
Southern Illinois University Carbondale
OpenSIUC

Conference Proceedings Department of Electrical and Computer
Engineering

4-2006

Bounding Preemption Delay within Data Cache
Reference Patterns for Real-Time Tasks
Harini Ramaprasad
Southern Illinois University Carbondale, harinir@siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_confs
Published in Ramaprasad, H., & Mueller, F. (2006). Bounding preemption delay within data cache
reference patterns for real-time tasks. Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2006, 71 - 80. doi: 10.1109/RTAS.2006.14 ©2006 IEEE.
Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted without the
explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Conference Proceedings by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Ramaprasad, Harini, "Bounding Preemption Delay within Data Cache Reference Patterns for Real-Time Tasks" (2006). Conference
Proceedings. Paper 1.
http://opensiuc.lib.siu.edu/ece_confs/1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenSIUC

https://core.ac.uk/display/60524435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs/1?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

Bounding Preemption Delay within Data Cache Reference Patterns for
Real-Time Tasks ∗

Harini Ramaprasad, Frank Mueller
Dept. of Computer Science, Center for Embedded Systems Research

North Carolina State University
Raleigh, NC 27695-8206, mueller@cs.ncsu.edu

Abstract

Caches have become invaluable for higher-end architec-
tures to hide, in part, the increasing gap between processor
speed and memory access times. While the effect of caches
on timing predictability of single real-time tasks has been
the focus of much research, bounding the overhead of cache
warm-ups after preemptions remains a challenging prob-
lem, particularly for data caches.

In this paper, we bound the penalty of cache interfer-
ence for real-time tasks by providing accurate predictions
of the data cache behavior across preemptions. For every
task, we derive data cache reference patterns for all scalar
and non-scalar references. Partial timing of a task is per-
formed up to a preemption point using these patterns. The
effects of cache interference are then analyzed using a set-
theoretic approach, which identifies the number and loca-
tion of additional misses due to preemption. A feedback
mechanism provides the means to interact with the timing
analyzer, which subsequently times another interval of a
task bounded by the next preemption. Our experimental re-
sults demonstrate that it is sufficient to consider the n most
expensive preemption points, where n is the maximum pos-
sible number of preemptions. Further, it is shown that such
accurate modeling of data cache behavior in preemptive
systems significantly improves the WCET predictions for a
task. To the best of our knowledge, our work of bounding
preemption delay for data caches is unprecedented.

1. Introduction
A data cache is an invaluable architectural feature in

today’s higher-end processors. The savings it provides in

terms of memory latency are immense. Hence, data caches

have become indispensable. Nonetheless, caching has one

inherent complexity, i.e., the latency of data reference be-

comes unpredictable. While characterization of data cache

behavior for a single task is complex enough, considering a

preemptive scheduling system is even more complex.

∗ This work was supported in part by NSF grants CCR-0208581, CCR-
0310860 and CCR-0312695.

In a preemptive system, a task may be interrupted at

any time by a task with a higher priority. This implies that

some cache blocks may potentially be evicted from cache

and would need to be reloaded when the preempted task re-

sumes execution. The main idea of this paper is to bound the

delay caused due to preemptions for data caches and to de-

rive an upper bound for the response time of a task.

In previous work, we proposed a method for analyzing

data cache behavior for a single task [19]. We extended the

concept of Cache Miss Equations to derive exact Miss/Hit

patterns for every reference in a loop nest. We integrated

this enhanced data cache analysis into our static timing an-

alyzer framework.

In this paper, we further extend the work to con-

sider a multi-tasking preemptive environment. We propose

a method to obtain the worst-case data cache related pre-

emption delay for every task in a given task set. This delay

is added to the timing analysis results to derive a safe up-

per bound on the Worst Case Execution Time (WCET) of

the task in the light of preemptions. We use the WCET thus

obtained in a response time analysis (RTA) equation to cal-

culate the response time of every task. Thus, we perform

schedulability analysis on a task set. Any task whose re-

sponse time is less than or equal to its deadline leads to a

schedulable task set.

The fundamental contributions of our work are similar to

those studied in instruction caches [20, 21], namely:

1. Preemption delay: Given the preempted task, the set of

possible preempting tasks, and the preemption point,

calculate the preemption delay that is incurred.

2. Number of preemptions: Calculate n, the maximum

number of times a task can be preempted when it is

executed as part of a given task set.

3. Worst-case scenario: Identify the placement of the n
preemption points in the iteration space such that the

worst-case total delay / preemption cost is obtained.

A method for calculating the preemption delay, given the

preempted and preempting tasks, was proposed by Lee et al.
[10]. This method was enhanced and the second and third

points were newly contributed by Staschulat et al. [20, 21].

The difference between the ideas proposed by Staschulat et

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06)
0-7695-2516-4/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:38 from IEEE Xplore. Restrictions apply.

al. and this paper lies in the methodology and in the appli-

cation domain (instruction caches vs. data caches).

