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Built-In-Self-Testing Techniques for Programmable Capacitor Arrays

Amit Laknaur and Haibo Wang
Department of Electrical and Computer Engineering

Southern Illinois University Carbondale
Carbondale, IL 62901

Abstract

Programmable capacitor arrays (PCAs) are frequently
used in reconfigurable analog circuits. Since PCAs can be
programmed to numerous values, testing PCAs by exhaus-
tively examining all PCA values can lead to lengthy test-
ing processes. To address this problem, we present an ef-
ficient built-in-self-testing (BIST) method for PCAs used in
reconfigurable analog circuits. The proposed BIST method
takes advantage of existing programmable resources and,
hence, introduces very small hardware overhead. Addition-
ally, we present two simple and effective capacitor compari-
son techniques for implementing the proposed BIST method.
The accuracy of the proposed circuit techniques is investi-
gated and closed-form equations are derived for estimating
comparison accuracy that can be achieved by the proposed
techniques. Finally, circuit simulations are performed to
validate the proposed techniques.

1. Introduction

Adding reconfiguration capabilities to VLSI circuits is
becoming an interesting trend in hardware design. In dig-
ital domain, a large number of reconfigurable digital sys-
tems have been demonstrated for real applications. Mean-
while, in analog domain many efforts have also been de-
voted to developing programmable analog circuits, which
include programmable gain amplifiers [1, 2, 3], recon-
figurable filters [4, 5, 6, 7], programmable neural net-
works [8, 9], and state-of-the-art field programmable ana-
log arrays (FPAAs) [10, 11, 12, 13, 14, 15]. Such pro-
grammable analog circuits have been widely used in var-
ious applications. More interestingly, they provide viable
approaches to implement intelligent systems, such as adap-
tive or self-repairing analog circuits.

While providing excellent design flexibility, pro-
grammable analog circuits also pose substantial testing
challenges. Unlike conventional analog circuits, pro-
grammable circuits can have numerous configurations. Ex-
haustively testing each circuit configuration typically leads

to lengthy testing processes. As a part of the effort to ad-
dress the above testing challenges, this work tackles the
problem of testing programmable capacitor arrays (PCAs),
which are frequently used in reconfigurable analog circuits.
Comparing to other programmable analog components (e.g.
programmable resistors or transconductors), PCAs have ad-
vantages of high accuracy and large programmable ranges.
As a result, many reconfigurable analog circuits use PCAs
as a mechanism to program circuit parameters. Despite
the popularity of PCAs in the design of reconfigurable ana-
log circuits, efficient PCA testing methods have been rarely
studied.

Previously, several works [16, 17, 18, 19, 20, 21, 22]
were reported on testing programmable analog circuits. The
majority of them focus on testing circuits that are imple-
mented on programmable devices, rather than systemati-
cally testing all the resources on the given reconfigurable
platforms. The study presented in [23] attempts to ad-
dress the problem of systematically testing programmable
resources on an FPAA device. However, its focus is lim-
ited to interconnect networks. In the past, techniques to
measure capacitor ratios for detecting parametric faults in
switched-capacitor (SC) circuits were studied in [24, 25].
The method proposed in [24] converts capacitor ratios into
voltage outputs. In order to achieve accurate capacitor ratio
measurement, circuits or instruments that can precisely read
different voltage levels are needed. To avoid this stringent
requirement, an analog-to-digital capacitor ratio converter
(ADCRC) circuit is presented in [25]. The ADCRC relies
on an integrator, a comparator, and simple digital arithmetic
circuits to measure capacitor ratios.

This paper presents simple and effective circuit tech-
niques to compare capacitor values. We also investigate the
accuracy of the proposed techniques. Relations between
comparison accuracy and circuit non-ideal parameters are
derived. By using the proposed circuit techniques, an effi-
cient built-in-self-testing (BIST) method for systematically
testing PCAs is presented. The proposed BIST method
takes advantage of programmable resources on the circuit
under test. Hence, it introduces very small hardware over-
head. Finally, experiments are conducted through circuit
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simulation. It demonstrates that the proposed BIST tech-
niques are capable of detecting various PCA faults. The
rest of the paper is organized as follows. Section 2 dis-
cusses PCA implementations and associated fault models.
Section 3 develops circuit techniques for capacitor compar-
ison. Section 4 describes the proposed PCA BIST method.
Experimental results are provided in Section 5, and the pa-
per is concluded in Section 6.

