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A Power Control and Coding Formulation for State
Estimation with Wireless Sensors

Daniel E. Quevedo*, Member, IEEE, Jan Østergaard, Senior Member, IEEE, and Anders Ahlén, Senior
Member, IEEE

Abstract— Technological advances have made wireless sensors
cheap and reliable enough to be brought into industrial use.
A major challenge arises from the fact that wireless channels
introduce random packet dropouts. Power control and coding
are key enabling technologies in wireless communications to
ensure efficient communications. In the present work, we examine
the role of power control and coding for Kalman filtering over
wireless correlated channels. Two estimation architectures are
considered: In the first, the sensors send their measurements
directly to a single gateway. In the second scheme, wireless
relay nodes provide additional links. The gateway decides on the
coding scheme and the transmitter power levels of the wireless
nodes. The decision process is carried out on-line and adapts
to varying channel conditions in order to improve the trade-
off between state estimation accuracy and energy expenditure.
In combination with predictive power control, we investigate the
use of multiple-description coding, zero-error coding and network
coding and provide sufficient conditions for the expectation of the
estimation error covariance matrix to be bounded. Numerical
results suggest that the proposed method may lead to energy
savings of around 50%, when compared to an alternative scheme,
wherein transmission power levels and bit-rates are governed
by simple logic. In particular, zero-error coding is preferable
at time instances with high channel gains, whereas multiple-
description coding is superior for time instances with low gains.
When channels between the sensors and the gateway are in deep
fades, network coding improves estimation accuracy significantly
without sacrificing energy efficiency.

Index Terms— wireless sensors, Kalman filtering, power con-
trol, multiple-description coding, distributed source coding, net-
work coding, relays

I. INTRODUCTION

Wireless sensors (WSs) have become an important alterna-
tive to wired sensors [1]–[3]. WSs are equipped with a sensing
component (to measure e.g., temperature), a processing device
(to perform simple computations on the measured raw data),
and a communication device. WSs are cheap and reliable and
offer several advantages, such as, flexibility, low cost, and fast
deployment. In addition, with WSs electrical contact problems
are no longer an issue. Furthermore, WSs and actuators can
be placed where wires cannot go, or where power sockets are
unavailable.

One major drawback of using WSs is that wireless com-
munication channels are subject to fading and interference,
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causing random packet errors [4]. The time-variability of the
fading channel can be alleviated by adjusting the power levels
and the transmitted packet lengths [5], [6]. To keep packet er-
ror rates low, short packet lengths and high transmission power
should be used. However, the use of high transmission power is
rarely an option, since in most applications WSs are expected
to be operational for several years without the replacement of
batteries; cf., [7]. In addition, short packets may require coarse
quantization which may lead to large quantization effects
unless careful coding is used [8], [9]. It is safe to assume that,
as in other wireless communication applications, power control
and coding will become key enabling technologies whenever
WSs are used. In particular, due to their wide applicability,
including nonlinear constrained MIMO systems (see, e.g.,
[10]–[14] for recent application studies), the use of predictive
control methods is worth investigating.

In this work, we study two architectures having M WSs and
a single gateway (GW) for Kalman-filter based state estimation
of linear time-invariant (LTI) systems of the form:

x(k + 1) = Ax(k) + w(k), k ∈ N0, (1)

where x(0) ∈ Rn is zero-mean Gaussian distributed with co-
variance matrix P0 and the driving noise process {w(k)}k∈N0

is independent and identically distributed (i.i.d.) zero-mean
Gaussian distributed with covariance matrix Q. The measure-
ment of sensor m, at time k, is given by

ym(k) = Cmx(k) + vm(k), m = {1, . . . ,M}, (2)

where {vm(k)} is i.i.d. zero-mean Gaussian measurement
noise with covariance matrix Rm.