In the work by Staschulat et al., the focus is on data-

flow analysis to obtain the useful and used cache blocks for

a task in order to calculate cache-related preemption delay.

This is done by enumeration of possible cache states corre-

sponding to every basic block in the control flow graph for

a given task and relates primarily to the instruction cache.

In contrast, our method focuses on data cache analysis

for loop-nest oriented code. Since the actual data reference

(and, hence, memory and data cache locations accessed) is

potentially different for every iteration of a loop nest, we

cannot characterize data cache behavior in the same way as

instruction cache behavior, based on cache states for a cer-

tain basic block. Hence, the method proposed by Staschulat

et al. is not applicable in a framework such as ours.

We present a new technique to achieve the above stated

goals. The technique is suited to data cache analysis and

may be used in a similar fashion for instruction caches. The

instruction cache analysis, however, has not been addressed

in this paper and is subject to future work.

The remainder of this paper is organized as follows. Sec-

tion 2 provides a brief introduction to the static timing anal-

ysis framework that we use for calculating the WCET for

a task. Section 3 gives an overview of our previous work

in analyzing data cache behavior. Section 4 explains in de-

tail, the methodology used in our work. This is followed in

Section 6 by a discussion of our experimental results. Sec-

tion 7 contrasts our work to related work. Section 8 summa-

rizes the results and Section 9 discusses future work.

2. Static Timing Analysis

Schedulability tests in real-time systems are generally

based on the assumption that the WCET of every task in the

task set is known a priori. These estimates need to be a safe
upper bound on the execution times of tasks. As previous

work has demonstrated, dynamic analysis by actual execu-

tion of the task does not guarantee worst-case performance

[25]. Nor is exhaustive testing of the entire input space prac-

tical, as shown in the same study. Hence, static timing anal-

ysis is a viable approach to obtain WCET of tasks. Static

timing analysis traverses all execution paths in a program

and, during this process, calculates a conservative (i.e., safe)

upper bound on the time for the longest path in the program.

The structure of a program may cause a hurdle in the

path of the analyzer due to factors like data-dependent con-

trol flow, pointer accesses, etc. Furthermore, architectural
features also cause unpredictability for a timing analyzer.

One such architectural feature, invaluable, but, at the same

time, particularly hard to model, is the data cache. If data

cache behavior cannot be predicted sufficiently accurately,

WCET estimates may become highly pessimistic. Such pre-

dictions may be counter-productive since it may deem task

sets infeasible that would otherwise be schedulable.

Figure 1 depicts our framework for static timing analysis

to derive WCET bounds. The shaded portions indicate the

components responsible for data cache analysis and the ac-

tual timing analysis. The framework uses a static cache sim-

Cache

Catergorizations

Static Cache
Simulator

Cache

Configuration

Source

Files
Gcc Compiler Timing

Analyzer

WCET

Prediction

Control flow
& Memory
Refs. Info.

Analyzer I/P

Generator

Data Cache
Analyzer

Cache

Configuration

Miss/Hit

Patterns

Figure 1. Static Timing Analysis Framework

ulator that simulates the instruction cache and a data cache

analyzer framework (developed in prior work [19]) to pro-

duce data cache reference patterns.

3. Prior Work
In previous work [19], we enhanced a method by Vera

et al. [23, 24] that statically analyzes data cache behavior

using Cache Miss Equations [8]. This data cache analyzer

was integrated into the static timing analysis framework as

shown in Figure 1.

The data cache analyzer produces data cache access pat-

terns, in terms of hits and misses, for every scalar and non-

scalar memory reference in a given task. It is applicable in

loop nest oriented code that adheres to certain constraints as

specified elsewhere [19].

These patterns give us an accurate estimate of the num-

ber of data cache misses that the task incurs and their po-

sitions in the reference stream. In this work, since we only

dealt with a single task, it was sufficient to provide the num-

ber of misses instead of the actual pattern of misses and hits

to the static timing analyzer described in Section 2.

4. Methodology
While our prior work analyzes single tasks with respect

to data caches, it does not take multi-task preemptive sys-

tems into account. In such a system, a task may be inter-

rupted by higher priority tasks at arbitrary points during its

execution. We consider non-partitioned data caches in our

work. Hence, cache lines may be shared across tasks re-

sulting in the eviction of a subset of existing memory lines

from cache by preempting tasks. Assuming that all cache

blocks brought in by the preempted task are evicted from

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06)
0-7695-2516-4/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:38 from IEEE Xplore. Restrictions apply.

cache due to preemption (i.e., the cache is effectively empty

after every preemption point) leads to a significant overes-

timation of the Data Cache Related Preemption Delay (D-

CRPD). Hence, schedulability of task sets may be adversely

affected.

In this paper, we present a method to incorporate D-

CRPD during WCET calculation itself. Furthermore, we

make the calculation of the delay as accurate as possible

by considering only the intersection of the cache blocks that

are useful to the preempted task once it is restarted and those

that are potentially used by preempting tasks.

