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ABSTRACT

Background: The spatial genetic structuring of natural populations is mostly studied using
neutral markers. Recently, morphometric methods have also been used to to study genetic
divergence through adaptive processes. These methods provide better insights into the
conservation needs of focal populations. However, all morphometric methods assume that
samples obtained in different localities represent distinct populations when, in fact, they
may constitute a mixture of several populations due to cryptic population structure andfor
environmental variability. This may lead to biased estimates of the adaptive divergence between
populations. Mixture analysis makes no a priori assumption of the affiliation of samples. It can
therefore be used to assign samples and detect population structure, allowing estimation of
morphometric divergence.

Methods: We perform mixture analyses on simulated data to estimate potential bias in
adaptive population divergence measures due to a priori assumptions about the population
structure. We present three examples illustrating the possible uses of mixture analyses for
identification of distinct compartments (groups of individuals that are morphologically similar)
between and within populations.

Key assumptions: We assume that the presence of distinct compartments between populations
can be attributed to different environmental conditions, the presence of barriers reducing gene
flow, and phylogenetic signals and plasticity of the traits analysed.

Conclusions: Certain cases of (cryptic) population structure may lead to substantial bias in
the estimation of population morphometric divergence. This can have major implications for
conservation guidelines and for the detection of evolutionarily distinct populations.

Keywords: evolutionarily significant unit, Fg-Qgr and Fyp-Pgr comparisons, genetic structure,
local adaptation, morphometrics, natural selection.
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INTRODUCTION

Landscape genetics combine population genetics, spatial statistical analyses, and landscape
ecology. It seeks to unravel the interactions between features of the landscape and
microevolutionary processes and identify spatial barriers to gene flow (Manel e al, 2003;
Coop er ai, 2010). Thus the principles of landscape genetics are central to conservation
genetics. It plays an increasingly important role in the management and conservation of
species due to the need to evaluate the effects of habitat degradation and fragmentation
(Manel et al,, 2003).

The spatial structuring of natural populations across landscapes is the product of
demographic factors, including gene flow as well as random genetic drift through finite
population sizes and environmental factors. Neutral molecular genetic markers such as
microsatellite DNA, single nucleotide polymorphisms (SNPs), and mitochondrial DNA
have been used extensively within the field of conservation genetics. They have been used
to elucidate and quantify the spatio-temporal distribution of genetic variance, estimate
demographic parameters as well as designate biological entities of special concern,
i.e. evolutionarily significant units and conservation units (Waples, 1991; Fraser and Bernatchez, 2001).
While designation of evolutionarily significant units or conservation units aims to preserve
significant biological legacy and allow the potential for future adaptive evolution, a number
of different approaches have been proposed. Some of these focus on divergence of allele
frequencies at nuclear loci and reciprocal monophyly of mitochondrial DNA (Moritz, 1994).
Based entirely on neutral genetic markers, these approaches may only be appropriate for
providing insight into adaptive variation when a large fraction of the putatively neutral loci
are tightly linked to quantitative trait loci of phenotypic traits under selection or when the
population in question is small. In the latter case most variation, including quantitative
variance, is expected to behave neutrally due to extensive random genetic drift (Pertoldi and
Bach, 2007). A broader definition of evolutionarily significant units and conservation units
including non-neutral markers or quantitative traits would therefore be more appropriate in
other circumstances (Crandall er af, 2000; Fraser and Bernatchez, 2001; Fabiani ef al., 2003). This will provide
further information about adaptive evolutionary processes.

Knowledge about local adaptation and adaptive potential of natural populations is
becoming increasingly relevant due to anthropogenic changes to the environment, including
climate change. Divergent natural selection due to spatially varying environments is
expected to promote adaptive evolutionary responses (Kawecki and Ebert, 2004). However, when
populations are small or gene flow is extensive, populations are expected to be neutrally
differentiated or genetically homogeneous, respectively. Hence, the evolutionary outcome is
dictated by the relative strength of natural selection, migration, and gene flow (Endler, 1986).
Selective forces influence populations in various parts of a species distribution differently
(Andersson, 1994) and, in a given population, the degree of adaptation is the residual effect
of the dynamic interaction between the selective pressure and gene flow. While natural
selection is a potent force driving population differentiation and determining phenotypic
diversity in natural populations, its importance relative to random genetic drift remains
unclear (Edelaar er at, 2011). The extent to which adaptive responses should be held responsible
for the patterns of biological diversity is far from settled.

