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Abstract

Person re-identification is about recognizing people who
have passed by a sensor earlier. Previous work is mainly
based on RGB data, but in this work we for the first time
present a system where we combine RGB, depth, and ther-
mal data for re-identification purposes. First, from each of
the three modalities, we obtain some particular features:
from RGB data, we model color information from different
regions of the body; from depth data, we compute differ-
ent soft body biometrics; and from thermal data, we extract
local structural information. Then, the three information
types are combined in a joined classifier. The tri-modal sys-
tem is evaluated on a new RGB-D-T dataset, showing suc-
cessful results in re-identification scenarios.

1. Introduction
Person re-identification is about recognizing people who

have passed by a sensor earlier. It is useful in many places
where it is desirable to obtain knowledge of the flow of peo-
ple: airports, transit centers, shopping malls, amusement
parks, etc. It can either be knowledge of a single person’s
movement, or movement patterns in general by combining
the patterns of many people. In some cases it is possible to
set up a system, which is able to view the entire scene, as
in [18, 15]. However, in indoor scenes it is often not feasi-
ble to place one camera with a full overview. This is where
re-identification enters play. It allows the system designer
to place sensors at certain bottlenecks and identify people
when they pass these.

Re-identification has the specific distinction from e.g.
biometric access control systems that it must be able to en-
roll new people on-the-fly and without their specific col-
laboration. On the other hand, the recognition performance
does not necessarily have to be as strong as in access control
systems, since re-identification systems are more concerned

with the general trend of movement as opposed to the move-
ment of each individual.

Re-identification has been an active research area for the
past decade, but almost exclusively focused on standard
RGB-data. This makes sense since many venues have a
large network of already installed RGB surveillance cam-
eras. However, as new and more advanced sensor types
become cheaply available, we believe it is time to extend
the work to multiple modalities. This is the exact focus of
this work, where we present a novel approach that integrates
RGB, depth, and thermal data in a re-identification system.
An example of RGB, depth, and thermal images for a sub-
ject in our dataset is shown in Figure 5.

This paper is structured as follows: Section 2 briefly cov-
ers the existing work done on the topic of re-identification,
with special focus on the few multi-modal and/or non-RGB-
based contributions. Section 3 describes how the inputs
from the three modalities are aligned. In sections 4 and
5, the features and re-identification methods are presented.
Section 6 shows the dataset and covers the results our sys-
tem achieves on it. Finally, section 7 concludes the paper.

2. Related work
In [5] soft-biometrics based on RGB data are used to

track people across different cameras. Both body and fa-
cial soft biometrics are extracted and combined in the final
system. The body soft biometrics are all related to color:
hair, skin, upper, and lower body clothing. In [6] the notion
of tracking people across a multi-camera setup is also fol-
lowed. Different soft biometric features are reviewed and
discussed in the context of re-identification. A part-based
appearance approach is found to perform the best, but being
sensitive to how the object is divided into parts. In [7] each
person is also divided into parts from which features are
extracted. The division is here based on finding symmetry
axes and the soft biometric features are color histograms,
stable color regions and highly structured patches that reoc-

1



cur. A division is also applied in [9] using similar features.
A boosting approach is then introduced to select the most
discriminative features. In [1] a similar idea is proposed,
i.e., a more reliable classification can be obtained if only
the most discriminative features are used for each image re-
gion. Moreover they model the uncertainties (covariances)
of each feature to improve their results. In [22] a person is
divided into six horizontal stripes where each is described
in terms of color and texture. The novelty of the work if
the formulation of the re-identification problem as a matter
of learning the optimal distance measure that minimizes the
probability of miss-classification.

All of the above approaches are based on RGB data. Us-
ing multi-modal sensing in re-identification is a very new
concept and so far only a few works have been reported.
In [20] a two-stage recognition approach is followed. First
soft-biometrics based on depth data are extracted and sec-
ondly RGB data are used in the final classification step.
The depth-based soft biometrics are anthropometric mea-
surements and estimated manually. The key finding is that
soft biometrics can be used as a pruning step in a recogni-
tion system. While this is very interesting, the introduction
of manual measurements is not desirable for an automatic
re-identification system. In [2] a re-identification method
based solely on depth features is presented. The work uses
several normalized measures of body parts, calculated from
joint positions. Measures of the body’s "roundness", which
roughly estimates the volume of the torso, are included.
High depth resolution is required for this to work and hence
it is only suitable when subjects are close to the sensor. The
paper is focused solely on the re-identification step and does
not treat identification or extraction of joints. In [12] ther-
mal data are used in a re-identification system. The work
expands the work reported in [11] where SIFT features are
used to model each person. They work on gait data from a
side view and can thou track each body part reliably. From
each of these a codebook signature is learned over time and
combined with the spatial feature distribution found using
an Implicit Shape Model.