4.1. Response Time Analysis

For this study, we constrain ourselves to response time

analysis for determining schedulability of a task set [12, 1].

We assume a fixed-priority periodic task set where the dead-

line of a task is equal to its period. The calculation of re-

sponse time involves an iterative approach using Equation

1.

Rn
i = Ci +

∑

j∈hp(i)

�
Rn

i

Pj

� · Cj (1)

The set hp(i) denotes the set of tasks with a higher pri-

ority than task i. For every task, the value of R that con-

verges this equation is its response time. The worst-case ex-

ecution time of a task i is denoted as Ci and the period, as

Pi.

4.2. Phase 1: Calculation of Base Time and Data
Cache Patterns

In this section, we describe the main process involved in

our method, namely, computation of the WCET of all tasks.

Our work is unique in that the WCET of each task is en-

sured to include the data cache related preemption delay

due to preemptions by higher priority tasks. Since we incor-

porate the D-CRPD calculation into the calculation of Ci,

we do not require an additional term for the delay in Equa-

tion 1.

In the first phase of the process, every task in a given task

set is individually analyzed (i.e., without considering pre-

emptions) by the data cache analyzer to produce data cache

miss/hit patterns for its references. Next, the timing ana-

lyzer framework is utilized to build a timing tree for ev-

ery task in the task set. The timing tree provides informa-

tion about the timing of individual nodes (functions/loops)

in a given task. This phase constructs information required

to calculate the WCET of every task. It is to be noted that

the base time does not include the D-CRPD. Furthermore,

this calculation is only performed once for every task in the

task set.

4.3. Phase 2: Preemption Delay Calculation
In this phase, the data cache analyzer and the timing an-

alyzer interact repeatedly for every interval between pre-

emption points in a task in order to calculate the WCET of

the task in the presence of preemptions. The interaction be-

tween the data cache analyzer and the timing analyzer is

shown in Figure 2. The timing analyzer times the task up to

the first preemption point. At this point, data cache analysis

is performed to calculate the number of additional misses

incurred due to the preemption. This delay is added to the

base time. The timing analyzer is similarly invoked for ev-

ery interval between preemption points.

Static

Timing Analyzer

Framework

Time interval & Patterns

Preemption iteration point

and actual time to point

Data Cache

Analysis

Framework

Figure 2. Interaction between Data Cache An-
alyzer and Static Timing Analyzer

4.3.1. Identification of Preemption Points There are two

steps involved in the identification of preemption points.

Step1 : In this step, we calculate the maximum num-

ber of times each task may be preempted in the worst case.

Consider a task i. For every task j that has a higher prior-

ity than that of task i, we subtract the total amount of time

for which task i may be preempted by task j from the time

remaining before the deadline of task i. The time remain-

ing after this is used for consideration of further higher pri-

ority tasks. The formula shown in Equation 2 is repeatedly

used for this calculation. Here, Trem is the time remain-

ing at every phase of the calculation, Pj is the period of

the higher priority task, j, for the current phase of the cal-

culation and Cj is its WCET. The initial value for Trem is

the relative deadline of the task i, which is equal to the pe-

riod of the task i since we consider systems where the rela-

tive deadline is equal to the period for any task.

Trem = Trem − �
Trem

Pj

� · Cj (2)

This process converges when no time is left prior to the

deadline of task i or when there are no more higher priority

tasks, whichever occurs first. The number of preemptions is

then given by the sum of the �Trem

Pj
� terms of each phase of

calculation.

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06)
0-7695-2516-4/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:38 from IEEE Xplore. Restrictions apply.

Step 2 : Next, we identify the actual placement of these

preemption points that result in the worst-case preemption

delay for a particular task. For this purpose, we have de-

vised the following method:

All the data cache reference patterns of the task are

merged, maintaining the order of access. All memory refer-

ences in this consolidated pattern that access the same cache

set are connected together to form a chain. Since the pattern

maintains the order of access, this chain accurately indicates

reuse. A chain that represents a particular cache line is col-

ored with a unique color. An example with just three cache

line chains is shown in Figure 3.

We identify points in the iteration space where a preemp-

tion would result in the largest cost, i.e., by cutting the max-

imum number of differently colored chains. The n cuts with

the largest cost are identified where n is the maximum num-

ber of preemption points incurred by the current task, as cal-

culated in phase 1.

Weights are assigned to each point in the access chains

of a task. The weight at a point is a direct indication of

the number of additional data cache misses that would oc-

cur due to preemption at that point. The weight at a point

is the number of differently colored chains that cross over
this point. This already eliminates the cache lines which are

no longer used after the point under consideration. In order

to eliminate more infeasible points, we perform some addi-

tional checks while assigning weights.

1. We do not count chains in which the access point on

the chain immediately following the current point is a

MISS in the pattern. The rationale behind this is that,

if the point were a MISS in the first place, it would be

due to some intra-task interference. Hence, a preemp-

tion just before that point will not cause any further de-

lay as far as the particular cache set that the chain rep-

resents is concerned.

