
Southern Illinois University Carbondale
OpenSIUC

Articles and Preprints Department of Mathematics

10-2003

Controllability and Local Accessibility—A Normal
Form Approach
Wei Kang
Naval Postgraduate School

MingQing Xiao
Southern Illinois University Carbondale

Issa Amadou Tall
Southern Illinois University Carbondale, itall@math.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles

Part of the Control Theory Commons, and the Mathematics Commons
Published in Kang, W., Xiao, M., & Tall, I. A. (2003). Controllability and local accessibility - A
normal form approach. IEEE Transactions on Automatic Control, 48(10), 1724-1736. doi: 10.1109/
TAC.2003.817924. ©2003 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles
and Preprints by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Kang, Wei, Xiao, MingQing and Tall, Issa A. "Controllability and Local Accessibility—A Normal Form Approach." (Oct 2003).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenSIUC

https://core.ac.uk/display/60524413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/116?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


1724 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 10, OCTOBER 2003

Controllability and Local Accessibility—A Normal
Form Approach

Wei Kang, Mingqing Xiao, and Issa Amadou Tall

Abstract—Given a system with an uncontrollable linearization
at the origin, we study the controllability of the system at equilibria
around the origin. If the uncontrollable mode is nonzero, we prove
that the system always has other equilibria around the origin. We
also prove that these equilibria are linearly controllable provided a
coefficient in the normal form is nonzero. Thus, the system is quali-
tatively changed from being linearly uncontrollable to linearly con-
trollable when the equilibrium point is moved from the origin to
a different one. This is called a bifurcation of controllability. As
an application of the bifurcation, systems with a positive uncon-
trollable mode can be stabilized at a nearby equilibrium point. In
the last part of this paper, simple sufficient conditions are proved
for local accessibility of systems with an uncontrollable mode. Nec-
essary conditions of controllability and local accessibility are also
proved for systems with a convergent normal form.

Index Terms—Linearly controllable, nonlinear systems, normal
forms, stabilizable.

I. INTRODUCTION

I T IS WELL known that a system with an uncontrollable
mode in the right-half plane is not stabilizable using smooth

feedback. Stabilization by nonsmooth or time-dependent feed-
backs was studied by many researchers. A large number of pub-
lications and elegant results can be found in the literature (see,
for instance, [4]–[6], [9], [16], [17], and [19]–[22]).

In this paper, we study the controllability, stabilizability and
local accessibility of systems with a single uncontrollable mode.
The termcontrollability is used in this paper to represent the
controllability of the linearized system. The viewpoint and ap-
proach adopted in this paper are fundamentally different from
existing publications on nonsmooth or time-dependent feedback
stabilization. Instead of focusing on the stability of a single equi-
librium point, we study the existence and the controllability of
all equilibria in a neighborhood of the point of interest. The
theoretical approach in this paper is based on the normal form
of nonlinear control systems, a relatively new theoretical tool
that has been actively developed during the last ten years. Dif-
ferent from the results in [16], [17], [19], and [20], we do not
restrict our attention on homogeneous or generalized triangular
systems. The original system is not required to have any tri-
angular structure. On the other hand, the stability achieved by
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the feedback in this paper is local, while the results from [16],
[17], [19], and [20] are global. In addition, we do assume that
the system has a single uncontrollable mode and a single input.
Given the rapid development in the normal form theory of sys-
tems with multiple uncontrollable modes and multiple inputs,
we hope that this restriction will be removed in the future.

Given a system with a nonzero uncontrollable mode and a lin-
early controllable part, we prove that there always exists an infi-
nite number of equilibria around this point. More importantly, it
is proved that the controllability of a system could change when
the equilibrium point is varied. This qualitative change in con-
trollability is called abifurcationof the control system [12]. As
a by-product of the bifurcation in controllability, a system with
a positive uncontrollable mode at an equilibrium point may have
infinitely many, arbitrarily close equilibrium points at which the
system becomes linearly controllable. Thus, the system can be
stabilized at a point sufficiently close to the desired equilibrium.
In addition to the stabilization, we also proved a simple rela-
tionship between the normal form of a system and its local ac-
cessibility. Even if a system has uncontrollable mode, its local
accessibility can be easily determined based on its normal form.
Necessary conditions for controllability and local accessibility
are also addressed.

