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I: THE LINEAR CASE
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1. Regular Linear SFDE’s-Ergodic The-

ory.

Linear sfde’s on R? driven by m-dimensional

Brownian motion W := (Wy, -+, W,,).

dx(t) = H(x(t —dy), - ,x(t —dn),x(t), x¢)dt)

+Y g dwie), t>0
1=1

(2(0),20) = (v,n) € My := R% x L*([-r,0], RY)

/

(I) is defined on

(Q, F, (Fi)ier, P) = canonical complete filtered

Wiener space.

Q) := space of all continuous paths w: R —
R™, w(0) = 0, in Euclidean space R™, with com-
pact open topology;

F :=(completed) Borel o-field of Q;



F; .= (completed) sub-o-field of F generated

by the evaluations w — w(u), u<t, te€R.
P := Wiener measure on (.
dW;(t) = Ito stochastic differentials.

Several finite delays 0 <d; <dy < --- <dy <7
in drift term; no delays in diffusion coefficient.

H: (RHYN T L2([-r,0],RY) — R? is a fixed con-
tinuous linear map, g;, i = 1,2,...,m, fixed (deter-

ministic) d x d-matrices.

2. Plan

Use state space M, := R¢ x L?([-r,0],R%). For

(I) consider the following themes:

I) Existence of a “perfect” cocycle on M,-a mod-

ification of the trajectory field (z(t),x;) € M;.



IT) Existence of almost sure Lyapunov exponents

) 1
tli)rglo n log |[(x(t), x¢)]| ar,

Multiplicative ergodic theorem and hyperbol-

icity of cocycle.

IIT) “Random Saddle-Point Property” in hyper-

bolic case.

3. Regularity

Say SFDE (I) is reqular (wrt. M,) if tra-
jectory {(z(t),x;) : (x(0),z9) = (v,n) € M2} admits
a measurable modification X : Rt x My x Q — M,

such that X(-,-,w) is continuous for a.a. w € Q.

Theorem 1.([Mo], 1990))

(1) is regular with respect to state space Ms = RY x

L2([-r,0],R%). There is a measurable version X : Rt x
4



My x Q — My of the trajectory field {(x(t),z:) : t €

R*, (2(0),z9) = (v,n) € My} of (I) with the following

properties:

(1)

(i)

(iii)

For each (v,n) € My andt € RT, X (¢, (v,n),-) =
(x(t), ) a.s., is Fy-measurable and belongs to
L?(Q, Ms; P).

There exists )y € F of full measure such that,
for all w € Qq, the map X(-,-,w) : RT x My —

M, is continuous.

For each t € R and every w € Qp, the map
X(t,-,w) : My — Ms is continuous linear; for
each w € gy, the map RT 5t — X(t,-,w) €
L(Ms>) is measurable and locally bounded in the
uniform operator norm on L(Msy). The map
[r,00) 5t — X(t,-,w) € L(M3) is continuous

for all w € ().



(iv) For each t > r and all w € €, the map

X(t,-,w) : M2 — MQ

1s compact.

Compactness of semi-flow for t > r will be
used to define hyperbolicity for (1) and the asso-

ciated exponential dichotomies.

Example: dxz(t) = z(t — 1) dW (t) is not regular (singu-
lar).

4. Lyapunov Exponents. Hyperbolicity

Version X of the trajectory field of (I) (in
Theorem 1) is a multiplicative L(M-)-valued lin-
ear cocycle over the canonical Brownian shift

6:R x Q— Q on Wiener space:

O(t,w)(u) =w(t+u) —w(t), uteR, well
6



Ie.

Theorem 2([Mo|, 1990)

There is an F-measurable set Q of full P-measure

such that 0(t,-)(Q) C Q for all t > 0 and
X(tz, ° Q(tl,w)) o X(tl, -,w) = X(tl + tQ, -,w)

for all w € Q and t1, to > 0.



The Cocycle Property

X(t1,-,w) X(t2,-,0(t1,w))

X(tl + t27 (van)aw)

0(t1, ) 0(t2, )
@ TNR) ICESND)
t=20 t=1 t =11 + 12

Vertical solid lines represent random fibers:
copies of M,. (X,0) is a “vector-bundle mor-

phism”.