2. We do not count chains that correspond to a cache set

that is not used by any task which has a higher pri-

ority than the task under consideration. This ensures

that only the cache blocks that could potentially be re-

placed during preemption of the current task are con-

sidered.

Our method thus effectively considers only the intersection

of useful cache blocks of the preempted task and the used

cache blocks of the preempting tasks. Construction of the

access chains is only required once for any task. The as-

signment of weights for every point in the access chain of

a task is additionally dependent on the tasks that can poten-

tially preempt the current task and, hence, is task-set spe-

cific rather than just task specific.

4.3.2. Actual Calculation of WCET and Response Time
In order to calculate the actual WCET of tasks, we first cal-

culate the maximum preemption delay for every task using

the method described above. Once we have the WCET of

a task that includes the D-CRPD within it, we use the for-

mula shown in Equation 1 to calculate the response time for

the task. Since this formula requires the knowledge of the

response times for tasks with higher priority than the cur-

rent task, we start with the highest priority task and proceed

towards the lowest priority task.

Since the highest priority task cannot be preempted,

there is no need to calculate an additional delay (in sec-

ond phase of our method) for that task and hence response

time may be calculated directly from the equation. For the

next highest priority task, we only need the response time

of the highest priority task, and so on. In this way, we cal-

culate response times for all tasks. These values may now

be used to perform schedulability analysis on the task-set.

5. Experimental Framework
The tool set that we use in our experiments is the static

timing analyzer framework, enhanced with a data cache an-

alyzer that is responsible for producing data cache reference

patterns for tasks according to our prior work [19]. We use

this framework in conjunction with the generic PISA and

SimpleScalar architecture [3].

The assumptions of the data cache analyzer are the same

as those stated in prior work [19]. Fundamental among these

are as follows. First, the loop bounds must be known at

compile-time. Second, array subscript expressions must be

affine functions of the loop induction variables. Third, there

must be no dynamic or pointer-based memory accesses.

In our experiments, we use a 4KB direct mapped cache.

Our experiments use the DSPStone benchmark suite [27].

In order to make the benchmarks statically analyzable by

our framework, they were modified to replace pointer-based

memory accesses with equivalent array accesses. Abstract

inlining [19] was performed on the functions in the bench-

marks to make each of them represent data references in

only one (main) function. The benchmarks that we use in

our task sets are briefly described in Table 1.

6. Experimental Results
The experiments we conducted are two-fold. We first

study the behavior of the benchmarks with respect to

the placement of preemption points while construct-

ing the worst-case scenario. Next, we study the actual

response time results for specific task sets.

6.1. Identification of Preemption Points
In this section, we discuss some observations about the

identification of preemption points that would lead to the

worst-case preemption delay.

As stated in Section 4, we build access chains for a task

and calculate the costs of preemptions at every point. This

cost is obtained by counting the number of chains which sat-

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06)
0-7695-2516-4/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:38 from IEEE Xplore. Restrictions apply.

M M M M M M M M M M M . . . M . M .

Figure 3. Cache Line Access Chains for Lines 1, 2 and 3

�

�

��

��

��

��

��

�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
	

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

�
	

�

�
�
�

�
	
�

�
�
�
�

�
�
	
�

�
�
�
�

�
�
	
�

���������	
��

�
�
�
��
�

�
�
��
�
�
�
�	
�

(a) lms benchmark

�

��

��

��

��

��

��

�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
	

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

�
	

�

�
�
�

�
	
�

�
�
�
�

�
�
	
�

�
�
�
�

�
�
	
�

���������	
��
�
�
�
��
�

�
�
��
�
�
�
�	
�

(b) n-real-updates benchmark

�

�

��

��

��

��

��

��

��

�

�
�
�

�
	

�
	
�

�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�

�
	

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�

�
�

�
	
�
�

�
�
	
�

�
�
	
�

�
�

�

�
�
�
	

�
	
�
�

�
�
�
�

�
�
�

�
�
�
�

���������	
��

�
�
�
��
�

�
�
��
�
�
�
�	
�

(c) matrix1 benchmark

�

�

��

��

��

��

��

�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
�
�

	
�
�

	
�
�

	
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���������	
��

�
�
�
��
�

�
�
��
�
�
�
�	
�

(d) fir benchmark

Figure 4. Distribution of preemption costs across the iteration space

isfy the checks stated in Section 4. Among these costs, we

currently choose the most expensive n points without plac-

ing a constraint on the interval between any two preemp-

tion points. The reason we do this is because of an observa-

tion we made regarding the usage of cache lines in most of

our benchmarks.

The distribution of the costs of preemptions at access

points for the second, third, fourth and fifth tasks in the sec-

ond task set (see Table 3) are depicted in Figure 4. The X-

axis shows the access points and the Y-axis shows the cost

of preemption. The distribution proceeds in time order.

