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A Discussion of Low Reynolds Number Flow for the Two-Dimensional 
Benchmark Test Case 
M. Weng, P. V. Nielsen and L. Liu  
Aalborg University  
 
 
Introduction. 
 
The use of CFD in ventilation research has arrived to a high level, but there are some conditions in 
the general CFD procedure which do not apply to all situations in the ventilation research. An 
example of this is the turbulence models in Reynolds-averaged Navier-Stokes equations, i.e.  
(RANS) equations. 
 
The flow in a ventilated room is generally assumed to be a fully developed turbulent flow, and this 
flow can be handled by most turbulence models. But in some areas of the room, including the 
occupied zone, a low Reynolds number flow can exist at a low room air supply velocity. Figure 1 
shows measurements of the maximum velocity in the occupied zone of a room with mixing 
ventilation from a wall-mounted diffuser versus the air change rate. The flow is isothermal (Nielsen, 
1992). Similarity principles state that any velocity, e.g. the maximum velocity in the occupied zone, 
is a linear function of the air change rate (or the supply velocity) when the flow is a fully developed 
isothermal turbulent flow. In Figure 1 this is the case for velocities larger than 0.25 m/s, but the 
figure indicates that the flow in the occupied zone is a low Reynolds number flow for velocities 
below 0.25 m/s (dotted line). The conventional turbulence models cannot accurately capture the 
flow in this low Reynolds number regime. On the other hand, an air change rate up to 5 covers most 
of the practical cases in air conditioning. 
 

 
Figure 1. Measurements of maximum velocity in the occupied zone of a room versus air change rate 
(supply velocity) in the case of isothermal mixing ventilation. Proportionality between supply 
velocity and maximum velocity in the room indicates a fully developed turbulent flow in the 
occupied zone for a supply velocity larger than 0.25 m/s, and a low Reynolds number flow for lower 
velocities. 
 
 



Model and equation systems 
 
The problems with a low Reynolds number flow will be addressed in the following IEA 2D test 
case. 
 

 
  
Figure 2. The two-dimensional benchmark test, also called the “IEA 2D test case”.  
 
The geometry of this benchmark model is described as: 
 
H = 3m, L = 9m, h = 0.168m, t = 0.48m 
 
The air is supplied from the top slot in the model and the return air flow is through the bottom slot 
on the opposite position. 
 
The boundary conditions for the following CFD predictions are given as: 
Inlet velocity: uo    
 
Turbulent kinetic energy:  
 
Dissipation:    where  

The Reynolds number is defined as   
 
According to previous studies, the model has a two-dimensional steady state flow (Olmedo et al. 
2010), and there are more than 50 papers related to this model including both experimental and 
numerical studies made during recent years. 
 
 
Mathematical description 
 
The flow will be studied in the isothermal case and is fully described by the two-dimensional 
Reynolds-Averaged Navier-Stokes equations (RANS) without the energy equation. 
Mass conservation equation 
 

 
 
Momentum conservation equation (Navier-Stokes equations) 



 
 

 
 
The equation system describes laminar flow when μeff is equal to the physical viscosity μ, and it 
describes the averaged values in fully developed turbulent flow when μeff is equal to μ + μt , where 
the distribution of the turbulent viscosity μt is given from the k-ε equations. 
 
A laminar flow prediction can thus be made by the above equations as well as a prediction with 
fully developed turbulent flow. 
 
The k-ε turbulence model is only valid for fully turbulent flow and it is therefore not possible to 
make predictions in the regime between the laminar and the fully developed turbulent flow. A Low-
Reynolds k-ε model (LRN) sheds some light on this area. The LRN model is developed for wall 
boundary layer and is basically a k-ε model with variable “constants” (cμ and c2) adjusted by a local 
Reynolds number Rt. Launder and Sharma (1978) introduce a version of an LRN model with the 
variable “constants” fμ and f2 given as functions of the local turbulent Reynolds number Rt 
 
 fμ = exp(-3.4/(1 + Rt/50)2) 
 
 f2 = 1- 0.3 exp(-Rt

2) 
 
A high turbulence k-ε model, which is used in this paper, may be considered a special version of an 
LRN model with fμ and f2 equal to 1.0. Those conditions are fulfilled in practice when Rt exceeds 
400 everywhere in the flow domain, as seen from the above equations. Nielsen (1974 and 1995). 
The local turbulent Reynolds number can be expressed by 
 
 Rt = μt/(cμ fμ μ)  
 
Fully developed turbulent flow (Rt > 400 and cμ = 0.09) corresponds to the ratio 
 
 μt /μ > 40 
 
The value of this ratio made it possible to express the quality of a CFD prediction with a k-ε 
turbulence model. An LRN model is identical to a k-ε model when the ratio is larger than 40, and 
the k-ε model is therefore a valid model in this case. When the ratio is smaller than 40, the local 
turbulent Reynolds has such a level that the k-ε model is insufficient to describe the flow with the 
level of low Reynolds number turbulence which exist in the area. The following chapter addresses 
the possibilities of using the ratio μt/μ for quality control of a prediction.   
 
