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IRREDUCIBLE POLYNOMIALS OVER GF(2)

WITH THREE PRESCRIBED COEFFICIENTS

Robert W. Fitzgerald
Joseph L. Yucas

Southern Illinois University

Abstract. For an odd positive integer n, we determine formulas for the number of irreducible
polynomials of degree n over GF (2) in which the coefficients of xn−1, xn−2 and xn−3 are
specified in advance. Formulas for the number of elements in GF (2n) with the first three
traces specified are also given.

Let q be a prime power and let GF (q) be a finite field with q elements. A classical result
(see [6, 3.25]) gives the number, Pq(n), of monic, irreducible polynomials of degree n over
GF (q):

Pq(n) =
1
n

∑

d|n
µ(d)qn/d,

where µ is the Möbius function. This has been refined several times by counting the
number Pq(n, ε1, ε2, . . . , εk) of monic irreducible polynomials over GF (q) with the first k
coefficients being the prescribed values ε1, . . . , εk. We are writing polynomials here as

p(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x + an.

Carlitz [1] gave a formula for Pq(n, ε1). Kuz’min [5] extended this to a formula for
Pq(n, ε1, ε2). This was re-discovered, for the case q = 2, in [2] which also introduced
the connection with higher traces. The same connection was used in [8] to get a formula
for Pq(n, ε1, ε2, ε3) when q = 2 and n is even. We complete this case, getting a formula
for Pq(n, ε1, ε2, ε3) when q = 2 and n is odd. The proof is quite different and depends on
computations with quadratic forms.

The higher traces are defined as follows. Let F be any field and let K/F be a separable
extension of degree n. Let σ0, . . . , σn−1 be the monomorphisms from K into the algebraic
closure of F . Then define for α ∈ K:

tr1(α) =
n−1∑

i=0

σi(α)

tr2(α) =
∑

0≤i<j≤n−1

σi(α)σj(α)

tr3(α) =
∑

0≤i<j<k≤n−1

σi(α)σj(α)σk(α)

Typeset by AMS-TEX
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2 FITZGERALD AND YUCAS

In our case (q = 2), σi(x) = x2i

.
We fix odd n = 2m + 1 and set K = GF (2n). We will only work over GF (2) so we will

drop the subscript on the P from P2(n, ε1, ε2, ε3). Let F (n, ε1, ε2, ε3) denote the number
of elements x in K with tri(x) = εi for 1 ≤ i ≤ 3 (note that each εi is 0 or 1). A Möbius
inversion-type argument in [8] gives formulas for P (n, ε1, ε2, ε3) in terms of F (n, ε1, ε2, ε3)
so we will concentrate on evaluating the F ’s.

1. Identities.
Set Q = tr2 + tr3. We also define maps Bi : K ×K → F as follows:

B2(α, β) = tr2(α + β) + tr2(α) + tr2(β)

B3(α, β) = tr3(α + β) + tr3(α) + tr3(β)

BQ(α, β) = Q(α + β) + Q(α) + Q(β) = B2(α, β) + B3(α, β).

Special cases of the following are known, see [4, 0.2] and [8, Proposition 10].

Lemma 1.1. (1) B2(α, β) = tr1(α)tr1(β) + tr1(αβ).
(2) B3(α, β) = tr2(α)tr1(β) + tr1(α)tr2(β) + tr1(αβ2 + α2β) + tr1(αβ)tr1(α + β).

