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Modeling History Dependence in Network-Behavior Coevolution

Robert J. Franzese Jr.∗ Jude C. Hays† Aya Kachi‡§

Draft: July 21, 2010

Abstract

Spatial interdependence—the dependence of outcomes in some units on those in others—is
substantively and theoretically ubiquitous and central across the social sciences. Spatial as-
sociation is also omnipresent empirically. However, spatial association may arise from three
importantly distinct processes: common exposure of actors to exogenous external and internal
stimuli, interdependence of outcomes/behaviors across actors (contagion), and/or the putative
outcomes may affect the variable along which the clustering occurs (selection). Accurate in-
ference about any of these processes generally requires an empirical strategy that addresses
all three well. From a spatial-econometric perspective, this suggests spatiotemporal empirical
models with exogenous covariates (common exposure) and spatial lags (contagion), with the
spatial weights being endogenous (selection). From a longitudinal network-analytic perspective,
we can identify the same three processes as potential sources of network effects and network
formation. From that perspective, actors’ self-selection into networks (by, e.g., behavioral ho-
mophily) and actors’ behavior that is contagious through those network connections likewise
demands theoretical and empirical models in which networks and behavior coevolve over time.
This paper begins building such modeling by, on the theoretical side, extending a Markov type-
interaction model to allow endogenous tie-formation, and, on the empirical side, merging a sim-
ple spatial-lag logit model of contagious behavior with a simple p-star logit model of network
formation, building this synthetic discrete-time empirical model from the theoretical base of
the modified Markov type-interaction model. One interesting consequence of network-behavior
coevolution—identically: endogenous patterns of spatial interdependence—emphasized here is
how it can produce history-dependent political dynamics, including equilibrium phat and path
dependence (Page 2006). The paper explores these implications, and then concludes with a
preliminary demonstration of the strategy applied to alliance formation and conflict behavior
among the great powers in the first half of the twentieth century.
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1 Introduction

From a network-analytic perspective: Networks are ubiquitous. Whether speaking of friendship
or familiarity relations among individuals, trade or conflict relations among states, predator-prey
relations in ecosystems, or any other sets of relations (a.k.a.: ties, connections, edges, etc.) among
sets of units (a.k.a.: agents, actors, nodes, etc.), networks are essentially everywhere. And networks
usually matter. Network effects, arising from various structural aspects of the network, or from
actors’ positions in the network, or from other actors through the network of connections, often
importantly impinge upon the behaviors, opinions, outcomes, or other characteristics of units.
Networks are also commonly endogenous. The units within some particular network typically
choose or influence their connections, which are the edges that structure the network. A large
challenge empirically for social scientists interested in the theory and substance of network effects
and network formation is that network effects on nodes and the formation of edges between nodes
tend to be mutually endogenous and, at the same time, both may be caused by outside factors, i.e.,
by a third mechanism that we have elsewhere called common exposure (Franzese and Hays 2006,
2007b, 2008b,a; Hays et al. 2010). In one archetypal application of social-network analysis, for
example, we may observe clusters of smokers and of nonsmokers because smoking is contagious—
one acquires the habit from friends or avoids acquisition because one’s friends abstain—or because
smokers choose to hang with smokers and nonsmokers with nonsmokers: homophily by behavior-
type—or we may observe clustering of smokers and nonsmokers because both the behavior of
(non)smoking and the connections between mutually (non)smoking behavior-types are caused by
actors’ common exposure to outside conditions, such as shared sociodemographics that affect both
the propensity to smoke and friendship formation. To give a more political example (expanded from
Koger et al. (2009, 2010)): representatives who sit together may vote similarly because they sit by
party and so have similar constituencies (common exposure), or because they talk and influence
each other (contagion), or they may choose to sit together because they know and like each other,
which may be in some part because they vote similarly (selection). Or, to give the example from
our empirical application, international conflict may be contagious through alliance connections,
but nations that have similar conflict-behavior patterns are also more likely to ally (selection),
and both alliance and conflict patterns may be affected the same exogenous conditions to which
particular nation-state dyads are exposed, such as their contiguity.

We have made these arguments before from a spatial-econometric perspective (Franzese and Hays
2006, 2007b,a, 2008b,a, 2009; Hays et al. 2010): As Tobler’s Law Tobler (1970) aptly sums: “Ev-
erything is related to everything else, but near things are more related than distant things.” Fur-
thermore, as Beck et al. (2006)’s pithy title reminds in corollary: “Space is More than Geography”.
The substantive content of the proximity in Tobler’s Law, and so the pathways along which in-
terdependence between units may operate, extends well beyond physical distance, contact, and
contiguity. Long literatures in regional science, geography, and sociology carefully elaborate from
those disciplinary perspectives the multifarious mechanisms by which contagion may arise. Sim-
mons and colleagues (Simmons and Elkins 2004; Elkins and Simmons 2005; Simmons et al. 2006)
offer a list for international relations: coercion, competition, learning, and emulation (to which
one should add relocation diffusion (Hägerstrand 1967, 1970). In fact, as, e.g., Brueckner (2003)
showed, strategic interdependence, i.e., contagion, arises any time some unit(s)’s actions affect the
marginal utility of other(s)’s actions. Given such externalities, i ’s utility depends on both its policy
and that of j. Theoretically, substantively, then, spatial interdependence is ubiquitous. Empirically,
the clustering or correlation of outcomes on some dimension(s) of proximity, spatial association, is
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also obvious across a vast array of substantive contexts. However, and this is the crux of the great
empirical challenge/opportunity represented by the substantive and theoretical ubiquity of interde-
pendence, outcomes may evidence spatial association for at least these three distinct reasons. First,
units may be responding similarly to similar exposure to similar exogenous internal/domestic or
external/foreign stimuli (common exposure), or, second, unit(s)’s responses may depend on others’
responses (contagion, one sort of network effect). We may find states’ adoptions of some economic
treaty, for example, to cluster geographically or along other dimensions of proximity, e.g., bilateral
trade-volume, because proximate states experience similar exogenous domestic or foreign political-
economic stimuli or because each state’s decision to sign depends on whether proximate others
sign. A third possibility arises when the putative outcome affects the variable along which clus-
tering occurs (selection or network formation). Treaty signatories might also cluster according to
some variable on which we observe their proximity (volume of trade between them) because being
co-signatories affects that variable (spurs bilateral trade).

Whether from the network-analytic or the spatial-econometric perspective, accurately distinguish-
ing and gauging empirically the role and strength of these alternative processes—common expo-
sure, contagion, and selection; a.k.a., node effects, network effects, and network formation—is
difficult, because the processes manifest empirically similarly, but also crucial because the theo-
ries and policy-intervention advice supported by any observed spatial-cum-network phenomenon
hinges critically on whether (or the relative degrees to which) the observed phenomena arise from
contagion/network-effects, selection/network-formation, or common exposure. The substance of
the situations and how policies might best intervene in them vary critically depending on whether
state signatories cluster in pockets of dense trade relations because those states tend to experi-
ence similar exogenous conditions that favor signing, or because the signing by some states spurs
their trading partners to sign, or because the treaty fosters trade between co-signatories. Likewise,
whether (non)smokers/(non)smoking clusters in social networks because having smoking or non-
smoking friends spur one to adopt the behavior also, because (non)smokers tends to acquire friends
who also (do not) smoke, or because some clustered exogenous internal or external conditions,
some sociodemographics for instance, affect both one’s (non)smoking behavior and with whom one
becomes friends.

Moreover, as we have also argued (and to some extents demonstrated, analytically, by simulation,
and/or in applications) elsewhere, drawing effective distinctions and obtaining accurate estimates
empirically of any of these separate processes requires great care and attention to specification
(including measurement) of all three of components. That is, regardless of whether one’s interests
center on network effects, the contagiousness of smoking for instance, or on network formation,
what determines trade or conflict patterns for instance, one must model well both the network-
effects/contagion and the network-formation/selection, and also whatever relevant external factors
important to either process.1

1Nor, generally, will causal-inference strategies based on the potential-outcomes framework and assumptions of
SUTVA salvage accurate estimation of any of these causal processes without adequate address of all three. SUTVA,
in a nutshell, requires that (i) the probability of one unit receiving/taking treatment, (ii) the (constant) magnitude of
the treatment, and (iii) the effect of treatment are independent of each other and of any other unit(s) receiving/taking
treatment, the sizes of those units’ treatments, or the effects of those treatments in those others. These precluded
situations are the essence spatial-cum-network effects. “The two most common ways in which SUTVA can be
violated appear to occur when (a) there are versions of each treatment varying in effectiveness or (b) there exists
interference between units” (Rubin 1990:, p. 282). The first of these is called spatial heterogeneity, the second
is spatial interdependence: i.e., these are merely the network or spatial effects argued in those literatures to be
ubiquitous and central to all social phenomena (at least).
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Our project here aims to develop a framework for theoretical modeling and empirical specification,
estimation, and interpretation of social phenomena with (common exposure and) simultaneous
contagion and selection, that is, of mutually endogenous network effects and network selection,
i.e., of the coevolution of actor behavior and their network connections. Identically from a spatial-
econometric perspective, this means models with exogenous covariates reflecting common exposure,
with spatial-lag contagion, and with patterns of spatial connectivity (spatial weights), i.e., a net-
work, which are (at least in some part) endogenous to behavior. Our theoretical model of such
processes builds from Markov type-interaction models in the extant literature, which explain evolv-
ing and steady-state profiles of actor types based on probabilities of type-switching that depend on
the previous-period distribution of actor types depending on some set of exogenously given (pos-
sibly exogenously varying) connections between actors. These models parallel from the theoretical
side extant empirical spatial-lag models of spatial econometrics, notably in the exogeneity of the
connectivity matrix, i.e., of the network of connections between actors.2 In other words, these mod-
els expressly disallow network-formation/selection. Accordingly, we extend these extant Markov
type-interaction models to incorporate endogenous determination of the connections between units,
connections being made or broken endogenously (to an extent that we can vary with parameters of
the model) by the previous behavior-types of those units. Likewise, empirically, we merge extent
spatial-lag models of interdependent behavior—specifically, a very simple version of the spatial-lag
logit model3—which have typically maintained exogenous connections between units, with extent
models of network formation, p-star models—specifically the simplest p-star model of indepen-
dent ties4—which have typically maintained exogenous unit characteristics, including behaviors,
as explanators of network ties. Theoretically and empirically, the emergent models are ones of
network-behavior coevolution.

The combination of network effects, specifically of behavioral contagion,5 and of network formation
with self-selection of actors into networks, specifically of actors’ self-selection of the ties between
actors according to some (dis)similarity or other function of the actors’ behaviors or types (e.g.,
homophily), implies that networks and behavior coevolve over time. Both network effects and net-
work formation, i.e., both contagion and selection, are ubiquitous and frequently important across
the social sciences (as are the usual plethora of exogenous conditions relevant to both). Therefore,
in longitudinal-network or spatiotemporal analyses, scholars must take seriously the modeling of
all three processes—common exposure, contagion, and selection—if they are to understand the
nature of and properly model and estimate the structure of the coevolutionary dynamics in their
data, i.e., if they are to explain accurately the network formation and dynamics and the behavioral
decision-making evidenced in their data. In this paper, we emphasize that one of the more inter-
esting consequences of such network-behavior coevolution is that it can produce history-dependent
political dynamics, including what (Page 2006) defines as phat, path, and/or equilibrium depen-

2In practice, most theoretical Markov type-interaction models have employed very simple, uniform and universal,
and therefore anonymous, connections between actors; i.e., all actors are equally or equiprobably connected to all
others and therefore are anonymously exchangeable in this sense. The extension of our model to endogenous selection
of ties on the basis of past behavior-types must foresake this anonymity; reformulating the model to keep track of
these individuals and dyads itself proved a nontrivial extension.

3For now, to start, we employ only a time lag of the spatial-lag dependent variable, and assume this an adequate
model of the spatiotemporal dynamics of contagion, thereby evading the multidimensional-integration complications
of simultaneous spatial-lags in latent-variable models (see, e.g., Franzese and Hays (2009); Hays et al. (2010)).