We can see that the number of access points with the

highest cost is large and it is concentrated in consecutive

access points for the benchmarks in Figures 4(a), 4(b) and

4(c). This means that a preemption at any of these consec-

utive access points is equally expensive. Hence, picking the

n most expensive preemption costs irrespective of the dis-

tance between them gives reasonably tight estimates of the

worst-case preemption delay.

The reason for this behavior stems from the general na-

ture of programs. In most programs, ninety percent of the

time is spent in ten percent of the code. Within this section

of the code, there are usually very repetitive reuse-patterns

and hence, lots of temporal and spatial reuse. At any point

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06)
0-7695-2516-4/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:38 from IEEE Xplore. Restrictions apply.

Benchmark Period Stand alone Response time WCET with Response time
(=deadline) WCET without delay preemption with delay

delay
dot-product 50000 750 750 750 750

convolution 62500 7491 8241 12491 13241

fir 125000 9537 17778 22037 35278

lms 125000 14536 32314 29136 77655

n-real-updates 250000 16738 48692 79138 235198

matrix1 250000 54168 111851 104568 greater than period

Table 2. Task set 1 - Characteristics and response times

Benchmark Period Stand alone Response time WCET with Response time
(=deadline) WCET without delay preemption with delay

delay
convolution 62500 7491 7491 7491 7491

fir 125000 9537 17028 14537 22028

lms 125000 14536 31564 21936 43964

n-real-updates 250000 16738 48302 55138 106593

matrix1 250000 54168 109961 86568 244616

Table 3. Task set 2 - Characteristics and response times

Benchmark Description
dot-product Program to find the dot

product of two vectors

convolution Program to implement a

convolution filter

fir Program to implement a

finite impulse response filter

lms Program to implement a least

mean-square filter

n-real-updates Program to perform n real updates

of the form D(i) = C(i) + A(i)*B(i),

where A(i), B(i), C(i) and D(i) are

real numbers, and i = 1,...,N

matrix1 Program to find the product

of two matrices

Table 1. Description of benchmarks in the
DSPStone suite

during this section of code, all data that is used within the

code is already in the data cache. Hence, preemption at any

such point would result in more or less the same cache lines

from being evicted, hence causing the same preemption de-

lay.

In the graph in Figure 4(d), however, we observe a grad-

ual increase up to some point and then a decrease in the

cost between adjacent access points. Hence, we considered

it beneficial to device a method for tightening the worst-case

preemption delay bound for such distributions. This con-

ceptual idea has not been implemented yet. The nature of

the distribution is dependent on both the task itself and the

position and priority of the task in the task set since that af-

fects the cache lines replaced when the task is preempted.

As a first step, we identify the n most expensive preemp-

tion points. Then, we spread these points out into the rest of

the iteration space based on certain constraints. Let us as-

sume a simple task set with two tasks, Tx and Ty , where Tx

has a shorter period (higher priority). Let Px and Py be the

periods of the two tasks and Rx be the response time of the

task Tx. Since Tx cannot be preempted, calculating its re-

sponse time is straightforward. The concept behind an algo-

rithm to identify the placement of preemption points is de-

picted in Figure 5. First, we pick one of the most expensive

preemption points. This point is labeled as preemption point

1 in the figure. Once this preemption point is fixed, there

cannot be any more preemptions of Ty by Tx for a time in-

terval equal to the difference Px −Rx. This is because new

instances of Tx are released only at intervals equal to its pe-

riod. Another constraint is that the next preemption point

should be no later than a distance of Px from the first pre-

emption point. Hence, we place the next preemption point

of Ty beyond the uninterrupted interval Px−Rx, but before

the end of interval Px from the first preemption point. This

range for the placement of the next preemption points is in-

dicated in Figure 5. We choose the point within this range

that causes the maximum preemption delay to be the next

preemption point.

Consider a cluster of preemption points in a particular

region of the access space for task Ty . While attempting to

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06)
0-7695-2516-4/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:38 from IEEE Xplore. Restrictions apply.

move a preemption point to the space on the left of the clus-

ter (i.e., before the first preemption point in the cluster), we

calculate the distances discussed above starting from the last

preemption point in the cluster, moving backwards in the

access space. Similarly, while moving preemption points to

the right of the cluster, we calculate distances from the first

preemption point in the cluster and moving forward in the

access space.

Range for next
preemption point

 Px

Px − Rx

Access Space for Task y

Preemption Point 1

Figure 5. Distance criterion between preemp-
tion points

6.2. Calculation of Response Times
We performed experiments by constructing task sets of

benchmarks to derive preemption delays for data caches.

We use the Earliest Deadline First (EDF) scheme in our ex-

periments. Further, we assume that the period of a task is

equal to its relative deadline and that the phase of every task

is 0. Our results in Tables 2 and 3 list the tasks used in our

task sets in decreasing order of priority.

In our first experiment, we use the task set depicted in

Table 2. The third column provides the worst-case execu-

tion time of the task as calculated by our static timing an-

alyzer without considering preemptions (stand alone). The

fourth column shows the response time calculated for each

task using this worst-case execution time. The fifth column

shows the WCET of the task with preemption delay added

in and the last column shows the response time calculated

using this new WCET.