This paper is organized as follows. Sections II and III focus
on the bifurcation of controllability. Theorems are introduced
in Section II. They are proved in Section III. In Section IV, ex-
amples are introduced for the problem of feedback stabilization.
The feedback is designed based on the bifurcation of controlla-
bility. In Section V, a partial result on the necessary condition
for linearly controllable systems is proved. In Section VI, the
local accessibility of nonlinear systems is addressed. Results on
both sufficient and necessary conditions for local accessibility
are introduced and proved.

II. EQUILIBRIUM SET AND CONTROLLABILITY

Before the introduction of the theory, we use the following
simple example to illustrate some basic concepts and ideas.
Consider the following system:

The linearization of the system has a positive uncontrollable
eigenvalue at the origin . The system cannot be stabilized
at by any state feedback because approaches
if the initial condition satisfies . On the other hand, the
origin is not the only equilibrium point of the system. In fact,
given any initial state , we define the control input as

0018-9286/03$17.00 © 2003 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on January 22, 2009 at 14:32 from IEEE Xplore.  Restrictions apply.



KANG et al.: CONTROLLABILITY AND LOCAL ACCESSIBILITY 1725

. Then, the system has a constant solution ,
i.e. is an equilibrium point of the system. Furthermore, the
linearization of the system at is

which is controllable. Therefore, the system can be practically
stabilized at an equilibrium point close to the origin provided
the initial state satisfies . In this example, the set of equi-
librium points helps to practically stabilize the system when it
is impossible to asymptotically stabilize the solution by
any state feedback. This is not an isolated case. In this paper, we
prove that a large family of uncontrollable systems has similar
properties. We use the invariants of nonlinear control systems to
characterize the equilibrium set and the controllability of sys-
tems with an uncontrollable mode.

Consider a nonlinear system with a single input in the fol-
lowing form:

(2.1)

where is the state variable, and is the control
input. : is assumed to be for sufficiently large

.
Definition 1: A point is an equilibrium or equilib-

rium point of (2.1) if and only if so that

(2.2)

System (2.1) is said to be linearly controllable at (, ) if its
linearization

(2.3)

is controllable where

Without loss of generality, we assume .
Assumption 1:We assume that is for sufficiently

large . We also assume that the linearization (, ) at the
origin has one uncontrollable mode with eigenvalue

.
From Assumption 1, we adopt the following normal form for

the linearization at :

...
(2.4)

If the original linearization is not in this form, it is well known
that it can be transformed to (2.4) by a linear change of coordi-

nates and linear feedback. With the linearization (2.4), the non-
linear control system is in the following form:

...

(2.5)

where the superscript in implies that the Taylor
expansion of the function starts with quadratic or higher de-
gree terms. Equivalently

(2.6)

The definition of the superscripts in is similar. It is proved
in this paper that the set of equilibria around the origin is a
smooth curve. At two different equilibria, the controllability of
the system may change. Following [12], if aqualitativeprop-
erty such as controllability is changed, we say that the control
system has a bifurcation. In this paper, we study the bifurcation
of the controllability around an uncontrollable point.

The analysis and proofs in this paper are based on the normal
form theory of control systems. In the case , it is well
known from the Poincaré–Dulac theorem [1] that (2.1) can be
reduced to the canonical form

(2.7)

by means of a formal change of variables , where all
monomials in are resonant. Kang and Krener [14] initiated the
extension of the Poincaré normal form to control systems. More
general results on normal forms were obtained by several au-
thors (see [2], [7], [11], and [25]). The normal form theory cov-
ered a large family of systems including controllable, uncontrol-
lable, continuous and discrete-time systems. In this paper, we
study the controllability around a linearly uncontrollable equi-
librium of nonlinear systems by making use of the normal form
from [2], [12], and [25]. We prove that the homogeneous terms
in the normal form characterizes the controllability of a system
at the points in the equilibrium set.

Theorem 2.1:Consider a system (2.5). Suppose .
Then, in a neighborhood of the origin, its set of equilibrium
constitutes a smooth curve in which passes through the
origin. Furthermore, the curve of equilibrium points can be
parameterized as a function of satisfying

and

and

...

and (2.8)
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i.e., is a parameter, and -axis is the tangent line of the curve
at .