4Given the assumed conditional independence of the network ties across ties and actors in that simplest model—
again, for now, to start—this amounts very simply to a set of 1

2
N(N − 1) simple logits.

5As previously mentioned, network effects more generally include (i) effects of the network structure on nodes,
(ii) effects of nodes’ positions within the network on nodes’ behaviors, and effects through the network connections
of alter on ego. We focus, for now at least, on the last: contagion.
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dence.6 We first establish theoretically that systems with coevolution can easily generate multiple
equilibria (i.e., multiple steady states of the system), using the aforementioned modified Markov
type-interaction model extended to allow endogenous tie-formation. The potential of multiple equi-
libria raises a very difficult empirical question—how sensitive are equilibrium distributions (over
types) to the past states? Nor are the stakes in this question merely academically nontrivial.
What can be achieved by potential policy interventions today and how we should design policy
interventions for the future depend critically on whether and how history matters in phat- or path-
dependent ways for the equilibrium attained in the society. To evaluate the empirical magnitude
and substantive and statistical significance of coevolutionary dynamics, therefore, we combine as
just noted the spatial-lag logit and p-star logit models to develop discrete-time Markov models that
can estimate the empirical magnitude and significance of any coevolutionary dynamics in the data.
One strength of this empirical approach lies in its direct connection with the theoretical Markov
type-interaction model, which allows us to assess the full substantive content of history dependence
in observed data and which can provide a foundation for developing statistical tests for history
dependence generated by coevolution.

The most-developed extant approach to network-behavior coevolution—also, to our knowledge, the
only extant approach—is Snijders and colleagues’ (Snijders 1997, 2001, 2005; Steglich et al. 2006;
Snijders et al. 2007; Ripley and Snijders 2010) stochastic actor-oriented models for longitudinal
social network-analysis. In this paper, we introduce and briefly explain Snijders and colleagues’
impressive coevolutionary actor-oriented longitudinal-network models and estimation techniques,
Siena (Simulation Investigation for Empirical Network Analysis), and compare them to our own,
much simpler, logistic-model estimation-strategy. Siena, originally implemented in the stand-alone
Windows software, Siena, and now also available as an R package, RSiena, estimates by simulated
method-of-moments certain continuous-time Markov models of network and/or behavior change
(and of the actors chosen to make these changes and the inter-observational rates of these changes, if
and as desired). We compare our simple estimation strategy, designed with our discrete-time model
of endogenous coevolution in mind, to RSiena estimation of Snijders and colleagues’ continuous-
time stochastic actor-oriented coevolution model in Monte Carlo analysis of data generated from
code that we wrote to replicate the exact process corresponding to the RSiena model we estimate.
To our knowledge, these may be the first Monte Carlo evaluations of the Siena estimator (simpler
coevolutionary models have been evaluated to some extent in, e.g., Leenders (1995, 1997)), and
these seem more certainly to be the first comparison of Siena to an alternative (perhaps the first
alternative).

The rest of the paper proceeds as follows. In the next section, we present a theoretical Markov
type-interaction model for N actors, modified to allow endogenous tie-formation. In the third
section, we propose our statistical model, specified to reflect the theoretical model proposed in the
preceding section, and compare it to Siena. The fourth section provides Monte Carlo evaluation and
comparison of the performance of Siena and our simple logistic alternative, in data generated by the
process specified in the RSiena estimator. The fifth section conducts an illustrative application that
examines the coevolution of the military alliances and conflict behavior of major powers in the first
half of the twentieth century, again comparing our proposed model and estimation strategy with
Snijders and colleagues’ coevolutionary actor-oriented longitudinal-network model, Siena (Snijders
2005; Steglich et al. 2006; Snijders et al. 2007; Ripley and Snijders 2010). The concluding section

6For an exploration of the current state of formal-theoretical and empirical exploration of path dependence, a
review might include Jackson and Kollman (2007); Jackson (2008); Page (2006, 2007); Walker (2007).
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offers discussion and an agenda for important next steps in this project.7

2 A Discrete-Time Markov-Chain Theoretical Model of Network-
Behavior Coevolution

In this section, we introduce a relatively simple theoretical model of behavior-shaping (network
contagion effects) and network-formation (selection) that results in a set of Markov chains. In
this model, a group of actors are of certain types and their types change over time as actors are
influenced by other actors (and exogenous factors). Such contagion of actors’ types occurs only
if the actors are connected. We employ the explicit notion of networks (or spatial weights) to
characterize such connectedness. Simultaneously, the connectivity of actors also changes over time,
not only due to exogenous factors, but also as a function of types taken by actors in the previous
period. We particularly focus on behavior-type homophily (or heterophily), i.e., where network
ties are more (or less) likely to form among actors whose behavior-types are more (or less) similar
in the previous period. The key features of and the additional sources of complexity due to this
extension of extant type-interaction models are the following: (1) it introduces the details of which
actor interacts with which to represent the effects—specifically, the contagion effects8—of networks
on actors’ behavior and (2) it describes how those interaction patterns, i.e., the networks cum
spatial-weights matrices, change endogenously over time based on actors’ types in the previous
time period, which reflects homophily by behavior-type.9

7NOTE: THIS IS VERY MUCH A WORK IN PROGRESS! In future work, we intend to compare more fully
our empirical model and estimation strategy to Snijders and colleagues’ Siena, including Monte Carlo simulation
of properties related to comparable estimates of effects, dynamics, and steady-state effects. For now, the fourth
section contains only evaluation of Siena parameter -estimate bias/consistency, efficiency, standard-error and test-
size accuracy, and test power; evaluation of our estimator’s standard-error accuracy, test-size, and power (because
the DGP reflected a different model than our estimator and we have not yet derived the corresponding correct
parameter values); and a comparison of relative standard-error accuracy, and test power and size-accuracy. We also
intend to explore seemingly-unrelated and multivariate-logit extensions of our simple estimator that should enhance
variance-covariance estimates and parameter-estimate efficiency, respectively, at relatively low added complexity. We
also hope to add consideration of simultaneous interdependence across in network-tie formation and in behavioral
choice, although this will come only at much greater added-complexity. Finally, we see these particular models,
with contagion and selection both occuring through binary variables observed by the actors and analysts, as only
one case of a family of models much in need of development for the diversity of social-science coevolution contexts,
models in which behavior or ties may be binary or continuous quantities, contagion and selection may occur through
actors’ observed or latent quantities, and analyst may observe or not observe these quantities. Explore the proposed
Kalman filter EM algorithm for the hard model. On the theoretical side, we also have yet to characterize fully the
forms of history dependence—outcome and equilibrium state, phat, path dependency (Page 2006)—that emerge from
alternative parameter and starting values and the mappings from the latter to the former. We review this long list
of next tasks in the conclusion.

8As previously mentioned, network effects more generally include three sorts of effects: (i) effects of the network
structure (density or hub-and-spoke structure for instance) on nodes, (ii) effects of nodes’ positions within the network
(their centrality or betweenness for example) on nodes’ behaviors, and effects through the network of connections of
other nodes’ characteristics or behaviors on nodes’ behaviors (of alter on ego in network terminology). We focus, for
now at least, at first, on the last of these, commonly labeled contagion in much of the relevant literatures.

9In general, homophily in the network analysis literature simply refers to the phenomenon in which actors are
more likely to be connected (friends) with others who are similar to themselves. Similarity can be in various different
characteristics of actors. Earlier discussions of homophily, including one of the earliest by Lazarsfeld and Merton
(1954), focused on the similarity in actor-specific attributes, such as race, age, gender and occupation (for more
thorough discussions of earlier studies of homophily, see McPherson et al. (2001)). Note that in the studies of
behavioral formation, these characteristics are treated as exogenous. However, similarity in the explained behavior
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We then demonstrate that the model can produce long-run equilibria that depend both on the
starting values and the history. By equilibrium, we mean consistency between actors’ behavioral
types and their behavior-switching rules (i.e., steady state or fixed point). In coevolution models,
multiple equilibrium (distributions of) types are consistent with a single behavior-switching rule.
The particular type/behavioral-rule combination that emerges at a given point in time is a function
of actors’ prior types. In this way, the evolution of behavioral types is history dependent and may
be specifically phat, path, or equilibrium dependent.10

2.1 A Minimal Coevolutionary Model

The complexity of models with endogenous behavior, which is contagious via connections between
actors, and endogenous connections, which depend in turn on behavior through actors’ homophiletic
preferences, grows rapidly as terms and parameters accumulate. To isolate and clarify the critical
source of history dependence with some numerical examples, we focus first on an extremely simple
theoretical model, just sufficient to incorporate both contagion in node behavior and behavioral
homophily in network-tie formation, and show that and how this suffices to generate equilibrium
dependency.

Consider the following discrete-time longitudinal process with N actors. Let i ∈ {1, · · · , N} denote
these N actors and t ∈ {1, 2, · · · } denote time periods. We distinguish between the behavior of an
actor and her behavioral type (or simply type), understanding the latter as the actors’ probability of
taking action 1. In our initial models here, we assume that behavior is observed and dichotomous,
whereas behavior-type is continuous and unobserved by analysts but observed by actors, with
contagion and selection occurring by type.11 In each period, actors choose between behavior 1 and
0, e.g., smoking or not, voting or not, taking an aggressive interstate behavior or not, democratizing
or not, and so forth. We denote behavior of actor i in period t by sit ∈ {1, 0}. Behavioral type
is the probability that an actor chooses behavior 1. We denote the behavioral type of actor i in
period t by σit ∈ [0, 1]. The state of the system that actors can observe at the end of period
t is therefore an N -dimensional vector of types, σt = (σ1t, · · · , σNt), a corresponding vector of
behaviors, st = (s1t, · · · , sNt),12 and a matrix of latent and observed ties between actors to be
described subsequently.

itself could also be an important determinant of network shaping. This endogenous source of homophily (endogenous
to the behavior that is to be explained in the model) is the one we emphasize in this paper. Lazer (2001), for example,
is among the few studies to our knowldege that addresses this issue of homophily in behavior. Also, we consider
a homophiletic dynamic that affects both the forming and the severing of ties among actors. (As Noel and Nyhan
(2010) show, ignoring effects in one direction importantly diminishes the consequences of misspecifying coevolutionary
processes as only involving selection or contagion).

10As previously noted, ultimately, we aim to characterize more fully the forms of history dependence—outcome
and equilibrium state, phat, path dependency (Page 2006)—that emerge from alternative parameter and starting
values and the mappings from the latter to the former.

11As previously mentioned, we envision eventually a range of possible models, with continuous or discrete behavior,
observed or unobserved by analysts and/or by actors, with contagion or selection by behavior or type. The theoretical,
substantive, and empirical appeal of these alternative models would presumably vary with the application context.
We begin with the model described here because we believe it an appealing one for the application to be offered in
section five, because this theoretical model maps well into the empirical model to be offered in section three and
evaluated and compared to Siena in section four, and because we must begin somewhere.

12The behaviors, st, are less prominent in the theoretical model here than in the empirical models to come since
this theoretical model has type observed and the basis of contagion and selection.
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2.1.1 The Behavior-Type Markov Chains

We focus first on the Markov chains that explain behavioral type, accounting the contagion effects
of networks among the N actors. Equation (1) describes the transition of actor i’s type from period
t to t+ 1. This system results in a set of N Markov chains: Pr(si,t+1 = 1|sit)

Pr(si,t+1 = 0|sit)

′ =

 σi,t+1

1− σi,t+1

′

=

 σit

1− σit

′
 σit 1− σit

1−
[
c1i(1− σit) + (1− c1i)

∑
j 6=i(δij(1−σj))

N−1

]
c1i(1− σit) + (1− c1i)

∑
j 6=i(δij(1−σj))

N−1


=

 σ1t

1− σ1t

′ πσ11 πσ12(= 1− πσ11)

πσ21(= 1− πσ22) πσ22

 .

(1)

The second matrix on the right-hand side of the second and third lines is the transition-probability
matrix. This matrix is premultiplied by the (row) vector of last-period’s types to get this period’s
types. For example, cell (1, 1) of this matrix represents the probability that actor i chooses behavior
1 given that i chose 1 in the past period, Pr(si,t+1 = 1|sit = 1). Note that the probability of
transitioning from either one specific state to some new state is 1; therefore, the transition matrix
is row (or right) stochastic: the elements in each row must sum to 1. For a dichotomous-choice
model, therefore, defining any one element of each row, the probabilities of staying in state 1 or 0
given in cells (1, 1) and (2, 2) for instance, suffices to complete the transition matrix.