2. PCA implementation and fault models

A PCA normally contains a set of binary-weighted ca-
pacitors connected in parallel. In Figure 1(a), four binary-
weighted capacitors constitute a PCA whose value can be
programmed from 1C to 15C, where C is the unit capaci-
tance used in the PCA. For each capacitor branch, a serial
switch is used to configure the connection of the capaci-
tor. In order to achieve good capacitor matching, all PCA
binary-weighted capacitors are made of equally-sized small
capacitors, which are often referred to as unit capacitors.
Figure 1(b) shows the unit capacitor array used in the PCA.

1C 2C 4C 8C
1

2

2

4

4

4

4

8

8

8

8

8 8 8 8

(a) (b)
Figure 1. Programmable capacitor array.

Unit capacitors are typically implemented using two lay-
ers of polysilicon. The value of unit capacitors is selected
to be significantly larger than parasitic capacitance. This re-
quires the area of unit capacitors cannot be very small. Due
to defects in the isolation layer (typically, silicon dioxide)
that separates the two polysilicon layers, leakage paths may
exist between the two terminals of a unit capacitor. We re-
fer to this type of failure as leakage fault. In Figure 2(a),
a parallel resistor Rleak is used to model the leakage fault.
When there are too many leakage paths and the isolation
layer virtually becomes a conductor, the two terminals of
the unit capacitor are shorted as shown in Figure 2(b). This
type fault is called short fault. Furthermore, unit capacitors
are connected through metal layers and contacts. Material
defects on metal layers or contacts may disconnect a unit
capacitor from its corresponding group. This leads to an
open fault as shown in Figure 2(c). Another fault associ-
ated with interconnects is the bridge fault caused by either
excess metal or a dust that connects two interconnects. The
fault model for a bridge fault is shown in Figure 2(d). When

the bridge fault is due to excess metal, bridge resistor Rb is
very small. However, if the fault is caused by a dust that is
deposited during fabrication, Rb can be considerably large.

(a) (b) (c)

(d)

C R C C

R

leak

b

Figure 2. PCA faults associated with unit capacitors.

Switches used in PCAs are normally implemented us-
ing transmission gates, whose schematic is shown in Fig-
ure 3(a). Due to device failures or interconnect problems, a
switch can remain always close or always open regardless
of its control voltage. We refer to these failures as stuck-
on and stuck-off faults. Their corresponding fault mod-
els are shown in Figure 3(b) and (c), respectively. More
frequently, the switch characteristic of a transmission gate
is deteriorated by too large on-resistance or too small off-
resistance [26]. These two types of faults belong to the
category of parametric faults, and they can be modeled by
circuits shown in Figure 3(d) and (e). Many factors can
be blamed for these two parametric faults. For example,
abnormal threshold voltage as well as imperfect intercon-
nect may lead to large on-resistance. Meanwhile, smaller-
than-normal channel length may be a culprit for small off-
resistance faults.

(a) (b) (c) (d) (e)

R R
on off

Figure 3. PCA faults associated with switches.

3. Circuit techniques for capacitor comparison

In this section, we propose two circuit techniques to com-
pare capacitor values. The first technique aims to determin-
ing if the ratio of two capacitors is 2. The second technique
targets detecting if two capacitors have the same value.

The first circuit technique is depicted in Figure 4. It
is basically an SC integrator circuit. Initially, switch s is
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close to discharge integration capacitor CI . After switch
s is open, CI starts to accumulate charge transferred from
capacitors CA and CB . During a clock cycle, the amounts
of charge transferred from CA and CB are −CA · V1

2 and
CB · V1, respectively. If CA

CB
= 2, the net charge accumu-

lated at CI during each clock cycle should be zero. How-
ever, if CA

CB
�= 2, certain amount of charge will be accu-

mulated at CI and, consequently, the integrator output VO

will be driven away from its normal level. We stop the in-
tegration operation after NCLK clock cycles. Thereafter,
the integrator output VO will indicate if CA is twice of CB .
The integrator circuit functions as an ”amplifier” that ampli-
fies small capacitor mismatches into large voltage signals.
The gain of the ”amplifier” can be adjusted by changing the
value of CI or NCLK . The gain should be selected such
that the integration circuit will detect large capacitor mis-
matches which are considered as faults, but ignore small
mismatches caused by parasitic capacitance.

