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Abstract

In this study, we reported the analysis of
Arabidopsis thaliana microarray gene expression
profile of root tissues after the plant was challenged
with fungal pathogen Fusarium solani f. sp. glycines
(Fsg). Our microarray analysis showed that the
infection caused 130 transcript abundances (TAs) to
increase by more than 2 fold and 32 out of 130 TAs
were increased by more than 3 fold in the root tissues.
However, only nineteen ESTs were observed with a
decrease in TAs by more than 2 fold and 13 of them
went down more than 3 fold due to the pathogen
infection. In addition, the number of the up-regulated
genes was nearly seven times more than that of down-
regulated genes. The coordinate regulation of adjacent
genes was detected and the distance distribution of the
nearest neighbor genes was less likely to be randomly
scattered in genome. The results of this study enabled
us to decipher the resistance mechanism to Fsg
through an integrated computational approach.

1. Introduction

In plants, the same specificity of resistance genes
(R genes) has been identified in distantly related
species [1, 2]. Seeking the answer may shed light on
the reasons that lead to the longevity of R gene
specificities and the dynamics ofR gene evolution [3].
Pto homologs were positioned to syntenic regions in
several species such as tomato, potato, and pepper but
the Pto locus is mostly conserved between
Lycopersicon esculentum and Lycopersicon
pimpinellifolium, suggesting that the locus emerged
prior to the divergence of these species [4, 5]. LrlO
was isolated from hexaploid wheat and encodes a CC-
NBS-LRR protein [6]. It is a single-copy gene on
wheat chromosome lAS. Wheat LR1O and
Arabidopsis RPM1 proteins possess a significant
sequence similarity showing the orthologous

conservation of the RPM1-LrIO type of resistance
genes in these species [6].

Transcriptional changes play a major role in many
plant defense processes [7]. Dissection of alterations in
transcript abundance has provided unique
opportunities to delve into gene function by the
comparison of species, tissue, and time specific
transcription of thousands of genes simultaneously [8,
9]. The simultaneous measurement of transcript
abundances of thousands of genes in parallel can serve
as an important tool in functional genomics. With
microarray analysis, the transcript abundances of the
annotated genes of Arabidopsis (>27,500 in 2006) can
be evaluated in parallel using high-density microarrays
of sequenced cDNAs (AGI, 2000) or oligomers [10].
Microarray experiments allow us to detect significant
variation in mRNA abundance and improve
understanding of the molecular basis of the plant
defense responses [11]. Global and simultaneous
analysis of expression TA profiles can also be used to
find out what variations in mRNA abundances are
significant for a certain proportion of the cDNAs and
treatments investigated [12, 13].

Hurst et al. [14] showed that coordinated
regulation of adjacent genes in chromosomal regions
occurred during the regulation of gene expression in
several plant species. A microarray approach
demonstrated co-expression patterns for adjacent
genes in the rice genome [15]. The results suggested
that the net number of co-expressed gene models
increased proportionally with genome size. In rice, the
majority of the coordinately expressed adjacent gene
model clusters are within 100 kp of each other and
about 10% of the genes in the rice genome
demonstrates coordinated expression patterns that
correspond with defined chromatin domains [15]. In
the co-expressed gene model, gene clusters within the
whole chromatin domain may be expressed in a
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similar manner because of covalently modification of
nucelosomes and thereby, chromatin remodeling
around one gene expands along the chromosome to
encompass several genes until a boundary element is
reached [16].

Sudden death syndrome (SDS) of soybean
(Glycine max) caused by Fusarium solani f. sp.
glycines (Fsg). Fsg was recently renamed F.
virguliforme [17]. Iqbal et al. [1 1] measured changes
in transcript abundances (TAs) of 191 known plant
defense and biotic/abiotic stress related genes in
soybean roots at five time points over a period of 10
days after Fsg inoculation. These genes were chosen
from a soybean root cDNA library [18] and they had at
least a two-fold TAs increase from day 3 to day 10
after the pathogen inoculated to a resistance genotype,
RIL23 that carried resistance conferred by beneficial
alleles at six quantitative trait loci (QTL) derived from
inbred lines 'Essex' x 'Forrest' [11].

