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Isolines confirm both separate and common loci underlie the resistance from Glycine max 

cultivar ‘Hartwig’  to three soybean cyst nematode populations.  

 

Theor Appl Genet (revision 8). 
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Abstract 

Soybean [Glycine max (L.) Merr.] cultivars vary in their resistance to different 

populations of  the soybean cyst nematode (SCN), Heterodera glycines. Populations are 

classified into groups called HG Types. The rhg1 locus on linkage group G underlying 

resistance to HG Type 0 was necessary for resistance to all other HG types. However the 

loci for resistance to H. glycines HG Type 1.3- (race 14)  and HG Type 1.2.5- (race 2) of 

the soybean cyst nematode  may vary in their locations. The aims were to compare the 

inheritance of resistance to three nematode HG Types in a population segregating for 

resistance to SCN and to identify the underlying quantitative trait loci (QTL). ‘Hartwig’, 

a soybean cultivar  resistant to most SCN HG Types was crossed with the susceptible 

cultivar ‘Flyer’. A total of 92 F5-derived recombinant inbred lines (RILs) and 144 

molecular markers were used for map development. The rhg1 associated  QTL found in 

earlier studies were confirmed and shown to underlie resistance to all three HG Types in 

RILs (Satt309; HG Type 0,  P= 0.0001 R
2
 = 22%; Satt275; HG Type 1.3.., P = 0.001, R

2 

= 14%) and NILs (Satt309; HG Type 1.2.5-,  P= 0.001 R
2
 = 24%).  A new QTL 

underlying resistance to HG Type 1.2.5- was detected on LG D2 (Satt574; P= 0.001, R
2
 = 

11%) among 14 RILs resistant to the other HG types and was confirmed in a small NIL 

population consisting of 60 plants  of  ten genotypes (P= 0.04). This QTL (cqSCN-005) is 

located in an interval previously associated with resistance to both SDS leaf scorch 

(cqSDS-001)  and SCN HG Type 1.3-. The QTL detected will allow marker assisted 

selection for multigeneic resistance to complex nematode populations in combination 

with sudden death syndrome resistance (SDS) and other agronomic traits.  
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INTRODUCTION 

Heterodera glycines Ichinohe infestation of soybean fields leads to “Yellow 

dwarf” disease (Hussey and Grundler 1998; Davis et al. 2004). H. glycines is a small 

plant-parasitic microscopic roundworm that attacks the roots of soybean. The juvenile 

nematode that hatches from the egg is the infective stage of soybean cyst nematode 

(SCN), that enters the soybean root. SCN infections cause various symptoms including 

chlorotic (yellow) patches, root necrosis, suppression of root and shoot growth and 

reduced yield. Worldwide it is the most serious pest of soybean (Wrather et al. 1996; 

Wrather et al. 2003). Once established in a field, the infestation is difficult to eradicate 

due in the ability of the nematode populations to overcome soybean resistance genes. 

           The most economic and environmentally sound solution for managing areas 

infested with SCN is the development of resistant germplasm (Concibido et al. 2004). 

However the resistance is race-cultivar specific (H. glycines biotype, HG type; Niblack et 

al. 2003), temperature dependent (Palmateer et al. 2002) and pathogen populations have 

the ability to mutate, recombine and/or drift quickly to overcome resistance (Niblack  et 

al. 2003). 

      In most germplasm, SCN resistance was shown to be controlled by few major 

QTL (Concibido et al. 2004). For example, in the cultivar ‘Forrest’, resistance to SCN 

HG Type 0 is a qualitative trait and has a specific 2 locus requirement for rhg1 and Rhg4.  

(Meksem et al. 2001). The rhg1 locus is on linkage group G and provides the major 

portion of resistance to SCN across many genotypes (Webb et al. 1995; 1996; Concibido 

et al. 1997; 2004). Varieties selected for rhg1 provide good resistance to almost all HG 

types. Satt309 has been variously mapped at 0.5-2 cM distance from rhg1, and is 42 Kbp 
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from a candidate gene cluster in the physical map (Ruben et al. 2006; Afzal and Lightfoot 

2007; Afzal et al., 2008; 2009). Markers from within the gene cluster, like the indel 

marker TMD1 in the intron of a receptor like kinase (RLK),  are very strongly associated 

with SCN traits. However,  recombination events suggest the rhg1 locus lies between 

TMD1 and Satt309, a 42 kb region encompassing genes encoding  the kinase of the RLK, 

a laccase like protein and a transporter like protein (Ruben et al. 2006; Afzal et al 2008; 

2009; Iqbal et al 2009) 

      The Rhg4 locus is on linkage group A2 (Weisemann et al. 1992; Webb et al. 

1995; 1996; Meksem et al. 2001) and provides an equal portion of resistance to SCN HG 

Type 0,  and in some crosses HG Type 1.3- (Webb et al 1995; 1996; Concibido et al. 

1997; 2004). It does not contribute to resistance to HG Type 1.2.5-; or HG Type 2.  

Markers closest to the locus include the RFLP derived SCAR marker BLT65 (Weiseman 

et al., 1992), AFLP derived SCAR marker A2D8 (Meksem et al. 2001) and the BES-

SSRs from the BAC B100B10 anchored by A2D8 (Shultz et al. 2007). The BES-SSR 

H100B10b has been located in the soybean genome (Lightfoot, unpublished) in 35 kbp 

region associated with the deletion underlying the I gene for seed coat color (Senda et al. 