Whereas some insights can be obtained by consideration of rates of gene flow
and migration based on putatively neutral molecular markers, direct demonstration of
local adaptation involves either comparison of fitness among populations in local
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and foreign environments, analysis of genes subject to selection or evaluation of the
between-population component of additive genetic variance of quantitative traits (Endler,
1986; Kawecki and Ebert, 2004; Jensen er al., 2008). A popular approach to unravel the relative effects
of neutral evolutionary processes (i.e. random genetic drift and gene flow) and adaptive
processes is to contrast population divergence at putatively neutral molecular markers (Fgr)
with divergence in quantitative variation (Qgsr) or phenotypic divergence (Ps;) of morpho-
logical, behavioural or life-history traits assumed to be under the additional influence of
natural selection (Lande, 1992; Lynch, 1996, Merild and Crnokrak, 2001; McKay and Latta, 2002; Jensen et al.,
2008; Brommer, 2011), Thus, estimates of neutral genetic variation provide a null hypothesis or
neutral expectation to the alternative hypothesis of adaptive divergence (spitze, 1993; Schiuter,
2001; Jensen e af, 2008). When considering the relation between Qg and Fygr, or Pgr and Fgr,
three scenarios are possible. First, a higher divergence in quantitative traits compared with
neutral molecular markers (Qsy > Fgr or Py > Fyp) indicates directional selection among
populations. Second, the opposite scenario (i.e. Qgr < Fgp or Py < Fgp) suggests that the
same genotypes are favoured in different populations due to stabilizing selection. Third, if
the two measures do not differ significantly, the possibilities of genetic drift versus selection
cannot be disentangled. Despite the fact that these kinds of comparative approaches
are quite promising, we should bear in mind that for many species, especially those that are
endangered or vulnerable, estimation of Qg is not possible. The estimation of Qg
(i.e. estimation of the additive genetic component of a phenotypic trait) requires complex
experimental designs in which the environmental conditions can be manipulated. Also, the
relationships between individuals must be known. In contrast, Ps; has often been used as
a coarse surrogate of Qgr. Pgr does not require any assumptions about controlled environ-
mental conditions and known relationships between individuals. However, how well the Py
value approximates Qg is determined by the relative importance that the additive genetic
variance has in determining the between- and within-population phenotypic variation.
Clearly, environmental factors, genotype x environment, and non-additive genetic variances
bias such an approximation (Brommer, 2011).

Although contrasting selectively neutral and adaptive divergence is a highly useful
approach when investigating the biological significance of trait variance in a conservation
context, there are some caveats that need to be kept in mind during interpretation. Being
under the influence of both environmental and genetic effects as well as interaction and
covariance terms, estimating Pgp or Qg for quantitative traits potentially introduces bias,
if environmental heterogeneities are not eliminated (Brommer, 2011). This is a concern when
estimating Psr or Qg; from quantitative traits measured in the field, but environmentally
induced bias in studies under controlled environments cannot be ruled out due to potential
ontogenetic effects on individuals acclimated, maternal effects, and uncontrolled micro-
environmental heterogeneities within the controlled environment, even if some experimental
designs can partly control for some of these biases (Pujol er «i, 2008). As previously mentioned,
the approximation that Pgr is equal to Qg is debatable. However, making a few assumptions
in Equation (2) of Brommer (2011) for the estimation of Pgr, it is possible to validate such an
approximation. That is, if we assume that we know the value of the scalar ¢ (the proportion
of the total phenotypic variance assumed to be caused by additive genetic effects) and of the
heritability 4° of the trait studied. To simplify the methodological part of this study, we
assumed that Pgr is equal to Qgr, and therefore we will only refer to Qg in the remainder of
the paper. However, this assumption will not affect our conclusions, which are valid both for
estimates of both Pgr and QOgr.
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Another issue is that sampled individuals from the wild are most often categorized
into populations by making a priori assumptions about population of origin, typically
supported by the geographical co-location of the populations. There is, however, a risk
that mis-assigned migrants, based on sampling site, can lead to underestimated population
differentiation and biased conclusions. Clearly, such a problem can be resolved if molecular
markers are available for the species studied, as a pool of markers allows for the assignment
of an individual to the population of origin. Molecular markers are, however, not always
available. Cryptic population structure can also introduce significant bias. Variation in
quantitative traits among different cohorts due to fluctuating environmental conditions or
selective pressures leads to underestimation of Pgr or Qgr. The same applies to cryptic
spatial heterogeneities within the geographical range of a priori defined populations.

