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Abstract

A 3-uniform friendship hypergraph is a 3-uniform hypergraph in which, for all
triples of vertices x, y, z there exists a unique vertex w, such that xyw, xzw
and yzw are edges in the hypergraph. Sós showed that such 3-uniform friend-
ship hypergraphs on n vertices exist with a so called universal friend if and
only if a Steiner triple system, S(2, 3, n− 1) exists. Hartke and Vandenbuss-
che used integer programming to search for 3-uniform friendship hypergraphs
without a universal friend and found one on 8, three non-isomorphic on 16
and one on 32 vertices. So far, these five hypergraphs are the only known 3-
uniform friendship hypergraphs. In this paper we construct an infinite family
of 3-uniform friendship hypergraphs on 2k vertices and 2k−1(3k−1− 1) edges.
We also construct 3-uniform friendship hypergraphs on 20 and 28 vertices
using a computer. Furthermore, we define r-uniform friendship hypergraphs
and state that the existence of those with a universal friend is dependent
on the existence of a Steiner system, S(r − 1, r, n − 1). As a result hereof,
we know infinitely many 4-uniform friendship hypergraphs with a universal
friend. Finally we show how to construct a 4-uniform friendship hypergraph
on 9 vertices and with no universal friend.
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1. Introduction

A hypergraph is a pair H = (V(H), E(H)) where V(H) = {v1, v2, . . . , vn}
is the set of vertices of H and E(H) is a subset of the powerset of V with-
out the empty set, each element in E(H) denoted as an edge. The num-
ber of vertices n, is also denoted as the order of the hypergraph. If each
edge in E(H) contains exactly r vertices, then we say the hypergraph is r-
uniform. If the hypergraph is 2-uniform, we just denote it as a graph and
write H = (V (H), E(H)). Two vertices x and y are said to be neighbours
in a graph H, if and only if {x, y} ∈ E(H). When possible, we will denote
an edge {x1, x2, . . . , xr} as x1x2 . . . xr for short. When we do not specify a
hypergraph to be r-uniform in this paper, we will assume it to be 3-uniform.

A friendship graph is a graph in which every pair of vertices has a unique
common neighbour. The Friendship Theorem states, that if G is a friendship
graph, then there exists a single vertex joined to all others. Also, friendship
graphs exists only for odd number of vertices, and they are unique in the sense
that the graphs consisting of (n − 1)/2 triangles joined at a single vertex,
so called windmill graphs, are the only type of friendship graphs, which was
proved by Erdős, Rényi and Sós in 1966, see [1].

In this paper we will consider a known generalization of the friendship
graphs, which concerns 3-uniform hypergraphs. We say that a 3-uniform
hypergraph is a 3-uniform friendship hypergraph, if it satisfies the friendship
property that

Definition 1 (Friendship Property). For every three vertices x, y and z,
there exists a unique vertex w such that xyw, xzw and yzw are edges in the
hypergraph.

In the remaining part of this paper, we will denote such a w as the
completion of x, y, z. Sós was the first one to consider this generalization
in 1976, see [2]. She actually just considered 3-uniform hypergraphs with
edge set {vi, vj, vn} for all 1 ≤ i < j < n and a Steiner triple system on
the vertices {v1, v2, . . . , vn−1} and observed that they satisfy the friendship
property. The vertex vn will be denoted as a universal friend. As Steiner
triple systems, S(2, 3, n− 1), are known to exist if and only if n ≡ 2 mod 6
or n ≡ 4 mod 6, we see that these are the only orders for which there exist
friendship hypergraphs with a universal friend.

Sós then asked, whether there exist other 3-uniform hypergraphs satisfy-
ing the friendship property other than the ones with a universal friend. This
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was answered by Hartke and Vandenbussche in 2008, see [3], where they
used integer programming to prove that for n = 8, 16 and 32 there exist hy-
pergraphs satisfying the friendship property without containing a universal
friend. The integer programming also showed that for n ≤ 10 and n 6= 8
the only 3-uniform friendship hypergraphs are the hypergraphs with a uni-
versal friend. They also succeeded in showing that the 3-uniform friendship
hypergraph with n = 8 vertices they constructed is the only one of its kind
without a universal friend. For n = 16 they showed there are at least three
nonisomorphic constructions.