2002). The I gene and the A2D8 linked markers are very strongly associated with SCN 

traits and recombination events are rare (Weiseman et al. 1992; Meksem et al. 2001). 

However,  recombination events suggest the rhg1 locus lies between A2D8 and BLT65, a 

142 kbp region encompassing genes encoding  a subtilisin-like protein and a transporter 

like protein (Campbell et al. 2009). 
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Additional QTL identified in ‘PI 437654’, ‘Hartwig’ and PI88788 indicated 

another three QTL underlie resistance to HG Types 1.3- and 1.2.5- which may be located 

on linkage groups (LG) J (Rhg5), D2 (Rhg2), and C1 (Rhg3; Webb et al. 1995; 1996; 

Schuster et al. 2001; Glover et al. 2004). Four different loci (on LGs A1, B1, F and G) 

underlying resistance to SCN were detected in PI437654 using inbred nematodes 

(Vierling et al. 1996). More recently the number of loci underlying resistance to SCN 

mapped in different populations derived from PI437654 with a range of HG Types has 

risen from those nine to ten (LG I), if only additive loci were counted, but eighteen (all 

LGs except B1 and D1b) if epistasis among loci was measured (Wu et al. 2009). Possibly 

the PI437654 genome encodes many redundant loci for resistance to SCN that may be  

activated by crosses to different susceptible cultivars or by challenge with different HG 

Types. 

A RIL population was developed from the cultivar Hartwig to assist with mapping 

agronomic traits including SCN, SDS, seed yield and yield components (Prabhu et al. 

1999; Yuan et al. 2002; Kazi, 2005; et al 2006; et al 2007). Since cv. ‘Hartwig’ is the 

product of 3 backcrosses of Forrest with ‘PI437654’ as the SCN resistance donor (Anand 

1992) some loci underlying resistance to SCN might be introgressed and others not 

(Schuster et al. 2001). Therefore, confirmation of QTL in near isogeneic lines (NILs) will 

be important. NILs derived from residual heterozygosity in RILs at the F5 are widely 

used for this purpose (Njiti et al. 1998; Meksem et al. 1999; Triwtayakorn et al. 2005; 

Ruben et al. 2006; Farias-Neto et al. 2007). The use of NILs separates the QTLs effects 

from one another and other interacting loci (Wu et al. 2009). 
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The research described here sought to confirm previously reported QTL (Webb et 

al. 1995; 1996; Vierling et al. 1996; Schuster et al. 2001; Wu et al. 2009) or identify new 

QTL that underlie resistance to SCN. A ‘Flyer’ by Hartwig derived recombinant inbred 

line (RIL) population challenged with three different HG Types (0, 1.3-, and 1.2.5-) was 

used. A new QTL was identified in RILs, confirmed using NILs and the confirmed QTL 

assigned the designation cqSCN-005.  
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MATERIALS AND METHODS 

 
 

Plant Material 

      Seeds were developed by the Genetics and Biotechnology program at Southern 

Illinois University at Carbondale at the Agronomy Research Center (ARC) from 1993-

2001. For this research seeds were obtained from the collections of  Dr. D.A. Lightfoot in 

the ARC seed store at SIUC in 2002. The RILs derived from a cross between two 

soybean cultivars, susceptible Flyer and resistant Hartwig (F x H, n = 92; FH92) and the 

population was released in 2006 ( Kazi et al. 2007). Flyer was originally released for high 

seed yield combined with a wide range of fungal resistance loci (McBlain et al. 1990).  

 All RILs in FH92 were selected for agronomic type. Fifty of the RILs were 

selected for the presence of approximately equal numbers of alleles at Satt038 (LG G) 

and BLT65 (LG A2; Prabhu et al. 1999). The selection for agronomic type tends to select 

against SCN resistant lines (Yuan et al. 2002; Brucker et al. 2005; Kopisch-Obuch  et al. 

2005). Also the SCN resistance alleles at rhg1 must be in phase with an unlinked 

modifier locus for gametes or seed to be viable (Webb et al., 1995; 1996; Afzal et al. 

2008; 2009).  Therefore, marker selection for RILs with resistance alleles at rhg1 and 

Rhg4 was necessary to avoid a skewed and biased population formed by these 

unintentional selections. 

 

SCN female index (FI) determination: 

      The SCN assays used previously described methods (Prabhu et al. 1999; Arelli et 

al. 2000; Yuan et al. 2002) for HG Types 0 and 1.3-, but with minor modifications for 
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HG Type 1.2.5-. For the F5:11 FxH RIL (n=94) population SCN HG Types 0 and 1.3- used 

five and three single-plant replications respectively. For HG Type 0 tests the cultivar 

‘Hutcheson’ was used as the susceptible control while ‘Peking’ (female index; FI 2%), 

‘PI 88788’ (FI 3%), ‘PI 90763’ (FI 1%) and ‘Pickett’ (FI 3%) were used as the standard 

differentials to determine race classification. For HG Type 1.3- tests the cultivar 

‘Hutcheson’ was used as the susceptible control while Peking (FI 98%), PI 88788 (FI 

3%) and PI 90763 (FI 101%) and Pickett (FI 68%) were used as the standard differentials 

to determine the race classification (HG Type). Assays were carried out at the University 

of  Missouri by P. Arelli using near homogeneous nematode cultures. The development 

of the near homogenous nematode cultures was described in Qiu et al. (1999). 