The proof of the theorem can be found in Section III. Ac-
cording to Theorem 2.1, the existence of equilibrium points
around an uncontrollable point is guaranteed. The geometry of
the set of equilibrium points is illustrated by the parameteri-
zation. The following theorems are about the controllability of
these equilibrium points. In the next theorem,represents the
right-hand side of the equation in (2.5), i.e.,

In (2.9), the variable represents the control inputto sim-
plify the notation.

Theorem 2.2:Consider a control system (2.5) with a nonzero
uncontrollable mode . Suppose

(2.9)

Then, there exists a neighborhood of the origin in which (2.5) is
linearly controllable at any equilibrium point except for

.
The condition (2.9) is a sufficient condition for controlla-

bility. It does not require the system to be in normal form.
However, if (2.9) is not satisfied, it is still possible for (2.5) to
be controllable. In such a case, the conclusion of the theorem
is based on the normal form. In the following, the normal form
of control systems is introduced without proof (see [15] and
[25]). They play a key role in the proof of all the main theo-
rems. A system is equivalent to its normal form under change
of coordinates and feedback. Therefore, to prove the main the-
orems about general control systems, it is enough to prove the
result for systems in normal form, which significantly simpli-
fies the proof of the theorems. According to [15] and [25], a
transformation consists of the following change of coordinates
and feedback:

(2.10)

where and are homogeneous polynomials of degree
in its arguments, is a -dimensional vector whose

entries are homogeneous polynomials of degree. The highest
degree is selected to be large enough so that adequate in-
formation about the local performance of a system can be
extracted from the Taylor expansion. It was proved in [15] and

[25] that there exists a transformation under which (2.5) can
be transformed to

...

...

(2.11)

where (we also denote and
), and

(2.12)

Once again, the variable in (2.11) represents the control input
. To simplify the notation, we use (, ) and instead of ( ,
) and as the state variable and the input in the normal form.

According to [11], the computation of the normal form for a
given system is equivalent to solving systems of linear algebraic
equations. So, there is no fundamental obstacle toward the com-
putation of the normal form. Therefore, the computation of the
normal form can be carried out using the software equipped with
linear algebraic equation solvers such as MAPLE, Mathematica,
and Matlab.

Theorem 2.3:Consider a control system (2.5) with a nonzero
. Suppose the normal form of (2.5) is (2.11). Suppose there

exists an integer so that

(2.13)

Then, there exists a neighborhood of the origin in which (2.5) is
linearly controllable at all equilibrium points except for

.
The theorems state that under assumption (2.9) or (2.13), the

system (2.5) is controllable at all equilibrium points in a neigh-
borhood of the origin, although the system is not linearly con-
trollable at . Thus the origin is an isolated uncon-
trollable equilibrium point. It suggests that if a system is not lin-
early controllable at this equilibrium, we can control the system

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on January 22, 2009 at 14:32 from IEEE Xplore.  Restrictions apply.
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by stabilizing it at a nearby equilibrium. The proofs of the theo-
rems are given in the next section. In the proof, it is shown that

is equivalent to condition (2.9). So, (2.9) is more re-
strictive than (2.13). However, it is easy to check (2.9) because
the derivatives in (2.9) can be computed without transforming
the system into its normal form. Condition (2.13) requires the
system to be transformed to normal form, which could be cum-
bersome for high degree terms. Nevertheless, Theorem 2.3 re-
veals an interesting fact: around an uncontrollable equilibrium
of a nonlinear system, it is highly possible for the system to be
controllable at other equilibrium points in a neighborhood. The-
orem 2.3 is equivalent to the fact that a system not controllable
in a neighborhood must satisfy the following infinite number of
algebraic equations:

for all .
From Theorem 2.3, it is proved that (2.13) is a sufficient con-

dition for a system to be linearly controllable. In Section V, it
is proved that (2.13) is also a necessary condition, provided that
the normal form is convergent.

III. PROOF OF THETHEOREMS

The proof of theorem 2.1:Denote the right-hand side of
(2.5) by . It is easy to check that

...
...

...
. . .

...
(3.1)

Since , the matrix has full rank. According to the implicit
function theorem, there exists a neighborhood of

such that has a unique solution

(3.2)

satisfying

(3.3)

Now we prove that the function and consists
of quadratic and higher degree terms only. From (2.5) and the
definition of equilibrium point

(3.4)

The right-hand side are terms of . So

for . Similarly, it can be proved that the deriva-
tives of and at equal zero.