We separate two component terms that together determine a switching probability—the probability
that an actor’s behavior at t + 1 becomes si,t+1 or 1 − si,t+1 from si,t or 1 − si,t. First, we have
a temporal autoregressive component of the probability, which depends on her time-t latent type.
An actor is more likely to maintain behavior 1 at t+ 1 when her latent type at t, σit, is (closer to)
1. The first row of the transition matrix—whose columns contain, respectively, the “staying” and
“switching” probabilities from behavior 1—consists only of this autoregressive term. In the second
row, which relates the probabilities of staying or switching from 0, element (2, 2), the probability
of staying in state 0, has two terms. The first term, c1i(1− σit), captures the autoregressive effect,
with the coefficient c1i ∈ [0, 1] indicating the relative role of autoregression for determining the
(non-)switching probability for actor i to stay with behavior 0 the next period, t+ 1. We introduce
the second term in this “staying” probability to reflect contagion (i.e., spatial autoregression).

Each actor’s behavioral decisions (i.e., ego’s choices, in network-analytic terminology) can also be
influenced by others’ (alters’) types; this is the contagion in our terminology. Actors in a given
dyad (i and j, where i 6= j) influence each other’s behavioral type only if they are connected. This
connectivity among actors, the ties between them, could be friendship, military alliance, trade, and
so on. Let δij,t ∈ [0, 1] denote the probability that a tie exists between the two actors in dyad ij in
period t; we can also interpret this probability, isomorphically in this model, as the strength of the
tie.13 Ties are undirected in this model; undirected ties are equivalent to symmetric spatial-weights
matrices.14 In this N -actor system, we express the strength of contagion, the extent to which

13These alternatives are mathematically identical in this particular model because contagion and selection occur by
the continuous, observed type and strength, not the dichotomous, unobserved behavior and tie. In models with other
combinations of these conditions, the alternative interpretations may differ slightly due to the distinction between
a behavior or tie of strength 1 with probability p and strength 0 with probability 1 − p versus a behavior or tie of
constant strength p.

14Extension to the directed-network/asymmetric-weights-matrices case would greatly complicate the notation and
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others’ types influence i’s type, as
∑N

j=1,(j 6=i)(δijσj)/(N − 1), where we have weighted alters’ (j’s)
influence on ego (i) by (N − 1)−1 to bound the value of this positive term by 1.15 Notice how, by
this construction, the weight (1− c1i) captures the extent to which the types of others (to whom i
is connected) influence i’s behavioral choice in t+1. This gives us parameters within the transition
model by which to vary the overall strength of contagion. For instance, in an extreme case where i
chooses 1 with probability c1i = 1, then 1− c1i = 0. (This is exactly the assumption made for the
first row, the case where sit = 1), meaning that i’s decision will not be affected by any others to
whom she is connected: i.e., the strength of contagion is 0. Then, the way we combine these two
components of an actor’s type assures that the whole expression for σi, which is the probability the
actor chooses behavior, si to be 1, is likewise bounded 0 ≤ σi ≤ 1.

Although we assume that contagion only operates on (alters only influence ego’s) behavior sit = 0
but not on behavior sit = 1 to give the simplest possible model, contexts where such contagion
operates asymmetrically are plausible: e.g., going to vote in period t + 1 when the person didn’t
vote in period t may be subject to influence from others—negative sanctions for failing one’s
duty, perhaps?—but maintaining a non-voting status may not be (or, vice versa, non-voting may
be susceptible to adverse peer pressures but positive peer-pressures toward voting may be much
weaker. In any case, the lack of an explicit contagion term in the first row of the transition matrix
does not indicate “no effect” of others’ types. Shifting one period back, note that the probability
in cell (1, 1) arises from σi,t = σ2

i,t−1 + (1−σi,t−1)
[
1−
[
c1i(1−σi,t−1) + (1− c1i)

∑
j 6=i(δij(1−σj ,t−1))

N−1

]]
.

Even in this stylized model with its asymmetric simplification, an indirect and time-lagged effect of
others’ types contributes to the propensity of behavior 1. Allowing an asymmetry like this would
accommodate instances where we expected one behavior, 1 or 0 to be stickier.

Most centrally to our purposes regarding the parameters c: in terms of the three processes that
may produce spatial/network association, the c1 parameters are the theoretical placeholders for
the relative weight of exogenous external and internal conditions—for now confined just to the
temporal autoregressive factor—to which actors may have common exposure.

Note that, with the behavioral choice being dichotomous, the Markov chains for actors’ types can
also be sufficiently summarized in one line solely by a conditional probablity: Pr(si,t+1 = 1|sit) =
σi,t+1.

Pr(si,t+1 = 1|sit) = σi,t+1 = σitπ
σ
11 + (1− σit)(1− πσ22)

⇔ σi,t+1 = σ2
it + (1− σit)

[
1−

[
c1i(1− σit) + (1− c1i)

∑
j 6=i(δij(1− σj))

N − 1

]]
.

(2)

2.1.2 The Network-Tie Markov Chains

We focus next on the Markov chains that explain tie-formation probabilities (Equation (3)). The
unit of each entry is now a dyad (i, j). The probability that the two actors i and j in a dyad form a
tie (e.g., “are friends”) in period t+1 is denoted by δij,t+1 ∈ [0, 1]. In conventional type-interaction

accounting of this theoretical model, but should be otherwise relatively straightforward.
15The row standardization common in spatial econometrics, or the spectral normalization that Kelejian and Prucha

(2009) recommend instead, would also serve to bound 0 ≤
∑
i6=j(δijσj) ≤ 1, but our 1/(N − 1) weighting greatly

economizes notational and accounting requirements.
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models, these tie-formation probabilities are assumed exogenous (and often uniform, in fact). By
contrast, the potential for endogenous ties—for instance via behavior-type homophily (heterophily):
types seeking like (different) types—is a crucial aspect of our coevolutionary model. In our model,
similarity or dissimilarity of actors’ types at t partially determines the tie-formation probabilities
in the next time period. In this minimalist model, we allow actors’ preferences for connections to
other actors with similar behaviors, call this behavioral homophily, to influence the (non-)switching
probability from “no tie” at t to “no tie” at t + 1. This is the second term, (1 − c2,ij)(σi − σj)2,
of element (2, 2) of the transition matrix, c2,ij(1 − δij,t) + (1 − c2,ij)(σi − σj)2. For homophily, as
the distance between two actors’ behavioral types increases, it becomes less likely for their dyad
to form a new tie; i.e., ∂Pr(dij,t+1=0|dij,t=0)

∂(σi−σj) > 0. So, to the degree that c2 < 1, our model exhibits
homophiletic tie-formation by behavior-type: two individuals are more likely to form a friendship tie
if both smoke, two countries more likely to ally if their conflict behaviors are similar, two members
of Congress more likely cosponsor a bill the more similar their political ideologies, etc. As was
the case for the behavior transition matrix, a temporal autoregressive term is the other factor—
remember: standing in for all common-exposure factors—affecting the switching probability. In this
case, δij,t in cell (1,1) and c2,ij(1−δij,t) in cell (2,2) contain this information. Analogously to c1, the
term c2 reflects the strength of the temporal autoregressive (common-exposure) term relative to the
homophily (selection) term in the switching probability. Conversely, (1−c2,ij) reflects the remaining
extent to which the distance between the two actors’ types prevents them from establishing a tie.
The combinatorial form of the weights on the temporal autoregressive and homophily terms, c2,ij

and (1− c2,ij), bounds the value entering cell (2, 2) to the [0, 1] range, and the combinatorial form
of the elements in (2, 1) and (2, 2) assure the row-sum is 1.

 Pr(dij,t+1 = 1|dij,t)

Pr(dij,t+1 = 0|dij,t)

′

=

 δij,t+1

1− δij,t+1

′

=

 δij,t

1− δij,t

′
 δij,t 1− δij

1−
[
c2,ij(1− δij,t) + (1− c2,ij)(σi − σj)2

]
c2,ij(1− δij,t) + (1− c2,ij)(σi − σj)2


=

 δ1,t

1− δ1,t

′ πδ11 πδ12(= 1− πδ11)

πδ21(= πδ22) πδ22

 .

(3)

As before, we can write the Markov chains for network-tie formation, ties being dichotomous, in a
one-line conditional-probablity:

Pr(dij,t+1 = 1|dij,t) = δij,t+1 = δij,tπ
δ
11 + (1− δi,t)(1− πδ22)

⇔ δij,t+1 = δ2
ij,t + (1− δij,t)

[
1−

[
c2,ij(1− δij,t) + (1− c2,ij)(σi − σj)2

]]
.

(4)

The systems of differential equations (1) and (3) complete our minimalist theoretical model of
network-behavior coevolution, i.e., of jointly endogenous contagion and selection. The long-run
steady-state (LRSS) equilibrium of this system consists of a vector of each actor’s type and each
dyad’s tie-forming probability, (σ, δ). This LRSS equilibrium can be obtained by solving (1) and
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(3) for σ by setting σi,t+1 = σi,t and δij,t+1 = δij,t, ∀i, j ∈ {1, · · · , N}. In any given social-science
context, our interests may lie primarily in the LRSS equilibria and/or the intertemporal dynamic of
actors’ types, σ, and/or in the LRSS and/or dynamics of tie-formation probabilities, δ. Of course,
our interests may also involve all of the above equally. In any case, the states and the equilibria are
fully and best characterized by vectors of types and tie-probabilities both, due to the endogeneity
generated by homophily and contagion. For compactness only, our exposition will highlight the
equilibria of behavior types and (network) ties.

2.1.3 Example: Two-Actor System

To illustrate the existence of multiple equilibria in this highly simplified coevolution model, consider
the following example with two actors, (i = {1, 2}), and so one possible undirected edge, (12). This
gives the following system of equations, a set of three equations of motion, one for each of the two
actors’ behavior-type processes and one for the dyads’ tie-formation process:

σ1,t+1 = σ2
1t + (1− σ1t)

[
1−

{
c11(1− σ1t) + (1− c11)δ12(1− σ2)

}]
σ2,t+1 = σ2

2t + (1− σ2t)
[
1−

{
c12(1− σ2t) + (1− c12)δ12(1− σ1)

}]
δ12,t+1 = δ2

12,t + (1− δ12,t)
[
1−

{
c2,12(1− δ12,t) + (1− c2,12)(σ1 − σ2)2

}]
.

(5)

Solving this system for the steady-state σi’s and δi’s, we get the following equilibria:

[Equilibria] {σ1 = σ2, δ12 = 1}.

This result demonstrates the system has multiple equilibria: any σ1 = σ2 and δ12 = 1. Depending
on the initial conditions, the steady state obtains with the actors connected in any equilibrium but
at different σ1 = σ2 across the possible equilibria. Although an equilibrium of such form might look
unfamiliar in that no explicit function states how exogenous parameters determine the equilibrium
values of σ, this equilibrium actually highlights clearly the strong history dependency generated by
this particular example of the complex dynamics of contagion and homophily. Rigorous definitions
of history dependence (as in Page (2006), e.g.) distinguish the effects of initial conditions, early
conditions, and the sequence of past conditions shaping equilibria and, distinctly, outcomes along
the way. In this case, the model indicates that the two actors being connected and both choosing
the same behavior type, either type, is a steady state. Accordingly, at which type they settle will
depend (at least) on where they start.

2.2 Illustration of the History Dependence in Behavioral Types

So far we have shown that N -actor system generates multiple equilibria, given some set of initial
values for the endogenous variables and exogenous parameters, and given the two core dynamics of
our model: behavior-type contagion and behavior-homophiletic selection. In this section, we further
look into the system dynamics and demonstrate that the system is, in fact, history dependent.

The concept of history dependence refers to the phenomenon where initial conditions or changes
in conditions along the system’s history alters the course of its history in the future. This broad
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concept of history dependence is often conflated with the much narrower concept, path dependence,
but we follow Page (2006) in defining history dependence as the broadest category and in differ-
entiating state, phat and path dependence as three subcategories of it. Path dependence, which is
the most restrictive form of history dependence, means that history of a system depends on the
path, i.e., the sequence, the order, of past outcomes. Notice that a situation where specifically when
some condition arose, in absolute time or relative to other conditions, matters is an example of
path dependence. The less restrictive “phat” dependence implies that a system’s history depends
on past outcomes but not their order. This means essentially that the future path of the system
depends on the set of things that have happened before, not their sequence. State dependence is
the least restrictive form of history dependence wherein a system’s trajectories can be partitioned
into a finite number of states that contain all the relevant information that shapes the history of
the system regardless of what happened outside the partition of its history. This means, essentially,
that the future path of the system depends on its current state, not the path or the set of previous
conditions. We have defined state, phat and path dependence as disjoint sets of increasing restric-
tiveness; path means order matters, phat means set but not order matters, and state means current
but not previous set or order matters. We could equivalently have defined them as overlapping, so
that each form of history dependence included the less-restrictive subsets. In either case, history
dependence is the superset including all three.16

The distinction between outcome and equilibrium dependence is another important dimension in
defining history dependence. A system demonstrates outcome history dependence if the outcome
in each time period (e.g., behavioral choice in time t) depends in some manner on the outcome(s) in
the past time periods (e.g., behavioral choice at t−1 or earlier) or on the time index itself. As can be
seen in the difference equations (1) and (3), the process in our model is outcome history-dependent
by construction (as is any model with temporal autoregression, of course). More interesting for
this paper is equilibrium dependence, which focuses on history (path, phat, or state) dependence
of the long-run distribution of outcomes. In our context, this is equivalent to asking whether the
long-run steady-states (LRSS) of the latent behavioral-types, σ, and strength-of-ties (δ) depend
on their history (sequence, set, or state).

