearly so between the two reanalysis data sets and HadCM3 (see Table I)
and specifically on three sample grid cells. Grid cell C, in the southwest of the domain, west of Denmark,
is a region of mixed land–sea surface. Grid cell I is over the interior of the Baltic Sea and, hence, contains
predominantly water surfaces. Grid cell L is located in the northeast of the domain over the Finnish coastline
(see Figure 1). Although the grid cells highlighted in Table I show some overlap, it should be noted that the
degree of correspondence is higher for grid cell centroids from the NCEP–NCAR reanalysis and HadCM3
than between the ECMWF reanalysis and either of the other two model data sets.

Table I. The location of the coincident grid cells from the reanalysis data sets and HadCM3. The two right-hand columns
show the ‘trend’ term m in regression Equation (9) of the annual 90th percentile wind speeds. Values are only shown if

the 95% confidence intervals on the trend term did not include zero

ECMWF NCEP/NCAR HadCM3 Trend analysis

Grid cell Lat (°N) Long (°E) Lat (°N) Long (°E) Lat (°N) Long (°E) NCEP–NCAR ECMWF

A 55 5 56.1893 3.75 56.25 3.75 0.036 0.032
B 65 5 63.8081 3.75 63.75 3.75 0.029 —
C 55 7.5 56.1893 7.5 56.25 7.5 0.029 0.026
D 65 7.5 63.8081 7.5 63.75 7.5 0.028 0.018
E 55 10 56.1893 11.25 56.25 11.25 0.018 0.013
F 65 10 63.8081 11.25 63.75 11.25 0.011 0.017
G 55 15 56.1893 15 56.25 15 0.013 0.015
H 65 15 63.8081 15 63.75 15 0.009 —
I 55 20 56.1893 18.75 56.25 18.75 0.019 —
J 65 20 63.8081 18.75 63.75 18.75 — —
K 55 22.5 56.1893 22.5 56.25 22.5 0.011 —
L 65 22.5 63.8081 22.5 63.75 22.5 — —
M 55 25 56.1893 26.25 56.25 26.25 — —
N 65 25 63.8081 26.25 63.75 26.25 — —

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 735–752 (2005)



738 S. C. PRYOR, R. J. BARTHELMIE AND J. T. SCHOOF

2.1.1. The NCEP–NCAR reanalysis project. The NCEP–NCAR reanalysis data are available from 1948.
Herein we use four-times daily (00, 06, 12, 18 UTC) 10 m wind speeds calculated from the data set wind
components (u and v) for each 1.875° × 1.875° grid shown in Figure 1 for the period 1958 to 2001. The
atmospheric model used for the NCEP–NCAR reanalysis project is spectral (horizontal resolution: T62 which
is roughly equivalent to a horizontal resolution of 210 × 210 km2) with transformation to a Gaussian grid
for calculation of nonlinear quantities and physics. The vertical domain is divided into 28 unequally spaced
sigma levels with enhanced resolution near the bottom and the top.

2.1.2. The ECMWF reanalysis project. The new reanalysis project at ECMWF (ERA-40) covers the period
from mid-1957. Herein, we use four-times daily (00, 06, 12, 18 UTC) 10 m wind speeds and direction
calculated from the data set wind components (u and v) for each 2.5° × 2.5° grid shown in Figure 1 for
the period 1958–2001 inclusive. The atmospheric model used for ERA-40 also uses a spherical-harmonic
representation for basic dynamic fields, with a reduced Gaussian grid of approximately uniform 125 km
spacing for surface and other grid-point fields.

2.2. General circulation model: HadCM3

In this preliminary analysis we use daily output from the HadCM3 coupled AOGCM (Johns et al., 1997;
Stratton, 1999; Pope et al., 2000) for the transient simulation (1990–2099) under the Intergovernmental
Panel on Climate Change’s (IPCC’s) Special Report on Emissions Scenarios (SRES) A2 emission scenario
(Nakicenovic and Swart, 2000). HadCM3 is a Cartesian model. The atmospheric component of HadCM3
has 19 levels, and a horizontal resolution of 2.5° latitude by 3.75° of longitude (Figure 1), which produces
a global grid of 96 × 73 grid cells. This is equivalent to a surface resolution of about 417 km × 278 km at
the equator, reducing to 295 km × 278 km at 45° latitude (comparable to a spectral resolution of T42). The
oceanic component of HadCM3 has 20 levels and a horizontal resolution of 1.25° × 1.25°.

