Irreducible Polynomials over GF(2) with Three Prescribed Coefficients

Robert W. Fitzgerald
Southern Illinois University Carbondale, rfitzg@math.siu.edu
Joseph L. Yucas
Southern Illinois University Carbondale

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles
Part of the Number Theory Commons
Published in Finite Fields and Their Applications, 9, 286-299.

Recommended Citation

Fitzgerald, Robert W. and Yucas, Joseph L. "Irreducible Polynomials over GF(2) with Three Prescribed Coefficients." (Jan 2003).

IRREDUCIBLE POLYNOMIALS OVER GF(2) WITH THREE PRESCRIBED COEFFICIENTS

Robert W. Fitzgerald
Joseph L. Yucas

Southern Illinois University

Abstract

For an odd positive integer n, we determine formulas for the number of irreducible polynomials of degree n over $G F(2)$ in which the coefficients of x^{n-1}, x^{n-2} and x^{n-3} are specified in advance. Formulas for the number of elements in $G F\left(2^{n}\right)$ with the first three traces specified are also given.

Let q be a prime power and let $G F(q)$ be a finite field with q elements. A classical result (see [6, 3.25]) gives the number, $P_{q}(n)$, of monic, irreducible polynomials of degree n over $G F(q)$:

$$
P_{q}(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}
$$

where μ is the Möbius function. This has been refined several times by counting the number $P_{q}\left(n, \epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}\right)$ of monic irreducible polynomials over $G F(q)$ with the first k coefficients being the prescribed values $\epsilon_{1}, \ldots, \epsilon_{k}$. We are writing polynomials here as

$$
p(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n} .
$$

Carlitz [1] gave a formula for $P_{q}\left(n, \epsilon_{1}\right)$. Kuz'min [5] extended this to a formula for $P_{q}\left(n, \epsilon_{1}, \epsilon_{2}\right)$. This was re-discovered, for the case $q=2$, in [2] which also introduced the connection with higher traces. The same connection was used in [8] to get a formula for $P_{q}\left(n, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$ when $q=2$ and n is even. We complete this case, getting a formula for $P_{q}\left(n, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$ when $q=2$ and n is odd. The proof is quite different and depends on computations with quadratic forms.

The higher traces are defined as follows. Let F be any field and let K / F be a separable extension of degree n. Let $\sigma_{0}, \ldots, \sigma_{n-1}$ be the monomorphisms from K into the algebraic closure of F. Then define for $\alpha \in K$:

$$
\begin{aligned}
\operatorname{tr}_{1}(\alpha) & =\sum_{i=0}^{n-1} \sigma_{i}(\alpha) \\
\operatorname{tr}_{2}(\alpha) & =\sum_{0 \leq i<j \leq n-1} \sigma_{i}(\alpha) \sigma_{j}(\alpha) \\
\operatorname{tr}_{3}(\alpha) & =\sum_{0 \leq i<j<k \leq n-1} \sigma_{i}(\alpha) \sigma_{j}(\alpha) \sigma_{k}(\alpha)
\end{aligned}
$$

In our case $(q=2), \sigma_{i}(x)=x^{2^{i}}$.
We fix odd $n=2 m+1$ and set $K=G F\left(2^{n}\right)$. We will only work over $G F(2)$ so we will drop the subscript on the P from $P_{2}\left(n, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$. Let $F\left(n, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$ denote the number of elements x in K with $\operatorname{tr}_{i}(x)=\epsilon_{i}$ for $1 \leq i \leq 3$ (note that each ϵ_{i} is 0 or 1). A Möbius inversion-type argument in [8] gives formulas for $P\left(n, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$ in terms of $F\left(n, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$ so we will concentrate on evaluating the F 's.

1. Identities.

Set $Q=\operatorname{tr}_{2}+\operatorname{tr}_{3}$. We also define maps $B_{i}: K \times K \rightarrow F$ as follows:

$$
\begin{aligned}
B_{2}(\alpha, \beta) & =\operatorname{tr}_{2}(\alpha+\beta)+\operatorname{tr}_{2}(\alpha)+\operatorname{tr}_{2}(\beta) \\
B_{3}(\alpha, \beta) & =\operatorname{tr}_{3}(\alpha+\beta)+\operatorname{tr}_{3}(\alpha)+\operatorname{tr}_{3}(\beta) \\
B_{Q}(\alpha, \beta) & =Q(\alpha+\beta)+Q(\alpha)+Q(\beta)=B_{2}(\alpha, \beta)+B_{3}(\alpha, \beta)
\end{aligned}
$$

Special cases of the following are known, see [4, 0.2] and [8, Proposition 10].
Lemma 1.1. (1) $B_{2}(\alpha, \beta)=\operatorname{tr}_{1}(\alpha) \operatorname{tr}_{1}(\beta)+\operatorname{tr}_{1}(\alpha \beta)$.
(2) $B_{3}(\alpha, \beta)=\operatorname{tr}_{2}(\alpha) \operatorname{tr}_{1}(\beta)+\operatorname{tr}_{1}(\alpha) \operatorname{tr}_{2}(\beta)+\operatorname{tr}_{1}\left(\alpha \beta^{2}+\alpha^{2} \beta\right)+\operatorname{tr}_{1}(\alpha \beta) \operatorname{tr}_{1}(\alpha+\beta)$.