Here we analyzed the changes that occurred in the
abundance of transcripts corresponding to 10,560
Arabidopsis thaliana expressed sequence tags (ESTs).
Assays used reverse labeled slides from AFGC after
inoculation of A. thaliana with Fsg. The coordinate
regulation of adjacent genes was detected. The null
hypothesis was that an apparent random distribution of
these genes associated with resistance among the
chromosomes should be observed. An ortholog
analysis was employed to understand the evolutionary
and developmental roles of the regulated genes based
on investigation of orthologous relationship between
soybean and Arabidopsis. The comparison study on
the transcriptional activity between soybean and
Arabidopsis after fungal pathogen Fsg pathogenesis
allows us to examine the overall impact of evolution
on both genomes.

2. Materials and methods

Plant materials

Arabidopsis thaliana cv. Columbia plants were
germinated from seeds under conditions at a 16 h
photoperiod with 23°C day and 18°C night
temperatures and 80 00 (v/v) relative humidity under
light (500BE/M2/sec) in a growth chamber. Plants
were grown on either a soiless Cactus-mix at pH6.5 or
MS medium [19]. There were 30 plants per treatment
arranged in a randomized complete block with three
plants per treatment per block. Twenty-one days after
planting, synchronously growing plants were selected
and roots were collected from both treatment and
control.

Inoculation of roots with Fsg spores

The Fsg isolate 'Mont-i' was obtained from Dr.
Shiuxian Li at the National Soybean Research
Laboratory. A spore suspension of Fsg isolate 'Mont-
1' was prepared as described [ 1]. The spore
suspension, at 5 x 104 spore ml-1 with sterile distilled
water, was made by adding Fsg spores from several
Fsg culture plates. Fsg was cultured on potato dextrose
agar medium (PDA, Difco, Detroit, MI) supplemented
with 80 mg ml-' tetracycline and a few drops of Tween
20 and was continuously stirred on a stir flask to keep
a uniform suspension. The spore suspension was
poured on the growth medium for the infested plants
and the same volume of sterile distilled water was
added to non-infested plants.

RNA isolation and microarray procedure

RNA was isolated separately from both inoculated
and non-inoculated roots and roots of 30 Arabidopsis
thaliana plants that were bulked and ground to a fine
powder in liquid nitrogen and RNA was extracted with
a RNeasy Plant Mini Kit (Qiagen, Valencia, CA)
according to the manufacturer's instructions. RNA
samples were treated with DNase in order to remove
any residual DNA in combination with DNase
treatment using the RNase-free DNase kit (Qiagen
GmbH, Hilden, Germany) according to the
manufacturer's instructions. After DNase treatment,
RNA was purified on RNeasy mini spin columns
(Qiagen, Valencia, CA). The quantity and quality of
the RNA recovered was determined by
spectrophotometry at 260-280 nm and electrophoresis
on a 1.2 00 (w/v) agarose, 20 00 (v/v) formaldehyde
gel. The microarray hybridization and slide scanning
were carried out by the facility at AFGC
(http://afgc.stanford.edu). Microarrays (16561.xls and
27314.xls at ftp://smd-
ftp.stanford.edu/smd/organisms/AT/) were used in the
experiment. The mRNA samples corresponding to
treatment (infested) and control (non-infested) was
labeled during the cDNA synthesis with Cy3- or Cy5-
labeled dUTP and with one technical replicate labeled
by reversed dye compared to the first hybridization.

Data analysis

Stringent quality control measures were applied to
all stages of data analysis. The Microarray data were
normalized by local (local background value was
subtracted from the intensity value of each spot) and
global metrics. The procedures described by Pevsner
[20] followed to adjust for artifact differences in
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intensity of the two labels. Coefficients of means and
variances on the signal intensities in each channel and
ratio of signals from two replicates were calculated by
our C++ program, which was also applied to handle
the missing and extra data values. The average ratio
for a signal microarray from two replicates was
computed by the equation of [Ratiolst+ (1/Ratio2nd)]/2.
The Student's t-test was used to determine the
statistical significance for genes considered between
and within Microarrays slides (P< 0.05). Unless stated
otherwise, all analyses were performed using SAS
PROC UNIVARIATE (SAS version 9.1 SAS Institute,
Inc., Cary, NC) to investigate the normality of distance
distribution of the nearest neighbor genes. Classified
distance for the nearest neighbor gene was
standardized as 0-10kb as A, 10-50kb defines as B,
50-100kb as C, 100-500kb as D, 500-10OOkb as E,
1000-2500kb as F, 2500-500kb as G, and >5000kb as
H. Data were also subjected to natural logarithm
transformation in order to reduce experimental error if
any of the data points was not spread symmetrically.