As opposed to the works described above, in this paper
we introduce a truly multi-modal approach based on RGB,
depth and thermal data. Moreover, our system is fully auto-
mated both in terms of feature extraction, but also when it
comes to enrollment.

3. Registration
Since no sensor is able to capture all three modalities

at once, a registration of the inputs must take place allow-
ing to map a specific point from one modality to the others.
In this work, the Microsoft R© Kinect

TM
for XBOX360 has

been used to capture RGB and depth data. A thermal cam-
era (AXIS Q1922) was mounted straight over the Kinect’s
RGB camera lens with a distance between the lens centers

of 70 mm. For registering the tri-modal imagery of this
work, we need only to register images from the thermal and
visual modalities, as the Kinect provides a factory calibrated
registration between the RGB and depth data.

Traditional image registration techniques used for spa-
tially aligning stereo imagery cannot be directly applied to
the thermal-visible domain due to the fundamental phys-
ical differences of the two modalities, thus rendering the
process of finding corresponding features in both imagery
is unfeasible. In our setup, objects appear at distances be-
tween 1 and 4 meters from the cameras, which makes meth-
ods like infinite homography and stereo geometric unusable
[13]. Instead we first use stereo rectification to transform
the epipolar lines to lines parallel with either the x or y axis
[8]. This reduces the search for corresponding points to one
dimension. Next we apply the notion that the distance be-
tween corresponding points in the two images is inversely
proportional to the depth of the points if the cameras are
only translated with respect to each other [8]. Since the
epipolar lines are transformed to lie along the image scan-
lines, the disparity between corresponding points will lie
mainly either on the x or y axes, and we may thus find the
relationship between the inverted depth and the induced dis-
parity and use this property for rectifying the images.

The stereo calibration requires the knowledge of the in-
trinsic and extrinsic camera parameters of both cameras. In
order to determine these, we use the calibration board pro-
posed by [21] with an A3-sized cut-out checkerboard and a
heated plate as a viable backdrop. By using standard camera
calibration and stereo geometric tools we are able to rectify
both images as seen in Figure 1.

(a) (b)

Figure 1: Stereo rectified multimodal imagery in the (a)
RGB and (b) thermal domains.

We used 34 image pairs of the calibration board dis-
tributed throughout the entire scene for the calibration of
the cameras. For each corner of the chessboard in each im-
age, we extract the corresponding depth. The configura-
tion of cameras placed vertically implies that the disparity
of the points in the rectified image lies mainly on the x-
axis. Therefore, we use a robust curve fitting tool to find a
linear regression that fits the disparity in the x-direction as a
function of the inverted distance in the z-direction. The re-



gression is computed off-line for all calibration points and
stored for online lookup of the displacement. The result of
this procedure is a direct pixel-to-pixel correspondence be-
tween the different images.

4. Multi-modal features
The proposed system uses a combination of RGB, depth,

and thermal features to perform the re-identification task.
This section explains how the feature extraction is per-
formed for each modality. Before the extraction, the subject
must first be located at pixel level. The foreground segmen-
tation of the subject is performed on the depth image by
means of Random Forest [17]. This process is performed
computing random offsets of depth features as follows:

fθ(D,x) = D(x+ u
Dx

) −D(x+ v
Dx

), (1)

where θ = (u,v), and u,v ∈ R2 is a pair of offsets,
depth invariant. Thus, each θ determines two new pixels
relative to x, the depth difference of which accounts for the
value of fθ(D,x). Using this set of random depth features,
Random Forest is trained for a set of trees, where each tree
consists of split and leaf nodes (the root is also a split node).
Finally, a final pixel probability of body part membership li
is obtained as follows:

P (li|D,x) =
1

τ

τ∑
j=1

Pj (li|D,x) , (2)

where P (li|D,x) is the PDF stored at the leaf, reached by
the pixel for classification (D,x) and traced through the tree
j, j ∈ τ . After this process, the foreground segmentation
mask of the subject is transformed to the coordinate system
in the two other modalities, and the features are extracted.