Proof. (1) To save on superscripts, we set xi = x2i

. Then

B2(α, β) =
∑

0≤i<j≤n−1

[(α + β)i(α + β)j + αiαj + βiβj ]

=
∑

i 6=j

αiβj

=
n−1∑

i=0

αi

∑

j 6=i

βj

=
n−1∑

i=0

αi(tr1(β) + βi)

= tr1(α)tr1(β) + tr1(αβ).
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(2)

B3(α, β) =
∑

0≤i<j<k≤n−1

[αiαjβk + αiβjαk + βiαjαk + αiβjβk + βiαjβk + βiβjαk]

=
n−1∑

k=0

( ∑

i<j
i,j 6=k

αiαj

)
βk +

∑

i<j

( ∑

k 6=i,j

αk

)
βiβj

=
n−1∑

k=0

[
tr2(α) + αk

∑

i 6=k

αi

]
βk +

∑

i<j

[
tr1(α) + αi + αj

]
βiβj

= tr2(α)tr1(β) + tr1(α)tr1(αβ) + tr1(α2β)

+ tr1(α)tr2(β) + tr1(αβ2) + tr1(αβ)tr1(β)

= tr2(α)tr1(β) + tr1(α)tr2(β) + tr1(αβ2 + α2β) + tr1(αβ)tr1(α + β).

¤

Recall that K is a finite field of characteristic 2. In particular, K = K2. Set K1 =
ker(tr1).

Definition. Let ψ2 : K1 → K be ψ2(α) =
√

α + α2. Let ψ3 : K1 → K be ψ3(α) =√
α + α + α2.

Lemma 1.2. For α, β ∈ K1 we have:

(1) B2(α, β) = tr1(αβ).
(2) B3(α, β) = tr1(ψ2(α)β)
(3) BQ(α, β) = tr1(ψ3(α)β).

Proof. (1) is clear form (1.1). For (2), (1.1) gives

B3(α, β) = tr1(α2β + αβ2)

= tr1(α2β + (
√

αβ)2)

= tr1(α2β +
√

αβ)

= tr1(ψ2(α)β).

And lastly, BQ(α, β) = tr1(αβ) + tr1(ψ2(α)β). ¤

We note that it is only for GF (2) that ψ2 and ψ3 are linear.

Lemma 1.3.

(1) ψ2 : K1 → K1 is an isomorphism.
(2) If 3 does not divide n then ψ3 : K1 → K1 is an isomorphism.
(3) If 3 does divide n then ker(ψ3) has order 4.
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Proof. (1) Since tr1(α) = tr1(α2) we have that ψ2 maps into K1. Say α ∈ kerψ2 and let
β2 = α. Then β + β4 = 0. But x + x4 = x(x + 1)(x2 + x + 1) and x2 + x + 1 has no roots
in K as [K : F ] is odd. Hence only 0 and 1 are sent to 0 by ψ2 and 1 /∈ K1. Thus ψ2 is
injective and so an isomorphism.

(2) First tr1(
√

α + α + α2) = tr1(α), so ψ3 maps K1 into K1. Say α ∈ kerψ3 and let
β2 = α. Then β + β2 + β4 = 0. But x + x2 + x4 = x(1 + x + x3) and the cubic has no
roots in K if 3 does not divide n. So ψ3 is an isomorphism.

(3) As above, ker(ψ3) consists of the roots of x + x2 + x4 and so has order 4. ¤
Lemma 1.4. For α ∈ K1, tr3(α) = tr1(α3).

Proof. Again let αi denote α2i

. We first note that

tr3(α) =
n−2∑

i=1

n−1∑

j=i+1

tr1(ααiαj).

Namely, each term αaαbαc occurs three times, once each in the sums for tr1(ααb−aαc−a),
tr1(ααc−bαa+n−b) and tr1(ααa+n−cαb+n−c). Thus

tr3(α) = tr1(α
n−2∑

i=1

n−1∑

j=i+1

αiαj)

= tr1(α(tr2(α)− α

n−1∑

i=1

αi))

= tr1(α(tr2(α)− α(tr1(α)− α)))

= tr1(αtr2(α) + α3) since α ∈ K1

= tr2(α)tr1(α) + tr1(α3) = tr1(α3).

¤

2. Quadratic forms.
Over any field of characteristic 2 a quadratic form on an F -vector space V is a map

q : V → F such that (1) q(λv) = λ2q(v) and (2) bq(v, w) ≡ q(v + w)− q(v)− q(w) is a
symmetric bilinear form. We say q is non-degenerate if bq is, namely, bq(v, w) = 0 for all
w ∈ V implies v = 0. Note that bq is alternating, namely that bq(v, v) = 0 for all v ∈ V .