φ
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φ

φ

φ

1

2

1

2

1

2

C

C

C

1

I

A

B

S

V
V

O

1V
2

Figure 4. Circuit technique to detect if CA

CB
= 2.

In Figure 4 we label the two input voltages as V1 and
−V1

2 for a clear explanation. Actually, negative voltage is
not needed in real circuit implementations. For example,
assume the analog circuit under test requires a single power
supply VDD. Ground symbols in Figure 4 represent signal
ground, which is typically at the level of VDD

2 . With the
above conditions, we can apply VDD

4 and VDD to CA and
CB inputs, respectively. Comparing to signal ground, the
voltage of VDD

4 is a negative level and its magnitude is half
of the signal magnitude applied at CB input.

The accuracy of the comparison results produced by the
above circuit is predominately determined by the input off-
set voltage of the opamp. When considering the opamp in-
put offset voltage VOS , the mismatch between charge trans-
ferred from CA and CB can be expressed as:

∆Q = CB · (V1 − VOS) − CA · (−V1

2
− VOS) (1)

Assuming CA and CB are two adjacent binary-weighted ca-
pacitors in a PCA, the values of CA and CB are given as
2N · C and 2N−1 · C, where C is the unit capacitor value.
If one unit capacitor in CA has an open fault, the realized
value of CA will be (2N − 1) ·C. Substituting these capac-

itor values into the above equation, we have:

∆Q = −3 · 2N−1 · VOS · C +
V1

2
· C (2)

The first term on the right hand side of Equation 2 is due to
opamp input offset voltage. The second term is caused by
the open fault. In order to correctly detect the open fault, we
have to make the magnitude of the second term is at least M
times larger than that of the first term. This is:

V1

2
· C > 3 · M · 2N−1 · VOS · C (3)

From this inequality, we obtain the upper bound of com-
parison accuracy in terms of number of bits, which is given
as:

N < log2
V1

6 · M · VOS
+ 1 (4)

In order to get a general idea about the accuracy of the
above testing circuit, we assume that the PCA under test
works with a 3.3V power supply. Also, assume signal ground
is 1.65V and voltage applied at CB input is 3.3. There-
fore, V1 is 1.65 comparing to signal ground. Furthermore,
if we select M as 5 and assume the opamp input offset
voltage is 2mV. Then, the maximum accuracy that can be
achieved by the proposed method is 5-bit. However, testing
PCAs with large programmable ranges may require accu-
racy higher than 5-bit. To solve this problem, we can apply
opamp input offset cancellation techniques [27] in the test-
ing circuit as shown in Figure 5. Before performing integra-
tion, the circuit is initialized by closing switches s1 ∼ s3.
In this phase, the opamp is configured as a unit-gain buffer
and it charges capacitor Cp to the level of VOS . After the
initialization phase, we open s1 ∼ s3 and close s4. There-
after, capacitor Cp functions as a voltage shifter to cancel
the opamp input offset voltage.
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s p

1
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3 4

Figure 5. PCA testing circuit with opamp input offset can-

cellation.

Figure 6 shows the proposed circuit for detecting if two
capacitors have the same value. Its operation can be ana-
lyzed similarly by tracing charge transferred from input ca-
pacitors to integration capacitor CI . Note that opamp input
offset voltage also affects the accuracy of this circuit. With-
out opamp input offset cancellation, the accuracy, in terms
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of number of bits, that can be achieved by this circuit is:

N < log2
V1

M · VOS
− 1 (5)

Even with the help of opamp input offset cancellation, VOS

cannot be completely cancelled due to other non-ideal ef-
fects, such as channel charge injection, clock feedthrough,
clock skew, and leakage. Assume that the residual input
offset voltage is V ′

OS after applying input offset cancella-
tion techniques. Substituting V ′

OS into Equations 4 and 5,
we can estimate the accuracy that can be achieved by the
proposed circuits with opamp input offset cancellation.
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2
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B
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2

3 4

Figure 6. Circuit technique to detect if CA = CB .