The a.s. Lyapunov exponents

lim %logHX(t, (0(w), 7)), @) || ar,

t—oo

(for a.a. w € Q, (v,n) € L?(9, Ms)) of the system
(I) are characterized by the following “spectral
theorem”. FEach 6(t,-) is ergodic and preserves
Wiener measure P. The proof of Theorem 3 be-
low uses compactness of X(¢,-,w) : My — My, t > 1,
together with an infinite-dimensional version of

Oseledec’s multiplicative ergodic theorem due to

Ruelle (1982).

Theorem 3. ([Mo], 1990)

Let X : R x My x Q — My be the flow of (I) given

in Theorem 1. Then there exist

(a) an F-measurable set Q* C Q) such that P(2*) =

1 and 6(¢t,-)(Q2*) C Q* for all t > 0,
9



(b) a fixed (non-random) sequence of real numbers
{Ai}i2y, and

(c) a random family {F;(w) : i > 1,w € Q*} of
(closed) finite-codimensional subspaces of M,

with the following properties:

(i) If the Lyapunov spectrum {\;}:°; is infi-
nite, then \;11 < A\; for all ¢+ > 1 and zliglo A\, =
—o0; otherwise there is a fixed (non-random) in-
teger N > 1 such that A\y = —00 < Ay_1 <
cee < Ay < A

(ii) each map w — F;(w), i > 1, is F-measurable
into the Grassmannian of Ms;

(iii) Eiy1(w) C Fi(w) C -+ C Fy(w) C Ei(w) =
My, 1>1, we Q*;

(iv) for each i > 1, codim F;(w) is fixed inde-

pendently of w € Q0*;

10



(v) for each w € Q* and (v,n) € E;(w)\FE;11(w),

1
lim - log [ X(t, (v, n),w)llar, = As, i 2 15

t—o0

(vi) Top Exponent:

1
A1 = lim 7 log | X (t,-,w)| L,y  for all w € QF;

t—o0

(vii) Invariance:
X(t,-w)(Ei(w)) € Ei(0(t,w))

for all we Q*, t>0, 1> 1.

11



B,

My —

N

Spectral Theorem

X(t , W)

\

/
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Proof of Theorem 3 is based on Ruelle’s dis-
crete version of Oseledec’s multiplicative ergodic
theorem in Hilbert space (|[Ru], Ann. of Math.
1982, Theorem (1.1), p. 248 and Corollary (2.2),
p. 253):

Theorem 4 (|Ru], 1982)

Let (2, F,P) be a probability space and 7 : Q —
) a P-preserving transformation. Assume that H is a
separable Hilbert space and T : Q0 — L(H) a measurable
map (w.r.t. the Borel field on the space of all bounded
linear operators L(H)). Suppose that T(w) is compact
for almost all w € Q, and Elog™ | T(-)|| < co. Define the

family of linear operators {T"(w) : w € Q, n > 1} by
T"(w) =T (r" (w)) o T(r(w)) o T(w)

forw e Q, n>1.

13



Then there is a set )y € F of full P-measure such
that () C Qo, and for each w € Q, the limit

lim [T"(w)* o T™(w)]*/ ™ := A(w)

n—oo

exists in the uniform operator norm and is a positive com-
pact self-adjoint operator on H. Furthermore, each A(w)

has a discrete spectrum

6/¢L1(w) > euz(w) > eus(w) > 6M4(w) > ...

where the p;’s are distinct. If {p;}$2, is infinite, then
pi | —oo; otherwise they terminate at pun(,y = —oo. If
pi(w) > —oo, then e*“) has finite multiplicity m;(w)
and finite-dimensional eigen-space F;(w), with m;(w) =

dimF;(w). Define
L

Fi(w) = My, FE;(w):= [EBj;lle(w)} ,  Foo(w) := ker A(w).

14



and

1 i , f e E; E;
iy Liog el = { #4012 BN )
n—oo n —00 if x € ker Aw).

Proof.

[Ru], Ann. of Math., 1982, pp. 248-254.
[]

The following “perfect” version of Kingman’s
subadditive ergodic theorem is also used to con-
struct the shift invariant set Q* appearing in The-

orem 3 above.

15



Theorem 5([M], 1990)(“Perfect” Subadditive
Ergodic Theorem)

Let f : RT xQ — RU{—00} be a measurable process

on the complete probability space (€, F, P) such that

(1) E sup f+(u7°) < oo, B/ sup f+(1_u79(u7)) < 00;
0<u<1 0<u<1

(11) f(t1+t2,w) < f(tl,w)+f(t2, Q(tl,W)) forallty,to > 0
and every w € €.