All friendship hypergraphs can be characterized by using complete 3-
uniform hypergraphs on four vertices. Such a complete 3-uniform hypergraph
on four vertices we will denote as a quad. We see why we can use quads to
describe the friendship hypergraphs in stead of edges in the following lemma,
for which we include the proof from [3].

Lemma 1. [3] The following is true for every 3-uniform friendship hyper-
graph H.

(a) Every pair of vertices appears in at least one edge together.

(b) Every edge must be contained in a unique quad.

Proof. (a) Let x, y ∈ V(H) and z 6= x, y. Then the triple x, y, z has a
completion w such that xyw, xzw and yzw are edges in H. Hence x, y
are in an edge together.

(b) Let xyz ∈ E(H), then the triple x, y, z has a completion w such that
xyw, xzw and yzw are also edges in H. These four edges form a
quad. The uniqueness of the quad follows from the uniqueness of the
completion w.

Observation (b) implies that the edges of the friendship hypergraph can
be partitioned into quads. This allows one to solely use quads to describe
the friendship hypergraph, as the quad structure tells us everything about
the edge structure. As the number of edges are at most

(
n
3

)
, this also gives

an upper bound on the number of quads in a friendship hypergraph as
(
n
3

)
/4.

A lower bound on the number of edges was proved to be n(n− 2)/2 in [3].
With the exception of one of the friendship hypergraphs on 16 vertices,

all of the friendship hypergraphs found in [3] also satisfy three properties,
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which where actually used in describing the IP and later slacked to try to
obtain more friendship hypergraphs. The computation time where greatly
improved by having specified these properties, which are the inductive, pair
and automorphism property. The friendship hypergraphs on n = 16 and 32
vertices satisfy that they contain two disjoint copies of a friendship hyper-
graph on n/2 vertices, also called the inductive property. Except for one of
the friendship hypergraphs on 16 vertices, they also satisfy the pair property,
which is that the vertices can be divided into pairs, such that each pair ap-
pears in a quad with each other pair. Finally if we view the vertices as binary
log(n)-tuples, then any map that flips a fixed subset of the log(n) bits is an
automorphism, hence the friendship hypergraph satisfies the automorphism
property. Note that this means that the friendship hypergraph is regular
and vertex-transitive and also that the number of quads is a multiple of n/4.
Hartke and Vandenbussche [3] conjectured that for all positive integers k ≥ 4
friendship hypergraphs with n = 2k vertices satisfying the three properties
exist.

Hartke and Vandenbussche’s results were improved upon by Li, van Rees,
Seo and Singhi in [4], where it was stated that no 3-uniform friendship hyper-
graph on 11 or 12 vertices exists. They also showed that the three friendship
hypergraphs on 16 vertices which where found by Hartke and Vandenbuss-
che are the only friendship hypergraphs on 16 vertices which satisfy that the
vertex-set can be partitioned into groups of disjoint quads and for which the
corresponding friendship design can be embedded into an affine geometry.
The lower bound on the number of edges were also improved, as they showed
that if n is odd, then there are at least (roughly) 2n2/3 edges and if n is even
there are at least n2/2 edges. Also the upper bound was improved, to obtain
that there are at most

(
n
3

)
(2n− 6)/(3n− 10) edges.

In this paper we first construct an infinite family of 3-uniform hypergraphs
given in the following definition.

Definition 2. Let k ≥ 2 and H = (V,E) be a hypercube on n = 2k ver-
tices, where the vertices are labelled with the k-bit binary strings from 0 to
2k − 1, such that two neighbouring vertices differs in exactly one bit. Then
we define the cubeconstructed hypergraph H as the 3-uniform hyper-
graph with vertex-set V and with the triple xyz in the edge-set if and only if
distH(x, y) + distH(x, z) + distH(y, z) = 2k.