2.2.1 The Steady State of the Two-Actor System: A Numerical Example

We illustrate the forms of history dependence our model may exhibit by a series of numerical
exercises given sets of values for the initial behavior types, σ, and tie probability, δ, and for the
exogenous parameters, c’s.17 First, we present a numerical example of the LRSS equilibrium of our
model (Figure 1). This merely demonstrates, for a specific set of starting values for σ and δ, and
fixed c, the solution to the two-actor system presented in Equation (5).

The left-side graph of Figure (1) shows the trajectory of actor 1’s behavioral type (σ1t) from t = 1
through t = 11 for the case where the Markov chains (in Equation (5)) are solved recursively from
two distinct sets of initial values: {σ11 = σ21 = δ12,1 = 0.1} and {σ11 = σ21 = δ12,1 = 0.5}. The
parameter values are fixed at c11 = 0.2, c12 = 0.9, and c2 = 0.6 through all 11 periods for both
experiments. The LRSS levels of behavioral type are approximately 0.8391 and 0.9496 respectively
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Figure 1: Illustration of the Initial-Conditions Sensitivity of the LRSS Equilibrium Behavioral-Type
in the “Simplest Coevolutionary System”

Our Model No Homophily

INITIAL INITIAL INITIAL INITIAL
COND. 1 COND. 2 COND. 1 COND. 2

Exogenous parameters c11 0.2 0.2 0.2 0.2

(constant over time) c12 0.9 0.9 0.9 0.9

c2 0.6 0.6 - -

Initial values σ11 0.1 0.5 0.1 0.5

σ21 0.1 0.5 0.1 0.5

δij,1 0.1 0.5 0.1 0.5

Steady
State σ1 ≈0.8391 ≈0.8496 1 1
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(note that σ2 = σ1 in equilibrium, as summarized in Section 2.1.3).

These numerical examples of how the long-run-steady-state (LRSS) types for our two-actor system
vary with particular starting values of the endogenous variables, σ and δ, even when the exogenous
parameters (c’s) do not change over time, illustrate the initial-conditions equilibrium-dependence
of this system. They do not (yet) demonstrate any of the richer forms of history dependence,
state, phat, or path dependence. Conventional type-interaction models do not exhibit even this
initial-conditions dependence, however. For example, imagine a similar system to our minimal-
coevolution system, but without homophily in network-tie formation; i.e., the parameter c2 is
restricted to 0. This system still exhibits connectivity among the actors, explicitly defined with
ties δ, and contagion along the pattern given by δ; but the connectivity pattern, the network,
is exogenously fixed. (Spatial econometricians and statisticians will recognize this as the typical
spatial-lag model in which W is taken to be fixed and exogenous.) This “no-homophily, contagion
only” model has a unique equilibrium, {σ1 = σ2 = 1, δ12 = exogenously given}. Consequently,
starting values for σ and δ do not matter. The LRSS behavioral types always converge to 1. This
is demonstrated in the right panel of Figure (1).

2.2.2 Early-Condition Sensitivity (Phat Dependence): Two-Actor Case

To analyze history dependence, we focus on the effects of changes in the parameters c over the
course of the system’s history. As mentioned previously, these parameters, c, as coefficients on
the temporal autoregressive terms serve as the theoretical placeholders for all the actor or dyad-
specific, exogenous conditions to which actors/dyads may have common exposure. In this role,
they are analogous to the Xβ of a regression model. As such, history dependence on these c is
theoretically more interesting and practically more important than dependence on starting values of
the types. Scholars may be particularly interested in whether some intervention in an actor/dyad-
specific attribute, x—hence a change in some c, which may be possible whereas manipulating initial
states is generally not, alters the future path and LRSS characteristics of society because, when
the system is not history dependent, such interventions will not change the long-run equilibrium.
(Recall that our definition of history dependence follows Page (2006); our conceptualization of
history dependence as related to the parameters in a nonlinear system of equations is analogously
similar to Jackson and Kollman (2007).)

To illustrate such history dependence in c, we start with the simplest form of phat (set, but not
order) dependency, early-condition sensitivity. Figure 2 plots the trajectory of actor 1’s LRSS
behavioral type under two different sets of parameters. The system with Condition 1 starts with
a parameter set {c11 = 0.2, c12 = 0.9, c2 = 0.6} and some intervention occurs at the end of t = 1,
changing the parameters to {c11 = 0.2, c12 = 0.1, c2 = 0.1}. From t = 2 on, this set of parameter
persists. Note that the system reaches a steady state from its previous state in each period; the
graph plots these period-by-period steady states. The system with Condition 2 starts with a
different parameter set {c11 = 0.1, c12 = 0.1, c2 = 0.3}, and an intervention also occurs at the end
of t = 1, again changing the parameters to {c11 = 0.2, c12 = 0.1, c2 = 0.1}. The two systems start
with different sets of parameters but shift to the same set at t = 2 and stay with that set thereafter.
We emphasize that the starting values for the endogenous variables, the behaviors and ties σ and

16In the overlapping sets case, this would make state dependence and history dependence synonyms.
17We plan to study exactly what assumption(s) of the ergodic theorem is(are) violated in future verisions.
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δ, are set at the same level for both experiments. The difference in the two trajectories stems solely
from the shock in c.

The result is plain: early conditions in terms of the exogenous parameters c matter. The system
with contagion and behavioral homophily is phat dependent, at least.

Figure 2: Illustration of Early-Condition Sensitivity (Equilibrium Phat-Dependence) in the “Sim-
plest Coevolutionary System”: Comparison of LRSS Equilibrium Behavior-Types Following 2 Paths

EARLY EARLY
CONDITION 1 CONDITION 2

Time period→ 1 2 3 · · · 1 2 3 · · ·

c11 0.2 0.2 0.2 · · · 0.1 0.2 0.2 · · ·
c12 0.9 0.1 0.1 · · · 0.1 0.1 0.1 · · ·
c2 0.6 0.1 0.1 · · · 0.3 0.1 0.1 · · ·

Initial values for the endogenous parameters:

σ1 = σ2 = 0.1, δ12 = 0.1.

2.2.3 Path Dependency: Two-Actor Case

Finally, Figure 3 illustrates that equilibrium path dependence, the most restrictive form of his-
tory dependence (Page 2006), is also possible in our model, given coevolution, i.e., given both
behavior-type contagion and behavior-homophiletic selection. In our context, the question of path
dependence is equivalent to asking whether the LRSS of the latent behavioral type (σi) and strength
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of tie (δ) depend on the order of past events. As before, we define history dependence of interest
as relating to the set of exogenous parameters, {c11, c12, c2}, which reflect actor/dyad-specific at-
tributes in the empirical world related to exogenous factors and the strength of contagion in the
case of c1 and selection in the case of c2. The figure illustrates the dynamics and LRSS equilibrium
behavior-type for actor 2 in the two-actor system. We consider two scenarios, labeled Path 1 and
Path 2, that differ only by the sequence (but not the set) of exogenous values for c11, c12, and
c2. The early part of the sequence differs—namely: the first two vectors (c11, c12, and c2) reverse
order in the two scenarios—but the history of exogenous factors from period 3 onward is constant
within and across both scenarios. Also the starting values for the endogenous variables (σ and δ)
are common between the two path experiments: {σ1 = σ2 = δij = 0.1}.

The two paths (precisely, the order of past events) generate different behavioral-type LRSS for this
system: the system is path dependent. The behavioral-type LRSS for the system with Path 1 is
σ1 = σ2 ≈ 0.9406 (with δ12 = 1), and for the one with Path 2, it is σ1 = σ2 ≈ 0.8527 (with δ12 = 1).

Figure 3: Illustration of Equilibrium Path-Dependence in the “Simplest Coevolutionary System”:
Comparison of LRSS Equilibrium Behavior-Types Following 2 Paths

PATH 1 PATH 2
Time period→ 1 2 3 4 · · · 1 2 3 4 · · ·

c11 0.2 0.1 0.2 0.2 · · · 0.1 0.2 0.2 0.2 · · ·
c12 0.9 0.1 0.1 0.1 · · · 0.1 0.9 0.1 0.1 · · ·
c2 0.6 0.3 0.1 0.1 · · · 0.3 0.6 0.1 0.1 · · ·

Initial values for the endogenous parameters:

σ1 = σ2 = 0.1, δ12 = 0.1.
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As one can see, the equilibria differ, and this difference does not fade in time (no matter how far
into the future we may have extended the figure). Notice that the starting behavior-type and the
set of values of (c11, c12, and c2) are the same. Only the sequence of (c11, c12, and c2) differs, so
this is true path-dependence, as defined in Page (2006).

2.3 Summarizing the Theoretical Model: Network-Behavior Coevolution and
Equilibrium Dependence

To summarize the main aspects of the proposed discrete-time Markov-chain type-switching model
of coevolutionary dynamics: Endogenous coevolution of network (spatial) connections, which de-
pend in part on the behaviors of the nodes so connected, and of node behaviors shaped in part
by others’ behaviors through that network, generates systems of nonlinear differential equations
which can easily produce initial-condition, state, phat, and path history-dependence in (outcomes
and) equilibria. We specified the transition probabilities as a specific example of this sort of system
with parameters reflecting temporal autoregression and, implicitly, other exogenous (or predeter-
mined) covariates on the one hand—this hand reflecting what we have previously labeled common
exposure—and, on the other hand, contagion through network connections in the behavioral model
and homophily by behavior-type in the network-tie-formation model (selection). Our analysis of
these sorts of models indicated that the existence of equilibrium history-dependence depended on
the presence, jointly, of contagion and selection. Dynamic models of ties and/or behavior without
both processes do not, in general, exhibit equilibrium dependence.

Table 1 compares the equilibrium characteristics of our type-interaction model to those from con-
ventional type-interaction models, which do not allow for the coevolutionary dynamic generated
by simultaneous homophily and contagion. The table summarizes equilibrium analyses over the
four possible combinations of our key dynamics, with behavior-type contagion and homophiletic
self selection. Mathematically, we turn these two dynamics on or off by setting the exogenous c
parameters 6= 1 or = 1: c1i = 1 for models without contagion, c1i 6= 1 for models with contagion,
c2i = 1 for models without homophily and c2i 6= 1 for model with homophily.

As the equilibrium expressions manifestly demonstrate, in the three models that lack either or both
of the contagion and/or selection dynamics (cells (1, 1), (1, 2) and (2, 1)), the steady-state values
are constant: either at 1 or at the starting values of a given system (or given data). By contrast,
the model with both contagion and selection (cell (2, 2)) exhibits steady-state behavioral types that
depend both on the starting values and the history—specifically, the “path” of the system. The
only regularity established by the analytical solution for σi is that σi = σj must hold in equilibrium.

To repeat the crucial upshot: path dependence is generated if and only if the model exhibits
both behavior-type contagion and behavior-homophiletic selection. This will suggest the form of
a possible test for evidence of path dependence in the empirical model proposed below. Minor
extensions of the model can produce separating equilibria, in which some actor(s) behave differently
and/or some dyads connect and some do not, also.

Another way to appreciate the complexity of introduced by endogenous coevolution is to consider
Page’s Rule of Six (Page 2007): the numbers of actors plus choices must sum to at least six for
a system to have multiple equilibria. With endogenous coevolution, even this simplest setting of
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Table 1: Path-Dependence Comparisons for Type-Interaction Models

No Contagion Contagion
(c1 = 1) (c1 6= 1)

Exogenous
Tie-Formation
(c2 = 1)

No contagion in actors’ behavior-types,
and tie formation is also exogenous to
behavior type.

Behavior type is contagious, but tie for-
mation is exogenous to behavior type.