The non-degenerate , alternating, symmetric bilinear forms are necessarily even dimen-
sional and have a symplectic basis {ei, fi}, 1 ≤ i ≤ m, meaning

bq(ei, ej) = 0

bq(ei, fj) = δij

bq(fi, fj) = 0.
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See [7, Chapter 9, Section 4] for further details.
We continue to assume F = GF (2), since only in this case is condition (1) of a quadratic

form satisfied by tr3.

Lemma 2.1.
(1) tr2, tr3 and Q are quadratic forms K1 → GF (2).
(2) tr2 and tr3 are non-degenerate.
(3) Q is non-degenerate if 3 does not divide n. If 3 does divide n then the radical of

Q is C ≡ kerψ3 and Q is non-degenerate on K1/C.

Proof. (1) follows from (1.2). The trace form, α, β → tr1(αβ) is non-degenerate by [6,
2.24]. Hence (2) and (3) follow from (1.3). ¤

We use the notation sp(S) for the linear span of a set S.

Lemma 2.2. Let q be a non-degenerate 2m-dimensional quadratic form over GF (2). Set
B = bq. Suppose U is an m-dimensional subspace with B(u, u′) = 0 for all u, u′ ∈ U .
Then any basis of U can be extended to a symplectic basis {ui, vi}, 1 ≤ i ≤ m. Moreover,
v1 can be taken to be any vector in sp(u2, . . . , um)⊥ \ U .

Proof. Let u1, . . . , um be a basis of U . Now U ⊂ sp(u2, . . . , um)⊥ and dim sp(u2, . . . , um)⊥

is m + 1. So write
sp(u2, . . . , um)⊥ = U ⊕ v,

for some v. Set v1 = v. Then B(ui, v1) = 0 for all i ≥ 2. Also B(u1, v1) = 1, else
v1 ∈ U⊥ = U , a contradiction.

Suppose we have constructed v1, . . . vk with B(vi, vj) = 0 and B(ui, vj) = δij . As before,

sp(u1, . . . , uk, uk+2, . . . , um)⊥ = U ⊕ r,

for some r. Set S = {i : 1 ≤ i ≤ k B(vi, r) = 1} and let

vk+1 = r +
∑

i∈S

ui.

We check that this works. B(ui, vk+1) = 0 for all i 6= k + 1. Then B(uk+1, vk+1) = 1, else
vk+1 ∈ U⊥ = U while r /∈ U . If j /∈ S then

B(vj , vk+1) = B(vj , r) +
∑

i∈S

B(vi, uj) = 0.

If j ∈ S then

B(vj , vk+1) = B(vj , r) +
∑

i∈S

B(vi, uj)

= B(vj , r) + B(vj , uj) = 1 + 1 = 0.

¤
Let N(f = a) denote the number of solutions to f = a. Let mH = x1y1 + · · ·+ xmym.

We will use:

(2.3) N(mH = α) =
{

22m−1 + 2m−1, if α = 0
22m−1 − 2m−1, if α = 1.

This is [6, 6.32]. It can be proven directly by a simple induction argument.
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Lemma 2.4. Let q be a 2m-dimensional, non-degenerate quadratic form. Let U be an
m-dimensional space with bq(u, u′) = 0 for all u, u′ ∈ U . Suppose {u1, . . . , um} is a basis
of U with q(u1) = 1 and q(ui) = 0 for 2 ≤ i ≤ m. Let v1 ∈ sp(u2, . . . , um)⊥ \ U . Then:

N(q = 0) =
{

22m−1 + 2m−1, if q(v1) = 0
22m−1 − 2m−1, if q(v1) = 1.