The SRES’s scenarios, as developed by the IPCC, encompass a range of parameters that dictate emissions,
including demographic, technological and economic changes. The SRES A2 scenario provided one of the foci
of the model intercomparison research presented in Houghton et al. (2001), and equates to a moderate to high
greenhouse gas cumulative emission for 1990 to 2100 as a result of projected population growth and fairly
slow introduction of alternative technologies. This scenario results in global carbon dioxide (CO2) emissions
from industry and energy in 2100 that are almost four times the 1900 value and by 2100 the emissions from
land-use change are close to zero, leading to a global CO2 emission (as carbon) in 2100 of almost 28 GtC
year−1. The global temperature increase simulated by HadCM3 for this emission scenario is approximately
equal to +4 °C from 1960 to 2100. The A2 emissions scenario is used in this analysis to provide a reasonable
upper bound on likely climate change and hence a high signal-to-noise ratio when comparing current with
future flow climates.

2.3. Wind indices

Wind energy indices are simple mechanisms for assessing inter- and intra-annual variability of wind energy
and are often used to provide a context for shorter term, site-specific time series measured by wind-energy
developers to assess the feasibility of wind-farm installations. The Danish wind energy index thus provides
a regional assessment of monthly and annual variability of observed wind energy normalized to the 12-year
data period 1987 to 1998 (see www.emd.dk). The index as used here is

Index =
n∑

j=1

U 3
j

U 3
i,...,k

× 100 (1)

where j = 1, . . . , n indicates the time series from the period of interest and i, . . . , k indicates the normalization
period. Wind indices exhibit intra- and inter-annual variability and, naturally, the index for any given year is
determined in part by the normalization period used.

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 735–752 (2005)
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AOGCMs are most accurate at large spatial and temporal scales (Houghton et al., 2001), and there is
evidence of bias in HadCM3 wind speeds relative to observations (see Section 4). Wind indices are thus used
herein, because the normalization inherent in calculation of wind indices reduces the impact of offsets in wind
speeds simulated by AOGCMs. However, the accuracy of the wind indices is dependent on the accuracy with
which any model represents the variability and range of wind speeds.

3. HISTORICAL WIND CLIMATE FOR THE BALTIC

3.1. Non-stationarities in the wind climate: the influence of normalization period on the wind index

3.1.1. Methods. We examine the sensitivity of a wind index calculated using Equation (1) to assumptions
regarding the period used for normalization using the two reanalysis data sets. Wind indices are calculated
for 12-year moving windows for each grid cell such that for each grid cell and year there are 33 realizations
of the index corresponding to the 33 12-year normalization periods between 1958 and 2001.

3.1.2. Results. Figure 2 shows the mean annual wind index for 1958–2001 calculated from the ECMWF
and NCEP–NCAR reanalysis data for grid cells C, I and L presented as a function of the normalization period.
Owing to the relatively low wind speeds during the late 1950s to 1970, mean wind indices for these grid
cells calculated using the beginning of the record as the normalization interval exhibit values above 100%,
whereas the converse is true for the normalization by the latter portion of the period. For example, using
the 1987–98 data for the normalization gives a mean annual wind index for grid cell C over 1958–2001 of
88–92%. This may be interpreted as indicating that the mean wind energy resource over western Denmark
for 1958–2001 is approximately 10% lower than that during the period 1987–98. For the other two grid
cells shown in Figure 2, the 1987–98 period also exhibited higher average wind energy density than was
typical of 1958–2001. For grid cell L the maximum in wind indices was observed for normalization periods
focused on the late 1970s and early 1980s. This indicates that, in contrast to the more southerly grid cells,
both the late 1950s–1970 and the late 1970s–1980s were characterized by atypically low wind energy in the
northeast of the domain. In summary, for the grid cells considered here, 1987–98 does not represent a robust
wind energy climatology relative to the entire period of 1958–2001, whereas for the three grid cells shown
in Figure 2, based on data from the NCEP–NCAR reanalysis, 1970–81 is arguably the 12 year period that
best represents the 1958–2001 period. Discrepancies between the reanalysis data sets as evident in Figure 2
are considered in more detail in the following section.