Proof. (1) To save on superscripts, we set $x_{i}=x^{2^{i}}$. Then

$$
\begin{aligned}
B_{2}(\alpha, \beta) & =\sum_{0 \leq i<j \leq n-1}\left[(\alpha+\beta)_{i}(\alpha+\beta)_{j}+\alpha_{i} \alpha_{j}+\beta_{i} \beta_{j}\right] \\
& =\sum_{i \neq j} \alpha_{i} \beta_{j} \\
& =\sum_{i=0}^{n-1} \alpha_{i} \sum_{j \neq i} \beta_{j} \\
& =\sum_{i=0}^{n-1} \alpha_{i}\left(\operatorname{tr}_{1}(\beta)+\beta_{i}\right) \\
& =\operatorname{tr}_{1}(\alpha) \operatorname{tr}_{1}(\beta)+\operatorname{tr}_{1}(\alpha \beta)
\end{aligned}
$$

$$
\begin{aligned}
B_{3}(\alpha, \beta) & =\sum_{0 \leq i<j<k \leq n-1}\left[\alpha_{i} \alpha_{j} \beta_{k}+\alpha_{i} \beta_{j} \alpha_{k}+\beta_{i} \alpha_{j} \alpha_{k}+\alpha_{i} \beta_{j} \beta_{k}+\beta_{i} \alpha_{j} \beta_{k}+\beta_{i} \beta_{j} \alpha_{k}\right] \\
& =\sum_{k=0}^{n-1}\left(\sum_{\substack{i<j \\
i, j \neq k}} \alpha_{i} \alpha_{j}\right) \beta_{k}+\sum_{i<j}\left(\sum_{k \neq i, j} \alpha_{k}\right) \beta_{i} \beta_{j} \\
& =\sum_{k=0}^{n-1}\left[\operatorname{tr}_{2}(\alpha)+\alpha_{k} \sum_{i \neq k} \alpha_{i}\right] \beta_{k}+\sum_{i<j}\left[\operatorname{tr}_{1}(\alpha)+\alpha_{i}+\alpha_{j}\right] \beta_{i} \beta_{j} \\
& =\operatorname{tr}_{2}(\alpha) \operatorname{tr}_{1}(\beta)+\operatorname{tr}_{1}(\alpha) \operatorname{tr}_{1}(\alpha \beta)+\operatorname{tr}_{1}\left(\alpha^{2} \beta\right) \\
& +\operatorname{tr}_{1}(\alpha) \operatorname{tr}_{2}(\beta)+\operatorname{tr}_{1}\left(\alpha \beta^{2}\right)+\operatorname{tr}_{1}(\alpha \beta) \operatorname{tr}_{1}(\beta) \\
& =\operatorname{tr}_{2}(\alpha) \operatorname{tr}_{1}(\beta)+\operatorname{tr}_{1}(\alpha) \operatorname{tr}_{2}(\beta)+\operatorname{tr}_{1}\left(\alpha \beta^{2}+\alpha^{2} \beta\right)+\operatorname{tr}_{1}(\alpha \beta) \operatorname{tr}_{1}(\alpha+\beta) .
\end{aligned}
$$

Recall that K is a finite field of characteristic 2 . In particular, $K=K^{2}$. Set $K_{1}=$ $\operatorname{ker}\left(\operatorname{tr}_{1}\right)$.

Definition. Let $\psi_{2}: K_{1} \rightarrow K$ be $\psi_{2}(\alpha)=\sqrt{\alpha}+\alpha^{2}$. Let $\psi_{3}: K_{1} \rightarrow K$ be $\psi_{3}(\alpha)=$ $\sqrt{\alpha}+\alpha+\alpha^{2}$.

Lemma 1.2. For $\alpha, \beta \in K_{1}$ we have:
(1) $B_{2}(\alpha, \beta)=\operatorname{tr}_{1}(\alpha \beta)$.
(2) $B_{3}(\alpha, \beta)=\operatorname{tr}_{1}\left(\psi_{2}(\alpha) \beta\right)$
(3) $B_{Q}(\alpha, \beta)=\operatorname{tr}_{1}\left(\psi_{3}(\alpha) \beta\right)$.

Proof. (1) is clear form (1.1). For (2), (1.1) gives

$$
\begin{aligned}
B_{3}(\alpha, \beta) & =\operatorname{tr}_{1}\left(\alpha^{2} \beta+\alpha \beta^{2}\right) \\
& =\operatorname{tr}_{1}\left(\alpha^{2} \beta+(\sqrt{\alpha} \beta)^{2}\right) \\
& =\operatorname{tr}_{1}\left(\alpha^{2} \beta+\sqrt{\alpha} \beta\right) \\
& =\operatorname{tr}_{1}\left(\psi_{2}(\alpha) \beta\right) .
\end{aligned}
$$

And lastly, $B_{Q}(\alpha, \beta)=\operatorname{tr}_{1}(\alpha \beta)+\operatorname{tr}_{1}\left(\psi_{2}(\alpha) \beta\right)$.
We note that it is only for $G F(2)$ that ψ_{2} and ψ_{3} are linear.

Lemma 1.3.

(1) $\psi_{2}: K_{1} \rightarrow K_{1}$ is an isomorphism.
(2) If 3 does not divide n then $\psi_{3}: K_{1} \rightarrow K_{1}$ is an isomorphism.
(3) If 3 does divide n then $\operatorname{ker}\left(\psi_{3}\right)$ has order 4.

Proof. (1) Since $\operatorname{tr}_{1}(\alpha)=\operatorname{tr}_{1}\left(\alpha^{2}\right)$ we have that ψ_{2} maps into K_{1}. Say $\alpha \in \operatorname{ker} \psi_{2}$ and let $\beta^{2}=\alpha$. Then $\beta+\beta^{4}=0$. But $x+x^{4}=x(x+1)\left(x^{2}+x+1\right)$ and $x^{2}+x+1$ has no roots in K as $[K: F]$ is odd. Hence only 0 and 1 are sent to 0 by ψ_{2} and $1 \notin K_{1}$. Thus ψ_{2} is injective and so an isomorphism.
(2) First $\operatorname{tr}_{1}\left(\sqrt{\alpha}+\alpha+\alpha^{2}\right)=\operatorname{tr}_{1}(\alpha)$, so ψ_{3} maps K_{1} into K_{1}. Say $\alpha \in \operatorname{ker} \psi_{3}$ and let $\beta^{2}=\alpha$. Then $\beta+\beta^{2}+\beta^{4}=0$. But $x+x^{2}+x^{4}=x\left(1+x+x^{3}\right)$ and the cubic has no roots in K if 3 does not divide n. So ψ_{3} is an isomorphism.
(3) As above, $\operatorname{ker}\left(\psi_{3}\right)$ consists of the roots of $x+x^{2}+x^{4}$ and so has order 4.