In Figure 1 we see the hypercube on 8 = 23 vertices and in Table 1 the
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Figure 1: The hypercube of dimension k = 3 with the described labels.

quads of the corresponding cubeconstructed hypergraph on 8 vertices.

{000,001,110,111}
{000,010,101,111}
{000,100,011,111}
{000,110,101,011}
{010,100,101,011}
{010,001,110,101}
{001,100,011,110}
{001,100,010,111}

Table 1: Quads in the cubeconstructed hypergraph on 8 vertices.

In Section 2 we show that the cubeconstructed hypergraphs are in fact 3-
uniform friendship hypergraphs without a universal friend on n = 2k vertices
for all k ≥ 2, and that they satisfy the conjecture of [3] for all k ≥ 4. We
also show that they have 2k−1(3k−1 − 1) edges.

Furthermore, in Section 3 we construct friendship hypergraphs on 20 and
on 28 vertices, hence dismiss a conjecture of [4] saying that all friendship
hypergraphs without a universal friend must be on 2k vertices.

In Section 4 we generalize the concept of friendship graphs and 3-uniform
friendship hypergraphs to r-uniform friendship hypergraphs and observe that
the existence of those with a universal friend are dependent on the existence
of a Steiner system S(r − 1, r, n − 1) similar to the case of the 3-universal
friendship hypergraphs. Finally we construct a 4-uniform friendship hyper-
graph on 9 vertices using the Steiner system S(5, 6, 12).
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2. 3-Uniform Friendship Hypergraphs on 2k vertices

Theorem 1. The cubeconstructed hypergraphs are 3-uniform friendship hy-
pergraphs.

Proof. To prove the theorem, we only need to prove that the friendship prop-
erty is satisfied in the cubeconstructed hypergraphs, hence that for all three
vertices x, y and z exists a unique vertex w such that

distH(x, y) + distH(x,w) + distH(y, w) = 2k,

distH(x, z) + distH(x,w) + distH(z, w) = 2k, (1)

distH(y, z) + distH(y, w) + distH(z, w) = 2k.

Due to vertex-transitivity of H, we only need to consider sets containing the
vertex 0 . . . 0. So let x = 0 . . . 0 and let y and z be two arbitrary vertices in
H. Let a, b, c and d be the non-negative integers, such that there is a bits
where y has a 1 and z has a 0, b bits where they both have a 1, c bits where y
has a 0 and z has a 1 and finally d bits where they both have 0. Without loss
of generality, we can assume x, y and z to be as in (2), as the distribution of
the corresponding bits in y and z are irrelevant.

x =0 . . . 0 0 . . . 00 . . . 00 . . . 0,

y =1 . . . 1 1 . . . 10 . . . 00 . . . 0, (2)

z = 0 . . . 0︸ ︷︷ ︸
a

1 . . . 1︸ ︷︷ ︸
b

1 . . . 1︸ ︷︷ ︸
c

0 . . . 0︸ ︷︷ ︸
d

.

Now let r, s, t and u be non-negative integers, such that w has r bits of value
1 among the first a bits, s bits of value 1 among the next b bits, t bits of
value 1 among the following c bits and finally u bits of value 1 among the last
d bits, hence w consists of r+ s+ t+ u bits of value 1 and k− (r+ s+ t+ u)
bits of value 0.

As we wish to determine w, we need to solve (1) with respect to r, s, t
and u.

Given the method we used to label the vertices in the hypercube, we get

distH(x, y) = a+ b,

distH(x, z) = b+ c,

distH(y, z) = a+ c,
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distH(x,w) = r + s+ t+ u,

distH(y, w) = a− r + b− s+ t+ u

and
distH(z, w) = r + b− s+ c− t+ u

and hence, we get from (1) that

a+ b+ r + s+ t+ u+ a− r + b− s+ t+u

= 2a+ 2b+ 2t+ 2u = 2k,

b+ c+ r + s+ t+ u+ r + b− s+ c− t+u
= 2b+ 2c+ 2r + 2u = 2k,

a+ c+ a− r + b− s+ t+ u+ r + b− s+ c− t+u
= 2a+ 2b+ 2c− 2s+ 2u = 2k.