 
 
 
 
 
 
 
 
 



Predictions at low Reynolds numbers based on a k-ε model.  
 
Figure 3 shows the predictions at Reynolds numbers from 5000 down to 500.  
 

 
Re = 5000 

 
Re = 4000 

 
Re = 3000 

 
Re = 2000 

 
Re = 1000 

 
Re = 500 

 
Figure 3. Prediction of the flow in the IEA 2D test case. Areas with a value of the turbulent 
viscosity lower than 40 μ are indicated as a white area. 
 
The predictions show that, even for the Reynolds number of 5000, there will be areas with a 
turbulent viscosity lower than 40 μ. This is particularly the case for the inlet opening, because the 
given inlet conditions correspond to a turbulent intensity of 4 %, which is far from the turbulent 
flow.  Le Dréau et al. (2012) have shown that μt/μ is about 5 to 10 in the inlet area. This low level of 
turbulence is maintained in the constant velocity core in front of the opening because there will not 
be any production of turbulent kinetic energy in this area. The wall jet below the ceiling will 
immediately obtain a high turbulent level due the production in the velocity gradients. This 
turbulent level will be transported around in the room in addition to further production.  
 
The predictions for Re = 4000 show that μt/μ is larger than 40 in most of the domain, and it is also 
similar to the predictions for Re = 5000. Therefor it can be considered to be a fully developed flow. 
 
The predictions for Re = 500 and 1000 shows large areas where μt/μ is smaller than 40 and it is only 
in the center of the recirculating flow that a high turbulence is predicted. Those predictions will be 
false because they are connected to an area with an insufficient turbulence model. The k-ε cannot be 
used at those low Reynolds numbers. 
 
 
Predictions with the k-ε turbulent model in situations close to laminar flow. 
 
It is often expressed that the k-ε model can give a sufficient solution at very low velocities (laminar 
flow regime). This situation will be addressed in this section.  
 



 
Re = 1 

 
Re = 10 

 
Figure 4. Velocity distribution at x/H = 2.0 predicted by RANS equations and a k-ε model as well 
as by the laminar equations. 
Figure 4 shows that the velocity distribution found by the RANS equations and a k-ε model are 
identical to the solution found by the laminar equations at the extreme low velocities (Re = 1, 10). 
This effect can be explained if we look into the distribution of μt and μ + μt. Figure 5 shows that the 
predicted turbulent viscosity μt from the k-ε model is close to 0.0 for Re = 1 and 10. The molecular 
viscosity μ will be large compared to μt and the RANS equations will be similar to the equations for 
laminar flow and will therefore predict laminar flow. 
 

 
Re = 1 

 
Re = 10 

 
Figure 5. Distribution of μt and μeff = (μ + μt) for Re = 1 and 10, at the position x/H = 2.0. 
 



  
 
Figure 6. Distribution of μt and μeff = (μ + μt) for Re = 50, as well as velocity distribution at the 
position x/H = 2.0. 
 
The prediction of μt in the RANS equations will amplify with an increasing Reynolds number and 
will be about 2 to 4 times larger than the molecular viscosity μ (but of course far from 40), see 
figure 6. The velocity distribution shows two very different results. The RANS solution is surely 
wrong and only measurements can determine the real solution.  
 
 
Conclusion 
 
In the past couple of years, CFD prediction has played an important role in ventilation research and 
more and more people use this tool. The turbulence model selected in the CFD simulation becomes 
particular important, and in this paper it is shown that the standard k-ε model is not valid for all 
cases although the k-ε model is widely used in ventilation research in CFD prediction. 
The inability of the k-ε model in the low velocity regime, which exists in ventilation research, has 
been demonstrated in the IEA Annex 20 2D test case. When the inlet Reynolds number is larger 
than 4000, the prediction in CFD code with the standard k-ε model reflects the turbulent flow in the 
real flow. When the inlet Reynolds number is less than 10, the prediction in CFD code with the 
standard k-ε model is similar to the laminar model, but when the inlet Reynolds number is from 10 
to 4000, it is most likely impossible to make predictions with the standard k-ε model. 
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