Figure 2. Mean annual wind index for data from 1958–2001 and grid cells C, I and L from the NCEP–NCAR and ECMWF reanalysis
data sets presented as a function of the normalization period (plotted at the year which begins the normalization interval). The results

for the calculation where the normalization period is 1987–98 are circled in the frame showing grid cell C

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 735–752 (2005)
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3.2. Analysis and comparison of the reanalysis data sets

3.2.1. Methods. Reanalysis data sets possess some limitations and artifacts (Kistler et al., 2001). For
example, introduction of satellite-derived observations into the NCEP–NCAR reanalysis assimilation (starting
in 1979) generally improved the model performance, but led to some discontinuities in some of the derived
fields. Although these discontinuities are most pronounced in the Southern Hemisphere (Kistler et al., 2001)
and at higher altitudes (Trenberth and Stepanik, 2002), changes in the number and nature of data sets
assimilated by the reanalysis process will inevitably lead to some temporal inconsistencies. Hence, despite the
clear utility of the reanalysis data sets, there is a recognized need to evaluate the reanalysis projects relative
both to other reanalysis data sets and to independent data not assimilated within the reanalysis process (Hines
et al., 2000; Hastenrath and Greischar, 2001; Smith et al., 2001; Marshall, 2002; Schoof and Pryor, 2003).
This comparison is particularly relevant to the current application because, as described above, observations
of near-surface winds over land are not assimilated by either the ECMWF or the NCEP–NCAR reanalysis
models (Kalnay and Cai, 2003). Also, analyses by Frank and Mann (2001) suggest that surface roughness
values from Denmark as used in the NCEP–NCAR reanalysis model (Dorman and Sellers, 1989) are biased
towards the high end, leading to underestimation of near-surface wind speeds in the NCEP–NCAR reanalysis
data set relative to in situ measurements.

Near-surface flow as manifest in the two reanalysis data sets for 1958–2001 is thus evaluated in terms of:

1. The spatial variability of 10 m wind speeds. This analysis is focused on qualitative assessment of the
degree of correspondence of the mean spatial patterns as manifest in the two data sets.

2. The temporal autocorrelation of wind speeds at grid cells listed in Table I. Temporal autocorrelation is the
correlation of successive values in a time series at specified lag intervals; thus, this analysis is focused
on assessment of the temporal variability of wind speeds as manifest in the reanalysis data sets. In this
analysis we present correlation coefficients for observations of wind speed at lag intervals of 6 h to 8 days.

3. Probability distributions of wind speeds at three grid cells that are coincident or nearly so between
the two reanalysis data sets and HadCM3. The empirical cumulative probability distributions are inter-
compared and evaluated. The quantitative component of this analysis is based on application of the
Kolmogorov–Smirnov (K–S) statistic and test statistics from Stephens (1986). These are conducted under
the assumption that wind speeds, particularly over water surfaces, most closely approximate the two-
parameter Weibull distribution (Pavia and O’Brien, 1986; Pryor et al., 2004) and, hence, that the degree
of deviation of the empirical cumulative probability distributions from this may be used as an index of the
quality of the reanalysis data. The two-parameter Weibull probability density function is given by

p(U) ≡ 1 − exp

[
−

(
U

A

)k
]

for U ≥ 0, A > 0, k > 0 (2)

where k is the dimensionless shape parameter, A is the scale parameter, U represents the wind speed
observations, and p(U ) is the probability density function.

The cumulative distribution function P (U ) is given by

P(U) ≡ 1 − exp
(

U

A

)k

(3)

The test for the null hypothesis H0, that the data set of U comes from the Weibull distribution where A and
k are not known a priori, is conducted as follows:

1. The time series of U is transformed to give X(1, . . . , n), where X(i) = − log(U(1, . . . , n)), and n is the
total number of observations.

2. X(1, . . . , n) are sorted in ascending order.

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 735–752 (2005)
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3. X(1, . . . , n) is tested to determine whether it is drawn from the extreme-value distribution:

P(X) ≡ exp
[
− exp

(
−X − φ

θ

)]
(4)

with φ = 1/k, and θ = − log(A).
Assuming that k and A, and hence φ and θ , are unknown, they are estimated using the maximum likelihood:

θ =
∑
j

Xj

n
−


∑

j

Xj exp
(−Xj

θ

)



∑

j

exp
(−Xj

θ

)


(5)

This is solved iteratively and the result used to determine φ:

φ = −θ log


∑

j

exp
(−Xj

θ

)
n


 (6)

The results for φ and θ are then used in Equation (4) to calculate Z(1, . . . , n) = P(X(i), i = 1, . . . , n).
Z(1, . . . , n) are sorted in ascending order and used to calculate the empirical cumulative distribution function
(ECDF) statistics (A2 and W 2):

A2 = −n −
(

1

n

) ∑
j

(2j − 1)[log Zj + log(1 − Zn+1−j )] (7)

W 2 =
∑
j

[Zj − (2j − 1)]2 + 1

12n
(8)

1 ≤ j ≤ n. These are compared against critical values (denoted by A2∗ and W 2∗; Stephens, 1986). If
A2[1 + (0.2/

√
n)] > A2∗ (A2∗ = 0.757 for α = 0.05, and A2∗ = 1.038 for α = 0.01) or W 2[1 + (0.2/

√
n)] >

W 2∗ (W 2∗ = 0.124 for α = 0.05 and W 2∗ = 0.175 for α = 0.01) for a given significance level α, then H0 can
be rejected at that level. This approach was evaluated using 100 synthetic Weibull distributions (n = 1000)

generated as in Pryor et al. (2004). For the 100 synthetic data sets, only two were found to result in rejection
of H0.