Lemma 1.4. For $\alpha \in K_{1}, \operatorname{tr}_{3}(\alpha)=\operatorname{tr}_{1}\left(\alpha^{3}\right)$.
Proof. Again let α_{i} denote $\alpha^{2^{i}}$. We first note that

$$
\operatorname{tr}_{3}(\alpha)=\sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \operatorname{tr}_{1}\left(\alpha \alpha_{i} \alpha_{j}\right)
$$

Namely, each term $\alpha_{a} \alpha_{b} \alpha_{c}$ occurs three times, once each in the sums for $\operatorname{tr}_{1}\left(\alpha \alpha_{b-a} \alpha_{c-a}\right)$, $\operatorname{tr}_{1}\left(\alpha \alpha_{c-b} \alpha_{a+n-b}\right)$ and $\operatorname{tr}_{1}\left(\alpha \alpha_{a+n-c} \alpha_{b+n-c}\right)$. Thus

$$
\begin{aligned}
\operatorname{tr}_{3}(\alpha) & =\operatorname{tr}_{1}\left(\alpha \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \alpha_{i} \alpha_{j}\right) \\
& =\operatorname{tr}_{1}\left(\alpha\left(\operatorname{tr}_{2}(\alpha)-\alpha \sum_{i=1}^{n-1} \alpha_{i}\right)\right) \\
& =\operatorname{tr}_{1}\left(\alpha\left(\operatorname{tr}_{2}(\alpha)-\alpha\left(\operatorname{tr}_{1}(\alpha)-\alpha\right)\right)\right) \\
& =\operatorname{tr}_{1}\left(\alpha \operatorname{tr}_{2}(\alpha)+\alpha^{3}\right) \quad \text { since } \alpha \in K_{1} \\
& =\operatorname{tr}_{2}(\alpha) \operatorname{tr}_{1}(\alpha)+\operatorname{tr}_{1}\left(\alpha^{3}\right)=\operatorname{tr}_{1}\left(\alpha^{3}\right)
\end{aligned}
$$

2. Quadratic forms.

Over any field of characteristic 2 a quadratic form on an F-vector space V is a map $q: V \rightarrow F$ such that (1) $q(\lambda v)=\lambda^{2} q(v) \quad$ and $(2) b_{q}(v, w) \equiv q(v+w)-q(v)-q(w)$ is a symmetric bilinear form. We say q is non-degenerate if b_{q} is, namely, $b_{q}(v, w)=0$ for all $w \in V$ implies $v=0$. Note that b_{q} is alternating, namely that $b_{q}(v, v)=0$ for all $v \in V$.

The non-degenerate, alternating, symmetric bilinear forms are necessarily even dimensional and have a symplectic basis $\left\{e_{i}, f_{i}\right\}, 1 \leq i \leq m$, meaning

$$
\begin{aligned}
b_{q}\left(e_{i}, e_{j}\right) & =0 \\
b_{q}\left(e_{i}, f_{j}\right) & =\delta_{i j} \\
b_{q}\left(f_{i}, f_{j}\right) & =0
\end{aligned}
$$

See [7, Chapter 9, Section 4] for further details.
We continue to assume $F=G F(2)$, since only in this case is condition (1) of a quadratic form satisfied by tr_{3}.

Lemma 2.1.

(1) $t r_{2}, \operatorname{tr}_{3}$ and Q are quadratic forms $K_{1} \rightarrow G F(2)$.
(2) $t r_{2}$ and $t r_{3}$ are non-degenerate.
(3) Q is non-degenerate if 3 does not divide n. If 3 does divide n then the radical of Q is $C \equiv \operatorname{ker} \psi_{3}$ and Q is non-degenerate on K_{1} / C.
Proof. (1) follows from (1.2). The trace form, $\alpha, \beta \rightarrow \operatorname{tr}_{1}(\alpha \beta)$ is non-degenerate by [6, $2.24]$. Hence (2) and (3) follow from (1.3).

We use the notation $\operatorname{sp}(S)$ for the linear span of a set S.
Lemma 2.2. Let q be a non-degenerate $2 m$-dimensional quadratic form over $G F(2)$. Set $B=b_{q}$. Suppose U is an m-dimensional subspace with $B\left(u, u^{\prime}\right)=0$ for all $u, u^{\prime} \in U$. Then any basis of U can be extended to a symplectic basis $\left\{u_{i}, v_{i}\right\}, 1 \leq i \leq m$. Moreover, v_{1} can be taken to be any vector in $s p\left(u_{2}, \ldots, u_{m}\right)^{\perp} \backslash U$.
Proof. Let u_{1}, \ldots, u_{m} be a basis of U. Now $U \subset \operatorname{sp}\left(u_{2}, \ldots, u_{m}\right)^{\perp}$ and $\operatorname{dim} \operatorname{sp}\left(u_{2}, \ldots, u_{m}\right)^{\perp}$ is $m+1$. So write

$$
\operatorname{sp}\left(u_{2}, \ldots, u_{m}\right)^{\perp}=U \oplus v
$$

for some v. Set $v_{1}=v$. Then $B\left(u_{i}, v_{1}\right)=0$ for all $i \geq 2$. Also $B\left(u_{1}, v_{1}\right)=1$, else $v_{1} \in U^{\perp}=U$, a contradiction.