In the following, we prove Theorem 2.3 first. Then, it will
be shown that Theorem 2.2 is a corollary of Theorem 2.3. The
following Lemma is used in the proof of Theorem 2.3.

Lemma 3.1:Consider a system in the normal form (2.11) of
degree . Let , , be the smallest positive integer
so that

(3.5)

Then the equilibrium set of (2.11) satisfies

(3.6)

Proof: Since the normal form of higher degree terms does
not appear in the proof, we consider the normal form to the
degree only, i.e., consider the case . The equation

implies that

(3.7)

From the equation of in (2.11), the nonlinear term in the
normal form contains . From (3.7), we have

. Repeating this procedure, it can be proved that

(3.8)

for . Now we consider the first equation of
(2.11). Suppose the lowest nonzero term in the Taylor expansion
of has degree , i.e.

where . We must prove . Consider the
equilibrium equation

(3.9)
where . Equation (3.8) implies

(3.10)

and

(3.11)

If , then (3.10) and (3.11) imply that the only degree
term in (3.9) is in . Thus, (3.9) does not hold. So, .

Remark: Actually, satisfies

(3.12)

Now, we are ready to prove Theorem 2.3.

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on January 22, 2009 at 14:32 from IEEE Xplore.  Restrictions apply.
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The proof of theorem 2.3:Consider a system (2.11) in
normal form. Suppose that is the smallest positive in-
teger so that (2.13) holds. We assume in the normal
form because all terms of degree greater thanare not in-
volved in the proof. Denote the right-hand side of (2.11) by

. Notice that (3.13) and (3.14), shown at the bottom of
the page, hold, The equilibrium points satisfy ,
for , and (Lemma 3.1). Evaluating
(3.13) at an equilibrium point yields

...
...

...
. . .

... (3.15)

At an equilibrium point

... (3.16)

Thus, the controllability matrix is

...
...

...
...

(3.17)

The determinant of the matrix is

(3.18)

Therefore, is not zero if is small and , provided
(3.5) holds. This implies that the system is controllable at all
equilibria around the origin.

Remark: If the eigenvalue corresponding to the uncontrol-
lable mode is zero, more bifurcation analysis is needed. It is
proved in [12] that the set of equilibrium points may be either a
single point set, or a smooth curve, depending on the nonlinear
normal form of the system. The topology of the equilibrium set
may change, which is addressed in [12] as a bifurcation of equi-
librium sets.

In the following, Theorem 2.2 is proved as a corollary of The-
orem 2.3. In the proof, we need the following lemma.

Lemma 3.2:Given a system (2.5), the value defined by the
left-hand side of (2.9) is invariant under any transformation of
the form (2.10).

Proof: In the following, is the operator defined as fol-
lows:

(3.19)

Its value is completely determined by the quadratic terms in
. It is known that , , 2, in (2.10) with

does not change the quadratic part of a system. Therefore, we
only consider quadratic transformations in the following form:

(3.20)

...
...

...
. . .

...

(3.13)

where

(3.14)
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Applying (3.20) to (2.5) yields a new system. Suppose that the
uncontrollable part in the new system is

where represents terms of degree three and higher in (,
, and ). Then

(3.21)

where

...
...

...
. . .

...
...

To prove the value of the left-hand side of (2.9) is invariant under
the transformation, it is enough to prove

First, let us assume , . Then

Therefore

Next, if is independent of , then the expression

(3.22)

does not generate any term of the form . Obviously, ap-
plying to (3.22) yields zero. So, for any choice of , (3.21)
implies

Proof of Theorem 2.2:Consider a system (2.5). From
Lemma 3.2, is invariant, where is defined by (3.19).
So, its value equals the value computed using its normal form
(2.11). However, it is easy to check that the invariant number
computed from the normal form is . Therefore

Condition (2.9) implies . Then, Theorem 2.2 follows
the result of Theorem 2.3.