The test statistics used are reliant on independence of observations in the data series, which is frequently
violated in real time series of atmospheric variables (Kristensen et al., 2002). Hence, here, we adjust the
sample size used in the K–S test for the lag-1 correlation (von Storch and Zwiers, 1999) and multiply
and randomly sample the time series from the reanalysis data sets to draw 100 data sets containing 2000
observations. These are then subjected to the test for fit to a Weibull distribution using the A2 and W 2

statistics. The selection of the number of samples to contain in each data subset (n = 2000) is based on
analyses conducted to assess the critical sample size required to generate a stable estimate of the Weibull A

and k parameters for a data set that conforms to a Weibull distribution (Pryor et al., 2004).
4. Temporal trends at grid cells that are spatially coincident or nearly so between the two reanalysis data sets

and HadCM3 (see Table I). This analysis is focused on assessment of the degree of correspondence of
temporal trends in percentiles of the wind speed distributions as manifest in the two reanalysis data sets.
The ‘trend’ is calculated using linear regression:

y = mx + c (9)

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 735–752 (2005)



742 S. C. PRYOR, R. J. BARTHELMIE AND J. T. SCHOOF

where y is the Xth percentile wind speed in each year, c is the Xth percentile wind speed in 1957, m is the
trend term (i.e. the increase or decrease in the Xth percentile wind speed (m s−1 year−1)) and x is the year
since 1957 (Pryor and Barthelmie, 2003). Values are only shown if the 95% confidence intervals on the trend
term did not include zero (i.e. the trend term is statistically different to zero).

3.2.2. Results. Mean 10 m wind speeds for 1958–2001, as manifest in NCEP–NCAR and the ECMWF
reanalysis data sets, are shown in Figure 3. The largest discrepancy in terms of the mean wind fields is found
in southern Norway, where the ECMWF reanalysis indicates mean wind speeds during 1958–2001 below
2.5 m s−1 and the NCEP–NCAR reanalysis data show values in excess of 2.5 m s−1. This part of the domain
is strongly influenced by the Scandic Mountains, which form the spine of the peninsula on which Sweden and
Norway are located and which reach heights of 2469 m above sea level. The differing spatial resolutions of
the NCEP–NCAR and ECMWF models and data archiving may manifest differing drag and blocking effects
caused by this mountain range. The data sets also differ in terms of the wind speeds in the central Baltic Sea
(i.e. over water). These portions of the domain generally exhibit higher wind speeds in the NCEP–NCAR
data set than in the ECMWF reanalysis. Since water has a low and dynamic roughness in the models, this
may imply higher average near-surface pressure gradients in the NCEP–NCAR reanalysis project and hence
higher wind speeds. In general, grid cells in the western portion of the domain (A–F in Table I) exhibit
higher means and upper percentiles in the NCEP–NCAR data set. However, this is not uniformly true of all
grid cells. For example, ECMWF data from grid cells G and N exhibit higher upper percentile wind speeds

Figure 3. Mean 10 m wind speeds 1958–2001 from the four-times daily data from the NCEP–NCAR and ECMWF reanalysis data
sets. The domain is as shown in Figure 1

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 25: 735–752 (2005)
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Figure 4. Empirical cumulative distributions (0.1–99.9th percentiles) for three grid cells (C, I and L) from the NCEP–NCAR and
ECMWF data for the period 1958–2001

and, as shown in Figure 4, data for grid cell L also exhibit slightly higher 90th percentile wind speeds than
the NCEP–NCAR data.

Figure 5 shows the temporal autocorrelation functions calculated using the NCEP–NCAR and ECMWF
reanalysis data sets (1958–2001) for the grid cells described in Table I. As shown, the temporal autocorrelation
functions are very similar both for individual grid cells and spatially (e.g. higher persistence in the western grid
cells). However, there is evidence of a slightly stronger diurnal cycle at the eastern grids in the ECMWF data.