The HG Type 1.2.5-(race 2) assays were replicated at SIUC by Dr. Bond’s staff 

and at the University of Missouri by Dr. Arelli’s staff. The RIL experiments each used 

two single plant replications (four plants in total), while the NIL experiments used six 

single-plant replications (twelve plants in total). The cultivars ‘Lee 74’, ‘Essex’ and 

‘Hutcheson’ were used as susceptible controls (Niblack et al. 2003). The differentials or 

indicator lines were ‘PI54840’ (FI 101%), PI 88788 (FI 24%), PI90763 (FI 1%), 

PI437654 (FI 0%), ‘PI 209332’ (FI 61%), ‘PI89772’ (FI 2%) ‘PI548316’ (FI 38%) and 

‘PI548402’ (FI 35%) in the first experimental repeat. In the second repeat the FIs were 

19%, 48%, 0%, 0%, 63%, 0% and 39%. Therefore the standard differentials showed this 

HG Type to be 1.2.5- (Niblack et al. 2003) corresponding to race 2 (Riggs and Schmitt, 

1988). 

      For inoculation, seeds were surface sterilized with 5% (v/v) bleach for 2 min, 

rinsed three times with distilled water and placed on autoclaved filter paper in Petri 
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dishes (Arelli et al. 2000). These dishes were incubated in the dark at 20 
0
C for 48 hours. 

Seeds were planted separately in plastic Micropots
TM

 (Hummert International, Earth City, 

MO), then immersed in a 27
0 

C water bath. Seven days after seedling emergence, each 

pot was inoculated with 1-ml of crushed cysts from a homogenous isolate of H. glycines 

in distilled water (2,000±  25 eggs per ml).  

            Thirty-eight days after inoculation, individual plants were uprooted, and the cysts 

were collected by washing the roots with pressurized water over wire mesh sieves. The 

leaves from the top of these plants were stored at -70
0 

C.  The total numbers of cysts were 

counted using a Nikon (Melville, NY) dissecting scope (Model SMZ645) at 10x 

magnification. The mean number of cysts from two to six single-plant replications (for 

each line) and the susceptible checks were determined. The FI, previously called Index of 

Parasitism (IP), Schmitt and Shannon, (1992) was calculated as the number of cysts or 

females on the evaluated genotype divided by the mean number of cysts or females 

present on the susceptible cultivar roots x 100. 

 

DNA Marker Analysis 

 DNA was extracted and used for microsatellite amplifications as in Yuan et al. 

(2002) with modifications described in Kazi et al. (2008). Briefly, BARC-Satt markers 

were chosen at 10 cM intervals from the soybean genetic map (Song et al. 2004). In 

addition, SIUC-BES-SSR markers from build 2 MTP BES clones (Shultz et al. 2006ab; 

2007) were chosen at 10,000 kbp intervals within the soybean physical map (Shultz et al. 

2006ab; 2007) and in the regions of rhg1 (SIUC-TMD1) and Rhg4 (SIUC-B100B10b). 

The six markers added compared to Kazi et al. (2008) were Satt038_1, Satt038_2 on LG 
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G near rhg1 and BLT65, H100B10b, H100B10a and A2D8 on LG A2 encompassing 

Rhg4  (Supplemental Table 1) 

 

Trait Heritability and Correlation Estimations 

      Heritability (h
2
) estimates, a ratio of genotypic variation over phenotypic variation 

of SCN FI%, were calculated using variance components obtained through ANOVA as 

described in Fehr (1987). Due to the low frequency of heterozygosity at the F5:11, the 

genetic variance is almost entirely an additive and additive x additive interaction. 

Therefore, heritability was considered narrow.  

All correlations were calculated using the PROC CORR function of SAS (SAS 

Institute, Cary, NC) using line mean data. The SDS data were described in detail in Kazi 

et al. (2007) as mean disease index (leaf scorch; two locations, one year) and mean 

infection severity (root infection; four locations two years). The mean seed yield data was 

described in detail in Yuan et al. (2002) and was from four environments and 2 years. 

The  SCN FI data were the mean number of cysts from two to six single-plant 

replications (for each line) and two experiments. 

 

Construction of the Genetic Linkage Map 

     The linkage map was created using MAPMAKER/EXP 3.0 (Lander et al. 1987) as 

described by Kazi et al. (2008). Briefly, map distances were calculated in Haldane units; 

heterogenous lines were excluded; the RI-self genetic model was used. The LOD for 

grouping markers was set at 3.0 with a maximum distance of 50 cM and computed with 

error detection. Most markers were anchored on the LGs on the basis of the locations 
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expected from the composite map (Song et al. 2004). Conflicts among the positions of 

linked markers in FxH were resolved in favor of experimental evidence if there was 

evidence for the  existence of paralogs of marker amplicons. Paralogs were inferred when 

the maps generated by Mapmaker had linkage probabilities above LOD 3.0 that disagreed 

with the composite map. Most markers have homeologous loci in soybean (Shultz et al. 

2006a; Saini et al 2008). 

 

Construction of QTL Maps 

A. Single Point Analysis         

            For line mean comparisons, the data were subjected to analysis of variance 

(ANOVA; SAS Institute Inc., Cary, NY), with mean separation by LSD as described by 

Kazi et al (2008) for RILs and Njiti et al. (1998) for NILs. Markers were compared with 

SCN FI measures by the F-test of ANOVA. Heterogeneous lines were excluded from 

analysis (numbers of lines ranged from 3 to 15 with a mean of 8.3 per marker). 