Then there exist a set Q) € F and a measurable f:0—

R U {—oo} with the properties:
(a) P(Q) =1, 6(t,-)(Q) CQ for all t > 0;
(b) F(w) = F(O(t,w)) for all w € Q and all t > 0;
(c) [T e LY (Q,R;P);
(d) Jim (1/0)](t,w) = f(w) for every w € Q.
If  is ergodic, then there exist f* € RU{—o0} and QcF

such that

16



) CQ,t>0;

o

(a) P(Q)=1,6(t,-)(

(b) f(w) = f* = Jim (1/t) f(t,w) for every w € 2.

[Mo], Stochastics, 1990, Lemma 7, pp. 115—
117. O]

Proof of Theorem 3 is an application of The-
orem 4. Requires Theorem 5 and the following

sequence of lemmas.

Lemma 1

For each integer k > 1 and any 0 < a < o0,

E sup [¢(t,w) H** < oo;
0<t<a

E sup |lp(ta,0(t1,))|** < oo.
0<t1,t2<a

17



Proof.

Follows by standard sode estimates, the co-
cycle property for ¢ and Holder’s inequality. ([Mo],
pp. 106-108). O]

The next lemma is a crucial estimate needed

to apply Ruelle-Oseledec theorem (Theorem 4).

Lemma 2

E sup log* | X (o, -, 0(t1, -))HL(MQ) < 00.
0§t1,t2§r

Proof.
If y(t, (v,n),w) is the solution of the fde (8),

then using Gronwall’s inequality, taking

E sup log™ sup and applying Lemma 1, gives
0<t1,t2<r [ (v,m|I<1

E Sup 10g+ sSup H(y(t27 (Uan)ae(tla'))7yt2('7 (Uan)70(t17')))HM2
0<t1,t2<r I (v,m)[|<1

< Q.
18



Conclusion of lemma now follows by replacing «’

with 6(¢t;,w) in the formula

X(t27 (’U, 77)7 w’)

— (¢(t27w/)(y(t27 (Ua 77)700/))7 ¢t2('7w/) © (idJa ytz(': (Ua 77)7 w/))

and Lemma 1. ]

The existence of the Lyapunov exponents is

obtained by interpolating the discrete limit

~ lim og [ X (kr, (v(w), (@), @) ey, (12

r k—oo

a.a.w € Q, (v,n) € L*(Q, M), between delay pe-
riods of length r. This requires the next two

lemmas.

19



Lemma 3

Let h : Q — R be F-measurable and suppose E sup h(0(u, -)
0<u<r

is finite. Then

Q1 = (lim Sh(0(t, ) = 0)

t— 00

is a sure event and 6(t,-)(21) C 4 for all t > 0.

Proof.

Use interpolation between delay periods and
the discrete ergodic theorem applied to the L!
function

h:= sup h(0(u,-).

0<u<r

([Mo], Stochastics, 1990, Lemma 5, pp. 111-
113.) m

20



Lemma 4

Suppose there is a sure event 2o such that 6(t,-)(22) C
Oy for allt > 0, and the limit (12) exists (or equal to —oc0)
for all w € Qo and all (v,n) € My. Then there is a sure

event (23 such that 6(t,-)(23) C Q3 and

1 1.1
lim ;logHX(t, ('U,n),w)HMg — ; kli)rgo_logHX(kra (Uan)aw)HMw

t—o00 k

(13)
for all w € Q3 and all (v,n) € M.
Proof:

Take Q3 := QN QN Q. Use cocycle property
for X, Lemma 2 and Lemma 3 to interpolate.

([Mo], Stochastics 1990, Lemma 6, pp. 113-114.)
[]

21



Proof of Theorem 3. (Sketch)

Apply Ruelle-Oseledec Theorem (Theorem
4) with

T(w) := X(r,w) € L(My), compact linear for
w e Q;

Q= =),

Then cocycle property for X implies

X(kr,w,-) = T(r* 1 (w)) o T(r"*(w)) 0 - -+ 0 T(7(w)) 0 T'(w)

= T"(w)

for all w € .