Proof. This can be deduced from [6, 6.32] but a direct proof is no more difficult. Extend
{u1, . . . , um, v1} to a symplectic basis {ui, vi}, which is possible by (2.2). For z =

∑
xiui+∑

yivi we have:

q(z) = x2
1 +

m∑

i=1

xiyi +
m∑

i=1

q(vi)y2
i .

Note that x2 and x are equal as functions over GF (2) so that

q(z) = x1 + x1y1 + q(v1)y1 +
m∑

i=2

(xi + q(vi))yi.

If q(v1) = 0 then q(z) = x1(1 + y1) +
∑

(xi + q(vi))yi. Hence N(q = 0) = N(mH = 0).
Apply (2.3). If q(v1) = 1 then

q(z) = 1 + (1 + x1)(1 + y1) +
m∑

i=2

(xi + q(vi))yi.

So N(q = 0) = N(mH = 1). Apply (2.3). ¤

We note that q(v1) is the Arf invariant of q, see [7, Chapter 9, section 4].
For i = 2, 3, Q write perpi(S) for {v ∈ K1 : Bi(v, s) = 0 for all s ∈ S}.
We will construct, in the next section, elements u1, . . . , um, x1, y2, z1 ∈ K1 such that

(1) B2(ui, uj) = 0 = B3(ui, uj) for all i, j = 1, . . . ,m.
(2) tr2(u1) = tr3(u2) = 1.
(3) tr3(u1) = tr2(u2) = 0.
(4) tr2(ui) = 0 = tr3(ui) for all 3 ≤ i ≤ m.
(5) x1 ∈ perp2(u2, . . . , um) \ U , where U is the span of u1, . . . , um.
(6) y2 ∈ perp3(u1, u3, . . . , um) \ U .
(7) z1 ∈ perpQ(u2, . . . , um) \ U .

Now Q is degenerate if 3 divides n (2.1). Let v̄ denote v + C and let Q̄ denote the map
induced by Q on K̄1 = K1/C. When 3 divides n we require two additional properties of
our construction:

(8) |C∩U | = 2 with the non-zero element γ of C∩U satisfying γ +u1 ∈ sp(u2, . . . um).
(9) z̄2 ∈ perpQ̄(ū3, . . . , ūm) \ Ū .
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Proposition 2.5. Let n ≥ 7 and assume we have constructed elements in K1 satisfying
(1)-(9). If 3 does not divide n then:

F (n, 0, 0, 0) = 22m−2 + 3 · 2m−2 − (tr2(x1) + tr3(y2) + Q(z1))2m−1

F (n, 0, 0, 1) = 22m−2 − 2m−2 + (−tr2(x1) + tr3(y2) + Q(z1))2m−1

F (n, 0, 1, 0) = 22m−2 − 2m−2 + (tr2(x1)− tr3(y2) + Q(z1))2m−1

F (n, 0, 1, 1) = 22m−2 − 2m−2 + (tr2(x1) + tr3(y2)−Q(z1))2m−1.

If 3 divides n then:

F (n, 0, 0, 0) = 22m−2 + 2m − (tr2(x1) + tr3(y2) + 2Q̄(z̄2))2m−1

F (n, 0, 0, 1) = 22m−2 − 2m−1 + (−tr2(x1) + tr3(y2) + 2Q̄(z̄2))2m−1

F (n, 0, 1, 0) = 22m−2 − 2m−1 + (tr2(x1)− tr3(y2) + 2Q̄(z̄2))2m−1

F (n, 0, 1, 1) = 22m−2 + (tr2(x1) + tr3(y2)− 2Q̄(z̄2))2m−1.

Proof. (1) We first note that

{u1, . . . , um, x1} meets the hypotheses of (2.4) for q = tr2
{u2, u1, u3, . . . , um, y2} meets the hypotheses of (2.4) for q = tr3

{u1, u1 + u2, u3 . . . , um, z1} meets the hypotheses of (2.4) for q = Q.