 A significant difference (P < 0.005) was considered to be a preliminary indication 

of an association between a marker and a QTL for the trait in question. A value of P ≤ 

0.0005 was suggested by an approximate Bonferroni correction (P<0.05/100) for the set 

of about 100 independent (unlinked or >10 cM apart) DNA markers (from the 144 

mapped). However, at genomic regions where markers were sparse and gaps between 

adjacent markers were greater than 10 cM associations in the range 0.005 > P > 0.0005 

were considered significant associations. If the interval was large or was flanking a single 

marker the uncorrected P value of < 0.05 was accepted. Precedents with first-pass 

mapping of other quantitative traits (Hnetkovsky et al. 1996, Chang et al. 1997; Njiti et 
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al. 2002) have shown these criteria to be valid during subsequent saturation mapping of 

intervals inferred at marginal P values (Njiti et al. 1998; Meksem et al. 2001; Yuan et al. 

2002; Triwitaykorn et al. 2005; Ruben et al. 2006). 

B.  Interval Maps of QTL 

     Maps of all linked markers and trait data were simultaneously analyzed with 

Mapmaker/QTL 1.1 using the F2 -backcross genetic model for trait segregation (Chang et 

al. 1997, Njiti et al. 2002; Kazi et al. 2008). Putative QTL were inferred when LOD scores 

exceeded 2.0 at some point in an interval. LOD 2.0 was empirically determined to be 

equivalent (but not equal) to a single marker P < 0.005.  The position of each QTL was 

inferred from LOD peaks at individual loci detected by maximum likelihood tests at 

positions every 2 cM between adjacent linked markers. 

C. Composite Interval Maps of QTL 

     For more accurate location of QTL among sets of linked markers, the composite 

interval map (CIM) function of WinQTL Cartographer (version 2.5) was used (Jansen and 

Stam 1994; Basten et al. 2001). Following Kazi et al. (2008) a walk speed of 2 cM and the 

forward regression method were selected. QTL were inferred when LOD score peaks 

exceeded 2.0 for the traits studied, considering a P < 0.05 corrected for the use of about 100 

independent markers. To confirm linkage, experiment-wise threshold was calculated from 

1,000 permutations of each genotype marker against the phenotype in the population. 
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RESULTS  

 
Polymorphism and Linkage. 

The linkage map used is described in Kazi et al. (2008) with six additional 

markers. Briefly, one hundred and fifty markers were found to be polymorphic within a 

Flyer x Hartwig (FxH) RIL population (104 of 250 BARC-SSRs, 40 of 143 BES-SSRs 

and 3 of 3 SCARs tested). There were  3-10 markers per linkage group and distance 

between markers was 10-25 cM except for linkage groups, G (Meksem et al. 1999) and K 

that were tested with additional markers due QTL detections reported previously  (Yuan 

et al. 2002, Kazi et al. 2008).  Sixty one markers formed 17 linkage groups encompassing 

534 cM.  The map has large gaps because the RIL population was derived from a cross 

between cultivars with a high coefficient of common ancestry (~0.25) from a very small 

germplasm base, north American adapted soybean cultivars. However, assuming 10 cM 

as a distance for QTL detection, the groups formed plus the 81 unlinked markers would 

allow the detection of QTL over 2,494 cM (Supplemental Figure 1). The recombination 

distances and orders of markers in linkage groups (with 2-3 exceptions) and genome size 

(2,512 cM) agreed with those reported (Song et al. 2004).  

 

Variation of resistance within FxH RILs to three races of SCN. 

         The means and standard errors of phenotypic variation of  FI among the two parents 

and RILs within all three HG Types were relatively constant with minor variations (Table 

1) indicating that the SCN bioassays were useful for further analysis. Transgressive 

segregation was observed in HG Type 0 (race 3) FI scores but not in HG Type 1.2.5- 

(race 2) and HG Type 1.3- (race 14; Fig 1A, 1B, 1C).  The RIL population mean was 
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intermediate to the two parents for each HG Type (Table 1). Narrow sense heritability 

estimates for SCN FI had relatively high values (0.95 for HG Type 0, 0.96 for HG Type 

1.2.5-, and 0.86 for HG Type 1.3-; Table 1).                                                                                                                                                                                                                                                                                 

 Overall responses within the RILs to the HG types produced continuous 

distributions (Fig 1A, 1B and 1C), including HG Type 1.2.5- (n = 14) for which only 14 

lines were selected as R to HG Type 0 or HG Type 1.3-.  The Shapiro-Wilks Test (W 

test), showed a normal distribution (W = 0.95; P = 0.73; Fig. 1A). The distribution was 

skewed (-0.58) towards the low female index (Hartwig). A negative kurtosis (-0.59) 

reflected a platykurtic distribution caused by a few extreme scores (two resistant RILs 

FI<10; FxH35 and FxH93). There were no significant transgressive segregants. 

 For resistance to HG Type 0, often  a bigeneic trait (Meksem et al. 2001),  the 

distribution was not normal (W = 0.95; P = 0.001; Fig. 1B). The distribution was skewed 

(-0.44) towards the low female index (Hartwig). The distribution was negatively kurtotic 

(-0.72). There were about 18 lines with a mean FI higher than Flyer that are transgressive 

segregants (Fig. 1B). There were 14 resistant lines (FI < 10) and another 14 moderately 

resistant lines (10 > FI > 30). Only five lines were equal in resistance to Hartwig (FI < 

1.0) but non were significant transgressive segregants.  