Cryptic population structure or erroneous @ priori assumptions about populations can
potentially be unravelled by clustering individuals. Several procedures to determine genetic
population structure based on molecular genetic data without the a priori definition of
existing populations are available and implemented in landscape genetic software
[e.g. STRUCTURE (pritchard er ai, 2000), BAPS (Corander er ai, 2008), and TESS (Durand er al, 2009)].
Although the literature is rich with studies using these types of software (e.g. Mucdi er al., 2010),
very few have attempted to elucidate population structure using mixture analysis of
quantitative data (e.g. morphometric, life-history trait or gene expression studies).

The fitting of normal or t-component mixture models to multivariate data, using
maximum likelihood via the EM algorithm, is widely adopted (McLachan and Krishnan, 1997;
McLachan and Peel, 1998). A major advantage of mixture analysis is that, unlike many other
approaches, it performs an unbiased analysis of the data without any a priori expectations.
For this reason, Mariott (1974) dubbed it ‘the only clustering process that is entirely
mathematically justifiable’. The method assumes that the data are composed of a mixture of
several compartments and splits the data into these clusters. No geographical information is
used with this method and the grouping of a significant amount of individuals from the
same localities in the same cluster therefore provides strong evidence of a geographic
differentiation. Even though mixture analyses on biological data have a long history (Pearson,
1894), they have only been used in a few biological studies (Airoldi ef al., 1995; Pertoldi er al., 2006, 2009,
2012; Faurby er af, 2011). Pertoldi et al. (2006) conducted a morphometric study on skulls of the
Iberian lynx Lynx pardinus, using univariate, multivariate, and mixture analysis approaches.
All three techniques provided evidence for morphometric differentiation, both in skull size
and shape, among three populations of geographically separated populations. Pertoldi et al.
(2009) conducted a morphometric study followed by mixture analyses on skull traits and teeth
traits of polar bear Ursus maritimus skulls sampled in East Greenland from 1892 to 2002.
The mixture analyses, followed by multivariate analyses, provided evidence for morpho-
metric differences in both the size and the shape of individual skulls collected. The fact
that environmental and genetic changes produce different combinations of patterns of
morphometric changes allowed the authors to individuate the causes of the morphometric
modifications. Faurby et al. (2011) analysed shape variation in different species of Horseshoe
crabs (Limulus polyphemus and Carcinoscorpius rotundicauda), and by comparing the
degree of geographic variation between sexes and species found strong indications for the
importance of both sexual and natural selection.

The concomitant use of genetic markers for the detection of genetic differentiation
together with analyses of variance at quantitative traits can provide a more detailed answer
to the questions that arise when deciding a conservation strategy (e.g. reintroduction,
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translocation or repopulation). In this study, using computer simulations, we investigate the
potential use of mixture analyses on quantitative data in a conservation and landscape
genetic context. Specifically, we elucidate the power of mixture analyses to pick up
signals of cryptic population structure and investigate the introduced bias in estimates
of quantitative divergence (Qgsr). When cryptic structure is present. We discuss potential
applications on a suite of quantitative data (univariate or multivariate), including
morphometric (metric and meristic), demographic, gene-expression, physiological, and
environmental data. We also provide suggestions as to how mixture analyses of quantitative
data can be implemented in the landscape genetics software that is routinely used to
determine population genetic structure and geographical distribution of population clusters
simultaneously by using information on genotypes and geographic locations.