Clearly k = a+ b+ c+ d, so from the above we get

t+ u = c+ d,

r + u = a+ d,

−s+ u = d

and as r ≤ a, s ≥ 0, t ≤ c and u ≤ d, the unique solution is r = a, s = 0,
t = c and u = d.

So
w = 1 . . . 1︸ ︷︷ ︸

a

0 . . . 0︸ ︷︷ ︸
b

1 . . . 1︸ ︷︷ ︸
c

1 . . . 1︸ ︷︷ ︸
d

is the unique solution to (1) we were looking for, and hence the cubecon-
structed hypergraphs satisfy the friendship property.

We wish to determine the number of edges in a cubeconstructed hyper-
graph, but before doing so, we need to do the following observations.

Lemma 2. Let x, y and z be vertices in a cubeconstructed hypergraph H.
Then xyz is an edge of H if and only if in each bit at most two of the three
vertices share the same value.
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Proof. First, assume xyz is an edge, then we know

distH(x, y) + distH(x, z) + distH(y, z) = 2k. (3)

As stated in Lemma 1 each pair of vertices appears in at least one edge
together, so without loss of generality, we can assume that x and y are as
below, with 0 ≤ a, b, c, d ≤ k,

x =1 . . . 1 1 . . . 10 . . . 00 . . . 0

y = 0 . . . 0︸ ︷︷ ︸
a

1 . . . 1︸ ︷︷ ︸
b

1 . . . 1︸ ︷︷ ︸
c

0 . . . 0︸ ︷︷ ︸
d

which means distH(x, y) = a + c. Now, no matter which value we have for
z in each of the bits corresponding to the a + c bits in x and y, we will get
a contribution of exactly a + c to the left-hand-side of (3), as z in each bit
differs either from x or y. We are now 2k − 2(a + c) = 2b + 2d short of
satisfying (3), and the only possibility to obtain this, is if z differs from both
x and y in the corresponding b+d bits, hence in the bits where x and y have
the same value, z has to be the other value, proving the implication.

Now assume x, y and z are vertices such that in each bit at most two of
them have the same value. Thus there is a contribution of two for each bit to
distH(x, y) + distH(x, z) + distH(y, z), hence a total of 2k is obtained, which
proves that xyz is an edge.

From Lemma 2 we get the following Corollary.

Corollary 1. The four vertices x, y, z and w form a quad in the cube-
constructed hypergraph if and only if in each bit the vertices agree two and
two.

Lemma 3. Each pair x, y of vertices with distH(x, y) = i is in exactly 2i

edges if i < k and in exactly 2k − 2 edges if i = k.

Proof. Without loss of generality, let x and y be as in the proof of Lemma
2, so i = a + c. If i < k we can choose a z, such that xyz is an edge, in
2i ways according to the proof of Lemma 2. If i = k, then the only vertices
we cannot choose as z are x and y, hence there are 2k − 2 vertices to choose
from.

Theorem 2. The number of edges in the cubeconstructed hypergraph on
n = 2k vertices is 2k−1(3k−1 − 1).
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Proof. Due to Lemma 3 we just need to calculate how many pairs of distance
i there are in H.

First assume i = k, then for each vertex, there is exactly one vertex in
distance k, hence the total number of pairs in distance k is 2k/2 = 2k−1.
Now let i < k, then every pair in distance i has exactly i bits where they
differ in value, and k− i bits where they are equal in value. In each of these
bits we have two choices, as in the i bits where they differ, we can choose
which one of the vertices should have a 1 and in the bits where they are
equal, can choose if they should be both 1 or both 0. Also the placement
of the i bits where they differ can be done in

(
k
i

)
ways, so in total we get

2i2k−i(k
i

)
/2 = 2k−1(k

i

)
pairs in distance i, as we have divided by 2 to avoid

counting the pairs twice.
Combining this with Lemma 3 and the fact that we count an edge three

times, once for each of the three pairs in the edge, we get the total number
of edges in the hypergraph as

1

3

(
k−1∑

i=1

2k−12i

(
k

i

)
+ 2k−1(2k − 2)

)
= 2k−1(3k−1 − 1). (4)

As each edge is contained in a unique quad (Lemma 1) and there are four
edges in each quad, we obtain the following corollary.