The first estimation architecture examined is depicted in
Fig. 1 for the particular case of having M = 2 WSs. The
measurements given by (2) are encoded and transmitted at
an appropriate power level over a fading channel (generating
random packet loss) to the GW. Received packets are then
used to estimate x(k) by means of a time-varying Kalman
filter (KF) which takes into account packet loss. As depicted
in Fig. 1, in addition to performing state estimation, the
GW also controls the power levels and the coding method
(including bit-rate) used by the sensors at each time. One
of the main purposes of the present work is to show how
predictive control methods can be used for this purpose. To
keep the sensors simple and energy efficient, the sensor nodes
are not allowed to communicate with each other. Thus, joint
encoding of the measurements taken by different sensors is not
possible. However, in the case where several measurements
are received by the GW, joint decoding is possible. By
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Fig. 1. State Estimation with M = 2 wireless sensors. The dashed lines
denote fading channels which introduce random transmission errors. The
gateway performs state estimation. It also controls the power level updates,
δum(k), and the coding method, as described in the codebook index Im(k).

allowing separate encoding to be followed by joint decoding,
it is possible to take advantage of distributed source coding
techniques [15], [16]. In the present work, we will focus on a
particular distributed source coding technique known as zero-
error coding (ZEC) [17]. In addition, to achieve robustness
in the presence of packet loss, we allow the sensors to use
multiple-description coding (MDC) [18].

In the second estimation architecture studied, the incorpo-
ration of L relay nodes allows for additional communication
links, see Fig. 2. Here, the measurements in (2) are quantized
(with a uniform quantizer) and transmitted at an appropriate
power level over fading channels to the GW and relays. The
latter perform network coding and forward processed sensor
measurements whenever appropriate to the GW. To avoid
interference between nodes, the communication channel is
accessed in a TDMA fashion with a pre-designed protocol. At
the GW, received packets from the sensors and relays are then
used to estimate x(k) via Kalman filtering. For this second
architecture, the sensors do not perform MDC or ZEC. Thus,
the codebook indices Im(k) amount to the bit-rates to be used
by the sensors.

The main contribution of the present work is to investigate
the role of dynamic power control and coding for state estima-
tion with WSs through use of predictive control. The objective
of the controller is to counteract channel variability and to
trade-off battery use for estimation accuracy. It is located at the
GW and decides upon the transmission power level and coding
scheme to be used by each node. Our results indicate that it is
advantageous that power levels approximately invert channel
gains provided sufficient power is available and that MDC
be used at the sensors when the channel conditions are poor.
When good channel conditions are expected, it pays off to use
ZEC across the sensors. If relays are available, then it turns out
that, when channels between sensors and the GW are subject
to severe fading, the use of network coding will improve
the estimation performance significantly without increasing
energy expenditure compared to the case with no relays.
Hence, network coding is an attractive alternative/complement
to MDC.

The present work extends our recent work documented
in [19]–[23]. The papers [19], [20] introduced the idea of
using predictive control of WS power levels for dynamic state
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Fig. 2. State Estimation with two wireless sensors and L = 1 relay node.
Here the GW calculates x̂(k), the power level updates of the sensors and
relays, and the bit-rate, Im(k), of each sensor node.

estimation and control applications. In [21], the combination
of power control and ZEC was considered, our conference
contribution [23] examined network coding for architectures
with relays, whereas in [22], the combination of power control
and MDC was considered. The results reported in [21]–[23]
indicate that with simple coding techniques, significant im-
provements over the uncoded case [19] can be achieved. This
motivates the present paper, which combines power control,
with either ZEC and MDC, or network coding.

Notation: The trace of a matrix A is denoted by trA,
and its spectral norm by ||A|| ,

√
max eigs(ATA), where

eigs(ATA) are the eigenvalues of ATA and the superscript
T refers to transposition. The Euclidean norm of a vector
x is denoted |x|; Pr{·} refers to probability, and E{·} to
expectation. Discrete entropy is denoted H(·); for differential
entropy we use h(·).

II. CODING ASPECTS

In this section, we revise some basic aspects on source
coding. Throughout this work, we will use standard high-
resolution source coding results; see, e.g., [24].