Applying (2.4) yields

F (n, 0, 0, 0) + F (n, 0, 0, 1) = N(tr2 = 0) = 22m−1 + 2m−1 − 2tr2(x1)2m−1

F (n, 0, 0, 0) + F (n, 0, 1, 0) = N(tr3 = 0) = 22m−1 + 2m−1 − 2tr3(y2)2m−1

F (n, 0, 0, 0) + F (n, 0, 1, 1) = N(Q = 0) = 22m−1 + 2m−1 − 2Q(z1)2m−1

F (n, 0, 0, 0) + F (n, 0, 0, 1) + F (n, 0, 1, 0) + F (n, 0, 1, 1) = 22m.

The sum of the first three minus the fourth gives a formula for 2F (n, 0, 0, 0). The others
are easily found.

(2) Here Q is degenerate. Note that {ū1, ū3, . . . , ūm, z̄2} meets the hypothesis of (2.4)
for q = Q̄. The two variables associated to C can take any value without affecting the
value of Q. Hence

N(Q = 0) = 4N(Q̄ = 0)

= 4(22(m−1)−1 + 2(m−1)−1 − 2Q̄(z̄2)2(m−1)−1)

= 22m−1 + 2m − 2Q̄(z̄2)2m.

Replace the right-hand side of the third equation above with this expression and solve. ¤
To complete the count we have:
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Lemma 2.6.

F (n, 0, ε2, ε3) =
{

F (n, 1, ε2, ε2 + ε3), if m is even

F (n, 1, 1 + ε2, 1 + ε2 + ε3), if m is odd.

Proof. From (1.1) we have for α ∈ K1

B2(1, α) = tr1(1 · α) + tr1(1)tr1(α) = 0.

B3(1, α) = tr2(1)tr1(α) + tr2(α)tr1(1) + tr1(α2 + α)

= tr2(α).

Hence

tr2(1 + α) = tr2(1) + tr2(α)

tr3(1 + α) = tr3(1) + tr2(α) + tr3(α).

Since

tr2(1) ≡
(

n

2

)
(mod 2) and tr3(1) ≡

(
n

3

)
(mod 2),

we have tr2(1) = 1 iff tr3(1) = 1 iff m is odd. The result follows. ¤

3. The construction.
We will now give an explicit construction of u1, . . . , um, x1, y2, z1 and z̄2. Let B =

{α, α2, . . . , α2n−1} be a self-dual normal basis for K, see [3, 5.2.1] for the existence of such
a basis. Here self-dual means that

tr1(α2i

α2j

) = δij .

We will use:

Proposition 3.1. Let γ = c0α + c1α
2 + · · ·+ cn−1α

2n−1 ∈ K1.

(1) tr1(γ) ≡ c0 + c1 + · · ·+ cn−1 (mod 2) is zero.
(2) tr2(γ) ≡ 1

2 (c0 + c1 + · · ·+ cn−1) (mod 2).
(3) tr3(γ) ≡ cn−1c0 + c0c1 + c1c2 + · · ·+ cn−2cn−1 (mod 2).

Proof. (1) is [2, Lemma 9]. (2) is implicit in [2]. Namely, [2, Theorem 5] gives

tr2(γ) ≡
∑

0≤i<j<n

cicj (mod 2).
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Now follow the proof of [2, Lemma 7]. Let k be the number of ci equal to 1. The sum∑
cicj counts the number of pairs of 1’s in the string c0c1 . . . cn−1. Thus

∑

0≤i<j<n

cicj =
(

k

2

)
.

Since k is even by (1), we have tr2(γ) = 0 iff k ≡ 0 (mod 4), which yields (2).
For (3) we have by (1.4)

tr3(γ) = tr1(γ3) = tr1(γγ2)

= tr1((c0α + c1α
2 + · · ·+ cn−1α

2n−1
)(cn−1α + c0α

2 + · · ·+ cn−2α
2n−1

)).

Since tr1(α2i

α2j

) = δij we have the result. ¤

Proposition 3.2. Let β = b0α+b1α
2+· · ·+bn−1α

2n−1
and γ = c0α+c1α

2+· · ·+cn−1α
2n−1

be in K1.