The system uses multi-shot person models. Thus, a per-
son is not modeled based on only one frame, but on all
frames in a pass. A pass is defined as the act of entering
the frame, walking by the camera, and exiting it. In our
dataset only one person is present at a time, so no track-
ing is necessary. Next, we describe how the features from
each modality are described and fused in order to perform
the on-line re-identification task. Figure 2 summarizes the
main modules, modalities and strategies considered in the
proposed re-identification system.

4.1. RGB features

After foreground segmentation is performed, the features
that are used for the RGB modality are color histograms in
two parts, as shown in Figure 3(a). One histogram HRGB

U

is derived from the upper body, one HRGB
L from the lower.

This is done for each frame in which the subject is detected.
A histogram of 20 bins is created for each channel, for a
total of 60 bins per body part. Thus, in total the RGB feature

Figure 2: Pipeline of the proposed tri-modal re-
identification system.

(a) (b)

Figure 3: (a) Histograms of RGB color distributions for up-
per bodyHRGB

U and lower bodyHRGB
L parts of the subject.

(b) Detected SURF keypoints on the thermal modality.

vector has 120 dimensions, and one is created per frame.
After a pass ends, the histograms are averaged, and the final
feature vector is the mean across the frames.

4.2. Depth features

Given an input depth frame containing a subject (Fig-
ure 4(a)), and once the pixel-ground segmentation of the
subject into body parts is performed, the skeleton is also
extracted applying Mean Shift [17] (Figure 4(b)). Since
our dataset contains only raw images, the built-in skeleton-
extraction from the Kinect could not be used. Then, the
subject point cloud is spatially transformed in order to align
the skeleton with the camera frame coordinate system by



means of an affine three-dimensional transformation of the
point cloud (Figure 4(c)). Note that because of the 3D
transformation we loose some information of the body sur-
face due to the lack of information inherent to the view-
point. Thus, the noisy subject’s surface is smoothed (Mov-
ing Least Squares surface reconstruction method) and up-
sampled to fill the holes (Figure 4(d)). Now we can com-
pute soft biometrics from the corrected 3D skeleton and the
3D surface of the aligned body, which can be then inversely
transformed to return to the original space and estimate real
measurements of the body. From a given depth frame Di,
information invariant to the rotation of the subject with re-
spect to the camera viewpoint can now be extracted. In par-
ticular, we have estimated three sets of soft biometrics:

Frontal curve model: The model encodes the dis-
tances from the points in subject’s surface (transformed and
smoothed, as seen in Figure 4(d)) to their corresponding
projection line, either head-to-neck or neck-to-torso line.
These distances in millimeters are encoded in a real-valued
vector fi, resampled to size 150 and equalized for normal-
ization purposes (Figure 4(e)).

Thoracic geodesic distances: Corresponds to the vector
gi. It contains the length of lines on the body surface from
one side of the body to the other. The area in which these are
found is the trapezoid defined by left shoulder, right shoul-
der, right hip, and left hip, and each entry of gi contains the
geodesic distance in millimeters of a horizontal line in the
trapezoid projected to the surface of the torso. gi is resam-
pled to size 90 (Figure 4(f)).

Anthropometric relations: Given the extracted body
skeleton, the lengths of 7 inter-joint segments connecting
the body parts, as shown in Figure 4(c), are computed and
stored as ai.

Thus, the vector representing the set of depth features
for a subject in the scene at a particular depth frame Di is
defined as:

δi = {fi, gi, ai},
where |δi| = 247. Finally, the vector describing the

subject pass D = {F,G,A} is computed by averaging
the set of the standardized frame-level depth feature vectors
{δ1, ..., δN} as:

D =
1

N

∑
j∈N

δj − δ̄

σδ
, (3)

where |D| = 247, and δ̄ and σδ correspond to the mean
depth vector and the vector of the standard deviations, re-
spectively. Moreover, as a previous step to this computa-
tion and due to the noisy nature of the captured depth data
(clothes deformation, waving arms in front of the torso, and
so forth), the possible outliers are detected and discarded
in each δi. This step consists also in standardizing the set
of depth feature vectors but to a modified Z-score [10] and
discarding those values higher than 3.5 in absolute value.

(a) (b) (c)

(d) (e) (f)

Figure 4: (a) The raw depth data. (b) The pixel-ground seg-
mentation of the subject and the skeleton. (c) After aligning
the skeleton with the camera frame. (d) Smoothed data. (e)
Vertical projection lines. (f) Geodesic distances.