As we can see from Table 2, the response time calculated

using the stand alone WCET of each task suggests that this

task set is schedulable since all tasks have response times

shorter than their deadline. However, when we perform pre-

emption delay calculation and incorporate that value into

the calculation of WCET, we see that the task matrix1 has a

response time that is greater than its period. This indicates

that the task-set is actually not schedulable and this stresses

the importance of the preemption delay calculation.

A similar experiment with different task set characteris-

tics yielded a schedulable task set. The inputs and results

of this task set are shown in Table 3. All the values in Ta-

bles 2 and 3 are in number of cycles.

We also calculated the factors by which the response

time increases with respect to the WCET with and with-

out preemption delay incorporated. Column two in Tables

4 and 5 show the ratio of response time without preemp-

tion delay to the WCET without preemption delay. The third

column in the same tables show the ratio of response time

with preemption delay to the WCET with preemption de-

lay. We see from the second and third columns in Tables 4

and 5 that there is, a very insignificant increase or decrease

in the factor obtained while considering preemption delays

as compared to the one without preemption delay. Hence,

by adding preemption delay, we are not increasing the re-

sponse time by a significantly different factor as compared

to calculations without preemption delay.

However, when we calculate the ratios between the

WCET with delay and the WCET without delay (shown

in the fourth column of Tables 4 and 5), we observe sig-

nificantly larger factors. While the ratio is high in general,

the benchmark n-real-updates has particularly high ra-

tios in both task sets. The reasons for this general and

specific behavior are discussed below.

1. We calculate the maximum number of preemptions

without taking indirect preemption effects (preemption

by a higher priority task can affect tasks other than the

task with second highest priority task only once until

the completion of the task with second highest prior-

ity) into account. Hence, the value is pessimistic.

2. We choose the n most expensive preemption points

without regard to the minimum distance between them.

In most cases, this turns out to be n consecutive points

that have the highest cost. The discussion in Sec-

tion 6.1 already showed that, by spreading preemption

points, a more realistic worst-case scenario can be ob-

tained. This would reduce the preemption delay added

for certain benchmarks.

3. The benchmark n-real-updates has a large fraction of

temporal reuse that is adversely affected by repeated

preemptions.

Obtaining tighter bounds for the maximum number of pre-

emptions and constructing a more realistic worst-case sce-

nario are part of future work.

7. Related Work
Several methods that bound data cache behavior have

been proposed. Lim et al. [14] propose a method that takes

data caching into account while computing the WCET for

tasks for static memory references. Kim et al. [9] propose

a method that classifies data references as static or dy-

namic. Data flow analysis is used by Li et al. [13] to ana-

lyze data cache behavior. White et al. [26] propose a method

for direct-mapped caches based on static cache simulation.

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06)
0-7695-2516-4/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:38 from IEEE Xplore. Restrictions apply.

Benchmark Resp. time w/o delay Resp. time with delay WCET with delay
/ stand alone WCET / WCET with delay / stand alone WCET

dot-product 1 1 1

convolution 1.1 1.06 1.67

fir 1.87 1.6 2.31

lms 2.22 2.6 2

n-real-updates 2.91 2.97 4.73

matrix1 2.06 - 1.93

Table 4. Task set 1 - Ratios

Benchmark Resp. time w/o delay Resp. time with delay WCET with delay
/ stand alone WCET / WCET with delay / stand alone WCET

convolution 1 1 1

fir 1.79 1.52 1.52

lms 2.17 2 1.51

n-real-updates 2.9 1.93 3.3

matrix1 2.03 2.8 1.6

Table 5. Task set 2 - Ratios

Lundqvist et al. [16] present a study that shows to what ex-

tent data cache accesses are predictable. They conclude that

a majority of data cache accesses can be predicted.

Recently, some analytical methods for predicting data

cache behavior have been proposed. They include the Cache

Miss Equations by Ghosh et al. [8], a probabilistic analysis

method proposed by Fraguella et al. [7] and another analyt-

ical method by Chatterjee et al. [5]. The common idea be-

hind these methods is to characterize data cache behavior

by means of a set of mathematical equations. In prior work

[19], we have extended the cache miss equations framework

to produce exact data cache patterns for references.

The above methods only deal with analyzing a single

task and do not discuss multi-task preemptive scenarios.

Some techniques that make data caches more predictable

and can be applied in preemptive systems are cache parti-

tioning and cache locking.

In cache partitioning [18], the cache is divided into

smaller portions and the portions are used by individual

tasks. Since each task has a dedicated cache portion, the

question of a preemption replacing its cache blocks does not

arise. The method has the disadvantage of having a smaller

cache area at the disposal of individual tasks.