Lemma 2 implies

Elog™ | T()llLa) < oo

22



Theorem 4 gives a random family of compact
self-adjoint positive linear operators {A(w) : w €

Q,} such that

lim [T"(w)* o T (w)]*/ ™ := A(w)

n—oo

exists in the uniform operator norm for w € Qy4, a
(continuous) shift-invariant set of full measure.

Furthermore each A(w) has a discrete spectrum

e,ul(w) > e,uQ(w) > 6#3(‘”) > €H4(W) > ...

where the u’s are distinct, with no accumula-
tion points except possibly —oo. If {u;}52, is infi-
nite, then p; | —oo; otherwise they terminate at
IN(w) = —00. If pi(w) > —oo, then e#i*) has finite
multiplicity m;(w) and finite-dimensional eigen-
space F;(w), with m;(w) := dimF;(w). Define

Ei(w) = My, Eiw):= [0 F;(w)]7,  Eal(w) :=ker A(w).
23



Fyw(W)C: -+ CEiy1(w) CEj(w) - C Ey(w) C Ey(w) = Ms.

Note that codim E;(w) = 317} m;(w) < co. Also

pi(w), it (v,n) € Ei(w)\Eit1(w)
—oo if (v,7n) € ker A(w).

1

108 X6, (0,0, = {

lim
k— oo
The functions

w— pi(w), wemi(w), w— Nw)

are invariant under the ergodic shift o(r,-). Hence
they take the fixed values p;, m;, N almost surely,

respectively.

Lemma 4 gives a continuous-shift-invariant

sure event Q* C Q4 such that

.1 1 . 1
Jim = log [ X(t, (v, n),w)llar, = — lim —log [ X (kr, (v,1), w)|[as,
— & —. )\i7
T
24



for (v,n) € Ej(w)\F;11(w), we€ Q*,i>1.

{ A = % .4 > 1} is the Lyapunov spectrum of
(D).

Since Lyapunov spectrum is discrete with no
finite accumulation points, then {); : \; > A} is

finite for all \ € R.

To prove invariance of the Oseledec space

FE;(w) under the cocycle (X,0) use the random
field

.1 .
Allv,n),w) »= lim —log[|X(¢, (v,n),w)llar, (v,n) € Mz, w € &

t—o0o

and the relations

AMX(t, (v,n),w),0(t,w)) = A(v,n),w), we* t>0

([Mo], Stochastics 1990, p. 122). O
25



Lyapunov exponents {\;}2, of (I) are non-
random because 0 is ergodic. Say (I) is hyperbolic
if \; #0 for all i > 1. When (I) is hyperbolic the
flow satisfies a stochastic saddle-point property
(or exponential dichotomy) (cf. the deterministic
case with £ =C([-r,0],R?), ¢, =0,i=1, ..., m, in
Hale [H], Theorem 4.1, p. 181).

Theorem 6 (Random Saddles)([Mo], 1990)

Suppose the sfde (1) is hyperbolic. Then there exist

(a) a set Q* € F such that P(Q*) =1, and 0(t, )(Q*) =
Q* for allt € R,

and

(b) a measurable splitting
My =Uw)®Sw), we",

26



with the following properties:

(i) U(w), S(w), w € Q*, are closed linear subspaces

(i)

(iii)

(iv)

of My, dimU(w) is finite and fixed independently

of w e Q*.

The mapsw — U(w), w — S(w) are F-measurable

into the Grassmannian of M.

For each w € Q* and (v,n) € S(w) there exists
71 = 11(v,m,w) > 0 and a positive d1, indepen-

dent of (v,n,w) such that
1X(E, (), 0)llae < [0, |ae™, t 2.

For each w € Q* and (v,n) € U(w) there exists
7o = To(v,m,w) > 0 and a positive ds, indepen-

dent of (v,n,w) such that

HX(tv ('Uvn)vw)HMQ > H(Uvn)HM2662t7 t > To.

27



(v) For eacht >0 and w € Q*,

X(tw, ) (Uw)) =U(0(t,w)),

X(t,w, )(SW)) € SO(tw)).
In particular, the restriction
X(t,w, ) | Uw) :U(w) = UO(t,w))

is a linear homeomorphism onto.

Proof.

[Mo], Stochastics, 1990, Corollary 2, pp. 127-
130. O

28



The Saddle-Point Property

29
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Stable Manifolds

Outline

Smooth cocycles in Hilbert space. Station-

ary trajectories.