(1) B2(β, γ) = b0c0 + b1c1 + · · ·+ bn−1cn−1 (mod 2).
(2) B3(β, γ) = b0(cn−1 + c1) + b1(c0 + c2) + · · ·+ bn−1(cn−2 + c0) (mod 2).
(3) BQ(β, γ) = b0(cn−1 + c0 + c1) + b1(c0 + c1 + c2) + · · · + bn−1(cn−2 + cn−1 + c0)

(mod 2).

Proof. From (1.1), B2(β, γ) = tr1(βγ), B3(β, γ) = tr1(βγ2+β2γ) and BQ(β, γ) = tr1(βγ+
βγ2 + β2γ). Now compute using the fact that tr1(α2i

α2j

) = δij . ¤

For γ = c0α + c1α
2 + · · ·+ cn−1α

2n−1
we abuse notation and write γ = (c0c1 . . . cn−1).

We use ∗ for concatenation and n(s) for the concatenation of n copies of (s). We assume
n ≥ 7.

Let

u1 = (00001) ∗ (n− 6)(0) ∗ (1)

u2 = (1111) ∗ (n− 4)(0)

uj = (1001) ∗ (j − 3)(0) ∗ (1) ∗ (n− 2j)(0) ∗ (1) ∗ (j − 3)(0), j = 3, . . . , m

x1 = (1100) ∗ k(1) ∗ (n− k − 4)(0), k = 2
⌊

n− 3
4

⌋

y2 =





(11101) ∗ (2t− 1)(1001), if n = 8t + 1
(110) ∗ 2t(1100), if n = 8t + 3
(11101) ∗ 2t(1001), if n = 8t + 5
(101) ∗ (2t + 1)(1100), if n = 8t + 7.

If 3 does not divide n then set

z1 =





(1001) ∗ (2t− 1)(101) ∗ 2t(100), if n = 12t + 1
(00) ∗ (2t + 1)(101) ∗ 2t(001), if n = 12t + 5
(0000) ∗ (2t + 1)(110) ∗ 2t(010), if n = 12t + 7
(11010) ∗ (2t + 1)(110) ∗ (2t + 1)(100), if n = 12t + 11.
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If 3 does divide n then set

z2 =
{

(000) ∗ 2t(011) ∗ 2t(010), if n = 12t + 3
(000010) ∗ 2t(110) ∗ (2t + 1)(100), if n = 12t + 9.

Proposition 3.3. Let n ≥ 7.

(1) u1, . . . , um, x1, y2 and z1 satisfy conditions (1)-(7) of the last section.
(2)

tr2(x1) = tr3(y2) =
{

0, if m ≡ 0, 3 (mod 4)
1, if m ≡ 1, 2 (mod 4).

(3) If 3 does not divide n then Q(z1) = tr2(x1).
(4) If 3 does divide n then conditions (8) and (9) of the previous section hold. And

Q̄(z̄2) = tr2(x1) + 1.

Proof. (1), (2) and (3) consist of several easy computations using (3.1) and (3.2). We do
the computations involving x1, namely condition (5) of the previous section and statement
(2). Notice that u1 = α16 + α2n−1

, u2 = α + α2 + α4 + α8, uj = α + α8 + α2j+1
+ α2n−j+2

,
for j = 3, . . . , m, and

x1 = α + α2 +
m+1∑

i=4

α2i

+ εα2m+2
,

where

ε =
{

0, if m is even
1, if m is odd.

Now, x1 and u1 match only at α16 so by (3.2), B2(u1, x1) = 1. In particular, x1 /∈ U . Next,
x1 and u2 match only at α and α2 so that B2(u2, x1) = 0. Also, x1 and uj , 3 ≤ j ≤ m,
match only at α and α2j+1

so that B2(uj , x1) = 0. This proves condition (5). Finally, by
(3.1),

tr2(x1) ≡ 1
2 (1 + 1 + (m− 2) + ε) ≡ 1

2 (m + ε) (mod 2)

=
{

0, if m ≡ 0, 3 (mod 4)
1, if m ≡ 1, 2 (mod 4).

