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MULTI-CHANNEL MAXIMUM LIKELIHOOD PITCH ESTIMATION

Mads Græsbøll Christensen

Dept. of Architecture, Design & Media Technology
Aalborg University, Denmark
mgc@create.aau.dk

ABSTRACT

In this paper, a method for multi-channel pitch estimation is
proposed. The method is a maximum likelihood estimator
and is based on a parametric model where the signals in the
various channels share the same fundamental frequency but
can have different amplitudes, phases, and noise characteris-
tics. This essentially means that the model allows for differ-
ent conditions in the various channels, like different signal-
to-noise ratios, microphone characteristics and reverberation.
Moreover, the method does not assume that a certain array
structure is used but rather relies on a more general model
and is hence suited for a large class of problems. Simulations
with real signals shows that the method outperforms a state-
of-the-art multi-channel method in terms of gross error rate.

Index Terms— Pitch estimation, microphone arrays,
multi-channel audio

1. INTRODUCTION

An important property of audio and speech signals is the
pitch, and the pitch is one of the most frequently used fea-
tures in the processing and analysis of acoustic signals. In
many cases, the pitch of a signal is simply related to the
fundamental frequency, which describes the number of times
a periodic signal repeats per time interval. Bandlimited pe-
riodic signals can be expressed as a finite weighted sum of
harmonically related sinusoids having frequencies that are
integer multiples of this fundamental frequency. The prob-
lem of finding the fundamental frequency from such periodic
signals buried in noise is called fundamental frequency or
pitch estimation. Over the years, many different methods for
pitch estimation have been devised from classical approaches
such as harmonic summation and product methods [1] to
more recent methods such as harmonic fitting [2], maximum
likelihood [3], optimal filtering [4], subspace methods [5] and
Bayesian methods [6,7]. For an overview, we refer the reader
to [5] and the references therein. Despite the host of methods
devoted to pitch estimation, it appears that very few methods
have been devised for estimating the pitch when multiple
channels are available, as would be the case in microphone
array processing or in studio recordings of music. Some

methods do exist, however, including those of [8, 9] and the
joint pitch and localization methods of [10, 11]. There are
several reasons why multi-channel pitch estimation should
be pursued when multiple channels are available. Firstly,
the presence of more data is always beneficial in frequency
estimation problems. Secondly, the conditions under which
the signals have been recorded may differ from channel to
channel and it may be difficult to pick one channel a priori
as having the best conditions. Hence, a method using all
channels is preferable. Also, spatial localization may make
it fairly easy to attenuate noise from certain angles, although
we shall not seek to exploit this here.

In this paper, a novel method for multi-channel pitch es-
timation is presented. It is a maximum likelihood estimator
based on a Gaussian assumption and a parametric model of
signal of interest. In this model, the fundamental frequency
is shared across channels while amplitudes, phases and noise
characteristics are allowed to be different for each channel.
The model thus takes into account that, e.g., the signal in each
channel may have been filtered and that the noise level may
be different. Hence, the presented method is based on a quite
general model that can be assumed to work in many different
situations. An important aspect of this work is that the inte-
gration across channels is done in a mathematically tractable
manner.

The rest of the paper is organized as follows: In Section
2, the underlying parametric model and statistical assump-
tions are presented after which the proposed method is de-
rived in Section 3. Then, in Section 4 some experimental re-
sults demonstrating the advantages of the proposed method
are presented. Finally, we conclude on the work in Section 5.

2. FUNDAMENTALS

We will now present the signal model and associated as-
sumptions. The proposed method operates on a signal vector
xk(n) ∈ CM at time n (termed a snapshot) for the kth
channel, defined as xk(n) = [ xk(n) · · · xk(n+M − 1) ]

T

which is constructed from the observed signal from the kth
channel xk(n), for n = 0, . . . , N − 1. We model this vector
as a sum of L harmonically related complex sinusoids in



Gaussian noise ek having covariance matrix Qk, i.e.,

xk(n) = Z(n)ak + ek(n), (1)

with ak = [Ak,1e
jφk,1 · · · Ak,Lejφk,L ]T being a vector con-

taining the complex amplitudes of the signal in the kth chan-
nel. Moreover, the matrix Z(n) is a Vandermonde matrix at
time n, defined as Z(n) =

[
z1(n) · · · zL(n)