Although the ECDFs from the NCEP–NCAR and ECMWF data sets for 1958–2001 are also qualitatively
similar, at the three grid cells shown in Figure 4 the null hypothesis (that the distributions are equal) is
rejected by the K–S equality of distributions test at a confidence level in excess of 95%. Also, at grid cell
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Figure 5. Temporal autocorrelation functions for 6 h data from the NCEP–NCAR and ECMWF reanalysis data sets computed using
data from 1958–2001 for the grid cells described in Table I. The contours represent the Pearson correlation for observations at time t

with those from t + n, where n = 1–32, equating to time lags of 6 h to 8 days
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C, the mean wind speed differs by approximately 8%, with the NCEP–NCAR data showing a higher mean.
At grid cell I, the means differ by approximately 3%, again with NCEP–NCAR being higher. At grid cell L
the means differ by less than 2% and, unlike the other grid cells, the ECMWF data exhibit a slightly higher
mean wind speed.

As shown in Table II, the reanalysis data sets generally do not conform to a Weibull distribution according
to the A2 and W 2 statistics. The lack of fit to a Weibull distribution may be due to a number of causes,
such as mixed forcing of the wind regime, e.g. blending of flow regimes induced by local thermal effects
with the prevailing synoptic regime. Accordingly, the ‘best’ fit is observed in the water-dominated grid
cells where synoptic forcing of the wind speeds dominates. Hence, a lack of ‘fit’ to a Weibull distribution
cannot unequivocally be assigned to inaccurate representation of near-surface wind speeds. Nevertheless, it
is noteworthy that the analysis implies that the 6 h NCEP–NCAR reanalysis data more closely approximate
the distribution that is most commonly used to calculate electricity generation potential in the wind energy
industry (Pryor et al., 2004).

Figure 6 shows an example of the evolution of the annual probability distributions from the NCEP–NCAR
and ECMWF data sets in terms of the annual 10th, 50th and 90th percentiles of the four-times daily wind
speeds, and Table I summarizes temporal trends in the annual 90th percentile wind speeds at all common
grid cells. Figure 6 illustrates the absence of trends in the lower percentiles that is common to all grid cells.
This figure also demonstrates that, in line with analysis of storms in northwest Europe (Alexandersson et al.,
2000), the highest 90th percentile wind speeds in the southwestern Baltic occurred in the late 1980s and early
1990s and the upper percentiles of the wind speed distribution have subsequently declined in both data sets.
Figure 6 and Table I agree with the findings of earlier work (Pryor and Barthelmie, 2003) and emphasize
that the latter portion of the C20th was characterized by higher wind speeds, particularly in the southwest of
the Baltic region. All grid cells that showed statistically significant wind speed trends showed positive trends
in both data sets, although, on average, the trends were smaller in the ECMWF data. It is noteworthy that,
whereas there is clear correspondence between the reanalysis data sets in terms of mutual identification of
high wind speed years (e.g. 1990), the magnitude of variability and ensemble effect in terms of the wind
energy density (Figure 2) is not consistent.

Table II. ECDF statistics for analysis of the degree of fit to a Weibull distribution. The values shown are the number
of the 100 randomly selected data sets (n = 2000) for which computed A2 and W 2 statistics indicate the data fail to
conform to a Weibull distribution at the 99% confidence level. Data for 1958–2001 reflect the four-times daily data, and

the statistics for 1990–2001 are calculated using daily average data

6 h data: 1958–2001 Daily average data: 1990–2001

NCEP–NCAR ECMWF NCEP–NCAR ECMWF HadCM3

Grid cell A2 W 2 A2 W 2 A2 W 2 A2 W 2 A2 W 2

A 20 12 2 4 97 95 100 100 100 98
B 8 3 3 0 100 99 95 69 88 78
C 8 1 5 4 100 95 100 100 100 98
D 21 12 5 5 100 100 100 100 99 88
E 32 11 95 75 67 39 100 100 100 95
F 0 0 43 39 100 100 100 100 100 100
G 19 17 1 1 100 99 100 99 99 98
H 8 2 88 84 100 100 100 100 100 100
I 25 9 3 3 100 99 100 100 100 100
J 6 5 55 48 100 100 100 100 100 100
K 22 7 84 71 100 100 100 100 100 100
L 2 3 15 15 100 100 100 100 100 100
M 15 7 95 84 100 100 100 100 99 100
N 2 3 89 84 100 100 100 100 100 100
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Figure 6. Annual 10th, 50th and 90th percentile wind speeds for grid cell C (western Denmark). Also shown are lines depicting a 5 year
running mean

In summary, the two reanalysis data sets are broadly consistent in terms of the absolute magnitude of wind
speeds, probability distributions, spatial patterns and trends; but there are discrepancies that may be due to:

1. Differences in the data assimilated into the two reanalysis models.
2. Differences in the surface parameterizations used in the models. Surface roughness and topography may

differ both as a result of differing spatial resolution and data source.
3. Differences in the pressure gradients manifest in the models resulting from, for example, differences in

storm tracks.