Corollary 2. The number of quads in the cubeconstructed hypergraph on
n = 2k vertices is 2k−3(3k−1 − 1).

The next theorem states, that if we know the cubeconstructed hyper-
graph on 8 vertices, then the remaining cubeconstructed hypergraphs can be
constructed inductively.

Theorem 3. Let k > 3, then the cubeconstructed hypergraph on 2k vertices
is isomorphic to the union of k2 − k copies of a cubeconstructed hypergraph
on 2k−1 vertices.

Proof. First, let H be a hypercube of dimension k − 1. Then we define a
new labeling on H with k-bit binary labels from the old labeling of H to
obtain a copy of H which we denote by H ′, and we show there are k2 − k
different labelings of this kind. We then show that from this H ′ we get a
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hypergraph from the cubeconstructed hypergraph on 2k−1 vertices, which is
in fact a subhypergraph of the cubeconstructed hypergraph on 2k vertices.

In the vertices of H we know that in each bit, half of the vertices have
a 0 and the other half have a 1. We split the vertex set into two equal
size parts by fixing a bit and letting H1 be the vertices with a 0 in this bit
and H2 be the vertices with a 1 in this bit. For example, if k = 4, then if
we fix the second bit, we get a division into H1 = {000, 001, 100, 101} and
H2 = {111, 110, 011, 010}. We can choose the bit in k − 1 ways. Notice,
that according to Lemma 2 all edges in the corresponding cubeconstructed
hypergraph will have at most two vertices in H1 and H2 respectively. Now
we add an extra bit to each vertex in H, to obtain H ′ with H ′1 and H ′2
such that the value of the bit is distinct in H ′1 and H ′2 respectively. Using
the example from before, and placing the new bit between the second and
third bit, we get, by letting the value of the new bit be 1 in H1 and 0 in
H2, that H1 = {0010, 0011, 1010, 1011} and H2 = {1101, 1100, 0101, 0100}.
Choosing which position to place the new bit in, can be done in k ways, and
choosing the value can be done in two different ways. Then the vertices in H ′

corresponds to half of the vertices in the hypercube of dimension k, namely
two disjoint subcubes of dimension k−2 where one is just the vertices in the
other with all bits flipped. Going through every possible choice of the bit
that splits H and added bit, we obtain the same H ′ two times, as in the new
labeling we cannot distinguish between whether a bit has been chosen in the
splitting of H or whether it has been added to obtain H ′. Therefore we get
that there are a total of (k− 1)k = k2− k copies of a H ′ in the hypercube of
dimension k.

Let x, y, z be vertices in H. If xyz is an edge in the corresponding cube-
constructed hypergraph, we know

distH(x, y) + distH(x, z) + distH(y, z) = 2(k − 1)

and that at most two of x, y and z are in H1 and H2 respectively. Hence
according to the construction of H ′ above, we add a bit to x, y and z to
obtain x′, y′ and z′, such that one, let’s say x′, differs from the others, which
is then y′ and z′. Hence in the hypercube of dimension k we will get

distH′(x
′, y′) + distH′(x

′, z′) + distH′(y
′, z′)

= distH(x, y) + 1 + distH(x, z) + 1 + distH(y, z)

= 2(k − 1) + 2

= 2k.
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Thus x′y′z′ is an edge in the cubeconstructed hypergraph with 2k vertices.
Similarly, if xyz is not an edge, we know

distH(x, y) + distH(x, z) + distH(y, z) < 2(k − 1),

and we get the largest addition to the sum of the distances, when one is in
say H ′1 and the two others in H ′2. So in total

distH′(x
′, y′) + distH′(x

′, z′) + distH′(y
′, z′)