A. Scalar Quantization, Entropy Coding, and High-Resolution
Source Coding

Each sensor m encodes its measurement ym(k) ∈ R into
a quantized version ŷm(k), which is further represented by a
sequence of bits sm(k) to be transmitted over the channel, see
Fig. 3. The average bit-rate of sm(k) is denoted bm(k). The
encoder consists of a (time-varying) uniform scalar quantizer
Qm having step-size ∆m(k), which is followed by an entropy
encoder Em. A scalar uniform quantizer can be efficiently
implemented by simply scaling ym(k) by ∆m(k) followed by
rounding, i.e., by forming bym(k)/∆m(k)e where b·e denotes
rounding to the nearest integer. If the GW receives sm(k), it
reconstructs ŷm(k) by simply applying the inverse scaling,

ŷm(k) = bym(k)/∆m(k)e∆m(k).

Under high-resolution assumptions, the bit-rate is given by1

bm(k) ≈ H(ŷm(k)) ≈ h(ym(k))− log2(∆m(k)), (3)

1The approximation becomes exact in the limit as the distortion tends to
zero [24]. However, it is also known that these high-resolution results are
approximately true even at rates as low as 2 bit/dimension; cf. [25].
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Fig. 3. Coding with M = 2 WSs. Measurements y1(k) and y2(k) are
quantized, entropy coded and transmitted over fading channels. At the receiver,
entropy decoding (ED) and reconstruction yields ŷ1(k) and ŷ2(k).

where ∆m(k) denotes the step-size and the expected distortion
Dm(k) satisfies

Dm(k) , E
{
|ym(k)− ŷm(k)|2

∣∣ bm(k) = b
}

≈ 1

12
2−2(b−h(ym(k)).

(4)

In the sequel, we assume that {ym(k)}k∈N0 is a stationary
process with ym(k) being zero-mean Gaussian with variance
σ2
ym .
The entropy coder consists of a codebook2, which due to

memory considerations cannot be arbitrarily large. In practice,
we choose the size of the codebooks so that the probability of
falling outside the support of the entropy coder is very small
and the impact of the outliers on the distortion is negligible.
Since a codebook is needed for every possible ∆m(k), it is
necessary to discretize the alphabet of ∆m(k) or, equivalently,
to discretize the set of possible bit-rates bm(k). In the follow-
ing, we will assume that an appropriate discretization for a
given system (A,C) is found offline through, e.g., computer
simulations. Thus, the controller uses the constraint

bm(k) ∈ Bm, ∀m ∈ {1, 2 . . . ,M} (5)

for given finite sets Bm ⊂ (0,∞). In particular, in our results
documented in Section VII, we confined the bit-rates bm(k)
to the sets Bm = {3, . . . , 8}.

B. Zero-Error Coding

As mentioned in the introduction, the M WSs are separated
and cannot communicate with each other. Encoding of the
measurements can therefore not be done jointly. However,
the GW sees all the received measurements and thereby can
perform centralized joint decoding. Thus, we are facing the
distributed source coding problem, i.e., separate encoding of
M correlated variables followed by joint decoding [9], [15],
[16]. In this work, the GW will, at times, command the WSs
to adopt a distributed source coding technique, known as
zero-error coding (ZEC) [17]. With ZEC, the measurements
are quantized independently using the same scalar quantizers
as previously designed for the case of independent coding.
The only change is with regard to the entropy coder: rather
than employing independent entropy coding on the quantized
measurements, with ZEC the WSs use dependent entropy

2Entropy coding can be done by a simple table-lookup since the rounding
(quantization) operation directly gives the index of the codeword in the table.

coders. More specifically, they adopt an asymmetric strategy,
where one dominant sensor, say sensor m?, performs inde-
pendent coding, i.e., independent scalar quantization followed
by independent entropy coding. Hereafter, another sensor, say
sensor m, performs independent scalar quantization followed
by entropy coding with respect to the entropy code of sensor
m. With this strategy, if the GW receives both sm?(k) and
sm(k), then it is possible to reconstruct ŷm?(k) and ŷm(k). If
only sm?(k) is received, then the GW can still obtain ŷm?(k),
but of course not ŷm(k). However, if only sm(k) is received,
then the GW cannot reconstruct neither ŷm?(k) nor ŷm(k).