Differentiating between these is the subject of ongoing research.

4. DEVELOPMENT OF WIND-ENERGY PROJECTIONS BASED ON HADCM3

4.1. Evaluation of AOGCM simulation: comparison of the reanalysis data sets and HadCM3 simulations for
1990–2001

4.1.1. Methods. AOGCMs exhibit greatest accuracy at large scales and long averaging periods (Houghton
et al., 2001). Although research has been conducted to generate prognostic storm frequencies and magnitude
(e.g. Debernard et al., 2002), few studies have evaluated the ability of AOGCMs to reproduce the distribution
of near-surface flow, which, within the mid-latitudes, is largely determined by pressure gradients. These
pressure gradients, in turn, are a function of the prevailing synoptic-scale circulation patterns and interaction
with local topographic and land cover conditions. The accurate simulation of near-surface wind speeds thus
requires accurate performance of the AOGCM across a range of scales and accuracy of boundary conditions.

Prior to use of HadCM3 simulation output to develop wind energy projections over the Baltic, it is
important to evaluate the performance of the HadCM3 with respect to the validity of phenomena during
the period of overlap between the reanalysis data set and the AOGCM transient simulation (i.e. 1990–2001).
Hence, we evaluate the model relative to the two reanalysis data sets with respect to the following model
performance parameters:

1. Mean wind speed fields derived from daily data and the spatial correlations of data from model grid cells.
2. The temporal autocorrelation functions of daily wind speeds at grid cells that are coincident (or nearly so)

between the two reanalysis data sets and HadCM3 (see Table I). The persistence of flow has important
consequences for the feasibility of harnessing wind energy, owing to the influence on predictability (Pryor
and Barthelmie, 2002), but it is used here primarily to assess the tendency of the models to exhibit
day-to-day variability primarily associated with the synoptic scale.
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3. Comparisons of wind speed probability distributions for individual grid cells and for all common grid cells.

The quantitative aspects of the comparison undertaken in (2) (analysis of the temporal autocorrelation) and
(3) (analysis of the ECDFs) use the techniques described in Section 3.2.

4.1.2. Results. Figure 7 shows the mean daily 10 m wind speed fields from HadCM3 and the reanalysis
data set for 1990–2001. As in Figure 3, the largest discrepancy in terms of the mean wind fields is found
in southern Norway, where, as in the case of the longer data set, the ECMWF reanalysis indicates mean
wind speeds during 1990–2001 below 2.5 m s−1 and both HadCM3 and the NCEP–NCAR reanalysis data

Figure 7. Mean of the daily mean 10 m wind speed from HadCM3 and the two reanalysis data sets for the period 1990–2001. The
domain is as shown in Figure 1
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show values in excess of 2.5 m s−1. On average, 10 m data from the HadCM3 correctly captures the spatial
pattern of mean wind speeds, but HadCM3 simulated wind speeds are typically lower in absolute magnitude,
particularly in Norway and also over the interior of the Baltic Sea.

Figure 8 shows the correlation coefficients for daily wind speeds at the grid cells listed in Table I. As
shown, the spatial decay of associations from all three data sets is (i) largest for the northern grids and (ii)
stronger for changing latitude than longitude. It may be notable that the reanalysis data sets exhibit small
negative correlations between easterly and westerly grid cells that may be related to storm tracking, but this
feature is not observed in the time series from HadCM3.

Figure 9 shows the temporal autocorrelation functions for daily wind speeds during 1990–2001 from
NCEP–NCAR, ECMWF and HadCM3. As shown, there is some evidence that HadCM3 exhibits higher
persistence of wind speeds, particularly in the west of the region at lags beyond 1 day, which may be taken
as evidence that HadCM3 underestimates the variance of wind speeds, or, alternatively stated, that HadCM3
underestimates the variability inherent in flow over the study region.