≤ distH(x, y) + distH(x, z) + distH(y, z) + 2

< 2(k − 1) + 2

= 2k

and hence x′y′z′ is not an edge in the cubeconstructed hypergraph with 2k

vertices.
So clearly, the k2 − k copies of the cubeconstructed hypergraphs on 2k−1

vertices are isomorphic to a subhypergraph of the cubeconstructed hyper-
graph on 2k vertices.

Now assume we have a cubeconstructed hypergraph on 2k vertices, and
let xyz be an edge therein. Then we wish to prove that xyz corresponds
to an edge in a cubeconstructed hypergraph with 2k−1 vertices as the ones
above. First we see that there are at least two of the three vertices which are
in distance no more than k − 2 from each other, otherwise we would have

2k = distH(x, y) + distH(x, z) + distH(y, z)

≥ 3(k − 1)

= 3k − 3

a contradiction as k > 3. Let’s assume distH(x, y) ≤ k − 2, this means x
and y share at least two bits, which determines whether they are in a copy
of some H1 or H2 as given above, let us say without loss of generality they
are in a copy of H1. As xyz is an edge, we have according to Lemma 2
that z must differ in these two bits, which means z must be in a copy of the
corresponding H2.

So the cubeconstructed hypergraph on 2k vertices is isomorphic to a sub-
hypergraph of the k2 − k copies of a cubeconstructed hypergraphs on 2k−1

vertices, proving the theorem.
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Notice that the friendship hypergraph on 8 vertices and one of the ones on
16 vertices (F16

1 found in [3]) is actually just cubeconstructed hypergraphs.
The cubeconstructed hypergraph on 32 vertices and 320 quads is however
not isomorphic to the friendship hypergraph on 32 vertices found in [3], as
this contains 344 quads.

The following corollary gives a affirmation of the conjecture from [3].

Corollary 3. The cubeconstructed hypergraphs satisfy the inductive, pair and
automorphism property.

Proof. According to Theorem 3 and [3] the inductive property is satisfied.
Also the automorphism property is satisfied, due to the hypercube being
vertex-transitive.

Regarding the pair property, we see that the division of the vertex set
of the cubeconstructed hypercube on 2k vertices into pairs where each pair
contains vertices in distance k, results in this property being satisfied as
well.

3. Other friendship hypergraphs

In [4] it was conjectured, that no other friendship hypergraphs than the
ones with a universal friend and the ones on 2k vertices exists. Our next
theorem will show, that this is not true. But first we state a necessity for a
friendship hypergraph to be vertex transitive.

Lemma 4. Let H be a friendship hypergraph on n vertices which is vertex-
transitive. Then (n− 1) or (n− 2) must be divisible by 3.

Proof. Due to the friendship property, we know that for each set of three
vertices, there exists a unique completion of these. As H is vertex-transitive,
we know that each vertex must be a completion to such a set, the same
number of times.

Hence this number is given by

(
n
3

)

n
=

(n− 1)(n− 2)

3 · 2 ,

and as 2 divides either n− 1 or n− 2, 3 must also be a prime divisor of one
of them.
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Theorem 4. There exist at least three non-isomorphic friendship hyper-
graphs on 20 vertices and 420 edges and at least one friendship hypergraph
on 28 vertices and 1036 edges.

Proof. Let the n vertices be represented by the elements in Zn. The con-
structions arise from some fixed quads {a, b, c, d} where a, b, c, d ∈ Zn and
given these, all the quads of the type {a, b, c, d} + i = {a + i mod n, b + i
mod n, c+ i mod n, d+ i mod n} where i ∈ Zn.

By computer search, we have found three non-isomorphic friendship hy-
pergraphs on n = 20 vertices, all of which contain the following five fixed
quads:

{0, 1, 10, 11}, {0, 2, 10, 12}, {0, 3, 10, 13}, {0, 4, 10, 14}, {0, 5, 10, 15}.