Suppose 3 divides n. One checks that the non-zero elements of C are

γ1 = n
3 (011) γ2 = n

3 (101) γ3 = n
3 (110).

Now γ2 and γ3 are not in U since B2(γ2, u2) = B2(γ3, u2) = 1. But γ1 is in U , in fact,

γ1 = u2 +
∑

i≡0,1 (mod 3)

ui.

This also checks condition (8) of §2. For condition (9), take z̄2 = z2 + (C ∩ U). ¤
Now simply plug the values from (3.3)(2) and (3.3)(3) into the formulas of (2.5) and

(2.6) to get:
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Theorem 3.4. (1) For n = 2m + 1 odd, n > 1 and 3 not dividing n, we have

F (n, ε1, ε2, ε3) = 2n−3+

m 000 001 010 011 100 101 110 111
0 3 · 2m−2 −2m−2 −2m−2 −2m−2 3 · 2m−2 −2m−2 −2m−2 −2m−2

1 −3 · 2m−2 2m−2 2m−2 2m−2 2m−2 2m−2 2m−2 −3 · 2m−2

2 −3 · 2m−2 2m−2 2m−2 2m−2 −3 · 2m−2 2m−2 2m−2 2m−2

3 3 · 2m−2 −2m−2 −2m−2 −2m−2 −2m−2 −2m−2 −2m−2 3 · 2m−2

where the m is listed modulo 4.
(2) For n = 2m + 1 odd, n > 1 and 3 dividing n, we have

F (n, ε1, ε2, ε3) = 2n−3+

m 000 001 010 011 100 101 110 111
0 0 2m−1 2m−1 −2m 0 2m−1 −2m 2m−1

1 0 −2m−1 −2m−1 2m −2m−1 2m −2m−1 0
2 0 −2m−1 −2m−1 2m 0 −2m−1 2m −2m−1

3 0 2m−1 2m−1 −2m 2m−1 −2m 2m−1 0

where again the m is listed modulo 4.

Note that our proof is only valid for n ≥ 7. The above table however is also valid for
n = 3, 5, which must be checked directly.

4. Irreducible polynomials.
We get formulas for the number of irreducible polynomials over GF (2) with the first

three coefficients prescribed, P (n, ε1, ε2, ε3), from the inversion formulas of [8, Theorem 2].
For n odd these simplify slightly to:

P (n, 0, ε2, ε3) =
1
n

∑

d|n
µ(d)F (n/d, 0, ε2, ε3)

P (n, 1, ε2, ε3) =
1
n

∑

d|n
d≡1

µ(d)F (n/d, 1, ε2, ε3) +
1
n

∑

d|n
d≡3

µ(d)F (n/d, 1, 1 + ε2, 1 + ε3).

The congruences here are modulo 4. The tables in (3.4) for F do not include the case
n = 1 but these may arise in these inversion formulas. The values are F (1, 0, 0, 0) =
F (1, 1, 0, 0) = 1 and the six others are 0.
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As an example, suppose n = 9. The formulas become:

P (9, 0, ε2, ε3) = 1
9 (F (9, 0, ε2, ε3)− F (3, 0, ε2, ε3))

P (9, 1, ε2, ε3) = 1
9 (F (9, 1, ε2, ε3)− F (3, 1, 1 + ε2, 1 + ε3)).

From the tables in (3.4) we get:

P (9, 0, 0, 0) = 7 P (9, 1, 0, 0) = 7

P (9, 0, 0, 1) = 8 P (9, 1, 0, 1) = 8

P (9, 0, 1, 0) = 8 P (9, 1, 1, 0) = 5

P (9, 0, 1, 1) = 5 P (9, 1, 1, 1) = 8.

These may be verified from Table C in [6, p. 553].
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