METHODS

Computational issues

To determine the bias produced when considering a sample that is a mixture of different
distributions and to test the capacity to detect such an admixture, we ran a number of
simulations in R v.2.11.1 using functions from the package mixtools and custom codes
(Benaglia ef al, 2009; R Development Core Team, 2010). All simulations were run assuming two clusters
and mixture analyses were set to search for mixtures of normal distributions.

In these simulations we estimated biases on Qg estimates when, in reality, an assumed
homogeneous population consists of two populations whose trait measurements show
separate normal distributions. First, we estimated the average bias on Qg when the two trait
distributions have different mean values. Second, we estimated the average bias on Qg when
the two trait distributions have identical means but different variances around the mean.
Third, we estimated the average bias on Qg estimates when individuals are assigned to
populations based on measurements of one or more traits (and with different phenotypic
correlations between the traits).

In all the simulations, we compared two populations with sample size 100 and estimated
QOsr as (Between-group SS/(Between-group SS + 2 Within-group SS)), where SS is sum of
squares. For all analyses, we compared our mixed distribution with a basic distribution
Py, that had a normal distribution, a mean of 10, and standard deviation of 1/3.

Population mixture composed of distributions with different means

To test for the effect that a mixture of two normal distributions with different means can
have on the Qg estimates, we estimated Qg values between the basic population, Pg,, and
a mixed population, P,y,, with an overall mean varying between 8 and 12 and with standard
deviation of 1/3. The mixed distributions consisted of a mixture of trait measurements that
were known to originate from one of two populations with different sample size (Ps .k mows
and Ppyiyxow)- For each simulation, we generated the distribution of trait measurements for
Py by sampling varying proportions of each of the Pgaignown 20d Phiggnowa distributions.
Specifically, we sampled between 5 and 50 individuals from Pggnows and the remaining
individuals from Ppignomn to give a total population size of 100 individuals in Py;,. The
mean trait value of Py uknown Was 5et 10 ((Psmanknown + Poigknown)/100) + 1, while the mean
trait value of Py, Was adjusted accordingly to keep the overall mean constant.
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For each of the nine different means produced by mixing Psqaiknows a4 Priggnown With
different proportions of the mixed distributions (8, 8.5 ... 12), tests were run for ten
different sizes of the small population (5, 10 ... 50), generating a total of 90 different
distributions. For each Py;,, we ran a mixture analysis and assigned individuals t0 Pgyapassign
Of Ppigassign: Psmatiassign 204 Prigasien Were defined so that the ratio between the means of the
two mixtures was the same as the ratio between the means for Pspaignown ad Ppiggaown- After
this step, we sampled with repeat from Pg.gaowns Prigknowns Psmaniassigns 04 Prpigacsion tO
generate four populations with sample size 100 each, since Qg is influenced by the ratio of
sample sizes between populations. Finally, we calculated Qgr values between Py, . and the
four populations Psuaugnowns Prigknowns Psmaniassigns 304 Ppigassions @ Well as Qgr values
between Pp,. and Phg,. To remove any potential sampling error effect, we sampled ten
times from the results of each mixture analysis and only considered the mean of the Qg
values calculated from these ten replicates. In some cases, the mixture analysis assigned all
individuals to a single component. These cases were ignored for the purpose of calculating
Osr for Py, Pspanknown> a4 Prignonn, While the Qgy for Pganasen was defined as 1 and the
Osr for Ppigasign Was defined as the median Qg for Py, for the set of 100 simulations in
question.

Since we were only interested in average effects, all analyses focused on median values for
each distribution of overall means of the mixed population. The median was chosen over
the mean, since Qgr values will have asymmetrical errors as they only range between 0 and 1,
making the median values more informative.