Except for {0, 5, 10, 15} which represents a total of 5 quads, all these fixed
quads represent 10 quads each.

The remaining fixed quads are specific to the different friendship hyper-
graphs as given below:

a) {0, 1, 3, 14}, {0, 1, 9, 15}, {0, 2, 4, 7},

b) {0, 1, 4, 13}, {0, 1, 6, 12}, {0, 2, 4, 7},

c) {0, 1, 4, 13}, {0, 1, 9, 15}, {0, 2, 4, 17}.
These fixed quads in a)-c) all represent 20 quads each, so all three hyper-
graphs contain a total of 105 quads. Hence, they all contain 420 edges.

For n = 28 we also found a friendship hypergraph using computer search.
It has the following seven fixed quads:

{0, 1, 14, 15}, {0, 2, 14, 16}, {0, 3, 14, 17}, {0, 4, 14, 18},
{0, 5, 14, 19}, {0, 6, 14, 20}, {0, 7, 14, 21},

which share similarities with the five fixed quads in all the found friendship
hypergraphs on 20 vertices. Expect for {0,7,14,21} which represents 7 quads,
they all represent 14 quads each.

Furthermore it contains the six fixed quads

{0, 1, 4, 17}, {0, 1, 5, 20}, {0, 1, 7, 13}, {0, 2, 4, 23}, {0, 3, 8, 19}, {0, 3, 10, 20},

which all represent 28 quads each. Hence a total of 259 quads and 1036
edges.
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Inspired by Theorem 4 and the other known vertex-transitive friendship
hypergraphs presented in this paper, we conjecture the following.

Conjecture 1. For all n which is divisible by 4 and not divisible by 3, there
exists a vertex-transitive friendship hypergraph.

4. r-uniform friendship hypergraphs

In this section we will give another generalization of the friendship graphs,
the so called r-uniform friendship hypergraphs for r ≥ 2, which satisfy the
following property.

Definition 3 (Friendship property for r-uniform hypergraphs). For every r
vertices x1, x2, . . . , xr, there exists a unique vertex w such that

{x1, x2, . . . , xr, w} − {xi}

is an edge in the hypergraph for all i = 1, 2, . . . , r.

Notice that for r = 2 the above definition corresponds to that of friendship
graphs and for r = 3 it corresponds to Definition 1. Similar to before, we
will denote an r-uniform hypergraph which satisfies the friendship property
for r-uniform hypergraphs as a r-uniform friendship hypergraph. Also w will
be denoted as the completion of x1, x2, . . . , xr.

Similarly to Lemma 1, we have the following observations for r-uniform
friendship hypergraphs.

Lemma 5. The following is true for every r-uniform friendship hypergraph
H.

(a) Every set of at most r−1 vertices appears in at least one edge together.

(b) Every edge must be contained in a unique complete r-uniform hyper-
graph on r + 1 vertices.

The proof is similar to that of Lemma 1.
We also observe that a friendship hypergraph on n vertices with a uni-

versal friend exists, if and only if a Steiner system, S(r − 1, r, n− 1), exists,
as it has edges {vi1 , vi2 , . . . , vir−1 , vn} for all 1 ≤ i1 < i2 < . . . < ir−1 < n
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and the remaining edges described by a Steiner system on {v1, v2, . . . , vn−1}.
From this we know it has

(
n− 1

r − 1

)
+

(
n−1
r−1
)

(
r

r−1
) = (1 +

1

r
)

(
n− 1

r − 1

)

edges.
The only r ≥ 4, for which we know in general that Steiner systems exist,

is r = 4 and the Steiner systems S(3, 4, n − 1) is referred to as a Steiner
quadruple systems. They exist if and only if n ≡ 3 mod 6 or n ≡ 5 mod 6.
For all other values of r we only know a finite number of Steiner systems,
see [5] for an overview of which Steiner systems are known, and some of the
properties of Steiner systems.