LRSS: σ∗it = σi0,∀i, δ∗ij,t = δij,0, ∀i, j LRSS: σ∗it = 1,∀i, δ∗ij,t = δij,0,∀i, j

Path Independent Path Independent

[Our Model]

Endogenous
Tie-Formation
(homophily)
(c2 6= 1)

No contagion in actors’ behavior-types,
but tie formation is endogenous to be-
havior types, with actors more likely
to form ties with similar behavior-types
(homophily).

Behavior type is contagious, AND tie
formation is endogenous to behavior
type, with actors more likely to form
ties with similar behavior-types (ho-
mophily).

LRSS: σ∗it = σi0,∀i, δ∗ij,t = 1, ∀i, j LRSS: σ∗it = σ∗jt,∀i, j, δ∗ij,t = 1,∀i, j

Path Independent Path Dependent

Note 1: LRSS = Long run steady state.

Note 2: The time index “0” in σi0 and δij,0 mean that these are the starting values. In other words, given a certain
system (society, world, country and so on) these values are constant.
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three dichotomous choices, two behaviors and one connection, of two actors generates multiple
equilibria. (Page’s rule is technically not violated, however, since there are really two network-
connection choices even if one fully determines the other.)

In the next section, we use this theoretical model, which expresses two kinds of transition proba-
bilities, one in behavior and one in network ties, as functions of these three kinds of conditions—
exposure to exogenous factors, contagion, and selection—to outline an empirical strategy for esti-
mating models of such social phenomena that can distinguish these inputs as sources of network-
cum-spatial association, correlation, or clustering. As we stressed in the introduction, connectivity
and interdependence are ubiquitous and central across much (all?) of social science, and successful
empirical estimation of any of these causal relations requires careful, effective specification and
modeling of all three.

3 Empirical Strategies

In this section, we discuss two discrete-time Markov models for empirical analysis. Both combine
the spatial-lag model from spatial econometrics and the p-star model from network analysis. The
first is relatively simple to estimate, while the second is not. For the latter we suggest, but do not
fully develop, a possible estimation strategy. We also compare these models with the actor-oriented
continuous-time coevolution model developed by Snijders and colleagues (Snijders 1997, 2001, 2005;
Steglich et al. 2006; Snijders et al. 2007; Ripley and Snijders 2010).

3.1 Discrete-Time Markov Models

Our first discrete-time Markov model is one with behavior (not behavior-type) contagion and
observed ties (not latent-strengths of ties). We define the behavior-shaping probability in a simple
spatial-lag logit model, one with only a time-lagged (and not simultaneous) spatial-lag, and define
the tie-formation probability in the simplest p-star model, one with independent dyads (which
likewise reduces the tie-formation model to a set of conditionally independent logits);18{

Pr(si,t = 1|st−1,dt−1) = logit(β0 + β1si,t−1 + β2di,t−1st−1)
Pr(dij,t = 1|st−1,dt−1) = logit(γ0 + γ1dij,t−1 + γ2 · I(si,t−1 = sj,t−1)),

(6)

where di,t−1 is a row vector of size N that contains the set of (N − 1) dichotomous tie-formation
indicators between i and all the other actors at the end of period t− 1 (and 0 in element i for dyad
ii), and I(si,t−1 = sj,t−1) indicates whether the behaviors in the given dyad were the same in the
previous period. The term captures homophily. In this model, contagion (network effects) and the
homophiletic selection (network formation) both operate through observed behaviors rather than
through latent behavior type. Estimating (6) is straightforward. The behavior and tie formation
equations can be estimated either separately or as a seemingly unrelated system of logit equations.

18For a similar approach to modeling network-behavior coevolution, see Lazer (2001). Important extensions for
next steps in this project include enriching these two models to the simultaneous spatial/network-dependence case,
although this may multiply the already computationally demanding system beyond the possible.
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Our second empirical model is instead a latent-type and strength-of-tie model. This model connects
much more closely to the theoretical model presented above, but is also more difficult to estimate.
The behavior-switching and tie-formation/dissolution rules in this model take the form:{

Pr(si,t = 1|σt−1, δt−1) = logit(β0 + β1si,t−1 + β2δi,t−1σt−1)
Pr(dij,t = 1|σt−1, δt−1) = logit(γ0 + γ1dij,t−1 + γ2(σi,t−1 − σj,t−1)2),

(7)

where δi,t−1 is a row vector of size N that contains probabilities that i forms ties with, or the
proportionate strengths of the ties between i and, each of the others, j, at the end of period t− 1
(appropriately zeroed for i’s self-reflexive dyad).

In this model, connections are by continuous, latent strength of tie, δ, not dichotomous tie or
indicator of tie, d, and contagion and selection operate through behavior type, σ, not dichotomous
behavior or indicator of behavior, s. Behavioral types and the strength of ties are observed by
the actors, but may not be observed by the analyst. One appealing way to conceive this substan-
tively is that actors’ types (behaviors) are influenced by other actors’ underlying types (behavioral
tendencies) and not by ephemeral short-run behavioral manifestations. Substantively, this reflects
a proposition that, for example, if my friend who rarely votes happens to vote in one election
by chance, that behavior is unlikely to influence the rate at which I turn out to vote. Likewise,
homophily/heterophily in network-tie formation is driven by type rather than current-behavioral
manifestations, which could be attributable to chance. For instance, considering a cosponsorship
network in congress, a lifelong liberal senator is much more likely to cosponsor legislation with
another committed liberal senator than with a conservative senator who just happened to vote
liberal on the previously considered piece of legislation.

Because these types and strength of ties are often unobserved, as in our example application to
come, for instance, we need a way to identify and estimate these latent variables. If we assume that
types are always in equilibrium given behavior-switching probabilities, and symmetrically that tie
strength is always in equilibrium given the Markov chain governing tie-formation and dissolution
from period to period, then we know how these variables are likely evolve over time. More formally,
we know:  σi,t

1− σi,t

′ =
 σ1,t

1− σ1,t

′ z11
t 1− z11

t

1− z00
t z00

t

 (8)

and  δij,t

1− δij,t

′ =
 δ1,t

1− δ1,t

′ w11
t 1− w11

t

1− w00
t w00

t

 . (9)

Of course, we also know from the theory presented above that these difference equations may have
multiple solutions. If so, it seems reasonable to use the solutions that emerge from the Markov
chains beginning at the previous period’s types and tie strengths. Typically, knowledge of these
dynamics, the so-called transition equations in state-space models, allows one to estimate latent
variables using a Kalman filter and the EM algorithm. The problem here is that the measurement
equation (7)—which, in this case, also happens to be a transition equation—has both latent left-
hand-side and latent right-hand-side variables: the latent behavioral and tie switching probabilities
at time t+ 1 are a function of the latent behavioral types and tie strengths at time t, which, using
a typical Kalman filter would be predicted initially using the behavior types and tie strengths at
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time t− 1. We cannot update the type and tie-strength predictions from the transition equations
unless we can incorporate relevant and observable time t+ 1 information. One possibility is to use
information about the cross-sectional distribution of observed behaviors and ties, and model the
sample averages as a single time series. The sample mean of the distributions of observed ties and
behaviors, for example, could be used to estimate the latent behavior and tie probabilities at time
t, which should be linked through the measurement equation above to sample average values of the
right-hand-side variables, including the latent type and tie strength variables. What is unobserved
at the unit-level is estimable at the cross-sectional level. To work well, however, it seems this
strategy would require both N and T to be large. Large N to get good estimates of the behavior
and tie probabilities. And, with the likelihood written in terms of sample averages, large T to get
precise estimates of the parameters. We do not develop this idea further,19 but the payoff from
doing so is potentially large. History dependence, if it exist, is likely to be found in the evolution
of these latent type and tie-strength variables.

We can propose also another strategy for estimating this harder model with the behavioral-
homophiletic contagion and selection operating through the latent variables, (7). Start again from
what we know regarding the transition probabilities assuming types and behaviors are always in
equibrium: (8) and (9). Given these, and given some starting values for σt0 and δt0, and parameter
values for β and γ, we can calculate the probability of observing 1’s and 0’s at time t = 1. We
can also update each actor’s type and the strength of ties across dyads using the implied transition
probability matrices. Again, these difference equations have multiple solutions. We could select,
though, the solution that emerges from the Markov chain beginning at the previous period’s types
and tie strengths. With estimated values for σ and δ at time t = 1, we can calculate the probability
of observing 1’s and 0’s at time t = 2. By repeating this process, we should be able to calculate
the joint likelihood for a given sample.20

3.2 Comparison with Siena : Continuous-Time Markov Models

In the network-analytic tradition, Snijders and colleagues (Snijders 1997, 2001, 2005; Steglich et al.
2006; Snijders et al. 2007; Ripley and Snijders 2010) have advanced perhaps furthest in empirical
modeling of dynamic, endogenous contagion and selection.21 They model the coevolution of net-
works and behavior thus. N actors are connected by an observed, binary, potentially endogenous,
and time-variant matrix of ties, x, with elements xij,t. A vector of N observed, binary behaviors,
z, at time t has elements zi,t. Additional exogenous explanators may exist at unit or dyadic level,
vi,t or wij,t. Opportunities arise for actors to change their network connections, switching at most
1 tie on or off, at continuous-time fixed-rate, ρneti,t , according to an exponential model. At present,
ρnett is assumed constant for all i but allowed to vary arbitrarily by t, although the model and
estimation procedure can accommodate richer parameterizations of ρ. Likewise, opportunities to
increment, decrement, or leave unchanged the behavior arise at rate ρbehi,t , again assumed uniform

19That is, we have not yet been able to explore this idea further, but plan to do so in future work.
20We have written code to implement this second proposed strategy, but we have as yet had no success obtaining

estimates in the empirical application below.
21Wasserman (1980a,b) and Leenders (1995, 1997) presage. Hoff and colleagues (Hoff et al. 2002; Hoff and Ward

2004; Hoff and Westveld 2007) offer a related, Bayesian latent-space approach for longitudinal-network analysis. Our
discussion follows a combination of Snijders (1997, 2001); Steglich et al. (2006); Snijders et al. (2007) and the RSiena
4.0 Manual (Ripley and Snijders 2010) most closely.
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across i but allowed to vary arbitrarily across t, although richer models are permissable.22 At
present implementation, behaviors are also dichotomous, so the beahvior-choice options are also
only two: (switch on or off) or leave unchanged. When an opportunity to change network ties
arrives for some i, i may choose to alter the status of any one of its N -1 ties to on or to off or
to leave all ties unchanged.23 i makes these choices by comparing the values of some objective
function of this form:

fneti (x,x′, z) + εneti (x,x′, z) =
∑

h

{
βneth × sneth (i,x,x′, z)

}
+ εneti (x,x′, z) (10)

where x′ is an alternative network under consideration, which can differ from the existing network,
x, only by changing at most one element of (only) row i. fneti (·) is called the network evaluation
function. sneth (·) is some statistic, i.e., some function of the data, x,x′, z, that reflects the actor’s
objectives (ideally, substantively-theoretically derived) regarding the network, x, and behaviors, z.
The βneth to be estimated are the relative weights of these objectives. Assuming the εneti extreme-
value distributed, independently across actors and over time, yields a multinomial-logit model of
categorical choice. Similarly, when an opportunity to change behavior arrives, actor i compares
the value of an analogous objective function under each of three possible actions: increment or
decrement by one or leave unchanged. Formally, i compares z to z′ given x and zj 6=i. Again,
the behavior evaluation function, f behi (·), is the summed product of weights and statistics, βbehh
and sbehh (·) respectively, and again assuming i.i.d. extreme-value stochastic components (εbehi ), the
logistic form emerges once more.24

Importantly for our purposes, the behavior and network objective-functions (and also the rate
functions if and as desired) can include any of a number of commonly supposed social-network
phenomena. For instance, covariate-related dissimilarity, which is “defined by the sum of absolute
covariate differences between i and the others to whom he is related” (p. 371):

covariate-related dissimilarity: si(x) =
∑
j

xij |νi − νj |. (11)

This is the mathematical expression of the basis for homophily, or more precisely: heterophily.
When the covariates in question are the behaviors of i and j, then the expression gauges the basis
for the behavioral homophily that we have been discussing.

22Since observation occurs at discrete intervals, the freedom to vary these continuous-time rates render effectively
inconsequential the assumptions of one actor making one unit-valued change in his/her network ties or behavior at
a time. As greater frequency and/or magnitude of changes are observed, estimates of these occurrence rates at this
unobserved instantaneous level simply rise to compensate. This does not, however, relax the strong assumption of
conditional independence of these actors’ choices (which we make as well).