Phylogenetic analyses

Functional sequence analysis was performed on
the amino acid sequences that were derived from
complete cds using Cluster X [21] with the default
settings. Nucleotide sequences were aligned with
Clustal W [22]. The results of multiple alignments
were subjected to phylogenetic analysis using the
algorithm of the MEGA package version 3.1 using the
Maximum Parsimony analysis with Kimura two
parameter distances [23]. The Maximum-Parsimony
was assessed by 500 bootstrap replicates. Only
nucleotide sequences were employed in phylogenetic
analysis due to higher stringency consideration for the
phylogenetic tree construction.

3. Results

Analysis of expression profile

Analysis of the microarray data demonstrated a
significant variation within and between the slides
after local and global normalization following the
instruction of Pevsner [20]. Among the transcripts,
4196 were highly correlated between the two reverse
labeled slides from the 10,560 EST assayed. The
position and label variations between two replications
did not significantly alter the topography between
slides. A total 130 transcript abundances (TAs) were

increased by more than 2 fold and 32 out of 130 TAs
were increased by greater than 3 fold in the root
tissues that were infected by the fungal pathogen. In
contrast, only 19 transcript abundances went down
more than 2 fold and 13 ofthem were suppressed more
than 3 fold due to the treatment (data not shown). The
total number of up-regulated genes was nearly seven
times greater than that of down-regulated.

Chromosomal distribution of up-regulated
genes

To exam whether the chromosomal spatial
organization affects gene expression, we calculated
distance of neighbored genes in the genome between
pairs of the nearest neighbor loci, which was an
analogous to a pair of co-expressed pair of genes.
Taking an advantage of rich information from the
Arabidopsis Information Resource
(www.arabidopsis.org), the neighborhood
relationships between these 130 up-regulated and 19
down-regulated genes and their chromosomal
positions have been obtained (Fig.1 A, B). As showed
in Table 1, the mean distance of neighbored genes in
each chromosome was ranged as 840-958Kb
exception of chromosome II (1,865Kb).
Approximately 30%0 adjacent gene pairs with the
genome distance within 100 Kb tended to have similar
fold of TA increases, and the range was from 2-5.62.
Fifty percent of the gene orientations that were in the
same vicinity on the chromosome was more likely to
be the same (Table 1) Our results indicated that
transcriptional relationship of the nearest neighbor
gene showed a tendency to occur in the adjacent
position along the chromosome but it is still
inconclusive by the position of each gene. Six of
eighteen pairs of the nearest neighbor genes had the
similar function, another six possessed different
functions, and at least one of the pairs in the remaining
gene pairs the function was unknown.

The distance distribution of the nearest neighbor
genes was less likely to be randomly scatted in the
genome. From Shapiro-Wilk test for normality, the
distance distribution showed not normal on each
chromosome (W=0.63-0.83, P<0.001). However, the
distribution appeared to correspond better to the
normal distribution than that of the distance of
neighbor gene if the genome distances were classified
based on the standardized length of the fragment
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Table 1. Relationship of the nearest neighbor genes. The paired neighbor genes were shown in alternated colors. W
values (Shapiro-Wilk test) were consisted of two procedures: the nearest neighbor distance and arbitrarily cataloged
distance (classified).

Locus (Nearst Distance S-W test; S-W test; Orietation Description Fold
Pr<W Pr<W

reverse unKown 2.47
forward interferon-related nrotein / IFRD nrotein familv 2.54AT1 G27760 53.7

/A -I GU60u

AT1 G63780 61.9 reverse IMP4
2.045

2.04

iviean aistance vzb
(Chrl)

AT2G02080
AT2G02130 18.3

reverse C2H2-type zinc finger protein 2.32
forward putative protease inhibitor 11 2.12

I U IUITVVdIrU irLpLTdacoLrIpLIuI LLUZ.