Figure 10 shows the ECDFs for daily wind speeds for 1990–2001 for three sample grid cells for the
NCEP–NCAR, ECMWF and HadCM3 simulations. It might be expected that as the spatial scale represented
by a given wind speed time series increases there will be a steepening of the ECDF (or a narrowing of
the probability distribution), i.e. a decrease in the difference between lower and upper percentiles. However,
as shown in Figure 10, HadCM3 shows relatively good correspondence to the reanalysis data for the lower
percentiles (low wind speeds), but it underestimates the higher percentiles. Thus, this analysis offers supporting
evidence to the assertion made on the basis of the temporal autocorrelation, that HadCM3 underestimates
the variability of wind speeds, and most specifically the upper tail of the wind speed distribution. On
average, 10 m data from HadCM3 correctly capture the spatial pattern of mean wind speeds, but, as
shown in Figure 7, HadCM3 simulated wind speeds are lower in absolute magnitude in the northwest
and southwest of the domain than those from the reanalysis data sets. Further work is required to clarify
whether the discrepancies between the HadCM3 and reanalysis data in terms of temporal and spatial
correlations and probability distributions of daily wind speeds are due to the differing spatial resolutions
of the models and data archives or a dynamical cause (e.g. differences in the tracking or intensity of synoptic-
scale phenomena in the models). As a first analysis of the importance of the spatial grid resolution/data
aggregation, Figure 10 presents a comparison of the cumulative probability distribution for data from all
common grid cells. As shown in Figure 10, the correspondence of wind speeds improves with scale, but
HadCM3 appears to underestimate wind speeds over the domain as a whole across the higher percentiles of
the probability distribution, indicating a potential systematic bias in HadCM3 that may reflect spatial scale
or a weakness in simulation of pressure gradients. Table II shows the results of analyses of the ECDFs
for the fit to the Weibull distribution for 1990–2001. As shown, the ECDFs of daily mean wind speed
time series from HadCM3, like those from the reanalysis data, show substantial deviations from Weibull
distributions.

Figure 8. Spatial correlations of daily wind speeds from common grid cells (Table I) in NCEP–NCAR, ECMWF and HadCM3 for data
from 1990–2001
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Figure 9. Temporal autocorrelation functions for daily average wind speed data from the NCEP–NCAR and ECMWF reanalysis data
sets and HadCM3 computed using data from 1990–2001 for the grid cells described in Table I. The contours represent the Pearson

correlation for observations at time t with those from t + n, where n = 1–8, equating to time lags of 1 to 8 days

4.2. Projected wind indices based on HadCM3

4.2.1. Methods. As shown above there is some evidence of an apparent offset in mean absolute wind
speeds between those simulated by HadCM3 and those in the reanalysis data set for the period of overlap
(1990–2001). However, the spatial variability of wind speeds and some degree of the variability around the
mean at individual grid cells do seem to be reproduced by HadCM3. Thus, it is deemed reasonable to use
the normalized wind index to calculate prognostic wind energy estimates using the daily wind speeds from
HadCM3 for the C21st to provide a first assessment of likely changes in wind energy availability in the
Baltic region. As described above, use of wind indices reduces the impact of biases in the HadCM3 simulated
wind speeds and also represents a metric that is well known to the wind-energy community. Hence, annual
wind indices were calculated for each HadCM3 grid cell using Equation (1) and a normalization period of
1990–2001.
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Figure 10. Comparison of ECDF (0.1–99.9th percentiles) from the HadCM3 and the NCEP–NCAR and ECMWF reanalysis daily
average 10 m wind speeds for three selected grid cells and using data from all common grid cells for the period 1990–2001 (see

Table I)

4.2.2. Results. Figure 11 shows the annual wind indices for the C21st for grid cells C, I and L calculated
using daily wind speeds from HadCM3. For a normalization period of 1990–2001 the mean annual wind index
for grid cell C for 1990–2099 is 98%, for grid cell I it is 99% and for grid cell L it is 103%. These values are
compared with mean annual wind indices calculated using the reanalysis data from 1958–2001 in Table III. As
shown in Figure 11 and Table III, there is evidence of a weak downward trend in the annual wind index in grid
C during C21st but a tendency towards increased wind indices in grid cell L, which may imply more northerly
tracking of synoptic systems or increased frequency of blocking high situations (Pryor and Barthelmie, 2003).
The mean wind index for grid cell C for the C21st is higher than that computed for 1958–2001 from the
reanalysis data (Table III), but still slightly below 100. The inference from Figure 11 is that the 1990–2001
period exhibited atypically high wind speeds over Denmark in both a historical and prognostic context. This
projection implies coming decades will exhibit a wind energy climatology for Denmark that is more similar
to that which characterized the 1990s than the 1958–2001 period, but that the wind energy density will
subsequently decline. Figure 2 indicates that the northeast of the Baltic also experienced atypically windy
conditions during the later portion of the 1980s and the 1990s, but the preliminary prognostic wind index for
grid cell L (and other grid cells in the northeast of the Baltic) implies the C21st will be characterized by a
larger average wind energy resource than either the 1990–2001 or 1958–2001 periods (Table III).