23In textual descriptions of the model, the options always include doing nothing, but the equations indicated for
the multinomial choice of tie to adjust if chosen to act have probabilities summing to one over the N − 1 j 6= i,
meaning the option to do nothing if chosen has zero probability. Our data-generating process, see below, follows the
equations in this regard.

24In current implementation, the Siena model actually has three components (on each side: the network-formation
and the behavior-choice side, so six total functions, really); Snijders (Snijders 2001) calls them: ”the rate function[s],
the objective function, and the gratification function” (p. 365). The latter two separate the objective function
described in the text into two functions that sum to the total utility to an actor of a considered change and of
the existing network and behaviors. The objective function considers these aspects of the network and behaviors
in current levels, whereas the ‘gratification function’ addresses any aspects related to the change in the network
or behaviors from current to the considered future. Distinguishing effects of changes from effects of levels in this
way facilitates expression in the model of propositions that some explanator(s) may have different effects turning
on or incrementing, as compared to turning off or decrementing, the behavior or network connections. The set-up
for the gratification function is otherwise identical to that of the objective function, so this merely gives a second
multinomial-logit form.
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RSiena estimates models of this form by simulated method-of-moments (s-MoM).25 To elaborate,
the parameters of the model are ρ, the rates of events (or the parameters in those exponential
models of the rates), and β, the parameters of the objective functions. The full parameter vector,
θ, has dimensions k. As in general for MoM estimators, one applies a statistic, Z = (Z1, ...,Zk),
such that θ is the solution of the k-dimensional moment equation:

εθZ = z, (12)

where z is the sample outcome.26

Minimally, one needs for Z some statistics that will respond to in known manner the values of the
parameters in question. Given such a statistic, we can specify as moment conditions:

∂εθZk
∂θk

> 0, (13)

for the MoM estimator. In fact, a quadratic of the moment condition needs to hold also, giving a
(presumably more efficient) generalized MoM, G-MoM, estimator:

a′
(
∂εθZk
∂θ

)
a > 0 , ∀a. (14)

For instance, for the rate from period m to m + 1, ρm, a sufficient sample-statistic—sufficient
sample-statistics, when known, tend to optimize efficiency of moment estimators—is the number of
changes observed from m to m + 1, which generally rises in ρm. For β, the statistics will likewise
be the sample value of the objective-function statistics.

Estimated variance-covariance matrices for the vector of parameter estimates are obtained by (nu-
merical computation of) the delta method.

Conditioning on the outcomes rather than using the moment equations involving those statistics
reduces the dimensionality of the problem—in brief: by eliminating the rate functions as to be
estimated—generally producing a much more stable and efficient optimization procedure. Condi-
tioning thusly becomes especially necessary as the number of observation periods, M , and the event
rates, ρ, increase because the dimensionality and complexity of Siena’s optimization problem grows
combinatorically in M and ρ.

The moment equations given above may seem simple, but the conditional expectations at their
hearts cannot generally be calculated explicitly (except for trivial cases). Accordingly, one applies
stochastic-approximation methods, i.e., one simulates random network-behavior outcomes accord-
ing to the processes of the proposed model and estimates the parameters of that model, as always,
by optimizing fit to the observed sample statistics. For further details of, and options in, these
estimation procedures, see especially Snijders (2001) and Ripley and Snijders (2010).27.

As a theoretical model of and estimation strategy for stochastic, actor-oriented model of network-
formation and behavior of actors within networks, Siena is a tremendously impressive construct.

25Description of the estimation procedure follows Snijders (2001).
26These moment equations are further refined by conditioning in various ways on the initial and previous observed-

outcomes.
27Various refinements of both the first- and second-moment estimation procedures have been suggested since

Snijders (2001) and many are implemented in RSiena. See Ripley and Snijders (2010) for discussion and practical
implementation.
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Not only state of the art: it is the entire corpus of the art. Yet, still, one must also heed several
caveats emphasized by Snijders (Snijders 2001):

• “Although in our experience these equations mostly seem to have exactly one solution, they
do not always have a solution” (p. 374).

• “[Referring to the moment conditions...] This requirement is far from implying the statistical
efficiency of the resulting estimator [which has not been shown], but it confers a basic credibil-
ity to the moment estimator and it ensures the convergence of the stochastic approximation
algorithm...” (p. 373).

• “This implies that the method proposed here is not suitable for observations...which are
too far apart in the sense of the [...total number of changes between observations]. For
such observations the dependence of [...this observation on the previous one...] is practically
extinguished, and it may be more relevant to estimate the parameters of the process [...without
controlling previous observations]” (p. 374).

• “It is plausible that these estimators have approximately normal distributions, although a
proof is not yet available” (p. 375).

The is a small subset of Snijders’ emphasized list of cautions, concerns, and points at which various
aspects of the estimation strategy’s performance are unknown or may be problematic. Our point in
highlighting these issues could not be further removed from criticism. Siena is, to our knowledge,
the most sophisticated and best-developed tool capable of addressing coevolution, which we think
is rather common and important in social science. Moreover, in its approach to modeling network
formation and behavioral choice more generally, Siena is designed so as to afford address of an
empirical challenge for social science, the identification of which as substantively and theoretically
central we wholly and wholeheartedly share: the distinction and distinct estimation of common
exposure, contagion, and selection in generating social outcomes that ubiquitously exhibit net-
work/spatial association. Our point in this listing is instead simply to underscore that we simply
do not know very much about how Siena performs as an estimator. Understandably, given the
complexity of the construct, little is known analytically, definitively about it’s properties, nor has
very much about its performance been explored in Monte Carlo analysis, also understandably given
its potentially enormous computational demands and the specialized nature of the software for its
implementation. We believe the evaluation of the estimator in the next section is among the first
conducted (and its comparison to our simple alternative is certainly so).

4 Estimation-Strategy Evaluation and Comparison

In this section, we evaluate and compare the performance of our simple proposed time-lagged
spatial-lag logistic-regression strategy and the simulated method-of-moments strategy applied by
Siena for estimating models of network-behavior coevolution, models with contagion and selection
as well as exposure to exogenous factors.
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4.1 Details of the Data-Generating Process

We follow Snijders (2001) to specify a data-generating process (DGP) that exactly matches a
Siena model of coevolution where the behavior of N actors that is contagious through a net-
work of connections generated by behavioral homphily. First, the DGP creates a vector for each
inter-observational period of the cumulative probabilities of network-change events in microsteps28,
following a negative-exponential distribution, with hazard rate, Ratenet. An exactly analogous pro-
cedure produces T vectors of cumulative probabilities of behavior events from a negative-exponential
distribution with hazard Ratebeh.

Armed with these probabilities of events at each microstep between observations, the DGP draws
randomly the steps in which actors are drawn to possibly make a change in behavior and analogously
randomly draws the steps where a network change is made.29 When an event occurs by these
random draws, each of the N actors is equally likely (a uniform random-draw in the DGP) to be
chosen as the one to consider change. (This uniformity would be replaced by a weighted draw of
the actors with weights given by the parameterization of the hazard function, had a substantive
model been offered.30)

Given that an actor i has been selected in some step to act on i’s (N−1) network ties, a multinomial-
logit form, exp(f(xk))∑

j 6=k,i exp(f(xj))
, with f(xk) given by i’s network objective-function evaluated for a tie

to k, gives the probability that the tie to k is changed. A random draw from a multinomial
distribution with this vector of probabilities (given by evaluation of the chosen actor’s objective
function just described at the current values of the network matrix and behavior vector) then
determines which tie of actor i is changed. In our DGP, the objective function is covariate-related
similarity from the Ripley and Snijders (2010) (monadic covariate effect number 39, p. 66.), defined
by the sum of centered similarity scores simvij between i and the other actors j to whom i is tied
as of prior period. Using the behavior of i and j from the previous period, this metric gives the
behavioral homophily effect in network-tie formation. The coefficient (in Siena’s multinomial-logit
form network-tie equation) on covariate-related similarity is set to 1.

The procedure for a behavior event is analogous. The actor drawn to consider a change to its
behavior, a logistic form, exp(g(x))

1−exp(g(x)) compares the utility at the current values of the network
matrix and behavior vector according to behavioral objective function g(x). In our DGP, the
behavioral objective function is given by the average similarity effect, defined as the average of
centered similarity scores, with behavior again serving as the basis on which similarity is measured,
between i and the other actors j to whom i is tied. This makes behavior of i depend more on the
behaviors of j with whom i is similar in behavior. The coefficient (in Siena’s logit-form behavior-
equation) on average similarity is set to 1.

28Microsteps is Snijders’ term for the simulation periods between observations.
29The asymmetry between possibly changing behavior and certainly changing a connection is intentional, and, as

noted before, is in the equations presenting the Siena model even if the text says otherwise.
30Weights would be given in that case by the ratio of the hazard-function value for i to the average hazard-function

across actors at that microstep.
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4.2 Details of the Monte-Carlo-Simulation Scenarios

We generated 100 trials each of 8 different scenarios.31 As noted above, for all scenarios, the DGP’s
used covariate (behavior) related similarity in the network-tie equation and average similarity in the
behavior equation, setting the respective multinomial-logit and logit coefficients in those specific
Siena models to 1 in every case. We varied the number of actors N ∈ {30, 50}, the number of
observed periods, T ∈ {5, 11},32, and the rates of event occurrence, Ratenet = Ratebeh ∈ {1, 5}.
Finally, we set the vector of first-period behaviors to 1 (0) for the first (second) 1

2N , and the initial
network-connection (spatial-weights) matrix such that each actor is connected to the (one) next
actor with the same behavior, wrapping at the end. That is, except for the 1

2N
th and the N th

rows, the ones are in the upper first-minor, i.e., elements (i, i+ 1). For the 1
2N

th and the N th rows,
where the ones are in the 1st and

(
1
2N + 1

)st columns. That is, 1 connects to 2, 2 to 3, and so on,
but the 1

2N
th connects back to the 1st, and that upper-left block diagonal is then repeated as the

lower-right block.

4.3 Results of the Monte-Carlo Simulations

Tables 2 and 3 present the results of our Monte Carlo explorations of Siena and our simple spatial-
logistic strategy. We must first emphasize in reminder that the models differ—Siena’s estimation
model mirrors the true DGP, whereas our spatial-logistic simplification is a different logit model,
differently parameterized. The coefficient magnitudes are not directly comparable. In fact,
whereas we know that both the contagion and the homophiletic-selection parameters, βcontagion and
βhomophily, are truly equal to 1, we do not know what the “true” value of the parameters of our
logistic approximation to the Siena DGP should be. We do know they should have the same sign as
the true coefficients in the true DGP (here: positive), though.33 The direct presence of a time-lag
regressor and of N unit and N(N − 1) unit-dummies in our simple spatial-logistic strategy, we sus-
pect, should (greatly?) depress these correct magnitudes of the coefficients on spatial-lag behavior
and the homophily term in those estimations below the unity of the corresponding βcontagion and
βhomophily in the true Siena model. (Our discussion follows the tables.)

31RSiena estimation of this model becomes extremely time-consuming—even on a 64-bit, i7 x920 processor, with
8MB RAM—as T and the Rates expand. Exploration with larger numbers of trials, like that standard 1000, must
wait later editions of the paper.

32The odd choices arising from confusion from our DGP code using the number of periods beyond the first whereas
RSiena input calls for the total number of periods...

33We may be able to solve for this though, but we simply have not tried yet. We certainly can, should, and will
calculate comparable quantities of interest for these evaluations and comparison. Again, we simply have not had time
to do so yet.
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4.3.1 Bias

That said, we can see that Siena’s coefficient estimates show little to no bias in any of the small-T
scenarios on network-selection side of the model regarding the homophiletic-selection parameter,
βh. However, on the behavior side regarding the contagion parameter, βc, we see a small deflation or
negative bias, −6% only in the large-N , small-T , low-ρ scenario. In the higher-ρ, larger-N , smaller-
T scenario, we see a larger −22%; slightly more than that in low-rate, small N and T : −25%; and
this downward bias in βc estimates explodes to a whopping −62% as T becomes smaller and ρ
become larger. Back on the network-selection side regarding βh now, we notice that glowing low-
bias performance of Siena dims somewhat, to −10−13% under higher-T , lower-rate scenarios, and
explodes to a whopping −50%−−58% as both T and ρ become larger.