C. Multiple-Description Coding

The idea behind MDC is to create separate descriptions,
which are individually capable of reproducing a source to a
specified accuracy and, when combined, are able to refine each
other [18]. For that purpose, when using MDC, the source
vector ym(k) is mapped to Jm(k) descriptions

sim(k), i ∈ {1, . . . , Jm(k)},

which are independently entropy coded and transmitted sepa-
rately to the GW.

In this work, we will consider MDC based on index-
assignments and lattice vector quantization [22], [26], [27]. We
will assume that for any ym(k), the packet-loss probabilities
for the Jm(k) descriptions are i.i.d. and equal. Furthermore,
we will focus on the symmetric situation where the bit-rates of
each description formed at the mth sensor are equal, given by
bm(k)/Jm(k), and where the distortion observed at the GW
depends only upon the number of received descriptions and
not on which descriptions are received.

D. XOR-based Network Coding

In the second estimation architecture under study relays are
used to enhance estimation performance. In this setup, sensor
data is sent by using simple independent coding, as described
in Section II-A. The relays act as intermediate network nodes
and are able to perform simple XOR-based network coding
on the data [28]. As illustrated in Fig. 2, the relay nodes are
overhearing broadcast communication from the sensors to the
GW, and are therefore able to aid the GW with additional
information about the sensors’ data. In particular, the relays
will XOR the incoming data at a bit level, i.e., without
decoding [29]. Here one simply zero pads the shortest symbols
in order to make them all of equal length [23].

Example 1: Consider the scheme in Fig. 2 and assume that
the GW has received either only s1(k) or only s2(k). If the
relay receives both s1(k) and s2(k), then it transmits

r1(k) = s1(k)⊕ s2(k) (6)

to the GW. If r1(k) is successfully received, then the GW is
able to recover both s1(k) and s2(k) and thereby reconstruct
both values ŷ1(k) and ŷ2(k) by use of r(k) and its own
message s1(k) or s2(k), see Table I. �
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Data successfully received Values reconstructed
s1(k), s2(k), r1(k) ŷ1(k), ŷ2(k)

s1(k), s2(k) ŷ1(k), ŷ2(k)
s1(k), r1(k) ŷ1(k), ŷ2(k)
s2(k), r1(k) ŷ1(k), ŷ2(k)
s1(k) ŷ1(k)
s2(k) ŷ2(k)
r1(k) none
none none

TABLE I
RECONSTRUCTED VALUES AT THE GW WHEN USING THE ESTIMATION

ARCHITECTURE IN FIG. 2 WITH NETWORK CODING AS DESCRIBED IN

SECTION II-D.

E. Key properties and complexity issues of the proposed
coding schemes

1) Independent coding: This is the simplest of the proposed
architectures and is furthermore a fundamental part of zero-
error coding as well as XOR-based network coding. Since the
set of possible bit-rates Bm for the mth sensor is discrete
(but actually not limited to integer valued elements due to
entropy coding), the optimization over bit-rates is non-linear
and non-convex. Fortunately, the cardinality of Bm can usually
be chosen small in practice, and we therefore simply let the
GW perform a brute-force search over all possible candidate
bit-rates.

2) Zero-error coding: The advantage of ZEC over inde-
pendent coding is that one can reduce the rate of any given
entropy coder by making it dependent upon another entropy
coder without increasing the complexity at the sensor nodes.
The complexity at the GW is, however, increased, since the
GW has to decide upon whether ZEC should be used or not,
see Section VI-A. If the channels from sensors m? and m
to the GW are both reliable, or if at least one of them is,
then it is beneficial to exploit ZEC as is also evident from the
simulations in Section VII-A.4. It is worth emphasizing that
a reduction of the number of bits to transmit, immediately
translates into an energy reduction for a fixed transmission
power.