4. Proposed PCA BIST method

The proposed BIST method aims to efficiently testing a
large number of PCAs used in programmable analog cir-
cuits. It is comprised of two testing phases. In the first
phase, a single PCA is tested to make sure all binary-
weighted capacitors have proper values and none of the
faults discussed in Section 2 occurs in the selected PCA.
In the second phase, the tested PCA is used as a reference
to examine other PCAs.

To more clearly explain the proposed method, we as-
sume a scenario that the proposed BIST method is applied
to testing PCAs in an SC-based FPAA circuit [28, 29]. The
FPAA is comprised of configurable analog blocks (CABs),
programmable interconnects, I/O cells, and configuration
memories. PCAs that need to be tested are located in CABs,
whose structure is sketched in Figure 7. It consists of one
opamp, five PCAs, and a number of switches.

C

C

C

C

C

1

2

3

4

5

Figure 7. FPAA CAB structure.

In this discussion, we arbitrarily select C1 as the refer-
ence PCA, which is to be tested first. Also, without los-

ing generalities, we assume each PCA contains four binary-
weighted capacitors. Following the technique depicted in
Figure 5, the BIST circuit for PCA C1 is constructed as
shown in Figure 8. Switches T2 ∼ T4, SW1, SW2, and
their associated interconnects are extra resources along with
the offset cancellation circuit that is added for implement-
ing the proposed BIST scheme. The rest of the BIST circuit
are implemented by existing resources in the CAB. In Fig-
ure 8, CAB resources that are not used in the BIST circuit
are drawn by dash lines. To test the ratio between 1C and
2C, we close switches B1 and T2 during integration. Sim-
ilarly, we close B2 and T3 or B3 and T4 to examine the
ratio between 2C and 4C or the ratio between 4C and 8C,
respectively.

1V

1

2
V

C3

C

C

C

2

4

51C

2C

4C

8C C1

B1

B2

B3

B4

T2

T3

T4φ2

φ1

φ2

φ1 φ1

φ2

C s

s

s p

2

3 4

s1
SW1

SW2

Figure 8. Capacitor ratio testing.

After the reference PCA is tested, we use the technique
described in Figure 6 to examine the other PCAs. In this
process, each binary-weighted capacitor in the PCA under
test is compared with the corresponding capacitor in the ref-
erence PCA. The configured BIST circuit is very similar to
the circuit shown in Figure 6. In the original CAB design,
PCAs C4 and C5 are fixed as opamp feedback branches.
Therefore, they cannot be tested using the above method.
To address this problem, we propose to add additional pro-
grammable switches in the CAB such that C4 and C5 can
be used as opamp input branches as well. Also, C5 should
have the same switch network as the other PCAs.

The above testing plan is capable of detecting all the
faults discussed in Section 2. This is because all of these
faults affect charge transfer in the BIST circuits and, conse-
quently, lead to abnormal circuit outputs. Besides its excel-
lent fault-detection capability, the proposed BIST method
introduces small hardware overhead. In particular, it adds
several switches, a small capacitor Cp. Note that switches
T2 ∼ T4 are added to the reference PCA only. Furthermore,
the above discussion assumes that the circuit under test is an
FPAA circuit. Similarly, the proposed BIST techniques can
be easily applied to SC-based programmable filters as well
as other reconfigurable analog circuits.
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5. Experimental results

To demonstrate the validity of the proposed BIST tech-
niques, circuit simulations are performed to detect PCA
faults using the proposed testing method. Each PCA con-
tains 8 binary-weighted capacitors and its value can be pro-
grammed from 1 to 255 unit capacitance (which is 250fF).
All the switches used in PCAs are CMOS transmission
gates with the same size for simplicity reasons. The tran-
sistor sizes are NMOS-9µ/0.32µ and PMOS-22.5µ/0.32µ.
The clock frequency used in the experiment is 1MHz, and
the power supply of the circuit is 3.3V. To reduce simulation
time, an opamp macromodel is used in simulation. Its key
performance parameters are summarized in Table 1.