4.3. Thermal features

Since the thermal images contain no color information,
the color histogram approach does not work here. Instead,
SURF[3] is employed. Within the contour supplied by the
detection stage, SURF-descriptors are extracted. There is
no fixed number of descriptors, all that are above a cer-
tain quality threshold are extracted. A typical number is
around 150 descriptors per subject per frame, depending on
the contour’s size and quality. As opposed to the RGB his-
tograms there is no direct way to average the descriptors,
so the model for people in the thermal modality is all SURF
descriptors of the subject extracted over all frames in a pass.
We define the set of detected and described SURF points as
S, see Figure 3(b).

5. Re-identification
In order to perform the re-identification task, previously

computed feature vectors for the three modalities have to
be fused and analyzed to classify each subject. The process



has two steps:
1. Determine whether the subject is a new or an already

known person.
2. Do one of the following two tasks:

(a) If known, determine the ID of the person.
(b) If new, enroll the person.

In step 1, a comparison of the current subject with the list
of known subjects is done. Taking into account that the set
of known persons is built on-the-fly, for the first evaluations
only a few comparisons have to be performed.

To estimate whether the subject has to be considered new
or re-identified, we compute the following confidence score
based on the combination of the three modalities scores:

C(U1, U2) = α · dRGB(H1, H2) + β · 1

ddepth(D1, D2)
+

+γ · 1

dthermal(S1, S2)
,

where U1 = {H1, D1, S1} is the set of three modality
descriptors (H1 color histograms, D1 depth feature vectors,
and S1 SURF descriptors on the thermal data) for a user in
the dataset, and U2 = {H2, D2, S2} are the three sets of
descriptors for a new test subject. Coefficients α, β, and
γ assigns a proper weight to each of the three modalities
scores in a late fusion fashion so that α + β + γ = 1. The
weights are static and were set based on experimentation,
but for future work, and especially larger datasets, a learn-
ing approach for the weights would have to be investigated.
The higher the output of C(U1, U2), the more reliable re-
identification. Because ddepth(D1, D2) and dthermal(S1, S2)
returns low values in case of good identifications, the recip-
rocal is used when fused.

For comparing two subjects in the RGB-modality, the
Bhattacharyya distance [4] is used:

dRGB(H1, H2) =

√√√√1−
∑
I

√
H1(I)H2(I)√∑

I H1(I) ·
∑
I H2(I)

,

(4)
where dRGB(H1, H2) describes the distance between his-

tograms H1 and H2, and H(I) is the value of bin I in the
histogram H . The distance is a number between 0 and 1,
where 0 is a perfect match.

For comparing across subjects in the depth modality
D = {F,G,A}, the following similarity measure is com-
puted:

ddepth(D1, D2) = WF (1− exp−
∑

i wi(F
i
1−F

i
2)

2

)+

+WG(1− exp−
∑

j wj(G
j
1−G

j
2)

2

)+

+WA(1− exp−
∑

k wk(A
k
1−A

k
2 )

2

). (5)

One distance is computed for each of the three depth fea-
tures, which is in the range [0..1], the lower the distance,
the higher the similarity. Coefficients WF , WG, and WA

assigns a proper weight to each of the three types of depth
feature sets so that WF +WG +WA = 1. Moreover, indi-
vidual feature weights w assign a weight to each particular
depth feature value, pre-computed based on a training stage
applying ReliefF [16]. In out case the variables were set to
WF = 0.8, WG = 0.1, and WA = 0.1.

In the thermal domain, the SURF-descriptors are
matched against each other with no spatial information re-
solved. Each matched feature contributes a vote. Thus the
metric is the number of votes for a specific known person
across all the frames in the model:

dthermal(S1, S2) =
∑
NS2

H(nvotes(S1, S2)), (6)

where nvotes(S1, S2) computes the number of matches
between SURF descriptors S1 on the reference image and
SURF descriptors S2 on the test image based on Euclidean
distance criterion. H refers to the Heaviside step function,
ensuring that each frame in a pass can only contribute one
vote, and N are the frames in the model for S2.

5.1. Determine if new

In order to determine if a person is new, once values for
α, β, and γ are established based on a cross-validation of
a training stage, two thresholds, TN and TR are also ex-
perimentally computed. If C < TN , the subject is consid-
ered new. If C > TR the subject is assigned a known ID
(re-identified). Since a false positive is more serious than
a false negative in re-identification, we have a buffer zone
when TN ≤ C ≤ TR where the system ignores the sub-
ject because we are uncertain whether it is a new person or
just a bad match to an existing one. In our system we used
TN = 6 and TR = 10, but the exact value of the thresholds
seemed to be relatively flexible.