AT2G33830 3.4 reverse dormancy/auxin protein 2.34

Mean distance 1865 0.73; 0.0018 0.87; 0.09

ATU45b4U forward mitogen-activated protein kinase 33.0i
AT3G45710 23.9 forward proton-dependent oligopeptide transport 2.9

A 1 bU4060 reverse unKOwn 2.2
AT3G48720 8.1 forward transferase family protein 4.22

Mean distance 840 0.69; 0.0004 0.92; 0.05

AT4G27450 reverse unkown 2.01
AT4G27700 97.5 reverse rhodanese-like domain-containing protein 2.03
Mean distance 958 0.83; 0.0036 0.86; 0.02

(CRhrA)

torward biotin carboxyl carrier protein 2

AI bUIDLou torwarc unKown

AT5G62530 80.7 reverse ALDH12Al (Aldehyde dehydrogenase 12A1) 2.36
Mean distance 905 0.68; 0.0001 0.89; 0.01

(Chr5)
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(W=0.86-0.92, P=0.09-0.01) and found no prominent
characteristic changes among the chromosomes (data
not shown). The distribution of classified distance
demonstrated higher level of the randomness
throughout each of the five Arabidopsis chromosomes,
suggesting that this long-range correlation may prevail
within the genome. There was no significant
difference among the distance distribution before and
after the distance value transformed by natural
logarithm (data not shown). Consequently, the null
hypothesis was rejected that there was an apparent
non-random distribution of these genes associated

with the nearest neighbor genes among the
chromosomes. Furthermore, assumptions were not
altered after the preprocessing step of data natural
logarithm transformation.

Phylogenetic analyses homologous
involved in the resistance

genes

The transcript abundances in the Arabidopsis
microarray data shared homology to the genes
involved in resistance, signal transduction, plant

Table 2. Thirteen of twenty-eight pairs taxoned together genes from both Arabidopsis and soybean after MP and
pairwise distance analyses using MEGA 3.1 program [23]. The pair grouped genes were shown in alternated colors.
Accession number Description Bootstrapping value Kim ura-2 distance

DA

AY '2U(bU

INIvI_ IL UOs1'

qm A1416624

Iy I alyI
i 1AVAi

'I.bMA
MAP F

1 3-Lipoxyqenase

defense and transport of metabolites et al. Those TAs
were functionally clustered into three major groups

(clades, Fig. 2) analyzed using CLUSTAL X [21].
Maximum Parsimony (MP) analysis compared the up-

regulated Arabidopsis TAs with soybean ESTs from
RIL23 that carried resistance conferred by six
quantitative trait loci (QTL) [11]. Twenty-eight pairs
of the genes from both species were grouped together
and 13 pairs possessed at least one bootstrapping value

with various Kimura two parameter distances (Table
2). Seven soybean ESTs showed higher function
identities with those of the Arabidopsis counterparties,
implying that those genes in soybean and Arabidopsis
might derived from common ancestors and shared
similar function. These genes shared 1 to 1 ratio of the
functional relationship in those seven paired:
NM 11869, AF386961, NM 113674, NM 111048,
NM 126269, P49078, NM 119619 of Arabidopsis
and A1495119, A144393, A1440894, A1494910,

1-4244-1509-8/07/$25.00 02007 IEEE

INIVI_- U'4bU
-- A A A Ot:

589

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on March 18,2010 at 11:13:13 EDT from IEEE Xplore.  Restrictions apply. 



B1345412, A1443448, A1496621 of soybean.
However, their bootstrapping values and Kimura two

A

B

I

Figure 1. The neighborhood relationships among 130
up-regulated (A) and 19 down-regulated genes (B) and
their chromosomal positions in Arabidopsis five
chromosomes.

distances did not always agree with the functional
similarity. Interestingly, fair numbers of EST
sequences were not found in the other organism, even
in closely related gene families that were associated
with the fungal resistance. Exception of several taxa
had high bootstrap values, and the majority families or
subfamilies in the higher nodes tended to give low
bootstrap values (data not shown).