IV. EXAMPLES OF FEEDBACK STABILIZATION

We consider a nonlinear system

(4.1)

where , are positive integers greater than one. Note that in
this case and

(4.2)

The linearization of the system is uncontrollable at the origin.
Because the uncontrollable mode is positive, it is not stabilizable
at (0, 0, 0) by any smooth feedback. However, the system has
infinite number of equilibrium points around the origin. The
equilibrium points are

(4.3)

The controllability matrix is

(4.4)

According to Theorem 2.3, if we choose but close to
zero, then the system is controllable and thus is stabilizable.
To practically stabilize the system, we pick up an equilibrium
point that is different from the origin. Both linear and nonlinear
feedbacks are designed to test the stability.

In the simulations, we define . An even number for
and makes the stabilization extremely difficult. In fact, ex-

isting results on stabilization of uncontrollable systems require
the dominating nonlinear terms to have odd number degree, if
the uncontrollable mode is positive. In this case, (4.1) cannot
be stabilized by any kind of feedback, no matter the feedback is
smooth, continuous, or time dependent. However, all other equi-
libria of (4.1) are locally stabilizable because they are linearly
controllable. Therefore, it is possible to stabilize the system at
a point close to the origin. Furthermore, we will show that the
domain of attraction for (4.1) is unbounded. For example, con-
sider an equilibrium point around the origin

(4.5)

The first feedback that we use is a simple linear control stabi-
lizing the system at the equilibrium point. Let

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on January 22, 2009 at 14:32 from IEEE Xplore.  Restrictions apply.
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Fig. 1. Solid:z � z . Dashed:x � x . Dotted:x � x .

Then, the eigenvalues of the linearized system at (, ,
, ) are . We set the initial condition to be

. Fig. 1 is a plot
of the trajectories , and . It
shows that the system is stabilized at the equilibrium point. In
Fig. 1, we shift the equilibrium point (4.5) to the origin.

While the linear feedback is easy to design and easy to imple-
ment, the domain of attraction is small. Furthermore, as the equi-
librium point gets closer to the origin, the gain becomes higher.
In the following, a nonlinear feedback is designed to signifi-
cantly increase the size of the domain of attraction. Let us again
consider our previous example in the case of , i.e.,

(4.6)

It can be shown that for all if . Because
all equilibrium points satisfy , we only consider the case
of . Define . Then

(4.7)

Hence, the set of equilibrium points of the new system is defined
by the equations , , , where is

selected as the parameter. The linearization of the system at an
equilibrium is

(4.8)
Suppose [ , , ] is the feedback gain, then

(4.9)

In the original coordinates

(4.10)

The feedback is continuous whenever . It is smooth at
all equilibrium points except for the origin. In this simulation,
the control gain is , , and

, which are obtained by applying LQR to (4.8) with

where is the 3 3 identity matrix. In the following sim-
ulation, the equilibrium is (4.5) and the initial condition is
( 1.157 490 1, 0.629 960 5, 0). The trajectories ,
and is shown in Fig. 2, in which the equilibrium point
is transformed to the origin. In comparison with the linear
controller, the simulation using the nonlinear feedback has an
initial error of 1.0, while the initial error in Fig. 1 is less than
0.11. For this particular example, numerical experiments using
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Fig. 2. Solid:z � z . Dashed:x � x . Dotted:x � x .

different initial conditions show that the nonlinear feedback
has a larger domain of attraction than the linear feedback.

Once the system is stabilized at an equilibrium point, the state
of the system can be driven along the set of equilibrium. For
instance, suppose the system is to be stabilized at

(4.11)

which is very close to the origin. Under a feedback control, the
domain of attraction around the equilibrium point (4.11) is very
small. If the initial condition is not close to (4.11), we can sta-
bilize the system at another equilibrium. Then, slowly move
the equilibrium point along the curve (4.3) in the direction of
(4.11). In the following simulation, we first stabilize the system
at the equilibrium (4.5), which has a much larger domain of at-
traction. Then, the equilibrium point is moved slowly from the
initial equilibrium point (4.5) toward (4.11). In the simulation
shown in Fig. 3, the initial condition of the system is (4.5), and
the feedback is (4.10) with , ,
and . Every ten seconds, the value of in the
controller (4.10) is reduced by . The value of is changed
accordingly. At the end of every iteration, the state of the system
is driven closer to the origin than before. Several step sizes

are used in the simulation. The step size 0.1 is used for the first
few iterations. As the state gets closer and closer to the origin,
the smaller and smaller step sizes are used. At , i.e.,
after 15 iterations, the state of the system is stabilized at the
destination equilibrium (4.11). Notice that the equilibrium set
(4.3) is unbounded. Therefore, the domain in which the system
can be driven to a neighborhood of the origin is unbounded.