Linearization of a cocycle along a stationary

trajectory.
Ergodic theory of cocycles in Hilbert space.

Hyperbolicity of stationary trajectories. Lya-

punov exponents.

Cocycles generated by stochastic systems with

memory. Viarandom diffeomorphism groups.



o Local Stable Manifold Theorem for SEFDE’s:
Existence of smooth stable and unstable man-
ifolds in a neighborhood of a hyperbolic sta-

tionary trajectory.

e Proof: Ruelle-Oseledec multiplicative ergodic

theory+ perfection techniques.



The Cocycle

(2, F, P) := complete probability space.

0:R*T xQ — Q a P-preserving (ergodic) semi-
group on (X, F, P).

E := real (separable) Hilbert space, norm |||,

Borel s-algebra.

Definition.

k = non-negative integer, ¢ € (0,1]. A C*< per-
fect cocycle (X,0) on E is a measurable random
field X : Rt x E x Q@ — E such that:

(i) For each w € Q, the map R* x E > (t,2) —

X(t,z,w) € E is continuous; for fixed (t,w) €



RT x Q, the map F> 2~ X(t,z,w) € E is CF€
(D*X (t,z,w) is C¢ in ).

(i1) X(t1+to,,w) = X(ta,-,0(t1,w)) 0 X(t1,-,w) for all
ti,to €¢ RT, all we Q.

(iii) X(0,z,w)=x for all z € E,w € Q.



Cocycle Property

X(tl,-,w) X(t27'79(t17w))

X(t1 +ta,x,,w)

w (t1,w) 0t + Lo, w)
t=20 t=1 t =11 + 1o

Vertical solid lines represent random fibers:

copies of E.



Definition

A random variable Y : Q — E is a stationary

point for the cocycle (X, 0) if
X(t,Y(w),w) =Y(0(t,w)) (1)

for all t € R and every w € Q. Denote stationary

trajectory (1) by X(t,Y) =Y (0(t)).



Linearization. Hyperbolicity.

Linearize a C*< cocycle (X, ) along a station-
ary random point Y: Get an L(E)-valued cocy-
cle (DX (t,Y(w),w),0(t,w)). (Follows from cocycle

property of X and chain rule.)

Theorem 1. (Oseledec-Ruelle)

Let T : R x Q — L(FE) be strongly measurable, such
that (T,0) is an L(E)-valued cocycle, with each T(t,w)

compact. Suppose that

E sup log™ ||T(t,)|lL(m) < oo,
0<t<1

) Sup 1Og+ HT(l —t, 8(t7 ))HL(E) < Q.
0<t<1



Then there is a sure event g € F such that 6(t,-)() C

Qg for allt € RT, and for each w € €y,
lim [T(t,w)* o T(t,w)]*®) .= A(w)

t—o0

exists in the uniform operator norm. A(w) is self-adjoint

with a non-random spectrum
eM > et > e > .

where the \;’s are distinct. Each e (with \; > —00) has
a fixed finite non-random multiplicity m; and eigen-space

F;(w), with m; := dimF;(w). Define
Fi(w):=FE, FE;j(w):= [@;;ﬁFj(w)}L, i>1, Fy = kerA(w).

Then



N Zf Tr € Ei(W)\E@'_H(CU),

1
li —lo Tt? —
Jm = g Tt w)z| {_OO if € FEx(w),

and

T(t,w)(Ei(w)) € Ei(6(t,w))

forall t >0, 1 > 1.

Proof.

Based on discrete version of Oseledec’s mul-
tiplicative ergodic theorem and the perfect er-
godic theorem. ([Ru.1], I.LH.E.S Publications,

1979, pp. 303-304; cf. Furstenberg & Kesten
(1960), [Mo.1]). O

Lyapunov Spectrum:

{M1, A2, A3, - -+ } := Lyapunov spectrum of (T,0).

10



Spectral Theorem

T(t,w)

A

o :\EP L e
i TT—Es(6(t,0))
By(w)— | || P

Definition
A stationary point Y (w) of (X, 0) is hyperbolic
if the linearized cocycle (DX (t,Y (w),w),0(t,w)) has

11



a non-vanishing Lyapunov spectrum {--- < \;41 <

N <o <Ay <A}, viz. \; £ 0 for all i > 1.