Trying to summarize the pattern, it seems that larger N generally enhances Siena’s bias perfor-
mance, generally somewhat more so for the behavioral-contagion parameter than for the homophiletic-
selection coefficient, since, when βh can be well estimated, it seems it is so at N = 30 or 50. Larger-
T , on the other hand—that is, a greater number of observations over time of the network and
behaviors—has more mixed and somewhat paradoxical affects on these biases. On the network-
selection side of the model, at the lower-rates, the estimates for βh go from negligibly biased in the
lower-T scenarios to −10% −−13% biased at the higher T . On the behavioral-contagion side, we
see little effect of T on Siena’s biases at higher N and quite notable reductions in the bias at lower
N : more what we would expect from more data.

Notice the signs even from this first consideration, of bias, that higher event-rates, ρ, generally
wreak havoc on the estimations. Even at lower-T , while bias remains very small for the βh estimates,
we see large (−22%) biases in β̂c at larger-N and enormous (−62%) biases at lower-N . At larger-T ,
the biases are huge (−32%−−58%) across both parameters and numbers of units.

As already noted, we do not know what the correct values of the coefficients from the simpler
spatial-logit estimation-strategy should be, so we cannot evaluate its bias directly. However, as
also explained, we suspect it should be lower, so the notably smaller magnitudes do not alarm
us. We cannot evaluate bias precisely, but we do notice that the pattern in relative sizes of the
estimates across scenarios and in the direction of changes in those sizes across the scenarios seems to
match that of the Siena estimator exactly. The proportionate magnitudes of those changes across
the scenarios are much smaller though. This suggests to us that these features may be aspects of
coevolution-model estimation rather than of the estimators:

• lower T generally hinders estimation of contagion and, paradoxically, aids that of selection,
more so in both cases at lower N ;

• lower N generally hinders estimation of both contagion and selection, more so for contagion;
and

• higher ρ amplifies these difficulties, tremendously so as T also increases.

Indeed, the difficulties raised by high event-rates—i.e., by large amounts of inter-observational-
period change in networks and behaviors—may be debilitating.

We remind the reader here of Snijders’ important caveat: “...the method proposed here is not
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suitable for observations...which are too far apart in the sense of the [...total number of changes
between observations]. For such observations the dependence of [...this observation on the previous
one...] is practically extinguished, and it may be more relevant to estimate the parameters of the
process [...without controlling previous observations]” (p. 374). This certainly seems true, perhaps
more generally than just in the Siena method, although, as we shall see, perhaps worse in Siena
than in our simple spatial-logistic alternative.

4.3.2 Efficiency and Standard-Error Accuracy

Regarding the standard deviation across the trials of the coefficient estimates, we see, first, that
event-rates have even more obvious effects here. In almost every N and T scenario, standard-
deviations across trials now exceed their trial means. Our simple spatial-logit seems to fare some-
what better in these still mostly-bleak scenarios. At lower rates, we see that, proportionately (i.e.,
consider ratios of mean parameter-estimate to standard deviation of those estimates), the spatial-
logistic approach seems to have an advantage. This is particularly notable on the behavioral-
contagion side, where (phrasing the issue incorrectly crudely but amusingly) Siena seems to have
“greater difficulty obtaining higher ‘t-ratios’.”

With regard to standard-error accuracy, outside of the low-T , high-ρ scenarios for Siena, both
estimation strategies seem reasonably free from overconfidence. In fact, Siena tends toward under-
confidence in these other scenarios. Even in the higher-rate scenarios, where the estimates generally
have high to enormous sampling variation, at least the reported standard errors tend to be reason-
ably honest about that—outside of the low-T , high-ρ scenarios for Siena, where misestimation of
uncertainty, mostly in the form of overconfidence, is very notable (although even there, the problem
seems to fade in N).

4.3.3 Power and Test-Size

Although we do not report them here, we did conduct analyses of test size regarding the tests
for homophiletic-network contagion (H0 : βcontagion = 0) and for behavior-homophiletic selection
H0 : βhomophily = 0) under some of these scenarios in a slightly different Monte Carlo setup.
Notably, the rates were held fixed to the lower 1. Both models seemed to produce accurately-sized
tests under these conditions. That is, when we stripped contagion, homophily, or both from the
DGP, the models accurately rejected at the 0.05 level that the corresponding coefficients were zero
in only 5% of the trials (1000 in those analyses).

In many ways, the results for power—i.e., to be precise and clear: ability of the estimation strat-
egy to detect (by statistically rejecting at the 0.05 level a null of their absence) contagion and
homophily of unit magnitude in this Siena-style DGP)—reported in Tables 2 and 3 are the most
(depressingly) telling. At the higher rates, neither strategy could detect both the contagion and
the homophily actually present. (Recall from the substance of the specification, moreover, that
the unit magnitudes are rather large substantively and, in fact, are the only systematic source of
variation in the respective outcomes!) At lower-rates, power grows with N and with T , which is
natural and reassuring, and comfortingly becomes non-negligible although one could certainly wish
for better, especially from Siena, which, after all, is the exactly correctly specified empirical model
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for this DGP. Notwithstanding that fact, however, our simpler proposal of a pair of time-lagged
spatial-lag logistic regressions dominates in power, especially at the smaller-T samples.

4.4 Summarizing the Monte Carlo Results

Although the inability to evaluate bias of the simpler spatial-logistic estimation-strategy and to
compare it to Siena hindered analysis of the performance of the strategies greatly, we can con-
clude generally on several points. Data from contexts with higher event-rates, i.e., where inter-
observational changes in networks and behavior is likely to have been great, seem not amenable
to reliable estimation by either strategy of coevolutionary processes, to say the very least. At
lower rates, either estimator seems reasonably honest about the certainty of its estimates. Siena
seems essentially unbiased in lower-T samples but suffers some downward or deflationary bias in
its estimates, even in these better-suited rate-conditions, at the larger T . The magnitudes of the
spatial-logistic parameter-estimates should and do differ, so we cannot adjudge bias directly, but
a roughly parallel (somewhat less in absolute terms, somewhat more proportionately) downward
change in estimate-magnitude with T for the spatial-logistic strategy suggests a similar “large-T
bias” there. On the other hand, the simpler spatial-logistic strategy has somewhat of an edge in
efficiency and, thereby, in power, with this advantage growing more-noticeable with lower T and
smaller samples.

The upshot of all this, for now, seems to us to be: neither strategy seems to offer much hope of
learning anything reliable in almost any regard about coevolution when event-rates are high (which
may be discernable by high amounts of change in networks and/or behaviors between observational
periods). At low event-rates, conversely, the strategies seem to offer a very summarizable pattern
regarding the quality of their estimates:

• Both produce standard errors with reasonable accuracy, with perhaps a slight edge to spatial-
logit, but Siena errs only on the high side, which counters;

• The simpler spatial-logistic strategy seems somewhat more efficient and, thereby, also some-
what more powerful; and

• The simpler spatial-logistic strategy yields smaller coefficient-estimates, but both exhibit a
similar pattern of coefficient estimates shrinking with T .

Therefore, if the smaller magnitudes of the spatial-logistic coefficient-estimates are ’unbiased’ (i.e.,
produce on-average correct substantive-effect estimates), then simplicity and the small efficiency
and power advantages would argue strongly for it over Siena. If the spatial-logistic estimates are
substantively appreciably biased in this sense, then Siena’s complexity and weaker power would be
worthwhile price. (Determining and studying comparable substantive-effect estimates are obviously
extremely high-priority next steps for us.)
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5 Illustration: Military Alliances and Conflict Behavior

We illustrate these methods with an empirical analysis of the alliance-formation and conflict be-
havior of great powers during the first half of the twentieth century (Levy 1981). We suspect that
alliance ties and conflict behavior coevolve. States self-select into alliances and these decisions are
plausibly driven by preferences homophiletic or heterophiletic in behavior (type). More aggressive
(pacific) states may seek likewise aggressive or pacific allies, or the opposite may be true. At the
same time, conflict behavior is contagious through alliances. Indeed, that states would be drawn
into the conflicts of their allies is usually a key part, if not the core working principle, of alliances.34

We focus on the first half of twentieth century because it was a period with considerable varia-
tion in conflict behavior (hardly unique to that period) and of multipolarity during which military
alliances were in flux (rarer in other periods).

We present preliminary estimates of our models in Table 4. Model 1 (columns 1A and 1B) is our
model with contagion of dichotomous behaviors, with connection and selection occurring through
observed dichotomous ties; i.e., the system of equations in (6) above. Model 2 adds covariates.
Specifically, in the conflict behavior model we include regime type and national capabilities using
Polity and COW CINC scores respectively. In the alliance ties model we include regime similarity
measured by one minus the absolute value of the difference in polity scores divided by twenty (i.e.,
the maximum difference) and the absolute value of of the CINC differences as a proxy for power
asymmetry. This is a covariate-similarity measure, but, not in an exogenous regressor (as assumed
in this model anyway), unlike the case of our behavioral-homophily regressor. The CINC scores
are scaled to sum to one across all countries, so both our regime similarity and power asymmetry
measures fall between zero and one.

If the disturbances35 in our discrete-time Markov models are correlated across equations, as they
almost certainly are in this application, equation by equation by equation estimation will produce
consistent, though inefficient, estimates of the parameter values, and conventional standard-error
estimates will be inaccurate. To address the standard-error-inaccuracy issue we report robust
standard errors using a systems sandwich estimator of the variance covariance matrix. The sandwich
matrix in this formulation, the outer product of the gradients, provides estimates of the parameter
covariances across equations, which are incorporated into the variance estimates.36 Models 1 and
2 contain unit indicator variables (country or dyad) as well.

Model 3 (columns 3A and 3B) is the Siena continuous-time Markov model of coevolution. To
estimate this model we used ‘snapshots’ of the great powers’ alliance networks and conflict be-
havior taken at five-year increments (i.e., 1900, 1905,...1950). For the network statistic, we used
covariate(behavior)-related similarity, and for the behavior statistic, we used the average-similarity
effect. The former is defined as sneti =

∑
j xij(sim

z
ij − ŝimz), where the similarity scores are

simz
ij = ∆−|zi−zj |

∆ , ∆ being the maximum sample difference, and ŝimz is the mean of all simi-

larity scores.The latter behavior-statistic is defined as sbehi =
∑
j xij(sim

z
ij−ŝimz)∑

j xij
. These are the same

34For a similar argument, see (Kimball 2006).
35I.e., the extreme-value disturbances from the choice model.
36In Stata, obtaining these system sandwich estimates requires one simple post-estimation command, suest. Inci-

dentally, this makes the appropriate label for our suggested estimation strategy one of Maximum pseudo-Likelihood,
although this may already have been the case since, if we maintain the assumption from the preceding section that
the Siena DGP is the correct one, then these logit models were only an approximation to begin.
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statistics we used in our Monte Carlo simulations. See Snijders (2001) and Ripley and Snijders
(2010) for many alternatives and much further discussion.

We find evidence (1) of heterophily—pacific powers are more likely to ally or maintain alliances
with aggressive powers—and (2) that conflict behavior is (positively) contagious through alliances.
These findings are robust across both the discrete-time and continuous-time Markov models. The
Model 1 estimates, for example, imply that the average probability across great powers of engaging
in a militarized dispute given no involvement in the previous period rises from .55 to .74 when one’s
allies change from pacific to agressive behavior in the previous period. The effects of heterophily
are smaller in size. The average probability that, among great power dyads, an alliance will persist
from one period to the next is about .92 when the alliance partners behave dissimilarly in the
preceding period. When both partners are either pacific or aggressive, this probability drops to
a little less that .89. (Note that the sustaining influence of asymmetry extends beyond behavior
to include capabilities as well—see Model 2A. Relatively weak countries are more likely to ally
and stay allied with relatively powerful partners.37) One calculates effects from the Siena models
in terms of odds ratios. The estimate in 3A, for example, implies that a great power is almost
thirty-four times more likely to form an alliance with a partner whose conflict behavior, at the
decision point in time, was dissimilar.

Overall, our empirical results suggest that the conflict behavior of great powers and their military
alliance networks coevolve over time. One significant implication of this is that great power rela-
tions may be path dependent. As noted above, our theoretical models suggested that the test of
endogenous coevolution, i.e. of contagion in behavior and selection by behavior jointly, were also
a test of path dependence. Namely, we test whether H0 : βcontagion × βhomophily = 0. Using a
Wald strategy, and the Delta-method asymptotic linear approximation for the estimated variance
of β̂c × β̂h, the χ2 statistics and associated probabilities are 3.56 and 0.0591 for Model 1, 3.25
and 0.0713 for Model 2, and 3.34 and 0.0676 for Model 3; again: suggestive, if not overwhelming,
evidence for path dependence.