Although (2.13) is based on the normal form, it is not neces-
sary to transform a system to its normal form to design a feed-
back. Based on Theorem 2.3, if a system is not linearly con-
trollable at , it is worthy to check the controlla-
bility of the system at other equilibrium points in a neighbor-
hood of the origin because they are likely to be controllable. If
the computation of the normal form for the given system is com-
plicated, the computation of the controllability matrix is rela-
tively straightforward, which does not require the normal form.
For example, consider the following system that is not in the
normal form (2.11):

(4.12)

Clearly, the set of equilibrium points is , ,
. The system is not controllable at the origin. The con-

trollability matrix at these equilibria is

(4.13)

Thus, the system is controllable at the equilibrium points around
the origin with .

V. NECESSARYCONDITION FORCONTROLLABILITY

Theorem 2.3 is a sufficient condition for systems to be lin-
early controllable in a vicinity of the origin. Is the condition
also necessary? The answer depends on the convergence of the
normal form. As we know that the Poincaré normal form may
not converge as the degree approaches infinity. The same is true
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Fig. 3. Solid:z. Dashed:x . Dotted:x .

for control systems. However, if the formal series of normal
form converges for a control system, then (2.13) in Theorem 2.3
is also a necessary condition for the controllability of nonzero
equilibrium points in a neighborhood of the origin.

Theorem 5.1:Consider a system in normal form (2.11). Con-
sider the case in which , i.e., the homogeneous parts of
all degrees are known. Suppose the normal form converges as a
power series in a neighborhood of the origin. If

(5.1)

for all , then there exists a neighborhood,, of the origin
so that the system is not linearly controllable at all equilibrium
points in .

Proof: If the normal form (2.11) contains all the homoge-
nous parts of arbitrary degree, then is not in the
normal form. Because , the equilibrium set is
simple

(5.2)

Now, consider the linearization matrix (3.13). Substituting any
equilibrium point (5.2) into the matrix yields

The vector in the linearization is . It is easy
to check that the controllability matrix has rank . So,

the system is not linearly controllable at any equilibrium point
around the origin.

Theorem 5.1 has two major limitations. It assumes a conver-
gent normal form as a power series. However, it is not easy
to prove the convergence of a normal form. It is known that
Poincaré normal form does not always converge. The same is
true for the normal form of control systems. In fact, the problem
of convergence of a normal form for control systems is still
largely an open problem, although a lot of examples do have
convergent normal forms. Another limitation of the necessary
condition is due to the fact that systems may not be analytic. If
the normal form is not analytic, then (2.13) is not a necessary
condition. This is proved in the following example.

Example: Consider the system

(5.3)

where

(5.4)

The system has an equilibrium set defined by

The function is , but not analytic. Its Taylor expansion
is zero. Therefore, (5.3) satisfies (5.1). However, the system is
linearly controllable at all the equilibrium points except for the
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origin. This is true because of the following controllability ma-
trix derived from (5.3) at any equilibrium point

with ,

VI. L OCAL ACCESSIBILITY

Controllability and accessibility are fundamental properties
of nonlinear control systems. It is proved that the accessibility
of a control system is closely related to the dimension of the
accessibility distribution. However, for systems with uncontrol-
lable linearization, the computation of the dimension of the ac-
cessibility distribution is not straightforward, if it is possible. In
this section, we prove a simple relationship between the normal
form and its local accessibility for systems with a single nonzero
uncontrollable mode. Based on this result, it is easy to check the
local accessibility for systems in normal form.

In this section, we consider affine systems of the following
form:

(6.1)

where is the space of piecewise continuous functions also
calledadmissible inputs. The vector fields and are either
smooth or analytic or of class for sufficiently large . Given
a state . Let be a neighborhood of . From [18], we denote

the reachable set from at time , following
trajectories which remain for in , and denote

Definition 6.1 [18]: The system is locally accessible from
if contains a nonempty open set of for all neigh-

borhood of and all .
Denote by the smallest Lie algebra of vector fields on

containing and . Let be the involutive distribution gener-
ated by , that is

for any

It is well-known that is locally accessible from if
.