5.2. ID determination

The assignment of an ID to an already existing user
for re-identification is straightforward using the confidence
score C obtained from the previous step. If the user has
been determined as already known, it means that the major-
ity of votes are given to a particular user ID which is the one
assigned in the re-identification task.

6. Evaluation

Several re-identification datasets with RGB [9, 14] and
RGB-D data [2] exist, but to the best of our knowl-
edge no dataset containing all three modalities exists. We
have therefore recorded a novel re-identification tri-modal
dataset.

The dataset consists of 35 people passing by the sensors
twice for 70 passes in total. The vantage point is up and



Figure 5: Sample images from the tri-modal dataset. left, middle, and right are RGB, depth, and thermal, respectively.

slightly off to the side to mimic a classic surveillance cam-
era setup. All images are 640×480 pixel. Some sample
images from each modality are shown in Figure 5.

The tests were conducted by first extracting the afore-
mentioned features from all passes. As this system is a
re-identification system with online enrollment, there is no
explicit training phase. Instead, the persons are enrolled if
they are very different from previous seen persons.

Since the order of passing will influence the re-
identification performance, the system was tested in a ran-
dom 5-cross validation. We tried the different sets of modal-
ities as input features and found that the best combination
of features is the late fusion considering the three sets of
modalities with weights: α = 1

3 , β = 1
3 , and γ = 1

3 to
fit the tri-modal scheme. The results are presented both in-
dividually and averaged in terms of: A) passes correctly
classified as a new person, B) passes wrongly classified as
a new person, C) the number of correctly re-identified per-
sons, D) the number of wrongly re-identified persons, and
E) the number of persons ignored, see Table 1.

If an application requires every single person to be re-
identified, then it can be inferred from the table that the
performance of our system is 39.4%. In most cases, how-
ever, re-identification is used to measure the overall flow
and the important issue is therefore to have an acceptable
number of true positives and a low number of false posi-
tives, where especially the latter is clearly obtained in our
system. For comparison a commercial re-identification sys-
tem based on Wi-Fi signals from smartphones operates with
a performance of approximately 50% [19].

Similar to others working on re-identification we also
compute the CMC-curve to show the recognition perfor-
mance for different rank values, see Figure 6. Each of the
dashed lines is a CMC-curve for a single run. The thick

A B C D E
Run 1 35 10 16 0 9
Run 2 34 12 12 1 11
Run 3 33 13 13 1 10
Run 4 34 12 15 1 8
Run 5 34 10 13 2 11

Average 34 11.4 13.8 1 11
Percentage 93.2% 6.8%

Table 1: Re-identification results.

Figure 6: CMC-curve performance.

black line is the mean CMC of the 5 runs.

Since this is the first work on tri-modal re-identification
we cannot compare our results directly with those of oth-
ers. Instead in Table 2 we list the rank-1 results of previ-
ous works. Please note that very different datasets and set-
ting were used in these works and that no final conclusions
therefore can be drawn. The results, however, seem to indi-
cate the quality of our tri-modal approach, especially since
we do not have a training phase as most others do.



Work [1] [2] [5] [6] [7] [9] [12] [20] [22] Our
Data RGB Depth RGB RGB RGB RGB Thermal RGB-D RGB RGB-D-T

Rank-1 51% 12% N/A 82% 67% 43% 98% 78% 26% 82%

Table 2: Data types and rank-1 results of recent re-identification works. Note that several works test on a number of different settings and
different datasets. In such cases the table contains the average of the best results.

7. Concluding remarks
We proposed a tri-modal re-identification system based

on RGB, depth, and thermal descriptors. Three modalities
were aligned, and robust discriminative features codifying
soft biometrics were computed. The modalities were com-
bined in a late fusion fashion, being able to predict a new
user in the scene as well as to recognize previous users
based on a combined rule cost. We tested our tri-modal
re-identification system on anovel tri-modal dataset. Our
results showed that the combination of all three modalities
is the one that achieved better performance. A place to im-
prove the system is in the determination of new persons.
Nearly all new persons are detected as such, but there is a
substantial amount of wrong New Persons. That is not a
big issue with regards to re-identification performance, as
presumably they will also be difficult to re-identify (they
are only detected as new because they are not similar to the
known persons), and in many applications it is not critical
to be able to re-identify each and every subject. However,
fewer wrong New Persons will result in a lower absolute
re-identification rate.
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