      HG Type 1.3- FI distribution was not normal as W = 0.87 (P = 0.0001; Fig 1C) 

and was skewed (1.5) towards the high female index (Flyer). There was a significant 

positive kurtosis (2.75) reflected a leptokurtic distribution. No significant transgressive 

segregants were observed. There were only 4 resistant lines (FI < 10), no moderately 

resistant lines (10 > FI > 30) and only 11 moderately susceptible lines (30 < FI <60). 

None of the four resistant lines were equal in resistance to Hartwig (FI < 1.0). 
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   Correlations among SCN, SDS and Seed Yield Traits: 

 Correlations among SDS (DX, ISR6, ISR8),  SCN (FI 0, FI 1.3-) and seed yield 

(Mg/Ha) were made toexpand on the reports of Yuan et al. (2002) and  Kazi et al. (2008). 

Resistance to SCN HG Type 0 was negatively correlated with seed yield (R
2 

= 0.69). 

Resistance to   HG Type 1.3- was also negatively correlated with seed yield but more 

weakly (R
2 

= 0.26). Positive correlations were observed when comparing resistance to 

SCN HG Type 0 with the resistance to infection (IS) of roots by Fusarium virguliforme 

(the pathogen that causes SDS) at growth stages R6 (R
2 

= 0.71) and R8 (R
2 

= 0.75) 

whereas SDS DX was weakly correlated (R
 
= 0.31).  However, the correlation between 

infection severity with HG Type 1.3- FI showed a negative correlation at both R6 (R
2 

= 

0.27) and IS-R8 (R
2 

= 0.63).  Correlations inferred the relationships between loci 

underlying responses to SCN, SDS and seed yield would include linkages in attraction 

and repulsion phase at separate loci.   

                                             

Identification of QTL underlying resistance to SCN FI  HG Types 0 (race 3) and 1.3- 

(race 14) in the RIL population 

The major genomic  region associated with variation in resistance to HG Type 0 

and HG Type 1.3- was found on linkage group G, the expected position for rhg1 (Table 

2). The marker Satt309 was the marker most strongly associated with resistance to HG 

Type 0 (P = 0.0001, R
2
 = 22.3%).  The beneficial allele was derived from Hartwig (H) 

not Flyer (F = 64.3 ± 4.1, H = 20.8 ± 6.8). The TMD1 marker from the intron in the RLK 

gene  at rhg1 was also strongly associated (P = 0.008, R
2
 = 11%) and closely linked (3.3 

cM). The beneficial TMD1 region was also derived from Hartwig (F = 60.8 ± 4.2, H = 
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32.6 ± 9.1). The Satt309 to TMD1 interval had a peak-LOD score of 3.9 and explained 21 

% of the total variation in the HG Type 0 FI. Markers Satt275 (2.2 cM; P = 0.002, R
2 

= 

13.7%) and Satt163 (3.2 cM; P = 0.005, R
2
 = 14%) located to the telomeric side of  

TMD1 were less strongly associated with resistance to HG Type 0.   

   Markers to the centromeric side of Satt309 were also strongly associated with 

resistance to HG Type 0. Satt610 (P = 0.001, R
2
 = 17%), 15.5 cM from Satt309, had  the 

beneficial allele from Hartwig (F = 66.5 ± 5.6, H = 34.2 ± 6.5; Table 2). A high peak- 

LOD score of 4.85 underlay 27% of the trait variation.  However, selection against 

inheriting Hartwig alleles at rhg1 was observed for Satt 309, TMD1 Satt163 and Satt275. 

In contrast Satt038_2 and Satt610 showed  segregation ratios that were not significantly 

skewed away from 1:1 ratios among the RILs. Consequently Satt038_2 was placed 

between Satt309 and Satt610 (Figure 3; Kazi et al. 2008), an unusual position for 

Satt038_1 on the composite map (Song et al. 2004). Therefore, interacting loci may be 

involved and caution should be exercised in changing the position of the QTL at rhg1 

from the TMD1 to Satt309 interval expected (Ruben et al. 2006). 

Markers linked to Rhg4 on LG A2 (BARC-BLT65, SIUC-B100B10b and SIUC-

A2D8) were significantly associated with resistance to  HG Type  0. The marker most 

strongly associated was A2D8 (P < 0.001, R
2
 = 19%) and the beneficial allele was again 

from Hartwig (F = 51.2 ± 4.5, H = 25.0 ± 2.5). The association was not detected by 

Prabhu et al. (1999) since only 50 lines were phenotyped at that time and only BLT65 

was used. Here,  92 lines and the parents were tested with HG Type 0  and A2D8, a 

marker more closely linked to Rhg4 (0.25 cM) than BLT65 (about 1.25 cM) was used 

(Meksem et al. 2001). 
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      For HG Type 1.3-, the Satt309 region of  LG G was significantly associated  with 

resistance (P = 0.001, R
2
 = 16.6%; Table 3), with the beneficial allele originating from 

Hartwig (F = 81.2 ± 2.30, H = 69.1 ± 5.76). The linked (3.2 cM) marker Satt163 (P = 

0.001, R
2
 = 6%) was also associated. The interval had a peak-LOD score of 2.87 and 

explained about 14.6% of trait variation in the FxH RIL population. Markers linked to 

Rhg4 on LG A2 (BLT65, B100B10b  and A2D8) were weakly associated with resistance 

to HG Type 1.3-  (0.05  < P < 0.01). 