Suppose we have constructed $v_{1}, \ldots v_{k}$ with $B\left(v_{i}, v_{j}\right)=0$ and $B\left(u_{i}, v_{j}\right)=\delta_{i j}$. As before,

$$
\operatorname{sp}\left(u_{1}, \ldots, u_{k}, u_{k+2}, \ldots, u_{m}\right)^{\perp}=U \oplus r
$$

for some r. Set $S=\left\{i: 1 \leq i \leq k \quad B\left(v_{i}, r\right)=1\right\}$ and let

$$
v_{k+1}=r+\sum_{i \in S} u_{i}
$$

We check that this works. $B\left(u_{i}, v_{k+1}\right)=0$ for all $i \neq k+1$. Then $B\left(u_{k+1}, v_{k+1}\right)=1$, else $v_{k+1} \in U^{\perp}=U$ while $r \notin U$. If $j \notin S$ then

$$
B\left(v_{j}, v_{k+1}\right)=B\left(v_{j}, r\right)+\sum_{i \in S} B\left(v_{i}, u_{j}\right)=0
$$

If $j \in S$ then

$$
\begin{aligned}
B\left(v_{j}, v_{k+1}\right) & =B\left(v_{j}, r\right)+\sum_{i \in S} B\left(v_{i}, u_{j}\right) \\
& =B\left(v_{j}, r\right)+B\left(v_{j}, u_{j}\right)=1+1=0
\end{aligned}
$$

Let $N(f=a)$ denote the number of solutions to $f=a$. Let $m H=x_{1} y_{1}+\cdots+x_{m} y_{m}$. We will use:

$$
N(m H=\alpha)= \begin{cases}2^{2 m-1}+2^{m-1}, & \text { if } \alpha=0 \tag{2.3}\\ 2^{2 m-1}-2^{m-1}, & \text { if } \alpha=1\end{cases}
$$

This is $[6,6.32]$. It can be proven directly by a simple induction argument.

Lemma 2.4. Let q be a $2 m$-dimensional, non-degenerate quadratic form. Let U be an m-dimensional space with $b_{q}\left(u, u^{\prime}\right)=0$ for all $u, u^{\prime} \in U$. Suppose $\left\{u_{1}, \ldots, u_{m}\right\}$ is a basis of U with $q\left(u_{1}\right)=1$ and $q\left(u_{i}\right)=0$ for $2 \leq i \leq m$. Let $v_{1} \in \operatorname{sp}\left(u_{2}, \ldots, u_{m}\right)^{\perp} \backslash U$. Then:

$$
N(q=0)= \begin{cases}2^{2 m-1}+2^{m-1}, & \text { if } q\left(v_{1}\right)=0 \\ 2^{2 m-1}-2^{m-1}, & \text { if } q\left(v_{1}\right)=1\end{cases}
$$

Proof. This can be deduced from [6, 6.32] but a direct proof is no more difficult. Extend $\left\{u_{1}, \ldots, u_{m}, v_{1}\right\}$ to a symplectic basis $\left\{u_{i}, v_{i}\right\}$, which is possible by (2.2). For $z=\sum x_{i} u_{i}+$ $\sum y_{i} v_{i}$ we have:

$$
q(z)=x_{1}^{2}+\sum_{i=1}^{m} x_{i} y_{i}+\sum_{i=1}^{m} q\left(v_{i}\right) y_{i}^{2} .
$$

Note that x^{2} and x are equal as functions over $G F(2)$ so that

$$
q(z)=x_{1}+x_{1} y_{1}+q\left(v_{1}\right) y_{1}+\sum_{i=2}^{m}\left(x_{i}+q\left(v_{i}\right)\right) y_{i} .
$$

If $q\left(v_{1}\right)=0$ then $q(z)=x_{1}\left(1+y_{1}\right)+\sum\left(x_{i}+q\left(v_{i}\right)\right) y_{i}$. Hence $N(q=0)=N(m H=0)$. Apply (2.3). If $q\left(v_{1}\right)=1$ then

$$
q(z)=1+\left(1+x_{1}\right)\left(1+y_{1}\right)+\sum_{i=2}^{m}\left(x_{i}+q\left(v_{i}\right)\right) y_{i} .
$$

So $N(q=0)=N(m H=1)$. Apply (2.3).
We note that $q\left(v_{1}\right)$ is the Arf invariant of q, see [7, Chapter 9, section 4].
For $i=2,3, Q$ write $\operatorname{perp}_{i}(S)$ for $\left\{v \in K_{1}: B_{i}(v, s)=0 \quad\right.$ for all $\left.s \in S\right\}$.
We will construct, in the next section, elements $u_{1}, \ldots, u_{m}, x_{1}, y_{2}, z_{1} \in K_{1}$ such that
(1) $B_{2}\left(u_{i}, u_{j}\right)=0=B_{3}\left(u_{i}, u_{j}\right)$ for all $i, j=1, \ldots, m$.
(2) $\operatorname{tr}_{2}\left(u_{1}\right)=\operatorname{tr}_{3}\left(u_{2}\right)=1$.
(3) $\operatorname{tr}_{3}\left(u_{1}\right)=\operatorname{tr}_{2}\left(u_{2}\right)=0$.
(4) $\operatorname{tr}_{2}\left(u_{i}\right)=0=\operatorname{tr}_{3}\left(u_{i}\right)$ for all $3 \leq i \leq m$.
(5) $x_{1} \in \operatorname{perp}_{2}\left(u_{2}, \ldots, u_{m}\right) \backslash U$, where U is the span of u_{1}, \ldots, u_{m}.
(6) $y_{2} \in \operatorname{perp}_{3}\left(u_{1}, u_{3}, \ldots, u_{m}\right) \backslash U$.
(7) $z_{1} \in \operatorname{perp}_{Q}\left(u_{2}, \ldots, u_{m}\right) \backslash U$.

Now Q is degenerate if 3 divides n (2.1). Let \bar{v} denote $v+C$ and let \bar{Q} denote the map induced by Q on $\bar{K}_{1}=K_{1} / C$. When 3 divides n we require two additional properties of our construction:
(8) $|C \cap U|=2$ with the non-zero element γ of $C \cap U$ satisfying $\gamma+u_{1} \in \operatorname{sp}\left(u_{2}, \ldots u_{m}\right)$.
(9) $\bar{z}_{2} \in \operatorname{perp}_{\bar{Q}}\left(\bar{u}_{3}, \ldots, \bar{u}_{m}\right) \backslash \bar{U}$.