In cache locking [15, 6], selected data is loaded into

cache and locked in place so that it may not be replaced un-

til the cache is explicitly unlocked. During the locked inter-

val, since the cache contents are known, cache behavior is

predictable. This approach has the disadvantage that lock-

ing and unlocking introduce some overheads. Furthermore,

if one task has locked certain cache lines, no other task that

also uses those cache lines can take advantage of them. Fi-

nally, if some data is too large to fit into cache, it has to

be completely unloaded from cache to make sure that the

cache behavior is still predictable. This leads to a perfor-

mance loss.

There are also several techniques that have been pro-

posed specifically to calculate preemption delay and

analyze schedulability in a multi-task preemptive sys-

tem. These techniques do not specifically analyze data

cache behavior, but provide a more generic solution appli-

cable to a cache, including specific solutions for instruction

caches.

Early on, Basumallick et al. conducted a survey of cache

related issues in real-time systems [2]. This survey dis-

cussed some initial work related to the calculation of pre-

emption delay. Busquets-Mataix et al. proposed a method

to incorporate the effect of instruction caches on response

time analysis (RTA) [4]. They compared cached RTA with

cached Rate Monotonic Analysis (RMA) and concluded

that cached RTA outperforms cached RMA. Lee et al. pro-

posed and enhanced a method to calculate an upper bound

for cache related preemption delay in a real-time system

[10, 11]. They used cache states at basic block boundaries

and data flow analysis on the control flow graph of a task to

analyze cache behavior and calculate preemption delay.

The work by Lee et al. was enhanced by Staschulat et
al. [20, 21]. The authors propose a complete framework for

the calculation of response time for tasks in a given task set.

They address three issues involved in this calculation:

1. Calculation of preemption delay using a method very

similar to that in the work by Lee et al. [10, 11].

2. Calculation of the maximum number of preemptions

for a task.

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06)
0-7695-2516-4/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:38 from IEEE Xplore. Restrictions apply.

3. Identification of the position of preemption points that

would lead to the worst-case delay.

Their focus is, however, not on data caches, but on instruc-

tion caches. Hence, their methodology for performing the

above calculations is completely different from ours.

Another approach by Tomiyama et al. calculates cache

related preemption delay for the program path that requires

the maximum number of cache blocks [22]. This path is de-

termined by an integer linear programming technique. In

this paper, only single preemptions are considered while

multiple preemptions are not. Further, an empty cache is

assumed at the beginning of a task. Negi et al. combined

the techniques proposed by Tomiyama et al. [22] and by

Lee et al. [10, 11] to develop an enhanced framework [17].

Once again, however, multiple preemptions are not consid-

ered and an empty cache is assumed at the beginning of a

task.

8. Conclusion
This work provides a method to calculate cache related

preemption delay that is specifically suited to data caches.

We propose a framework that calculates bounds for the pre-

emption delay within data cache reference patterns for real-

time tasks. Using these bounds to calculate tighter estimates

of the WCET of tasks, we perform response time analysis

on all tasks in a task set to determine its schedulability.

We have devised a method that involves the following:

1. Derivation of data cache reference patterns for all

scalar and non-scalar memory references in a task to

analyze single-task data cache behavior.

2. Construction of data cache access chains from these

patterns to calculate the delay due to preemption at a

certain point in the execution of a task.

3. Determination of the maximum number of preemp-

tions, n, for a given task in the context of a task set.

4. Identification of the n worst-case scenarios of preemp-

tions. Currently, we choose the n most expensive pre-

emption points for this purpose.

9. Future Work
As part of future work, we intend to enhance two aspects

of the work proposed in this paper.

Currently, we calculate the maximum number of pre-

emptions possible by checking how many higher priority

tasks can be activated in the period of time between the re-

lease and the deadline (equal to period) of a lower priority

task. This number is pessimistic since it does not take indi-

rect preemptions into account. Thus, in our current analy-

sis, the same instance of a preempting task may be consid-

ered in the preemption delay calculation of more than one

task. We intend to tighten the bound on the maximum num-

ber of preemptions possible for a given task.

A second step involves construction of a more realis-

tic worst-case scenario for preemption by spreading out

preemption points in the iteration space while maintaining

safety. This would further tighten the estimated worst-case

delay and, hence, the WCET bound of tasks.

References
[1] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell. Ap-

plying new scheduling theory to static priority pre-emptive

scheduling. Software Engineering Journal, pages 284–292,

1993.

[2] S. Basumallick and K. Nilsen. Cache issues in real-time sys-

tems. In ACM SIGPLAN Workshop on Language, Compiler,
and Tool Support for Real-Time Systems, 1994.

[3] D. Burger, T. Austin, and S. Bennett. Evaluating future

microprocessors: The simplescalar toolset. Technical Re-

port CS-TR-96-1308, University of Wisconsin - Madison,

CS Dept., July 1996.

[4] J. V. Busquets-Matraix. Adding instruction cache effect to

an exact schedulability analysis of preemptive real-time sys-

tems. In EuroMicro Workshop on Real-Time Systems, June

1996.