]
, where

the mth entry of the column vector zl(n) ∈ CM is defined
as [zl(n)]m = ejω0l(n+m−1) with ω0 ∈ Ω0 being the funda-
mental frequency, i.e., the parameter we seek to find in the set
Ω0 = (0, 2π/L). We assume that G vectors xk(n) have been
observed for each channel. We define the signal and noise
parameter vector θk for the kth channel containing the fun-
damental frequency ω0, the complex amplitudes {Ak,lejφk,l}
and the noise covariance matrix Qk. Regarding the model or-
der L, we remark that it is possible to extend the proposed
method to joint fundamental frequency and order estimation
using the MAP principle [5]. However, for simplicity, we do
not describe that here. Assuming that Qk is invertible, the
likelihood function (for complex signals) of xk(n) can then
be written as

p(xk(n);θk) =
1

πMdet(Qk)
e−e

H
k (n)Q−1

k ek(n), (2)

with det(·) denoting the matrix determinant. Now, assum-
ing that the deterministic part is stationary and ek(n) is in-
dependent and identically distributed over n as well as in-
dependent over k, the likelihood of the observed set of vec-
tors {{xk(n)}G−1

n=0 }Kk=1 (or {xk(n)} for short) across chan-
nels can be written as

p({xk(n)}; {θk}) =

K∏
k=1

G−1∏
n=0

p(xk(n);θk)

=

K∏
k=1

1

πMGdet(Qk)G
e−

∑G−1
n=0 eHk (n)Q−1

k ek(n).

(3)

There are several ways in which the noise covariance matrix
can be estimated, but they are, however, all fairly involved
and they are hence best avoided. Moreover, it may be difficult
to say anything about the noise covariance matrix Qk a pri-
ori. In that case, the best solution is to assume that the noise
is white in each channel1 but that the noise has different vari-
ance σ2

k, i.e.,Qk = σ2
kI. Similar arguments hold regarding

the assumption of the noise being independent across chan-
nels. With the above assumptions, the likelihood function for
a single snapshot for channel k reduces to

p(xk(n);θk) =
1

(πσ2
k)GM

e
− 1

σ2
k

‖ek(n)‖2
, (4)

and the log-likelihood function is then ln p(xk(n);θk) =
−M ln (πσ2

k) − 1
σ2
k
‖ek(n)‖2, which across all channels and

1The white Gaussian distribution can be shown to be the one maximizes
the entropy of the noise [12].

snapshots under the aforementioned conditions yields

ln p({xk(n)}; {θk}) =

−GM
K∑
k=1

ln (πσ2
k)−

K∑
k=1

G−1∑
n=0

‖ek(n)‖2

σ2
k

. (5)

3. PROPOSED METHOD

We will now proceed to derive the proposed estimator. To
do this, we first observe that the noise variance σ2

k and the
complex amplitude vector ak are specific to channel k while
the fundamental frequency in Z is shared among all channels.
Hence, the two former parameters can be estimated directly
from the individual channels (for a particular fundamental fre-
quency candidate). The maximum likelihood estimate of the
amplitudes for channel k can readily be shown to be

âk =

(
G−1∑
n=0

ZH(n)Z(n)

)−1 G−1∑
n=0

ZH(n)xk(n). (6)

This, in turn, can be used to form a noise estimate for n =
0, . . . , G − 1 as êk(n) = xk(n) − Z(n)âk and, from this, a
maximum likelihood noise variance estimate for channel k as

σ̂2
k =

1

GM

G−1∑
n=0

‖êk(n)‖2. (7)

Inserting these quantities into (5) then yields the concentrated
log-likelihood for channel k at time n ln p(xk(n);ω0) =
−M lnπ−M ln σ̂2

k, which depends only on the fundamental
frequency ω0, and the maximization of this function over the
fundamental frequency would then leads to the maximum
likelihood estimate for channel k. For all n and k, this yields

ln p({xk(n)};ω0) = −GMK lnπ −GM
K∑
k=1

ln σ̂2
k. (8)

The maximum likelihood estimator (MLE) can finally be
stated as

ω̂0 = arg min
ω0∈Ω0

K∑
k=1

ln σ̂2
k. (9)

To summarize how the estimator works for each candidate
fundamental frequency ω0 ∈ Ω0, the amplitudes are first
found using (6) where after the noise variance is estimated for
each channel k using (7). Then, the variances are integrated
across channels as in (8) and the fundamental frequency can
then be determined using (9). An interesting special case
can be obtained as follows. For M = N only one signal
vector will be available for each channel. We denote this as
xk = xk(0) and similarly for the other quantities. Then the
channel k estimators reduce to

âk =
(
ZHZ

)−1
ZHxk and σ̂2

k =
xHk Π⊥Zxk

N
(10)



Parameter Value Parameter Value
Sound vel. 340 m/s Room Dim. [5 4 6 ] m
Source pos. [2 3.5 2] m Samples 4096
Reverb time 0.4 s Mic. Hypercard.
Ref. order -1 Number of Mic. 4
Mic. pos. Random Mic. orient. Random

Table 1. Experimental settings for the mirror method.

where ΠZ = Z
(
ZHZ

)−1
ZH and Π⊥Z = I − ΠZ . Not-

ing then that the columns of Z are asymptotically orthogonal,
i.e., limM→∞MΠZ = ZZH , the resulting estimator can be
written as follows:

ω̂0 = arg min
ω0∈Ω0

K∑
k=1

ln

(
‖xk‖2 −

1

N
‖ZHxk‖2

)
. (11)

Finally, we observe that ‖ZHxk‖2 is just the sum over the
squared magnitude of the Fourier transform of xk(n), denoted
Xk(ω) evaluated in a set of frequencies (in this case those of
the candidate harmonics), i.e., it can be evaluated efficiently
using an FFT as ‖ZHxk‖2 =

∑L
l=1 |Xk(ω0l)|2. This can be

seen as a simple extension of the classical harmonic summa-
tion method [1]. It should be noted that the amplitude esti-
mate in (6) also can be computed efficiently for large M this
way, although a phase shift must also be introduced to com-
pensate for Z(n) being time-varying. It should also be noted
that had we assumed that the noise variance was known, the
result would have been different. In that case, the estimator
would reduce to the maximizer of the weighted sum over the
spectra across all channels, i.e.,

∑K
k=1

∑L
l=1 |Xk(ω0l)|2/σ2

k.
Moreover, if we also assume that the noise variance is the
same for all channels, the resulting estimator would simply
be the maximizer of

∑K
k=1

∑L
l=1 |Xk(ω0l)|2. Both are to

be contrasted with the sum over the logarithm in (11), which
shows that the way in which the cost function should be inte-
grated across channels depends on whether the noise variance
is known and the same.

4. EXPERIMENTAL RESULTS

To investigate the performance of the proposed method we
proceed as follows. We will follow a procedure similar to the
test methodology of [9]. A set of single-pitch audio mono sig-
nals from the EBU SQAM discs is used, namely the trumpet,
violin and horn signals. The signals are down-sampled by a
factor of four from the original 44.1 kHz sampling frequency
and converted to complex signals using the Hilbert transform,
and the signals are processed (by all algorithms) in segments
of 40 ms with 50 % overlap and an FFT size of 8192. From
these signals, four different channels are generated using E.
Habets’ implementation2 of the mirror method [13] with set-

2http://home.tiscali.nl/ehabets/rir_generator.html

tings as shown in Table 1. Note that microphone positions and
orientations were picked randomly. To demonstrate the merits
of the proposed method, we add white Gaussian noise to each
channel and test two different scenarios: one in which the
noise level is the same in all channels, a scenario we will refer
to as symmetrical, and one where the noise level is different in
each channel, which we will refer to as asymmetrical. For the
asymmetrical scenario, the SNRs in the individual channels
were -15, -10, -5, and 0 dB, respectively, offset by an overall
SNR value. A ground truth pitch is estimated from the clean
multi-channel signal using the MPF method [9]. We will
compare the proposed method to the MPF method, which,
in [9], was demonstrated to outperform a multi-channel ver-
sion of YIN [14] and the method of [8]. We will evaluate
the fast, approximate version in (11) of the proposed method
(denoted MLE), which relies on FFTs to compute the log-
likelihood. Finally, we will, for reference, also compare to
the performance obtained with the simple multi-channel ex-
tension of the classical harmonic summation method (denoted
HS) mentioned in Section 3, which is also an approximate
maximum likelihood estimator when the noise variance is the
same in all channels. For the methods that require that the
model order is estimated, we used the MAP criterion [5]. As
in [9], we will measure the gross error rate (GER), defined
as a relative error of more than 20 % relative to the ground-
truth, under different conditions. It should be noted that this
methodology favors the MPF method as any consistent error
in estimates obtained from the clean and noisy multi-channel
signals will not be punished for this method. The results are
shown in Figures 1(a) and 1(b) for the two scenarios, respec-
tively. A number of observations can be made from the fig-
ures. The proposed method performs the best for both sce-
narios having the lowest GER. The HS method can be seen
to perform well for the symmetrical case, as predicted by the
theory. However, it can also be seen to to break down when
the noise level differs between channels. The MPF method
is capable of handling this scenario due to the normalization
procedure in [9]. However, it can generally be seen to be more
sensitive to low SNRs than the proposed method.

5. CONCLUSION

In this paper, a novel multi-channel pitch estimator has been
proposed. The method is based on a maximum likelihood ap-
proach, and it is based on a parametric model where the signal
in each channel is modeled as a sum of harmonically related
sinusoids in noise. The amplitudes and phases are allowed to
vary across channels to account for different acoustic propa-
gation paths and the signal-to-noise level is allowed to vary
as well. The model is hence quite general and can be used
in many different scenarios. Simulations demonstrate that the
method generally performs well and outperforms a state-of-
the-art method, especially under adverse conditions.
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Fig. 1. Performance measured in terms of gross error rate as a function of the SNR in dB for (a) symmetrical noise level and
(b) asymmetrical noise level. The SNR for the latter case is the overall SNR.
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