Proposition 2.5. Let $n \geq 7$ and assume we have constructed elements in K_{1} satisfying (1)-(9). If 3 does not divide n then:

$$
\begin{aligned}
& F(n, 0,0,0)=2^{2 m-2}+3 \cdot 2^{m-2}-\left(\operatorname{tr}_{2}\left(x_{1}\right)+\operatorname{tr}_{3}\left(y_{2}\right)+Q\left(z_{1}\right)\right) 2^{m-1} \\
& F(n, 0,0,1)=2^{2 m-2}-2^{m-2}+\left(-\operatorname{tr}_{2}\left(x_{1}\right)+\operatorname{tr}_{3}\left(y_{2}\right)+Q\left(z_{1}\right)\right) 2^{m-1} \\
& F(n, 0,1,0)=2^{2 m-2}-2^{m-2}+\left(\operatorname{tr}_{2}\left(x_{1}\right)-\operatorname{tr}_{3}\left(y_{2}\right)+Q\left(z_{1}\right)\right) 2^{m-1} \\
& F(n, 0,1,1)=2^{2 m-2}-2^{m-2}+\left(\operatorname{tr}_{2}\left(x_{1}\right)+\operatorname{tr}_{3}\left(y_{2}\right)-Q\left(z_{1}\right)\right) 2^{m-1}
\end{aligned}
$$

If 3 divides n then:

$$
\begin{aligned}
& F(n, 0,0,0)=2^{2 m-2}+2^{m}-\left(\operatorname{tr}_{2}\left(x_{1}\right)+\operatorname{tr}_{3}\left(y_{2}\right)+2 \bar{Q}\left(\bar{z}_{2}\right)\right) 2^{m-1} \\
& F(n, 0,0,1)=2^{2 m-2}-2^{m-1}+\left(-\operatorname{tr}_{2}\left(x_{1}\right)+\operatorname{tr}_{3}\left(y_{2}\right)+2 \bar{Q}\left(\bar{z}_{2}\right)\right) 2^{m-1} \\
& F(n, 0,1,0)=2^{2 m-2}-2^{m-1}+\left(\operatorname{tr}_{2}\left(x_{1}\right)-\operatorname{tr}_{3}\left(y_{2}\right)+2 \bar{Q}\left(\bar{z}_{2}\right)\right) 2^{m-1} \\
& F(n, 0,1,1)=2^{2 m-2}+\left(\operatorname{tr}_{2}\left(x_{1}\right)+\operatorname{tr}_{3}\left(y_{2}\right)-2 \bar{Q}\left(\bar{z}_{2}\right)\right) 2^{m-1} .
\end{aligned}
$$

Proof. (1) We first note that

$$
\begin{aligned}
\left\{u_{1}, \ldots, u_{m}, x_{1}\right\} & \text { meets the hypotheses of }(2.4) \text { for } q=\operatorname{tr}_{2} \\
\left\{u_{2}, u_{1}, u_{3}, \ldots, u_{m}, y_{2}\right\} & \text { meets the hypotheses of }(2.4) \text { for } q=\operatorname{tr}_{3} \\
\left\{u_{1}, u_{1}+u_{2}, u_{3} \ldots, u_{m}, z_{1}\right\} & \text { meets the hypotheses of }(2.4) \text { for } q=Q .
\end{aligned}
$$

Applying (2.4) yields

$$
\begin{aligned}
F(n, 0,0,0)+F(n, 0,0,1)=N\left(\operatorname{tr}_{2}=0\right) & =2^{2 m-1}+2^{m-1}-2 \operatorname{tr}_{2}\left(x_{1}\right) 2^{m-1} \\
F(n, 0,0,0)+F(n, 0,1,0)=N\left(\operatorname{tr}_{3}=0\right) & =2^{2 m-1}+2^{m-1}-2 \operatorname{tr}_{3}\left(y_{2}\right) 2^{m-1} \\
F(n, 0,0,0)+F(n, 0,1,1)=N(Q=0) & =2^{2 m-1}+2^{m-1}-2 Q\left(z_{1}\right) 2^{m-1} \\
F(n, 0,0,0)+F(n, 0,0,1)+F(n, 0,1,0)+F(n, 0,1,1) & =2^{2 m} .
\end{aligned}
$$

The sum of the first three minus the fourth gives a formula for $2 F(n, 0,0,0)$. The others are easily found.
(2) Here Q is degenerate. Note that $\left\{\bar{u}_{1}, \bar{u}_{3}, \ldots, \bar{u}_{m}, \bar{z}_{2}\right\}$ meets the hypothesis of (2.4) for $q=\bar{Q}$. The two variables associated to C can take any value without affecting the value of Q. Hence

$$
\begin{aligned}
N(Q=0) & =4 N(\bar{Q}=0) \\
& =4\left(2^{2(m-1)-1}+2^{(m-1)-1}-2 \bar{Q}\left(\bar{z}_{2}\right) 2^{(m-1)-1}\right) \\
& =2^{2 m-1}+2^{m}-2 \bar{Q}\left(\bar{z}_{2}\right) 2^{m} .
\end{aligned}
$$

Replace the right-hand side of the third equation above with this expression and solve.
To complete the count we have:

Lemma 2.6.

$$
F\left(n, 0, \epsilon_{2}, \epsilon_{3}\right)= \begin{cases}F\left(n, 1, \epsilon_{2}, \epsilon_{2}+\epsilon_{3}\right), & \text { if } m \text { is even } \\ F\left(n, 1,1+\epsilon_{2}, 1+\epsilon_{2}+\epsilon_{3}\right), & \text { if } m \text { is odd. }\end{cases}
$$