Population mixture composed of distributions with different variances

To test for the effect that a mixture of trait measurements from two normal distributions
with identical means but different variances can have on (g, we ran analyses with basic
set-ups as above but with the following adjustments: Both Pgyxnows 230d Priggnows had
the same mean (separate analyses were run for means equal to 10.5 and 11) but whereas
the standard deviation of Ppiyx 0w, Was kept constant (at 1/3), the standard deviation of
Py ranknown varied between 1/12 and 4/3. In these cases, the measurement distributions for
Psmanassign @04 Prpigassien Were defined to ensure that the ratio between the standard deviations
of the two mixtures was the same as the ratio between the standard deviations for P, ugaown
Ell’ld P BigKnown-

Qg bias estimation

To assess the bias in Qg estimates based on single trait measurements versus measurements
on more than one trait, we assigned individuals to two populations based on measurements
on one, two, and three traits. Bias is presented as the differences between estimated Qgr
values (based on assignments from mixture analyses) and the true (known) Qg estimates.
Since the bias depends on the size of the populations, we focused on the difference between
Osr o1 Pypangnown a0 Pypanagig and analysed them for univariate, bivariate, and trivariate
normally distributed data. For the bivariate and trivariate data sets, we analysed multi-
variate distributions with low (p =0.2), medium (p=0.4), and high (p =0.8) correlations
between trait measurements. For analyses based on bivariate and trivariate measurement
distributions, only one of the univariate distributions was used to calculate Qgr, while the
other distributions were used for assighment in the mixture analyses.

For the bivariate and trivariate data sets, we assigned the data by performing univariate
mixture analyses for each variable and calculating the probability that individuals belonged
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t0 Psmanassign Dased on measurements for one, two, and three traits. These probabilities are
referred to as Probgy, 1, Probgy. 5, and Probg,,, ;. Assignments were based on mean
values or standard deviations and calculated as

Probgy,an 1 X Probgpa 2

Probgman 1 X Probgpay 2 + (1 = Probgyen 1) X (1 — Probggay 2)
(if the data were bivariate), or

Probgp,y 1 X Probggpyy 5 X Probgpa 3
Probgyai_1 X Probg,y ; X Probg., 5+ (1 - Probsman 1) X (1 = Probg,y ;) X (1 — Probg,.y ;)

(if the data were trivariate), and individuals were assigned to Pg,., assign If this probability
was above 0.5. Following this assignment, we estimated the Qg values for Pg.iknown
compared with Pg,g. and for Pgynaig. compared with Pp,g..

RESULTS

Population mixture composed of distributions with different means

For mixtures composed of different means, no systematic bias in the estimation of Qgy was
identified, as the median Qgy values for Py, ayasign A0 Ppigacsign Were nearly identical to the
median Qgr values for Pgyaikaown aNd Ppiginewn fOr all analysed means of Py, (Figs. 1a—i).
Furthermore, while the difference in Qg between the mixed and largest population always
ncreased with increasing size of Pgy,y, quite marked differences between Qgr for Py, and
Prtivea V8. Ppasic Were observed when the size of the smallest compartment was 10-15% of the
entire mixed population (Figs. la—i). An additional point is evident from the subplot of the
mean (u) equal to 12 (Fig. 1i), which shows that the Qgr of a mixed population can be less
than the Qg of each of the subgroups due to the increased variance in the mixed
population.

Population mixture composed of distributions with different variances

The consequences of a mixture composed of two distributions with different variances are
shown in Fig. 2. In these cases, there were systematic biases for analyses with relatively
moderate (two-fold) differences in standard deviations between the components (Figs. 2b—c,
f—g). The differences between the Qg; values calculated for the assigned vs. the known
components were greater than the differences between any of the true components and the
mixed population.

These systematic differences disappeared for the larger (four-fold) differences in standard
deviations (Figs. 2a, d, e, h) between the components, showing that mixture analyses are
fully capable of separating populations with identical mean as long as the difference in their
standard deviations are large enough. The existence of a small component with less
variation appeared unimportant, since Qg for Py, was close to Qgr for Py, (Figs. 2a, e).
The existence of a small, more varied component led to much larger deviations between Qg
for Py, and Qgy for Py, (Figs. 2d, h). These analyses essentially showed that the Qg for
Py, is mainly driven by the most variable component if the means of the components are
identical.
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Fig. 1. Analysis of Oy calculations with different means for Py,. Nine different subplots show results
of mean Py, between p=8.0 and 12.0. Qg values between Pp,g. and Py, are shown by circles;
between Pg,y, and Py by crosses; and between Py, and Pg,, by triangles. Values calculated with
perfect assignment are shown in black, while values calculated with assignment from the mixture
analyses are shown in grey.