There are a number of caveats that should be applied to these findings:

1. The normalization inherent in calculation of the wind indices reduces the impact of the offset of wind
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Figure 11. Annual wind indices for grid cells C, I and L calculated using daily wind speeds as simulated by HadCM3 and a normalization
period of 1990–2001. The best-fit lines show the linear trend derived from regression of annual mean wind index on year

Table III. Mean (and standard deviation) of annual wind indices from 1958–2001 (reanalysis data)
and 1990–2099 (HadCM3) for grid cells C, I and L

Mean (standard deviation) wind index

Grid cell C Grid cell I Grid cell L

NCEP–NCAR: 1958–2001 (n = 44) 91 (11) 92 (11) 91 (14)
ECMWF: 1958–2001 (n = 44) 89 (12) 92 (11) 93 (17)
HadCM3: 1990–2099 (n = 110) 98 (14) 99 (11) 103 (11)

speeds simulated by HadCM3 relative to the reanalysis data sets, but the finding is still dependent on the
accuracy of HadCM3 with respect to the variability and range of wind speeds. As shown in Section 4.1,
there is evidence that HadCM3 underestimates this variability. Nevertheless, there is considerable evidence
that GCMs are most robust at spatial scales beyond the individual grid cell, and the finding of differential
projected trends in the southwest and northeast of the Baltic is supported by analysis of data from multiple
HadCM3 grids.

2. The simulated wind speed data series treated here are characteristic of large spatial scales, and although
the synoptic scale dominates interannual variability of wind speeds, sub-synoptic spatial scales determine
the actual wind resource at any given wind farm.

3. The results presented here represent annual averages and are based on daily wind speeds, so no inferences
can be made with respect to seasonal or diurnal changes in wind energy availability.

5. CONCLUDING REMARKS

Over the period 1958–2001, data from two reanalysis data sets (NCEP–NCAR and ECMWF) exhibit a
high degree of coherence over the Baltic in terms of wind speed statistics (spatial patterns, wind speed
distributions and temporal trends and autocorrelations). Over the majority of the Baltic region, upper percentile
wind speeds and, hence, wind energy density were higher towards the end of the data record than at the
beginning, due in part to increased prevalence of westerly flow regimes and positive phase NAO. The largest
discrepancies between the data sets are that the ECMWF data at a 2.5° × 2.5° resolution exhibit lower wind
speeds, particularly over southern Norway, relative to the NCEP–NCAR data (which have a resolution of
approximately 1.875°), and the interannual variability and particularly the timing of maximum annual wind
energy density exhibit some differences (both for individual grid cells and spatially). For the 1990–2001
period the reanalysis data sets also exhibit commonalities with data from HadCM3 simulations, although,
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perhaps because the former assimilate data, there are greater discrepancies between the AOGCM and the
reanalysis data than between the reanalysis products. For example, HadCM3 tends to overpredict the temporal
autocorrelation and spatial correlation of daily wind speeds.

Observed changes in flow regimes during the second half of C20th over the Baltic have important
consequences for choice of normalization period for calculation of wind indices. For example, using a
normalization period of 1987–98 (as in the Danish wind index) leads to overestimation of the wind energy
index in western Denmark relative to 1958–2001 by approximately 10%. To address whether the trend towards
greater prevalence of higher wind speeds in the latter portion of the C20th will be maintained in the future,
we provide a first prognosis of annual wind indices from the HadCM3 AOGCM. The results indicate that the
C21st will be similar to the 1958–2001 period with respect to the wind energy density. There is evidence of
a weak downward trend in the annual wind index in grid cells from the southwest of the Baltic during the
C21st but a tendency towards increased wind indices in grid cells from the northeastern Baltic, which may be
linked to changes in the synoptic climate and larger scale teleconnection indices. These results are preliminary
and it should be emphasized that, as documented herein, the reanalysis data sets from NCAR–NCEP and
ECMWF differ in terms of the spatial fields and empirical cumulative probability distributions at individual
grid cells and that these data differ from the simulated fields generated by HadCM3. Future work will focus
on defining causes of the discrepancies between the reanalysis data sets, undertaking further evaluation of
AOGCM simulations and development and application of novel downscaling techniques to provide more
robust wind speed and wind energy prognoses.

This research contributes to the overarching objective of understanding the regional structure and
manifestations of climate change. Although this paper focuses on implications of a changing wind climate on
wind energy resource assessment and harnessing, there are a number of other implications of changing flow
regimes, ranging from storm surge magnitude and frequency (Bijl, 1997), the wave climate and coastal defence
(Bouws et al., 1996; The WASA Group, 1998), and building construction (Sanders and Phillipson, 2003).
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