[5] S. Chatterjee, E. Parker, P. Hanlon, and A. Lebeck. Exact

analysis of the cache behavior of nested loops. In ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 286–297, June 2001.

[6] D. Decotigny and I. Puaut. Low-complexity algorithms for

static cache locking in multitasking hard real-time systems.

In IEEE Real-Time Systems Symposium, page 114, dec 2002.

[7] B. B. Fraguela, R. Doallo, and E. L. Zapata. Automatic ana-

lytical modeling for the estimation of cache misses. In Inter-
national Conference on Parallel Architectures and Compila-
tion Techniques, 1999.

[8] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equa-

tions: a compiler framework for analyzing and tuning mem-

ory behavior. ACM Transactions on Programming Lan-
guages and Systems, 21(4):703–746, 1999.

[9] S. Kim, S. Min, and R. Ha. Efficient worst case timing anal-

ysis of data caching. In IEEE Real-Time Embedded Technol-
ogy and Applications Symposium, June 1996.

[10] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,

C. Y. Park, M. Lee, and C. S. Kim. Analysis or cache-related

preemption delay in fixed-priority preemptive scheduling.

IEEE Transactions on Computers, 47(6):700–713, 1998.

[11] C.-G. Lee, K. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha,

S. Hong, C. Y. Park, M. Lee, and C. S. Kim. Bounding cache-

related preemption delay for real-time systems. IEEE Trans-
actions on Software Engineering, 27(9):805–826, Nov. 2001.

[12] J. Lehoczky, L. Sha, , and Y. Ding. The rate monotonic

scheduling algorithm: Exact characterization and average

case behavior. In Proceedings of the Real-Time Systems Sym-
posium, Santa Monica, California, Dec. 1989.

[13] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-

time software: Beyond direct mapped instruction caches. In

IEEE Real-Time Systems Symposium, pages 254–263, Dec.

1996.

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06)
0-7695-2516-4/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:38 from IEEE Xplore. Restrictions apply.

[14] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y.

Park, H. Shin, and C. S. Kim. An accurate worst case tim-

ing analysis for RISC processors. In IEEE Real-Time Sys-
tems Symposium, pages 97–108, Dec. 1994.

[15] B. Lisper and X. Vera. Data cache locking for higher pro-

gram predictability. In ACM SIGMETRICS international
conference on Measurement and modeling of computer sys-
tems, pages 272–282, Mar. 06 2003.

[16] T. Lundqvist and P. Stenstrm. Empirical bounds on data

caching in high-performance real-time systems. Technical

report, Chalmers University of Technology, 1999.

[17] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estima-

tion of cache-related preemption delay. ACM International
Symposium on Hardware Software Codesign, Oct. 2003.

[18] I. Puaut and D. Decotigny. Low-complexity algorithms for

static cache locking in multitasking hard real-time systems.

In IEEE Real-Time Systems Symposium, 2002.

[19] H. Ramaprasad and F. Mueller. Bounding worst-case data

cache behavior by analytically deriving cache reference pat-

terns. In IEEE Real-Time Embedded Technology and Appli-
cations Symposium, pages 148–157, Mar. 2005.

[20] J. Staschulat and R. Ernst. Multiple process execution in

cache related preemption delay analysis. In ACM Interna-
tional Conference on Embedded Software, 2004.

[21] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling anal-

ysis of real-time systems with precise modeling of cache re-

lated preemption delay. In Euromicro Conference on Real-
Time Systems, 2005.

[22] H. Tomiyama and N. D. Dutt. Program path analysis to

bound cache-related preemption delay in preemptive real-

time systems. ACM International Symposium on Hardware
Software Codesign, 2000.

[23] X. Vera, J. Llosa, A. González, and N. Bermudo. A fast and

accurate approach to analyze cache memory behavior (re-

search note). Lecture Notes in Computer Science, 1900:194–

198, 2000.

[24] X. Vera and J. Xue. Let’s study whole-program cache behav-

ior analytically. In International Symposium on High Perfor-
mance Computer Architecture. IEEE, Feb. 2002.

[25] J. Wegener and F. Mueller. A comparison of static analysis

and evolutionary testing for the verification of timing con-

straints. Real-Time Systems, 21(3):241–268, Nov. 2001.

[26] R. T. White, F. Mueller, C. Healy, D. Whalley, and M. G.

Harmon. Timing analysis for data and wrap-around fill

caches. Real-Time Systems, 17(2/3):209–233, Nov. 1999.

[27] V. Zivojnovic, J. Velarde, C. Schlager, and H. Meyr. Dsp-

stone: A dsp-oriented benchmarking methodology. In Signal
Processing Applications and Technology, 1994.

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06)
0-7695-2516-4/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 30, 2009 at 11:38 from IEEE Xplore. Restrictions apply.

	Southern Illinois University Carbondale
	OpenSIUC
	4-2006

	Bounding Preemption Delay within Data Cache Reference Patterns for Real-Time Tasks
	Harini Ramaprasad
	Recommended Citation