Qs bias estimation

Whereas the previous analyses focused on the overall pattern produced by mixtures
composed of different means or different variances, a separate issue arises when invest-
igating the amount of bias caused by non-perfect assignment to individual components
(Figs. 3a—d). It is evident that the bias became substantial when Pg,,; was small. Although
the size of this error consistently decreased as the proportion of Py, individuals in Py,
increased, the errors were minor as long as at least 15% of the individuals in Py, belonged
t0 Pgmay if the means of Pg,,,, and Py, were different or if the variance of Py, was less

. g®
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Fig. 2. Analysis of Qg calculations with different standard deviations for each component of Py,
Eight different subplots show results of differences in standard deviation of Py, vs. Py, calculated
with mean Py, of either p=10.5 or 11.0. Qsy values between Py, and Py, are shown by crosses and
those between Pg,g. and Pg.; by triangles. Values calculated with perfect assignment are shown in
black, while values calculated with assignment from the mixture analyses are shown in grey.

than that of Py, (Figs. 3a, b, d). For the final scenario analysed, a Pg_,; with a higher
variance than Py, around 30% of the individuals had to belong to Py, to obtain a fairly
reliable measurement of Qg between Pg,,,, and Py, ;. (Fig. 3c).

It is also clear from these analyses that the errors for the univariate data set are
substantially larger than the errors for the bivariate or trivariate data set. Among these
multivariate data sets, the errors are smaller for data with a low correlation between the
parameters (p = 0.2) than for moderate (p = 0.4) or high correlations (» = 0.8) (Fig. 3). The
difference between two dimensions (full lines) and three dimensions (points) were much less
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Fig. 3. Measurement errors in Qg; by imperfect assignment of mixture analyses. The median
difference between Qg; for Psmaikaown a00 Pspaassgn in each simulation calculated under four different
scenarios. The first two scenarios are represented in the third and ninth subplots of Fig. 1 (a and i),
while the last two scenarios are represented in the fifth and eight subplots of Fig. 2 (e and h). The
crosses represent data for the univariate data set; the grey lines represent data for the bivariate data set;
and the circles represent data for the trivariate data set. Results for low correlated multidimensional
data (p=0.2) are shown by the thickest lightest grey line, for moderate correlated multidimensional
data (p = 0.4) by the line of intermediate thickness, and for highly correlated data (p = 0.8) by the thin
dark grey line.

evident, suggesting that the correlation between the parameters was much less important
that the number of correlations.

Our results suggest that Qg estimates are highly influenced by the presence of
non-homogeneous means but that such mixtures generally can be reliably unmasked with
mixture analyses making the problem fairly easy to handle. Non-homogeneous variance
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is harder to handle and moderate differences in variance between sub-compartments are
potentially better ignored, as the bias they introduce may be smaller than the errors caused
by non-perfect assignment to clusters.

If the variance of Py, is substantially lower than the variance of Py, mixture analyses
can unmask the situation but the Og; between Py, and P, is very close to the Qg between
Py, and Py, in such situations and mixture analyses may not be vital. The existence of a
Psman With a substantially higher variance than Py, is the most problematic situation. In
such cases, the Qgy between Py, and Py, is very different from the Qg between Py, and
Py, but the individual mixtures are harder to identify. Such situations are potentially best
handled by performing mixture analyses but only analysing the data from Prig-

DISCUSSION

Mixture techniques as a complementary tool in
landscape genetics

We have shown that mixture techniques can be a powerful tool to get a real impression
of the complex interplay between genotype and environment that shapes traits across
landscapes. In this study, we have demonstrated that considering a population to be
homogeneous or assigning individuals to different populations using geographic data as a
criterion for the assignment can generate substantial bias when quantifying morphometric
differentiation using Qgr. Clearly, the other univariate or multivariate indices of morpho-
metric distances will also be biased, although for clarity and brevity we did not investigate
the bias produced by mixtures on these indices. There is no reason to expect that the same
mixture technique should not apply for studies estimating population differentiation
from quantitative trait data generated by transcriptomics, proteomics or metabonomics
(eg. Whitehead and Crawford, 2006). In the future, mixture analysis has the potential to provide
insight into geographic variation whether caused by population history or selective forces.
The cluster patterns described by the output of the mixture analysis could reveal patterns of
phylogenetic signals that are illustrating history and not ecology. Several studies have
reported this pattern, which appears to be common in newer splits such as studies analysing
intraspecific variation or recent speciation (Macholan, 2006).