Let ip > 1 be s.t. X\, <0< \jy_1-

Assume X(t,-,w) locally compact and

Elog" sup  [|DaX (t2, Y (0(11)), 0(t1)) | (s) < 0.

0<t1,t2<r

By Oseledec-Ruelle Theorem, there is a sequence

of closed finite-codimensional (Oseledec) spaces
. 'Ei_l(W) C EZ<CLJ) C - C EQ(CU) C El(w) = E17

Fi(w) = {z € B+ Jim —log [DX(1, ¥ (), )(@)]| <A}
i > 1 and all w € Q*, a sure event in F satisfying
0(t, ) (") = Q* for all t € R.

Let {U(w),S(w) : w € Q*} be the unstable and

stable subspaces associated with the linearized
12



cocycle (DX, 0) ([Mo.1], Theorem 4, Corollary 2;
IM-S.1], Theorem 5.3). Then get a measurable

invariant splitting
E=Uw)dSw), w e 0F,

DX(t,Y(w),w)Uw)) =U0(t,w)), DX(t,Y(w),w)(Sw)) € S(0(t,w)),

for all ¢+ > 0, with exponential dichotomies
DX (t,Y (w),w)(z)|| > ||z|e®t for all ¢>7/ zecl(w),

|IDX(t,Y (w),w)(z)] < Hx||e_52t for all t> 7, 2¢Sw),

with 7 = 7 (z,w) > 0,7 = 1,2, random times and

5 >0,i=1,2, fixed.

13
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Nonlinear SFDE’s

“Regular” Ito SFDE with finite memory:

d(t) — H(:U(t)7$t)dt—|—ZGi(x(t))dWi(t)v (0

(2(0),20) = (v,n) € My := R% x L*([-r,0],RY)

Solution segment z;(s) := z(t +s), t > 0,5 €

[—T, O] .
m-dimensional Brownian motion W := (Wy,--- ,W,,),
W(0) = 0.

Ergodic Brownian shift ¢ on Wiener space
(Q,F,P). F:=P-completion of F.

State space M., Hilbert with usual norm ||-|.

Can allow for “smooth memory” in diffusion

coeflicient.

15



H: M, — R? C*°, globally bounded.

G:RY— LR™ RY), CF10 G = (G, - ,Gp).

B((v,n),p) open ball, radius p, center (v,n) €
My;

B((v,n), p) closed ball.

Then (I) has a stochastic semiflow X : R* x
My x Q — M, with X(t, (v,1),)) = (z(t),z;). X is
C*k< for any ¢ € (0,9), takes bounded sets into
relatively compact sets in M,. (X,0) is a perfect

cocycle on M, ([M-S.4]).

16



Idea of Proof.

Construction and regularity of the cocycle
(X,0): SFDE is equivalent to the neutral integral

equation:

C(t,x(t,w),w) = v—l—/o F(u,((u,z(u,w),w), x(u,w), x, (-, w), w) du,

0<t<T,(v,n) € Ma;

F:]0,00) x R x My x Q — R? is given by
F(t,z,0,n,w) = {Dy(t, z,w)} " H(v,n)

t>0,z,v€ R ne L3([-r0,R%),weQ.
¢ is the C**1e (0 < e < ) stochastic flow of
the sde
dy(t) = G((t) dW(t), t= 0}

»(0) =z € RY

17



¢:]0,00) x R x Q — R? is defined by

C(tz,w) =, w) Hz), t>0,zeR* we.

Read existence and properties of cocycle from

integral equation. O

Example

Consider the affine linear sfde
do(t) = H(x(t),zs) dt + GdW(t), t>0
(Z')
Z‘(O):UERd, 350:776L2([_7°70]7Rd)
where H : M, — R? is a continuous linear map, G
is a fixed (d x p)-matrix, and W is p-dimensional
Brownian motion. Assume that the linear deter-
ministic (d x d)-matrix-valued FDE

dy(t) = H o (y(t),y:) dt
18



has a semiflow
T, : LRY)x L*([-r,0], L(R?)) — L(R*)xL*([~r, 0], L(R?)),t > 0,
which is uniformly asymptotically stable. Set
0
Y = / T o (1,0)G dW (u) (2)