For HG Type 1.2.5-, as sub-set of RILs (n=14) was used for ANOVA, the lines 

that were HG Type 0 resistant. Analysis indicated that the region of LG G from Hartwig 

identified by Satt309 was significantly associated with resistance (P = 0.001, R
2
 = 24%) 

in the RIL sub-population. Markers linked to Rhg4 on LG A2 (BLT65, B100B10 and 

A2D8) were not significantly associated with resistance to HG Type 1.2.5- in this small 

sub-set (data not shown). However, another marker Satt543 on LG D2 was significantly 

associated with resistance to HG Type 1.2.5- (P = 0.005, R
2
 = 12%). The possible 

associations with resistance to HG Type 1.2.5- were tested in NIL populations to attempt 

QTL confirmation. 

 

Confirmation of loci associated with resistance to SCN FI  HG Type 1.2.5- (race 2) 

in a NIL population 

Because there were only two RILs resistant to HG Type 1.2.5- , QTL analysis in 

the 14 lines most resistant to HG Type 0  was followed by analysis in NILs derived from 

RILs.  Judged by single plant responses, RILs found to be heterogeneous with one of the 
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QTL associated markers or segregating for resistance to SCN were selected for further 

NIL analysis (Kazi 2005). 

A near-isogenic line (NIL) population, derived from RIL FxH19 was used to 

confirm the location of the locus underlying the SCN HG Type 1.2.5-resistance.  Ten 

NILs were extracted and six plants per NIL were used for FI determination.  The 

frequency distribution of FxH19-derived NIL population  appeared continuous and 

positively kurtotic (data not shown; see Kazi, 2005).  The female index ranged  from 12 

to >114 and was skewed toward a high female index. Heritability was calculated at 91%. 

Line 19-8 was the only fully resistant line, two lines were moderately susceptible 

(FI<60), and seven NILs were susceptible. Within intermediate lines (12>FI<100) there 

were some individual plants with FI<10,
 
suggesting genetic segregation within the NILs 

or line contamination or some escapes from infection. 

      The RIL FxH19 and derived F5:7 derived NIL FH19-1 to 20  all carried the 

Hartwig allele at rhg1 (TMD1) and Rhg4 (Satt089) as judged by DNA markers. The 

NILs FH19-1 to 10 was expected to have about 6.25% of the genome segregating, but did 

not segregate for 140 of the 144  markers tested suggesting only 3% of loci were 

segregating.  However, the four markers that were heterogeneous in FxH RIL 19 

segregated in the derived near isogenic line population. Table 4 shows that mean FI was 

significantly lower (P<0.046, R
2
=19%) for genotypes carrying the Hartwig allele for 

Satt543 (LG D2; 88.02 cM). However, Hartwig alleles at Satt594 (LG G; 52.93 cM), 

Satt237 (LG N; 74.98 cM) and Satt530 (LG N; 32.84) were not associated with different 

SCN FI means. The most resistant NIL 19-8 showed a single plant that was susceptible 
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(FI 60%) and five completely resistant plants (Figure 2 B). The susceptible plant had the 

Flyer allele at Satt543 suggesting the NIL 19-8 was still segregating at this locus. 

 A second small NIL population (n=10) derived from FxH33 showed segregation 

at markers linked to rhg1 (cqSCN-001) on LG G. There was association between the HG 

Type 0, 1.3- and 1.2.5- traits and those markers (data not shown; Kazi, 2005). This was 

an expected result that validated the usefulness of  the small NIL populations for QTL 

confirmation. 

 

The seed yield QTL on LG D2 

 The region on LG D2 (Figure 3) identified by the microsatellite marker Satt514 

was significantly (P=0.0006, R
2
=7.4%) associated with seed yield in the RILs of FH92. 

The QTL was detected in the across environment grand mean yield, from  1998-1999, in 

the complete population of 92 RILs grown at four locations (two row plots, three 

replications). The beneficial allele was from Hartwig (3.00+0.04Mg ha
-1

) not Flyer 

(2.77+0.05 Mg ha
-1

). The adjacent marker was Satt488. The interval between these two 

markers spanned a genetic distance of about 3.5 cM. The yield QTL had peak Log-

likelihood (LOD) of 2.57 and explained about 13.3% of total variation in seed yield (0.42 

+0.04Mg ha
-1

). 

 

Discussion  

The correlations among SCN SDS and seed yield traits might be explained by the 

different linkage phases among separate loci for seed yield and resistances to SCN and 

SDS found on LGs G and D2 reported here (Table 1-3; Figure 3). On LG G the alleles 
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underlying resistance to SCN and SDS are linked to a seed yield depression allele. On 

linkage group D2 the reverse is true, the SCN resistance allele is linked to a seed yield 

increase allele but an allele underlying  SDS susceptibility. Therefore, progress can be 

made in soybean breeding by identifying recombination events in both these regions with 

new linkage relationships.   