3) Multiple-description coding: When the channels are
unreliable and causing packet losses, it is advantageous to
use MDC and thereby sent multiple packets, see e.g., Fig.
5, which illustrates the reconstruction accuracy3 due to using
MDC as a function of the channel quality. With the chosen
approach to MDC, which is based upon index-assignments
[27] (i.e., table-lookups), the complexity at the sensor nodes is
not increased over that of independent coding. Moreover, since
closed-form solutions for the best choice of MDC parameters
and codebooks exist, the complexity at the GW is only slightly
increased. The bit-rates of the individual packets are generally
smaller than those used for the single packet case. Moreover,
the transmission power can often be reduced when using
MDC, since it is more likely that at least one small packet
out of several packets is received than one particular large
packet is received.

4) XOR-based network coding: If there is a relay available
(e.g., one of the sensor nodes could act as a relay node),
which overhears broadcast messages, then it is advantageous

3The accuracy is measured before the GW applies its KF.

to exploit, e.g., simple XOR-based network coding whenever
a subset of the channels are experiencing fading. Since the
individual sensors simply perform independent coding, their
complexity is not increased. The complexity at the relay is
determined by the XOR operations, which can be efficiently
executed on most hardware architectures. Due to help of the
relay, the individual sensors can reduce their transmission
powers, which in turn saves energy.

III. TRANSMISSION EFFECTS AND POWER ISSUES

We will model transmission effects by introducing the
binary stochastic arrival processes

γim(k) =


1 if sim(k) arrives error-free at time k, when

transmitted directly from sensor m to the GW,
0 otherwise.

Transmission effects when using the estimation architecture
with relays and where no MDC or ZEC is used, see Fig. 2,
are modeled in a similar manner. Here, we introduce the
binary stochastic arrival processes ζ`m = {ζ`m(k)}k∈N0

and
γ̃` = {γ̃`(k)}k∈N0 , see Fig. 4 and where

ζ`m(k) =


1 if s1

m(k) arrives error-free at time k, when
transmitted from sensor m to the `-th relay,

0 otherwise,

γ̃`(k) =

{
1 if r`(k) arrives error-free at time k at the GW,
0 otherwise.

A. Channel Power Gains

In the sequel, we denote by gm(k) the complex channel gain
(at time k) between the sensor m and the GW, by g`m(k) the
channel gain between the m-th sensor and the `-th relay, and
by g̃`(k) the channel gain between the `-th relay and the GW,
see Fig. 4 The transmission power used by the radio power
amplifier of the m-th sensor is denoted um(k), whereas that
of the `-th relay is µ`(k). If we assume that the packet length
is equal to the bit-rate, and that the bit errors are independent
of one another at a given time k, then the conditional success
probabilities

λim(k) , Pr{γim(k) = 1 |um(k), gm(k), bm(k), Jm(k)}

=
(
1− β

(
um(k)|gm(k)|2

)) bm(k)
Jm(k)

ρ`m(k) , Pr{ζ`m(k) = 1 |um(k), g`m(k), bm(k)}

=
(
1− β

(
um(k)|g`m(k)|2

))bm(k)

λ̃`(k) , Pr{γ̃`(k) = 1 |µ`(k), g̃`(k), b̃`(k)}

=
(
1− β

(
µ`(k)|g̃`(k)|2

))b̃`(k)
,

(7)

for um(k), µ`(k) > 0 and where b̃`(k) is the largest packet
length received by the `-th relay at time k, see Section II-D.
In (7), the function β(·) : [0,∞) → [0, 1] is the bit-error rate
(BER). It is monotonically decreasing function and depends
on the modulation scheme employed.
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Fig. 4. Transmission power levels, channel gains, transmission outcomes and
conditional success probabilities for the estimation architecture with relays and
sensors. Only one sensor and relay are shown.