6 Conclusion

Theoretically, this paper builds a discrete-time Markov type-interaction model in which the behav-
iors of actors and the networks that connect them coevolve over time. One interesting implication of
the model is that it produces history-dependent behavior, possibly including path dependent behav-
ior. It seems likely that there are many areas of inquiry in the social sciences where network-behavior
coevolution is important. To evaluate this possibility empirically, we built from the theoretical
model a spatial-lag logistic model of coevolution that combines a simple time-lagged spatial-lag
model of contagious behavior with a simple p-star logit model of behavioral-homophiletic network
formation (which is also a time-lagged spatial-lag model). We explored and compared the perfor-
mance of this proposed simple estimation strategy and/with that of the impressive state-of-the-art
model from social-network analysis of node-behavior and tie-formation, Siena. Neither strategy
seemed capable of gaining traction in environments where a great deal of change in connectivity
and behavior occurs between observations, but either seemed capable of doing so in more favorable

37This supports theoretical expectations from the alliance-formation literature regarding power asymmetry and
alliance formation; see, e.g. Morrow (1991).
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Table 4: Estimation Results: Military-Alliance Ties and Conflict Behavior

(Markov Models>>) Discrete-Time Continous-Time
Ours Snijders et al. (by RSiena)

(1A) (1B) (2A) (2B) (3A) (3B)

Alliance MIDs Alliance MIDs Alliance MIDs
Networks Behavior Networks Behavior Networks Behavior

Temp lag 4.99∗∗∗ 1.45∗∗∗ 5.04∗∗∗ 1.33∗∗∗ – –
(0.14) (0.27) (0.14) (0.28)

Dyad specific
Previous MIDs similarity -0.39∗∗ – -0.42∗∗∗ – -3.52∗∗∗ –
(Behavior) (0.15) (0.15) (0.60)

Regime similarity – – 0.45 – – –
(0.28)

Power asymmetry – – 6.56∗∗∗ – – –
(1.51)

State specific
Previous alliance tie – 0.85∗∗∗ – 0.74∗∗ 1.06∗∗

(Network) (0.31) (0.33) (0.53)

Polity – – – -0.05 –
(0.03)

National capability – – – 10.96∗∗ –
(4.69)

Loglikelihood -225.08 -179.50 -223.05 -175.34

Note: The standard errors reported for Model (1) and (2) are SUR-robust standard errors. These models also include
fixed unit effects. Coefficients are not reported.
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environments, with some analytic work remaining to established the quality of effect-size estimates
from the simpler strategy and to compare the two given that and the apparently greater efficiency
and power of that simpler strategy. Finally, we demonstrated the feasibility and potential utility of
these theoretical and statistical framework by applying them to analyze the patterns of alliance for-
mation and conflict behavior among the great powers during the first half of the twentieth century.
A test for path dependence that we derived from these theoretical and empirical efforts suggests
that great-power conflict alliance-formation patterns in the first half of the twentieth century likely
did contain path dependency.

There is a lot of work left to do. For starters, we need to expand the class of theoretical models,
exploring important alternatives such as models in which actors observe dichotomous outcomes and
adjust their continuous latent traits. There are multiple other options regarding what diffuses and
what forms the basis for selection as well. That is, we see these particular models, with contagion
and selection both occurring through binary variables observed by the actors and analysts, as only
one case of a family of models much in need of development for the diversity of social-science
coevolution contexts, models in which behavior or ties may be binary or continuous quantities,
contagion and selection may occur through actors’ observed or latent quantities, and analyst may
observe or not observe these quantities.

On the theoretical side, we have not yet characterized fully the forms of history dependence—
outcome and equilibrium state, phat, and path dependency (Page 2006)—that emerge from alter-
native parameter and starting values of the current class of models (nor, of course, of the not-yet-
existing classes) and the mappings from the latter to the former.

Then, we need also to tighten further the connection between the theoretical and empirical models;
in particular, we need to develop an empirical strategy that can address the second case considered
in that section, where the endogenous selection and contagion are both in the latent variables.

On the empirical side, we need to develop techniques for calculating, testing, and presenting effects
in this complex (nonlinear system of endogenous equations) context and not merely parameters (see
Hays et al. (2010); Franzese and Hays (2009); Hays (2009)). We need to expand the comparison
of empirical model and estimation strategy with that of Snijders and colleagues’ Siena in these re-
gards also, including Monte Carlo simulation of properties related to comparable estimates of these
effects, dynamics, and steady-state effects. We would like also to add consideration of simultaneous
interdependence across in network-tie formation and in behavioral choice to the empirical model
and estimation strategy, although this will come only at much greater added-complexity.

Much left to do indeed, but we consider this context an extremely important one for social-scientific
theoretical and empirical effort. Interdependence and selection are everywhere in society, polity,
and economy, and usually quite appreciably strongly so. Spatial-cum-network association, correla-
tion, or clustering is at least as omnipresent and sizable empirically across most of social science’s
substance. Yet, such association can come from common exposure, contagion, or selection, and it
matters a great deal for theoretical, scientific and practical, applied purposes which are operating
and in what strengths. And, finally, these phenomena tend (as does everything else in social sci-
ence) to be mutually endogenous. Accordingly, we need theoretical models that can shed light and
all these processes simultaneously and empirical strategies that can distinguish their effects and
estimate them distinctly well. A tall order, we agree, but we do not view (in fact, we think logic and
the contentions just enumerated rule out) as promising any alternative tacks to that taken here:
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build theoretical models that incorporate the relevant endogenous processes as well and accurately
as possible and use those theoretical models to specify empirical models and estimation strategies
that reflect as accurately and fully as possible all of those relevant processes.
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Appendix I: Summary of Notations

• Actors: i ∈ {1, · · · , N}.

• Discrete time periods: t ∈ {1, 2, · · · }.

• Behavior: sit ∈ {0, 1}. A dichotomous behavior (behavioral action) that actor i takes in period t.
Both actors in the model and analysts (or econometricians) outside the model can observe.

• Behavioral type: σit ∈ [0, 1]. This represents the probability that actor i chooses behavior 1 in period
t. We assume that, in this model, actors can observe (know) others’ behavioral types.

• Network tie: dij,t ∈ {0, 1}. An undirected indicator of whether the two actors i and j in a certain
dyad are connected. The indicator dij,t = 1 if they are connected, dij,t = 0 if not.

• Tie-formation probability: δij,t ∈ [0, 1], ∀i, j and i 6= j. This denotes the probability that a tie forms
between the two actors i and j in a given dyad in period t. This probability can also be interpreted
as the strength of the tie between i and j.

• State of the system: (σt, δt) = (σ1t, · · · , σNt; δ12,t, · · · , δN−1,N,t). We define the state of the system
at the end of period t as a vector of every actor’s behavioral type and every dyad’s tie-formation
probability.

• Exogenous components of transition probabilities: c1i, c2,ij . In the “minimal theoretical model” that
we present in the main text, c1i ∈ [0, 1] indicates the relative role of autoregression for determining
the (non-)switching probability for actor i to stay with behavior 0 the next period, t+ 1. Analogous
to c1i, c2,ij ∈ [0, 1] reflects the strength of the temporal autoregressive term relative to the homophily
(selection) term in the switching probability.
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Appendix II: A Slightly Less Minimal Model

A slightly less minimal model of endogenous coevolution, also with contagion via networks whose
edges are endogenous to behavioral homophily, removes from the behavioral equation of the minimal
model in the text the asymmetry between transition probabilities from current period t type-1 to
next period t + 1 types being subject to contagion effects while the transition probabilities from
current period t type-0 to next period t + 1 types not being susceptible to contagion. It still
simplifies the tie-formation model to exhibit homophily in only one of its rows. The behavioral
model is as follows: Pr(si,t+1 = 1|sit)

Pr(si,t+1 = 0|sit)

′ =

 σi,t+1

1− σi,t+1

′

=

 σi,t

1− σi,t

′
 c0iσit + (1− c0i)

∑
j 6=i(δijσj)

N−1
1−

[
c0iσit + (1− c0i)

∑
j 6=i(δijσj)

N−1

]
1−

[
c1i(1− σit) + (1− c1i)

∑
j 6=i(δij(1−σj))

N−1

]
c1i(1− σit) + (1− c1i)

∑
j 6=i(δij(1−σj))

N−1


=

 σ1,t

1− σ1,t

′ πσ11 πσ12(= 1− πσ11)

πσ21(= 1− πσ22) πσ22

 .

(15)

Again, the following conditional probability for actor i to take behavior 1 suffices to describe the
Markov chain for behavioral type:

Pr(si,t+1 = 1|sit) = σi,t+1 = σi,tπ
σ
11 + (1− σi,t)(1− πσ22)

⇔ σi,t+1 = σi,t

[
c0iσit + (1− c0i)

∑
j 6=i(δijσj)
N − 1

]
+ (1− σi,t)

[
1−

[
c1i(1− σit) + (1− c1i)

∑
j 6=i(δij(1− σj))

N − 1

]]
.

(16)

As before, e.g., cell (1, 1) of the transition-probability matrix represents the probability that actor
i chooses behavior 1 given that i chose 1 in the past period;

Pr(si,t+1 = 1|sit = 1) = c0iσit + (1− c0i)

∑
j 6=i(δijσj)
N − 1

. (17)

The first term, c0i, is the extent to which i maintains its current behavioral type σit in the next
time period t+1; in other words, it is the coefficient for behavioral-type’s autoregressive term. The
second term is the weighted average expressing how others’ types affect i’s propensity of choosing 1
in period t+1. Notice how, by this construction, the weight (1− c0i) captures the extent to which
others’ types matter for i’s behavioral choice at t + 1. This (1 − c0i) again gives us parameters
within the transition model by which to vary the overall strength of contagion. For instance, in an
extreme case where i maintains its behavioral type (σit) with probability c0i = 1 exogenously of
the state of the world, then 1− c0i = 0, meaning that i’s decision will not be affected by any others
to whom she is connected: i.e., the strength of contagion is 0.

The probability that explains the switching of i’s behavior from sit = 1 to si,t+1 = 0—cell (1,2)
of the transition-probability matrix—can be computed as Pr(si,t+1 = 0|sit = 1) = 1− Pr(si,t+1 =
1|sit = 1) straightforwardly from the fact that i’s choice is dichotomous and the two action choices
are mutually exclusive exhaustive.
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The transition probability from sit = 0 to si,t+1 = 0, cell (2,2), takes the same form as cell (1,1):

Pr(si,t+1 = 0|sit = 0) = c1i(1− σit) + (1− c1i)

∑
j 6=i(δij(1− σj))

N − 1
, (18)

except the weight for maintaining its behavioral type from the period t, c1i, can differ from c0i. This
allows us to address potentially different natures (e.g., sticky behavior or not) of the two behavioral
actions. The second row of the transition-probability matrix also has to sum to 1, which gives us
the expression for cell (2,1), Pr(si,t+1 = 1|sit = 0) = 1− Pr(si,t+1 = 0|sit = 0).

The tie-formation probabilities are identical to those from the minimal model in the text, and give
the same one-line conditional-probability expression of those difference equations.

Again, following (Page 2006), the question of path dependency reduces to one of whether the
equilibria value of behavior types (we know a1=a2) vary across different sequences of past events.
Or do they eventually reach a certain fixed value regardless of the sequence of past events?

Again by numerical example: with initial values for behavioral type and tie-formation tendency of
a1(1, 1) = .1, b1(1, 1) = .1, a2(1, 1) = .1, b2(1, 1) = .1, t12(1, 1) = .1, and s12(1, 1) = .1, we find
equilibrium at a1 = a2 ≈ 0.5152 and b1 = b2 ≈ 0.4891, respectively, and with t = 1 and s = 1

Again, the system exhibits path dependence.
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Figure 4: Illustration of Path Dependency: Comparison of Actor 1’s Long-Run Behavioral Types
Following 2 Paths (“Simple System”)

PATH 1 PATH 2
Time period→ 1 2 3 4 · · · 1 2 3 4 · · ·

c01 0.8 0.1 0.9 0.9 · · · 0.1 0.8 0.9 0.9 · · ·
c02 0.2 0.6 0.1 0.1 · · · 0.6 0.2 0.1 0.1 · · ·
c11 0.2 0.1 0.1 0.1 · · · 0.1 0.2 0.1 0.1 · · ·
c12 0.9 0.1 0.9 0.9 · · · 0.1 0.9 0.9 0.9 · · ·
c2 0.6 0.3 0.1 0.1 · · · 0.3 0.6 0.1 0.1 · · ·

Initial values for the endogenous parameters:

σ1 = σ2 = 0.1, δ12 = 0.1.
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