4. Discussion

Several studies showed an association between
functionally related genes with neighboring positions
along the chromosomal regions defines as chromatin
domains [14]. The chromosomes of eukaryotes display
non-homogenous structure with condensed and packed
manner while transcription performs spread unevenly
over the chromosomes based on each individual
organization of the chromosome [24]. Most of the

coordinately expressed neighbor gene model clusters
are about 100Kb of genomic sequence in rice [15].
These neighbor genes can be organized into a co-
expression group. Approximate 10% of the rice
genome shows a coordinated expression pattern [15].
However, the mechanism for this co-expression
pattern in the genome is still debatable. To decipher
the relationships between gene co-expression and
spatial position along the chromosomes after pathogen
treatment, we examined the distance distribution of the
nearest neighbor gene pairs throughout the genome of
these 130 up-regulated Arabidopsis genes. Nearly 30°0
adjacent gene pairs whose genome distance was within
100 Kb tended to have similar fold of TA increases
and some of those genes contained a similar function
and gene architecture. The distance distribution of the
nearest neighbor resistance genes did not appeared
randomly scattered in genome on each chromosome.
Almost equal number of the nearest neighbor genes
had either the same or different orientations. Our
results suggested that functional relationships
displayed a tendency to occur in neighbor positions
along the chromosomes but it was still inconclusive
with regard to the position of each gene.

Seven gene groups were identified according to the
outcome of functional analysis in this study, showing
both functional and orthologous relationships in these
two species. The 1 to 1 ratio of the orthologous
function relationship was found among those seven
paired groups, indicating that these gene groups were
descended from a common ancestor and corresponded
to well-conserved functions. These 1 to 1 orthologue
classes were presumed to represent conserved
functions in Arabidopsis and soybean, but they shared
diverse bootstrapping values and distances. Whether
or not it might have begun to diversify nucleotide
sequence in one species as a result of gene duplication
is still unknown. Further, only a few of them were the
nearest neighbors. The n to n orthologue classes were
also found from the phylogenetic tree (data not
shown). This information may represent functions that
have begun to diversify in both species. Thirteen of
twenty-eight pairs ofthe genes from both species were
grouped together and each pair possessed unique
bootstrapping value and Kimura' s phylogenetic
distance (Table 2). Based on the phylogenetic analysis,
the organization of soybean phenylalanine ammonia-
lyase (PAL) protein was very similar to that of the
Arabidopsis PAL protein, suggesting the orthologous
relationship of the two PAL proteins. Exception of
several taxa appeared with high bootstrap values,
majority families or subfamilies in the higher nodes
tended to give low bootstrap values.
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Gene transcriptional changes play a major role in
many plant defense processes [7]. The intensively
characterized species such as Arabidopsis thaliana
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NP 567317trnsduct'n otein
NP 195302SENI DAF

iNP 567785-rhodan1ese-ike domai

4NP 17721NAGAT2
Np 564294 Fein

NP Mb IAI NP 1946 ATP
NP 176973 ATMAP70-1
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Figure 2. Amino acid sequence alignment of up-
regulated Arabidopsis gene products using
Clustal X [21]. Clades were marked by single
braces.

provides an excellent platform for studying gene/QTL
interactions with resistance mechanisms. Several
studies suggested that disease resistance genes shared
the same specificity identified in distantly related plant
species [1, 2, 26] and the reason why the specificity
was maintained was perhaps due to balancing
selection in lineages leading to multiple plant species
[3]. Soybean SDS consists of root infection and leaf
scorch. Studies root tissues for TA analysis in both
model species will enable us to explore the processes
of resistance to SDS. Investigation on differentially
expressed genes of Arabidopsis and soybean in
response to Fsg can lead to a better understanding on
the mechanisms of resistance in crops for certain

diseases. Microarray experiment allows interrogation
of tens of thousands of genes simultaneously.
Orthologous genes with related evolutionary descent
should play similar developmental or physiological
roles. To investigate the molecular interactions
involved in Fsg resistance, we integrated results from
a soybean Fsg resistance study with our Arabidopsis
DNA microarray analysis through a computational
approach. The results of this study can be used as a
model system to improve our understanding of plant
resistance to Fsg.
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