Proof. From (1.1) we have for $\alpha \in K_{1}$

$$
\begin{aligned}
B_{2}(1, \alpha) & =\operatorname{tr}_{1}(1 \cdot \alpha)+\operatorname{tr}_{1}(1) \operatorname{tr}_{1}(\alpha)=0 \\
B_{3}(1, \alpha) & =\operatorname{tr}_{2}(1) \operatorname{tr}_{1}(\alpha)+\operatorname{tr}_{2}(\alpha) \operatorname{tr}_{1}(1)+\operatorname{tr}_{1}\left(\alpha^{2}+\alpha\right) \\
& =\operatorname{tr}_{2}(\alpha)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \operatorname{tr}_{2}(1+\alpha)=\operatorname{tr}_{2}(1)+\operatorname{tr}_{2}(\alpha) \\
& \operatorname{tr}_{3}(1+\alpha)=\operatorname{tr}_{3}(1)+\operatorname{tr}_{2}(\alpha)+\operatorname{tr}_{3}(\alpha)
\end{aligned}
$$

Since

$$
\operatorname{tr}_{2}(1) \equiv\binom{n}{2} \quad(\bmod 2) \quad \text { and } \quad \operatorname{tr}_{3}(1) \equiv\binom{n}{3} \quad(\bmod 2),
$$

we have $\operatorname{tr}_{2}(1)=1$ iff $\operatorname{tr}_{3}(1)=1$ iff m is odd. The result follows.

3. The construction.

We will now give an explicit construction of $u_{1}, \ldots, u_{m}, x_{1}, y_{2}, z_{1}$ and \bar{z}_{2}. Let $B=$ $\left\{\alpha, \alpha^{2}, \ldots, \alpha^{2^{n-1}}\right\}$ be a self-dual normal basis for K, see $[3,5.2 .1]$ for the existence of such a basis. Here self-dual means that

$$
\operatorname{tr}_{1}\left(\alpha^{2^{i}} \alpha^{2^{j}}\right)=\delta_{i j} .
$$

We will use:
Proposition 3.1. Let $\gamma=c_{0} \alpha+c_{1} \alpha^{2}+\cdots+c_{n-1} \alpha^{2^{n-1}} \in K_{1}$.
(1) $\operatorname{tr}_{1}(\gamma) \equiv c_{0}+c_{1}+\cdots+c_{n-1}(\bmod 2)$ is zero.
(2) $\operatorname{tr}_{2}(\gamma) \equiv \frac{1}{2}\left(c_{0}+c_{1}+\cdots+c_{n-1}\right)(\bmod 2)$.
(3) $\operatorname{tr}_{3}(\gamma) \equiv c_{n-1} c_{0}+c_{0} c_{1}+c_{1} c_{2}+\cdots+c_{n-2} c_{n-1}(\bmod 2)$.

Proof. (1) is [2, Lemma 9]. (2) is implicit in [2]. Namely, [2, Theorem 5] gives

$$
\operatorname{tr}_{2}(\gamma) \equiv \sum_{0 \leq i<j<n} c_{i} c_{j} \quad(\bmod 2)
$$

Now follow the proof of [2, Lemma 7]. Let k be the number of c_{i} equal to 1 . The sum $\sum c_{i} c_{j}$ counts the number of pairs of 1 's in the string $c_{0} c_{1} \ldots c_{n-1}$. Thus

$$
\sum_{0 \leq i<j<n} c_{i} c_{j}=\binom{k}{2}
$$

Since k is even by (1), we have $\operatorname{tr}_{2}(\gamma)=0$ iff $k \equiv 0(\bmod 4)$, which yields (2).
For (3) we have by (1.4)

$$
\begin{aligned}
\operatorname{tr}_{3}(\gamma) & =\operatorname{tr}_{1}\left(\gamma^{3}\right)=\operatorname{tr}_{1}\left(\gamma \gamma^{2}\right) \\
& =\operatorname{tr}_{1}\left(\left(c_{0} \alpha+c_{1} \alpha^{2}+\cdots+c_{n-1} \alpha^{2^{n-1}}\right)\left(c_{n-1} \alpha+c_{0} \alpha^{2}+\cdots+c_{n-2} \alpha^{2^{n-1}}\right)\right)
\end{aligned}
$$

Since $\operatorname{tr}_{1}\left(\alpha^{2^{i}} \alpha^{2^{j}}\right)=\delta_{i j}$ we have the result.
Proposition 3.2. Let $\beta=b_{0} \alpha+b_{1} \alpha^{2}+\cdots+b_{n-1} \alpha^{2^{n-1}}$ and $\gamma=c_{0} \alpha+c_{1} \alpha^{2}+\cdots+c_{n-1} \alpha^{2^{n-1}}$ be in K_{1}.
(1) $B_{2}(\beta, \gamma)=b_{0} c_{0}+b_{1} c_{1}+\cdots+b_{n-1} c_{n-1}(\bmod 2)$.
(2) $B_{3}(\beta, \gamma)=b_{0}\left(c_{n-1}+c_{1}\right)+b_{1}\left(c_{0}+c_{2}\right)+\cdots+b_{n-1}\left(c_{n-2}+c_{0}\right)(\bmod 2)$.
(3) $B_{Q}(\beta, \gamma)=b_{0}\left(c_{n-1}+c_{0}+c_{1}\right)+b_{1}\left(c_{0}+c_{1}+c_{2}\right)+\cdots+b_{n-1}\left(c_{n-2}+c_{n-1}+c_{0}\right)$ $(\bmod 2)$.

Proof. From (1.1), $B_{2}(\beta, \gamma)=\operatorname{tr}_{1}(\beta \gamma), B_{3}(\beta, \gamma)=\operatorname{tr}_{1}\left(\beta \gamma^{2}+\beta^{2} \gamma\right)$ and $B_{Q}(\beta, \gamma)=\operatorname{tr}_{1}(\beta \gamma+$ $\left.\beta \gamma^{2}+\beta^{2} \gamma\right)$. Now compute using the fact that $\operatorname{tr}_{1}\left(\alpha^{2^{i}} \alpha^{2^{j}}\right)=\delta_{i j}$.