Implementation of mixture analysis could prove valuable in long-term monitoring
programmes by revealing clustering into different time periods. This includes different
cohorts having experienced different environmental conditions. On different geographical
scales the mixture analysis could also become a complementary tool for the individuation
of evolutionarily significant units and conservation units. In fact, the compartments
produced by the assignment of the different individuals by the mixture analysis can be
compared with the clusters produced by software traditionally used in the landscape
genetics field. The potential discrepancies between the clusters produced by the software
allow several interpretations. For example, the presence of two or more morphometric
clusters within a group of individuals, which are indicated as one single cluster by the
traditional landscape genetics software, could indicate subtle genetic substructure
or environmental differences occurring in the population area of distribution. One must,
however, bear in mind that spatial and temporal variation in habitat quality and population
density can also affect trait size (Holbrook, 1982). The detection of spatio-temporal changes in
size and shape could therefore reveal ecological patterns produced by rapid environmental
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changes or even change in the genetic composition of the population due to strong
demographic changes or mixtures with other populations.

Future studies of the concomitant screening of neutral and quantitative traits with the
use of mixture analysis, could also add considerably to the debate on the accepted paradigm
which more or less states that geographic isolation is the main determinant of population
divergence (Futuyma and Mayer, 1980; Felsenstein, 1981). The effect of gene flow as a homogenizing
factor that antagonizes both drift and selection has been strongly emphasized historically
(Gillespie and Turelli, 1989; Stanton and Galen, 1997). However, several phenomena related to natural
selection can cause the divergence of populations in the absence of geographic isolation
(Ehrlich and Raven, 1969; Rice and Salt, 1990; Rice and Hostert, 1993; Schiuter, 2001) and the classical paradigm
needs to be re-evaluated. In fact, gene flow has often been considered responsible for
preventing differentiation of populations under selection, otherwise generating local
adaptation (Storfer and Sih, 1998; Lenormand, 2002). However, strong selection pressures can counter-
balance its homogenizing effects (Mopper, 1996), as immigrant genes may not establish and the
population under selection may remain genetically distinct in the face of migration (Nagy
and Rice, 1997),

Utilization of mixture analysis on gene-expression, ecological,
demographic, and physiological data

In this study, we decided to only simulate normal distributions or mixtures of normal
distributions so as to simplify interpretation of the results. However, it may be possible to
apply mixture analysis to non-normally distributed data. The possibility of using mixture
analysis when working with, for example, non-Gaussian distributions will considerably
expand its area of use. Examples include: counting/census data, which normally follow a
Poisson distribution; respiration rate/data expressed as percentages/proportion data/ratio
data, which normally follow a negative binomial distribution; or population dynamic data,
which normally follow a log-normal distribution. Gene expression measured as mRNA
levels (as microarray or RNAseq data) are also best seen as phenotypic traits (Khaitovich ef o,
2006), and they are assumed normally distributed by widely used statistical packages like limma
(Smyth, 2004). Since the distribution of expression levels may, in fact, not meet the assumptions,
the actual distributions of the expression data should be known before running mixture
analyses. Selection does not act on gene expression directly, rather on the ecological,
morphological, physiological or other phenotypic traits affected by changes in expression
levels. Numerous cellular processes from post-transcriptional modifications of mRNA to
tissue-specific responses to external stimuli make the connections between genome and
phenotypes difficult to disentangle. This complexity may be partly responsible for the
different approaches to studying local adaptation. Some authors focus on genetic (genomic)
variation as the basis for phenotypic variation and test for associations between alleles in
genetic markers and phenotypic variation (see, for example, Storz and Wheat, 2010; Eimer and Meyer, 2011).
Others focus on the possibly profound effect of variation in gene expression on phenotypic
differentiation among populations (see, for example, Oleksiak e7 al,, 2002; Khaitovich ef a., 2006).
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