Resistance to SCN Hg Type 1.3- was shown to be a dependent trait requiring 

resistance alleles at both HG Type 0 loci (rhg1, Rhg4) and one extra locus. The linkages 

observed could also explain how resistance to SCN Hg Type 0 is positively correlated 

with resistance to SDS whereas resistance to SCN Hg Type 1.3.5is negative correlated 

with SDS both in this population (Kazi et al. 2008) and across diverse germplasm 

(Gibson et al. 1994). However, sample size may have a large effect on the correlations 

reported here.  With SCN data the correlations were strongly affected by; the biphasic 

nature of the trait distributions (Figure 1); the small number of resistant lines (14 for 

HgType 0; 4 for HgType 1.3.- and 2 for HgType 1.2.5); the large number of susceptible 

lines; and scarcity of lines with intermediate FI scores. 

 

The major effect of rhg1 on resistance to all HG Types (Webb et al. 1996; 

Concibido et al. 1996; 2004) was confirmed (Table 5). The effect of Rhg4 on resistance 

to  Hg type 0 and Hg Type 1.3- was also confirmed. An additional locus for resistance to 

Hg Type 1.3- was inferred from the fact that only 4 resistant lines were identified from 14 

resistant to HgType 0, but the marker association with that locus (expected on LgC1; 

Webb et al. 1995) was not made to date (Table 5). Only two lines were resistant to 

HgType 1.2.5- so that as well as the locus on LgD2 another (on Lg J) may underlie 
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resistance (Table 5; Webb et al. 1995). Some genomic regions were not polymorphic 

(Supplemental Figure 1). Only 40% of BARC-Satt markers and 30% of BES-SSR 

markers were polymorphic. This lack of polymorphism in large regions of the genome 

occurs because the cross was between cultivars with a high coefficient of common 

ancestory (~0.25) from a very small germplasm based, north American adapted soybean 

cultivars. There are large regions of the genome expected to be monomorphic between 

Hartwig and Flyer. However, the regions underlying resistance to SCN would have to be 

polymorphic. Some of the polymorphic regions underlying resistance to SCN may be 

quite small because Hartwig is the product of a series of backcrosses (Forrest
3
xPI437654; 

Anand et al 1992). Consequently, much greater marker density may be needed to detect 

the additional loci. 

The loci intervals seemed to shift depending on the HG Type used even though 

the same set of RILs was included in each analysis (Figure 3). Among possible causes of 

the shifts were; the subset of resistant lines was different in each case; sampling errors 

caused by experimental variations in SCN FI; the action of multiple, linked genes (Ruben 

et al. 2006; Afzal et al 2009); un-intentional selections against resistance alleles at the 

rhg1 locus (Prabhu et al. 1999); or interactions among rhg-loci (Webb et al. 1995; 1996; 

Wu et al 2009). Unintentional selection did have an effect as only eighteen RILs had the 

alleles associated with resistance at both markers most closely encompassing rhg1 (Satt 

309 and  TMD1; Ruben et al; 2006; Afzal et al. 2009). Therefore, the small sample size 

of RILs resistant to SCN caused by natural or unintentional  selection appeared most 

likely to explain the subtle shifts in the rhg1 position with each HG Type. One line with a 
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recombination event between rhg1 and the nearest marker or with an unusual phenotypic 

score would be sufficient to cause such a shift. 

The Rhg- genes clearly interact as no single gene is sufficient for resistance. In 

addition the loci have paralogs. The set of genes identified within the rhg1 locus (Ruben 

et al. 2006) have a syntenic set of paralogs at another genomic location on LG B1 (Afzal 

and Lightfoot 2007; http://www.phytozome.net/cgi-bin/gbrowse/soybean/; Afzal et al. 

2008; 2009).  Interactions among rhg-loci are common phenomena (Webb et al 1996; Wu 

et al 2009; Afzal et al 2009). However, the interacting loci on LG M inherited in phase 

with rhg1 (Webb et al. 1995; 1996) did not appear to segregate in FH92 since no marker 

on LG M was polymorphic among the 20 tested. The equivalent locus discovered in ExF 

in the middle of LG G was not co-inherited with rhg1 either. Therefore, the known 

modifiers of rhg1 action could not be implicated in the shift in apparent location of the 

loci.  

On LG D2 the locus underlying resistance to HG Type 1.2.5- might be the same 

allele as that underlying race 1.3- in the population derived from Hartwig by BR-92–

31983 (Schuster et al. 2001) or simply linked to it. However, it was not associated with 

resistance to Hg Type 1.3- in the experiments reported here. The locus detected here was 

confirmed to underlie resistance to Hg Type 1.2.5- in  a small NIL population and 

therefore represented a confirmed QTL. The designation cqSCN-005 was assigned by the 

Soybean Genetics Committee in 2008 (http://www.soygenetics.org/committee.php). The 

Hartwig allele at the region seemed to increase seed yield by 0.3 Mg ha
-1

 (either by 

resistance to low SCN infestations or linkage to a second locus) but caused greater 

susceptibility to root infection (IS by 15%) and leaf scorch (by 7%; Kazi, 2005; Kazi et 
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al. 2008). Therefore, the D2 locus should be targeted for fine mapping, genomic analyses, 

and marker selection of new recombination events that improve all three agronomic 

traits.  

The molecular basis of the interactions among loci; within resistance to SCN 

(Webb et al. 1995; 1996; Wu et al. 2009); among diseases (Kazi et al. 2007); and with  

agronomic traits (Yuan et al. 2002) is not clear. A comparison of  Williams, Forrest, 

Hartwig and PI437654 DNA sequences in both the G and D2 regions associated with 

resistance to SCN (Lightfoot, 2008; Afzal et al. 2009; Campbell et al. 2009) might show 

the molecular mechanisms underlying these interactions, correlations and phenomena.  
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Figure legends 

 

Figure 1. Frequency distributions of the FxH (F5:11) RIL response to SCN HG Type 

1.2.5-(race 2) HG Type 1.3-(race 14) and HG Type 0 (race 3). Letters H and F directed 

by arrows indicate where the mean FI of the Hartwig and Flyer respectively fall within 

the distribution . 