where I is the identity (d x d)-matrix. Integration

by parts and
W(t,@(tl,w)) = W(t+t1,w) —W(tl,w), t,t1 € R, (3)

imply that Y has a measurable version satisfying
(1). Y is Gaussian and thus has finite moments
of all orders. See ([Mo.1]|, Theorem 4.2, Corol-
lary 4.2.1, pp. 208-217.) More generally, when H
is “hyperbolic”, one can show that a stationary

point of (I) exists ([Mo.1]).
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For general white-noise an invariant measure
on M, for the one-point motion gives a station-
ary point by enlarging probability space. Con-
versely, let Y : Q — M, be a stationary ran-
dom point independent of the Brownian motion
W(t),t > 0. Let p:= PoY~! be the distribution of
Y. By independence of Y and W, p is an invariant

measure for the one-point motion

Theorem 2. (/M-S], 2000) (The Stable Manifold Theo-

rem)

Assume smoothness hypotheses on H and G. Let'Y :

Q — Ms be a hyperbolic stationary point of the SFDE (1)
such that E(||Y (+)||°) < oo for some ey > 0
Suppose the linearized cocycle (DX (t,Y (w),w), 0(t,w),t >

0) of (I) has a Lyapunov spectrum {--- < X1 < A\ <
20



s < Ao < A1}. Define Ay, := max{\; : \; < 0} if at least
one \; < 0. If all finite \; are positive, set \;;, = —00.
(This implies that \;,_1 is the smallest positive Lyapunov
exponent of the linearized semiflow, if at least one \; > 0;
in case all \; are negative, set \;,_1 = 00.)
Fiz e; € (0,—X;,) and e2 € (0,\;,—1). Then there
exist
(i) a sure event Q* € F with 0(t,-)(Q*) = QF for all
teR,
(ii) F-measurable random variables p;, 3; : Q* — (0,1), 3; >
p; >0, 1 =1,2, such that for each w € Q*, the fol-

lowing 1is true:

There are C*< (e € (0,6)) submanifolds S(w), U(w)
of B(Y (w),p1(w)) and B(Y (w), p2(w)) (resp.) with the

following properties:
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(a) S(w) is the set of all (v,n) € B(Y (w), p1(w)) such
that

1 X (nr, (v,1),w) = Y (0(nr,w))| < Br(w)ePiotenr

for all integers n > 0. Furthermore,

1
lim sup p log || X (t, (v,n),w) =Y (0(t,w))| < A

t— o0

for all (v,n) € S(w). Each stable subspace S(w) of
the linearized semiflow DX is tangent at Y (w) to the
submanifold S(w), viz. Ty(w)g(W) = S(w). In partic-
ular, codim S(w) = codim S(w), is fited and finite.

. L ool d 1K (01 m), w) = X(#, (v2,7m2), @)
(b) limsup lg[ p{ (o1, m) — (w2, 7)) '

(v1,m) # (v2,m2), (v1,m), (v2,m2) € S(w)}] < Adp -

t—o0

(c) (Cocycle-invariance of the stable manifolds):

22



There exists T (w) > 0 such that
X(t,,w)(Sw)) C SO(t,w))
for allt > 7 (w). Also

DX(t,Y (w),w)(SW)) C S(O(t,w)), t> 0.

(d) U(w) is the set of all (v,n) € B(Y (), p2(w)) with
the property that there is a unique “history” process
y(,w) : {—nr : n > 0} — My such that y(0,w) =
(v,m) and for each integer n > 1, one has

X(r,y(—nr,w),0(—nr,w)) = y(—(n — 1)r,w) and
ly(—nr,w) =Y ((—=nr,w)) ||, < Bo(w)e” Rio-1—e2)nr,

Furthermore, for each (v,n) € U(w), there is a unique
continuous-time “history” process also denoted by y(-,w) :

(—00,0] — Ms such that y(0,w) = (v,n),
23



(¢)

X(t,y(s,w),0(s,w)) = y(t + s,w) for all s < 0,0 <

t < —s, and

1
lim sup — log [y(—t,w) = ¥ (0(—t,@))]| < —Xiy 1.

t— 00

Fach unstable subspace U(w) of the linearized semi-
flow DX is tangent at Y (w) toU(w), viz. Ty(w)i[(w) =
U(w). In particular, dim U(w) is finite and non-
random.