In the following, we assume that (6.1) is in the normal form
defined by (2.11). Because (6.1) is affine in control,do not
appear in the nonlinear part of (2.11) (see [12]). In this section,
the nonlinear normal form of degree less than or equal tois
used, where is an integer to be specified later. Thus, (6.1)
has the following form:

(6.2)

where

for and .
Theorem 6.1:Consider (6.2). Suppose

(6.3)

for some positive integer . Then, the distribution has
full rank at . Thus, (6.2) is locally accessible at
the origin.

From the normal form (6.2), the condition (6.3) is equivalent
to the existence of nonnegative integers , with

, such that

(6.4)

Let be the smallest positive integer
that satisfies the condition (6.4). Following differential geom-
etry, the vector fields and are also denoted by

where

In , the terms independent ofform a new function,
denoted by , i.e.,

Let be any function of (, ) satisfying . Then,
the function has the following form:

(6.5)

Because

let be the largest positive integer so that .
Therefore

(6.6)

To prove Theorem 6.1, we must derive the formulas for the vec-
tors . Given

(6.7)
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and the (6.6), it is straightforward to prove the following equa-
tion:

(6.8)

if . Once again, based on (6.8) and (6.6), it can be
proved that

provided . In general, if , we have

for (6.9)

When , the vector field has a term .
By the definition of

Therefore, if , we have

(6.10)

In general, for any positive integersatisfying

(6.11)

The formula of the vector field is summarized in the
following lemma.

Lemma 6.1:Define the vector fields , for
, then

(6.12)

Proof of Theorem 6.1:Define the vector field by the
following equation:

(6.13)

From Lemma 6.1, we have

(6.14)

where is any vector field, which is not important for the
derivation that follows. Suppose is a sequence of
nonnegative integers so that and

(6.15)

From the definition of and the structure of normal form, we
know that the sequence exists and . From
Lemma 6.1 and the (6.14), it is straightforward to derive the
following equation:

(6.16)

where is any vector field. It is a different function from
the vector in (6.14). However, because its value is not impor-
tant for the derivation, we keep the same notation,, for the
reason of simplicity.

In general, we have

(6.17)

Denote this vector by . At the origin , the
vectors , and are

respectively. From (6.15) and the definition of, the dimension
of the distribution is at the origin, therefore, the system is
locally accessible from .

The following remark is a partially converse result of The-
orem 6.1
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Remark: Given a system in the form of

(6.18)

Suppose

Then, (6.18) is not locally accessible from the origin.
The proof of the remark is straightforward. If the initial con-

dition satisfies , then the trajectory, ( , ), of the
system satisfies for all . Therefore, is a
subset of the subspace , which does not contain
an open set of . Therefore, the system is not locally acces-
sible from the origin.

As we know that the normal form, (6.2) is in the form of (6.18)
if we let . In this case, the normal form is a series with
infinite number of terms. The result in the remark can be con-
sidered as a converse result of Theorem 6.1 for analytic systems
whose normal form is a convergent series. In this case, System
(6.1) is accessible from the origin if and only if the condition
(6.3) holds.

As an illustrative example, let us consider the following
system:

In this example and the integer . If ,
then (6.3) is satisfied for . Therefore, the system must
be locally accessible from the origin, although the system is not
linearly controllable at the origin.

In this section, we focus on the accessibility from the equilib-
rium point. According to [8] and [23], the rank condition and the
accessability of analytic systems in an open set are equivalent.
The relationship between the rank condition and the invariants
in an open neighborhood is a promising topic for future research.

VII. CONCLUSION

Three related topics are addressed in this paper, namely the
bifurcation of controllability, the stabilization of systems with
a positive uncontrollable mode, and the local accessibility of
nonlinear systems. Both sufficient and necessary conditions for
systems to be linearly controllable at other equilibrium points
around an uncontrollable equilibrium are proved. The qualita-
tive change in terms of linear controllability is used to design
feedbacks for practical system stabilization in the presence of
positive uncontrollable mode. Sufficient conditions are proved
for systems to be locally accessible. The theoretical approach in
all the proofs is based on the normal forms of nonlinear control
systems. A nonlinear normal form consists of the core nonlin-
earity in a system that cannot be canceled by change of coor-
dinates and state feedback. It is proved in this paper that the
normal form of a control system characterizes the linear con-
trollability and the local accessibility of the system.
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