 

Figure 2. Frequency distribution of FxH19-derived NIL population analyzed for SCN 

HG Type 1.2.5-female index (FI). Panel A shows NIL 19-1 to 10 ranked by mean FI%. 

Female Index  below 30% was  moderately resistant; 30-60%  was moderately 

susceptible; 60-100% were susceptible and  greater than 100% were highly susceptible. 

Panel B show the cyst count for each of six plants per NIL 1-10 in numeric order.       

 

Figure 3. Locations of the QTL found in the Flyer by Hartwig population on linkage 

groups A2, D2 and G for resistance to SCN HG Type 1.2.5-(grey stippled arrows) HG 

Type 0 (black stippled arrows) and HG Type 1.3 (black solid arrow). The size of the 

arrow reflects the interval significantly associated by QTL Cartographer or Mapmaker at  

LOD > 2.5 or ANOVA at P < 0.0005. 
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Table 1. Mean Female index plus or minus standard errors of parents, narrow sense 

heritabilities and probabilities of normality among the FxH (F5:11) RILs for SCN HG 

Type 1.2.5-, HG Type 0 and HG Type 1.3- (races 2, 3 and 14). 

       

 HG Type              1.2.5-        0         1.3- 

 (RILs)                   (n = 14)   (n =92)   (n = 92) 

 Hartwig                       3±0.4                         2±0.4    2±0.4 

Flyer                             109±23                       103±25            123±33 

 FxH (F5:11)                50.4±8.35                  55.1±3.97         76.2±2.36 

Heritability                   0.95                           0.96                   0.86 

Probability                    <.0001                       <.0001               <.0001 
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Table 2. Markers and intervals those were associated with resistance to HG Type 0 (race 

3) in the FxH RIL population on linkage group G. 

 

 

Marker P value R
2
 (%)   FI Means ±  SEM          Intervals 

   Flyer         (n)
 a
 Hartwig (n) LOD QTL var

b
 

Satt163 0.002 14 64.0±5.2 (57) 37.6±5.9 (20)  

Satt275 0.005 14 62.5±4.6 (47) 34.8±8.4 (33) 3.6 18 

TMD1 0.008 11 60.8±4.2 (59) 32.6±9.1 (19) 3.9 18 

Satt309 0.0001 22 64.3±4.1 (69) 20.8±6.8 (18) 3.9 21 

Satt610 0.001 17 66.5±5.6 (35) 34.2± 6.5 (23) 4.9 27 

a  
Heterogenous lines were excluded 

   b  
 % of trait variation explained by each marker-trait association 
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Table 3. Markers and intervals that were associated with resistance to HG Type 1.3- (race 

14) in the FxH RIL population on linkage group G. 

 

Marker P value R
2
 (%) FI Means ±  SEM    Intervals 

   Flyer Hartwig LOD QTL var 

 

Satt163 0.04 6 81.2±2.3 69.1± 5.8   

Satt309 0.001 17 81.6±2.1 61.5±6.9 2.87 14.6 
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Table 4: Four markers that were associated with the QTL underlying resistance to HG 

Type 1.2.5- segregated in the FxH19-derived near isogenic line (NIL) population. Six 

plants from each of ten lines within the FxH19-derived NIL population were tested for 

resistance to HG Type 1.2.5-. There were six plants per genotype.  The sixty plants were 

scored for each of the four markers. Heterozygous lines were excluded  

 

________________________________________________________________________  
 

Marker      LG    Allele           N                Pr>F        
‡
 R

2  
         Allelic Mean 

         ± SEM 

 

        Satt543       D2        H          18              0.046*      0.19            30.8±7.8 

         F         28                       86.2±9.4 

        Satt594       G          H          23                0.31                0.006           58.7±12.4 

                             F              21                                                       82.4±8.9 

    

        Satt237       N          H          22                0.076       0.9             63.1±9.8 

                            F            31                                      84.6±8.8 

        Satt530       N          H          25                 0.12                0.7              70.6±9.1 

     F          25                                               79.7±6.2   

________________________________________________________________________ 

‡
R

2
 = Sum of squares for given source of variance divided by total sum of squares 

N = Number of individuals scored 

* = significance at 0.05 level 

H = Hartwig allele, F = Flyer allele 

Hets and no scores not included 
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Table 5: Comparison of the loci underlying resistance to SCN detected in inheritance 

analysis of PI437654 and Hartwig. Data from were assembled from Patent # 6,162,967 

(Webb et al. 1995); Prabhu et al. (1999); Yuan et al. (2002) and this work. In bold are the 

loci confirmed by the analysis in FxH. The Rhg gene annotations are from Webb et al. 

(1995). Rzd is a gene whose allele must match Rhg1 to prevent zygote death. 

         

 

LG   A2 C1 G M J D2  

Gene        Rhg4  Rhg2  Rhg1  Rzd   Rhg5   Rhg3  

HG Type (race) 

 

2.5-(1)   x x x x x  

1.2.5-(2)    x x x x  

0-(3)   x  x x  

2-(5)     x x x  

1.3-(14)  x x x x  
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