Let y(-, (vi,n:),w),t = 1,2, be the history processes
associated with (vy,m;) = y(0, (v;,m;),w) € U(w), i =
1,2. Then

||y(_t7 (Ula nl)aw) - y(_t7 (U27 772)7("))” )
[(v1,m) — (v2,m2) | |

, 1
lim sup n log lsup{

t—o0

(v1,m) # (v2,12), (vi,75) € U(w), i = 1,2}]

S _>\?;0—1'
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(f) (Cocycle-invariance of the unstable manifolds):
There exists To(w) > 0 such that

Uw) C X (t,-,0(—t,w))UO(—t,w)))
for all t > mo(w). Also
DX(t,-0(—t,w)UB(-t,w))) =U(w), t=0;
and the restriction

DX(t,-,0(—t,w)|UO(—t,w)) : UO(—t,w)) > U(w), t=>0,
1s a linear homeomorphism onto.

(9) The submanifolds U(w) and S(w) are transversal, viz.

My = Ty (U (w) @ Ty (1) S (w).

Assume, in addition, that H,G are Cp°. Then the

local stable and unstable manifolds S(w), U(w) are C.

Figure summarizes essential features of Sta-

ble Manifold Theorem:
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Stable Manifold Theorem

5 o o)
t>1 (w)

A picture is worth a 1000 words!
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Outline of Proof of Theorem 2

e By definition, a stationary random point
Y(w) € M, is invariant under the semiflow X;
viz X(t,Y) =Y (0(t,-)) for all times t¢.

e Linearize the semiflow X along the station-
ary point Y(w) in M,. By stationarity of Y
and the cocycle property of X, this gives a
linear perfect cocycle (DX (t,Y),0(t,-)) in L(M>),
where D = spatial (Fréchet) derivatives.

e Ergodicity of ¢ allows for the notion of hy-
perbolicity of a stationary solution of (I) via
Oseledec-Ruelle theorem: Use local compact-

ness of the semiflow for times greater than

27



the delay » ([M-S.4]), and apply multiplica-
tive ergodic theorem to get a discrete non-
random Lyapunov spectrum {); : i > 1} for
the linearized cocycle. Y is hyperbolic if \; #

0 for every i.

Assume that ||V is integrable (for small
€0). Variational method of construction of
the semiflow shows that the linearized cocy-
cle satisfies hypotheses of “perfect versions”
of ergodic theorem and Kingman’s subad-
ditive ergodic theorem. These refined ver-
sions give invariance of the Oseledec spaces
under the continuous-time linearized cocy-
cle. Thus the stable/unstable subspaces will
serve as tangent spaces to the local stable /unstable

manifolds of the non-linear semiflow X.
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e Establish continuous-time integrability esti-
mates on the spatial derivatives of the non-
linear cocycle X in a neighborhood of the
stationary point Y. Estimates follow from
the variational construction of the stochas-
tic semiflow coupled with known global spa-
tial estimates for finite-dimensional stochas-

tic flows.

e Introduce the auxiliary perfect cocycle
Z(t,w) =Xt ()+Y(w),w)-Y(0tw)), te RT,we Q.

Refine arguments in ([Ru.2], Theorems 5.1
and 6.1) to construct local stable/unstable
manifolds for the discrete cocycle (Z(nr,-,w), 8(nr,w))

near 0 and hence (by translation) for X (nr, -, w)

29



near Y (w) for all w sampled from a 6(¢,-)-
invariant sure event in Q. This is possible be-
cause of the continuous-time integrability es-
timates, the perfect ergodic theorem and the
perfect subadditive ergodic theorem. By in-
terpolating between delay periods of length r
and further refining the arguments in [Ru.2],
show that the above manifolds also serve as
local stable/unstable manifolds for the

continuous-time semiflow X near Y.

Final key step: Establish the asymptotic in-
variance of the local stable manifolds under
the stochastic semiflow X. Use arguments

underlying the proofs of Theorems 4.1 and

30



5.1 in [Ru.2] and some difficult estimates us-
ing the continuous-time integrability prop-
erties, and the perfect subadditive ergodic
theorem. Asymptotic invariance of the local
unstable manifolds follows by employing the
concept of a stochastic history process for X
coupled with similar arguments to the above.
Existence of history process compensates for

the lack of invertibility of the semiflow.
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(Mo.1]

(Mo.2]
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