Table 1. Opamp parameters used in simulation.
Opamp parameters Values
Low frequency gain 80dB
Unit-gain frequency 10MHz
Common mode rejection ratio 70dB
Input offset voltage 4mV
Slew Rate 20V/µs
Settling time (0.1%) 0.5µs
Power supply 3.3V
Output swing range 0.18V ∼ 3.1V

In simulation, PCA faults are injected by using fault mod-
els shown in Figure 2 and 3. Also, the integration capacitor
in BIST circuits is simply assigned to 16 unit capacitance.
The number of clock cycles that integration is performed is
10. If there are no faults occurred in the PCA under test,
the BIST circuit output should be 1.65V, which is the volt-
age level of signal ground. However, due to parasitic ef-
fects, the BIST output is always slightly away from its ideal
value. We define the tolerant range as ±0.45V . Therefore,
the PCA under test is fault-free if the BIST circuit output is
within the range from 1.2V to 2.1V. Otherwise, the PCA is
faulty.

Simulation results showed that all short, open, stuck-
on, and stuck-off faults can be easily detected by the pro-
posed method. Figure 9 compares BIST circuit outputs in
faulty and fault-free scenarios when two capacitors, whose
expected values are 64C and 32C, are tested. The bottom
curve is the BIST circuit output in the fault-free scenario.
The top curve is the BIST circuit output when an unit ca-
pacitor belonging to the 64C capacitor has an open fault.
Since faults occurring at different positions in a PCA may
affect charge transfer with different degrees, the difficulty to
detect faults at different positions also varies. Table 2 sum-
marizes BIST circuit outputs when short, open, stuck-on,
and stuck-off faults take place in positions that make them
most difficult to be detected. For comparison purposes, Ta-
ble 2 also lists the corresponding BIST circuit outputs in
fault-free scenarios. Simulation results also indicate the se-

lection of ±0.45V tolerant range is very conservative. In
fault-free scenario, the maximum variation between simu-
lated BIST outputs and their ideal value is only 0.15V.

Figure 9. BIST circuit output when an open fault occurs

in the PCA under test.

Table 2. Comparison of BIST circuit outputs.
BIST Circuit Output

Fault Scenario Faulty PCA Faulty-Free PCA

Short fault 0.182V 1.67V
Open fault 1.05V 1.50V

stuck-on fault 0.637V 1.68V
stuck-off fault 2.69V 1.67V

When introducing leakage, bridge, large on-resistance,
and small off-resistance faults, we have to assign values to
Rleak , Rb, Ron, and Roff , respectively. The ability of the
proposed method to detect these faults are strongly affected
by the resistor values. Through simulation, we found the
ranges of Rleak, Rb, Ron, and Roff that lead to detectable
faults under the above experiment setup. These values are
summarized in Table 3. In the search for these ranges, we
always inject faults to positions such that these faults are
most difficult to be detected. The data shown in Table 3
demonstrate that the proposed method can detect the above
four types of faults with large parameter ranges.

Table 3. Detectable ranges of PCA faults.
Fault name Parameter Range
Leakage fault Rleak 0 ∼ 0.85MΩ

Bridge fault Rb 0 ∼ 1.6MΩ

Large on-resist. fault Ron 1.2MΩ ∼ ∞
Small off-resist. fault Roff 0 ∼ 1.7MΩ

6. Concluding remarks

This work studies the problem of testing programmable
capacitor arrays, which are frequently used in reconfigurable
analog circuits. Two circuit techniques are developed to
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test PCA binary-weighted capacitors. The accuracy of the
developed testing circuits is investigated, and closed-form
equations are derived for estimating comparison accuracy
that can be achieved by the proposed techniques. By using
the proposed techniques, an efficient BIST plan for testing
a large number of PCAs on reconfigurable analog platforms
is presented. The proposed BIST method takes advantage
of the programmability of the circuit under test, hence, in-
troducing very small hardware overhead. Experiments have
been conducted to investigate the effectiveness of the pro-
posed method. It demonstrates that the proposed method
detects all the short, open, stuck-on, and stuck-off faults.
Simulation results also indicate that the proposed method
has an excellent capability to detect a wide range of leakage,
bridge, large on-resistance, and small off-resistance faults.
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