The last r-uniform friendship hypergraph we will present in this paper,
is the one given in the following definition.

Definition 4 (4-uniform hypergraph on 9 vertices). Let a, b, c be three of the
elements in the Steiner system S(5, 6, 12) and let the remaining 9 elements
represent the vertex set V in a 4-uniform hypergraph. The quadruple v1v2v3v4
is an edge in the 4-uniform hypergraph if and only if {a, v1, v2, v3, v4, x} ∈
S(5, 6, 12) for some x ∈ V .

In the next lemma, we will use the block intersection numbers λi,j of a
Steiner system S(t, k, v) which, given two disjoint sets I of size i and J of
size j, determines the number of blocks which contain I but do not contain
J . Due to the properties of Steiner systems, this number only depends on i
and j, and hence we can calculate any λi,j from the following:

λi,0 =

{ (
v−i
t−i
)
/
(
k−i
t−i
)

for 0 ≤ i ≤ t

1 for t < i ≤ k

λi,j = λi,j−1 − λi+1,j−1.

Lemma 6. The 4-uniform hypergraph given in Definition 4 has 90 edges

Proof. For each 6-block in S(5, 6, 12) which contains a and neither b or c, we
get a total of 5 edges due to the definition of the 4-uniform hypergraph. So
we wish to determine this number of blocks, which can be done by using the
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block intersection number, λ1,2. According to the above we get

λ1,2 = λ1,0 − 2λ2,0 + λ3,0

=

(
9
2

)

3
− 2 ·

(
10
3

)

4
+

(
11
4

)

5
= 18.

So the number of edges in the hypergraph is 5 · 18 = 90.

Theorem 5. The hypergraph given in Definition 4 is a 4-uniform friendship
hypergraph without a universal friend.

Proof. Due to the fact that the 4-uniform friendship hypergraph with a uni-
versal friend on 9 vertices has (1 + 1/4)

(
8
3

)
= 70 edges and the 4-uniform

hypergraph given in Definition 4 has 90 edges, the one from Definition 4
cannot have a universal friend.

It remains to show that the friendship property is in fact satisfied in
the 4-uniform hypergraph given in Definition 4, hence that for all quadru-
ples v1, v2, v3, v4 there exists a unique vertex w (the completion) such that
{a, v1, v2, v3, w, x4}, {a, v1, v2, v4, w, x3}, {a, v1, v3, v4, w, x2} and
{a, v2, v3, v4, w, x4} ∈ S(5, 6, 12) for some xi ∈ V for all i = 1, 2, 3, 4.

As we know S(5, 6, 12) is a Steiner system, we know that there exists
some unique element x such that {a, v1, v2, v3, v4, x} ∈ S(5, 6, 12). If x ∈ V ,
then this x is the completion of v1, v2, v3, v4. Now assume x /∈ V , without loss
of generality we can assume that x = b, so {a, b, v1, v2, v3, v4} ∈ S(5, 6, 12).
Now we know that {a, c, v1, v2, v3, y4} ∈ S(5, 6, 12) for some element y4, and
we see that y4 6= b as otherwise it would be a contradiction to S(5, 6, 12)
being a Steiner system. So we must have y4 ∈ V . Similarly we see that
{a, c, v1, v2, v4, y3}, {a, c, v1, v3, v4, y2}, {a, c, v2, v3, v4, y1} ∈ S(5, 6, 12) where
yi 6= yj for i 6= j and yi 6= b for i = 1, 2, 3.

Now we have a unique vertex w ∈ V given by w 6= yi, vi for all i = 1, 2, 3, 4
which satisfies {a, v1, v2, v3, w, x4}, {a, v1, v2, v4, w, x3}, {a, v1, v3, v4, w, x2}
and {a, v2, v3, v4, w, x4} ∈ S(5, 6, 12) for some xi ∈ V for all i = 1, 2, 3, 4.
So this w is the completion, hence proving the friendship property for a
4-uniform hypergraph is satisfied.
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