For $\gamma=c_{0} \alpha+c_{1} \alpha^{2}+\cdots+c_{n-1} \alpha^{2^{n-1}}$ we abuse notation and write $\gamma=\left(c_{0} c_{1} \ldots c_{n-1}\right)$. We use $*$ for concatenation and $n(s)$ for the concatenation of n copies of (s). We assume $n \geq 7$.

Let

$$
\begin{aligned}
& u_{1}=(00001) *(n-6)(0) *(1) \\
& u_{2}=(1111) *(n-4)(0) \\
& u_{j}=(1001) *(j-3)(0) *(1) *(n-2 j)(0) *(1) *(j-3)(0), \quad j=3, \ldots, m \\
& x_{1}=(1100) * k(1) *(n-k-4)(0), \quad k=2\left\lfloor\frac{n-3}{4}\right\rfloor \\
& y_{2}= \begin{cases}(11101) *(2 t-1)(1001), & \text { if } n=8 t+1 \\
(110) * 2 t(1100), & \text { if } n=8 t+3 \\
(11101) * 2 t(1001), & \text { if } n=8 t+5 \\
(101) *(2 t+1)(1100), & \text { if } n=8 t+7 .\end{cases}
\end{aligned}
$$

If 3 does not divide n then set

$$
z_{1}= \begin{cases}(1001) *(2 t-1)(101) * 2 t(100), & \text { if } n=12 t+1 \\ (00) *(2 t+1)(101) * 2 t(001), & \text { if } n=12 t+5 \\ (0000) *(2 t+1)(110) * 2 t(010), & \text { if } n=12 t+7 \\ (11010) *(2 t+1)(110) *(2 t+1)(100), & \text { if } n=12 t+11\end{cases}
$$

If 3 does divide n then set

$$
z_{2}= \begin{cases}(000) * 2 t(011) * 2 t(010), & \text { if } n=12 t+3 \\ (000010) * 2 t(110) *(2 t+1)(100), & \text { if } n=12 t+9\end{cases}
$$

Proposition 3.3. Let $n \geq 7$.
(1) $u_{1}, \ldots, u_{m}, x_{1}, y_{2}$ and z_{1} satisfy conditions (1)-(7) of the last section.

$$
\operatorname{tr}_{2}\left(x_{1}\right)=\operatorname{tr}_{3}\left(y_{2}\right)= \begin{cases}0, & \text { if } m \equiv 0,3(\bmod 4) \tag{2}\\ 1, & \text { if } m \equiv 1,2(\bmod 4)\end{cases}
$$

(3) If 3 does not divide n then $Q\left(z_{1}\right)=\operatorname{tr}_{2}\left(x_{1}\right)$.
(4) If 3 does divide n then conditions (8) and (9) of the previous section hold. And $\bar{Q}\left(\bar{z}_{2}\right)=\operatorname{tr}_{2}\left(x_{1}\right)+1$.

Proof. (1), (2) and (3) consist of several easy computations using (3.1) and (3.2). We do the computations involving x_{1}, namely condition (5) of the previous section and statement (2). Notice that $u_{1}=\alpha^{16}+\alpha^{2^{n-1}}, u_{2}=\alpha+\alpha^{2}+\alpha^{4}+\alpha^{8}, u_{j}=\alpha+\alpha^{8}+\alpha^{2^{j+1}}+\alpha^{2^{n-j+2}}$, for $j=3, \ldots, m$, and

$$
x_{1}=\alpha+\alpha^{2}+\sum_{i=4}^{m+1} \alpha^{2^{i}}+\epsilon \alpha^{2^{m+2}}
$$

where

$$
\epsilon= \begin{cases}0, & \text { if } m \text { is even } \\ 1, & \text { if } m \text { is odd. }\end{cases}
$$

Now, x_{1} and u_{1} match only at α^{16} so by (3.2), $B_{2}\left(u_{1}, x_{1}\right)=1$. In particular, $x_{1} \notin U$. Next, x_{1} and u_{2} match only at α and α^{2} so that $B_{2}\left(u_{2}, x_{1}\right)=0$. Also, x_{1} and $u_{j}, 3 \leq j \leq m$, match only at α and $\alpha^{2^{j+1}}$ so that $B_{2}\left(u_{j}, x_{1}\right)=0$. This proves condition (5). Finally, by (3.1),

$$
\begin{aligned}
\operatorname{tr}_{2}\left(x_{1}\right) & \equiv \frac{1}{2}(1+1+(m-2)+\epsilon) \equiv \frac{1}{2}(m+\epsilon)(\bmod 2) \\
& = \begin{cases}0, & \text { if } m \equiv 0,3(\bmod 4) \\
1, & \text { if } m \equiv 1,2(\bmod 4)\end{cases}
\end{aligned}
$$

Suppose 3 divides n. One checks that the non-zero elements of C are

$$
\gamma_{1}=\frac{n}{3}(011) \quad \gamma_{2}=\frac{n}{3}(101) \quad \gamma_{3}=\frac{n}{3}(110)
$$

Now γ_{2} and γ_{3} are not in U since $B_{2}\left(\gamma_{2}, u_{2}\right)=B_{2}\left(\gamma_{3}, u_{2}\right)=1$. But γ_{1} is in U, in fact,

$$
\gamma_{1}=u_{2}+\sum_{i \equiv 0,1(\bmod 3)} u_{i} .
$$

This also checks condition (8) of $\S 2$. For condition (9), take $\bar{z}_{2}=z_{2}+(C \cap U)$.
Now simply plug the values from (3.3)(2) and (3.3)(3) into the formulas of (2.5) and (2.6) to get:

Theorem 3.4. (1) For $n=2 m+1$ odd, $n>1$ and 3 not dividing n, we have

$$
F\left(n, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=2^{n-3}+
$$

\underline{m}	$3 \cdot 2^{\underline{000}}$	$-2^{\underline{001}}$	$-2^{\underline{010}}$	$-2^{\underline{011}} \boldsymbol{m - 2}$	$3 \cdot 2^{\underline{m-2}}$	$-2^{\underline{101}}$	$-2^{\underline{110}}$	$-2^{\underline{111}}$
0	$-3 \cdot 2^{m-2}$	2^{m-2}	2^{m-2}	2^{m-2}	2^{m-2}	2^{m-2}	2^{m-2}	$-3 \cdot 2^{m-2}$
2	$-3 \cdot 2^{m-2}$	2^{m-2}	2^{m-2}	2^{m-2}	$-3 \cdot 2^{m-2}$	2^{m-2}	2^{m-2}	2^{m-2}
3	$3 \cdot 2^{m-2}$	-2^{m-2}	-2^{m-2}	-2^{m-2}	-2^{m-2}	-2^{m-2}	-2^{m-2}	$3 \cdot 2^{m-2}$

where the m is listed modulo 4 .
(2) For $n=2 m+1$ odd, $n>1$ and 3 dividing n, we have

$$
F\left(n, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=2^{n-3}+
$$

\underline{m}	$\underline{000}$	$\underline{001}$	$\underline{010}$	$\underline{011}$	$\underline{100}$	$\frac{101}{\underline{101}}$	$\underline{110}$	$2^{\underline{111}}$
1	0	-2^{m-1}	2^{m-1}	-2^{m}	2^{m-1}	2^{m}	-2^{m-1}	2^{m}
2	0	-2^{m-1}	-2^{m-1}	0				
3	0	2^{m-1}	2^{m-1}	-2^{m}	0	-2^{m-1}	2^{m-1}	-2^{m}
2^{m}	2^{m-1}	-2^{m-1}	0					

where again the m is listed modulo 4 .
Note that our proof is only valid for $n \geq 7$. The above table however is also valid for $n=3,5$, which must be checked directly.

4. Irreducible polynomials.

We get formulas for the number of irreducible polynomials over $G F(2)$ with the first three coefficients prescribed, $P\left(n, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$, from the inversion formulas of [8, Theorem 2]. For n odd these simplify slightly to:

$$
\begin{aligned}
& P\left(n, 0, \epsilon_{2}, \epsilon_{3}\right)=\frac{1}{n} \sum_{d \mid n} \mu(d) F\left(n / d, 0, \epsilon_{2}, \epsilon_{3}\right) \\
& P\left(n, 1, \epsilon_{2}, \epsilon_{3}\right)=\frac{1}{n} \sum_{\substack{d \mid n \\
d \equiv 1}} \mu(d) F\left(n / d, 1, \epsilon_{2}, \epsilon_{3}\right)+\frac{1}{n} \sum_{\substack{d \mid n \\
d \equiv 3}} \mu(d) F\left(n / d, 1,1+\epsilon_{2}, 1+\epsilon_{3}\right) .
\end{aligned}
$$

The congruences here are modulo 4. The tables in (3.4) for F do not include the case $n=1$ but these may arise in these inversion formulas. The values are $F(1,0,0,0)=$ $F(1,1,0,0)=1$ and the six others are 0 .

As an example, suppose $n=9$. The formulas become:

$$
\begin{aligned}
& P\left(9,0, \epsilon_{2}, \epsilon_{3}\right)=\frac{1}{9}\left(F\left(9,0, \epsilon_{2}, \epsilon_{3}\right)-F\left(3,0, \epsilon_{2}, \epsilon_{3}\right)\right) \\
& P\left(9,1, \epsilon_{2}, \epsilon_{3}\right)=\frac{1}{9}\left(F\left(9,1, \epsilon_{2}, \epsilon_{3}\right)-F\left(3,1,1+\epsilon_{2}, 1+\epsilon_{3}\right)\right)
\end{aligned}
$$

From the tables in (3.4) we get:

$$
\begin{array}{ll}
P(9,0,0,0)=7 & P(9,1,0,0)=7 \\
P(9,0,0,1)=8 & P(9,1,0,1)=8 \\
P(9,0,1,0)=8 & P(9,1,1,0)=5 \\
P(9,0,1,1)=5 & P(9,1,1,1)=8 .
\end{array}
$$

These may be verified from Table C in [6, p. 553].

References

1. L. Carlitz, A theorem of Dickson on irreducible polynomials, Proc. Amer. Math. Soc. 3 (1952), 693700.
2. K. Cattell, C. R. Miers, F. Ruskey, M. Serra and J. Sawada, The number of irreducible polynomials over $G F(2)$ with given trace and subtrace, Preprint.
3. D. Jungnickel, Finite fields : structure and arithmetics., Bibliographisches Institut, Mannheim, 1993.
4. M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The Book of Involutions, Amer. Math. Soc. Colloquium Publications, vol. 44, Amer. Math. Soc., Providence, RI, 1998.
5. E. N. Kuz'min, On a class of irreducible polynomials over a finite field, Dokl. Akad. Nauk SSSr 313 (1990), no. 3, 552-555 (Russian); English translation in Soviet Math. Dokl. 42 (1991), no. 1, 45-48.
6. R. Lidl and H. Niederreiter, Finite Fields (second edition), Encyclopedia of Mathematics and Its Applications, vol. 20, Cambridge University Press, Cambridge, 1997.
7. W. Scharlau, Quadratic and Hermitian Forms, Grundlehren Math. Wiss., vol. 270, Springer-Verlag, New York/Heidelberg/Berlin, 1985.
8. J. L. Yucas and G. L. Mullen, Irreducible polynomials over GF(2) with prescribed coefficients, Preprint.

Carbondale, IL 62901
E-mail address: rfitzg@math.siu.edu, jyucas@math.siu.edu