It follows from (7), that one can improve transmission reli-
ability and, thus, state estimation accuracy for given channel
gains, by transmitting shorter packets and/or by increasing the
power levels used by the transmitters. However, as we have
seen in Section II-C, smaller values of packet lengths bm(k)
will lead to larger quantization distortion. Furthermore, the
success probabilities are affected by the channel power gains
of the different channels. Hence, the statistical properties of
the channels will have an impact on the transmit power devised
by the controller.

We shall assume a block (flat) fading channel model where
the complex gains gm(k), g`m(k), g̃`(k) are all constant over
the duration of a packet, and fading between packets. In many
wireless sensor network applications the complex channel
gains are assumed to be i.i.d. which would make sense if
measurements are transmitted rarely as compared to the fading
speed. Here we shall, however, adopt a more general model
where complex channel gains are correlated. In particular,
when the fading channel taps are subject to Rayleigh fading,
it is convenient to adopt a first order Markov model [30] of
the form4

gm(k) = agmgm(k − 1) + egm(k)

g`m(k) = ag`mg
`
m(k − 1) + eg`m(k),

g̃`(k) = ag̃` g̃`(k − 1) + eg̃`(k)

(8)

where agm , ag`m , ag̃` determines the amount of correlation and
where egm(k), eg`m(k), eg̃`(k) are mutually independent zero
mean circular symmetric complex Gaussian white noises with
appropriate covariances. To reduce complexity, the GW dis-
cretizes the instantaneous fading gains of these channels into
N intervals [Γn,Γn+1], n ∈ {0, . . . , N−1}, Γ0 = 0, ΓN =∞,
and adopts a homogeneous finite state Markov chain (FSMC)
model with associated states ςn, n ∈ {0, . . . , N − 1} [33],
[34]. The probability that the channel gain switches from state
ςn to state ςj within a single time step is denoted pn,j . We
assume that channel states switch only between neighbors,
thus, pn,j = 0, for all |n− j| > 1.

B. Energy Use

When using WSs it is of fundamental importance to save
energy. We thus have to find a suitable balance between the
transmit power used and the estimation accuracy obtained.

4The use of higher order models, as adopted for example in [31], [32] is
straightforward.

The energy used by each sensor m ∈ {1, . . . ,M} to transmit
sm(k) can be quantified via

Em(bm(k)um(k)) ,


bm(k)um(k)

r
+ EP if um(k) > 0,

0 if um(k) = 0,

where EP denotes the processing cost, i.e., the energy needed
for wake-up, circuitry and sensing, and r is the channel bit-
rate.

Due to physical limitations of the radio power amplifiers,
the power levels are constrained, for given saturation levels
{umax

m }, according to:

0 ≤ um(k) ≤ umax
m , ∀k ∈ N0, ∀m ∈ {1, 2, . . . ,M}. (9)

The energy consumption of the relays can be quantified
similarly by introducing energy functions Ẽ`(µ`(k)b̃`(k)). For
simplicity, we will focus on relays operating in on-off mode,
with pre-determined transmission power levels {µ`}, thus

µ`(k) ∈ {0, µmax
` }, ∀` ∈ {1, 2, . . . , L} (10)

The relays transmit only if the controller has assigned µ`(k) =
µmax
` and sensor data which is needed to perform network

coding has been successfully received, see Section II-D.

IV. KALMAN FILTERING WITH MULTIPLE INTERMITTENT
SENSOR LINKS AND CODING

State estimation is performed at the GW, which also governs
the code-book selection of the sensors, see Figs. 1 and 2. We
will assume that the GW knows, whether packets received
from the sensors contain errors or not. 5 Thus, at time k, past
and present realizations of all transmission processes {γim(k−
t)}t∈N0 , i ∈ {0, . . . , Jm(k) − 1}, m ∈ {1, . . . ,M}, and, in
case of the estimation architecture with relays, the transmission
outcome processes associated to links from relays to the GW,
namely, {γ̃`(k − t)}t∈N0

, ` ∈ {1, . . . , L}, are available at the
GW to form the state estimate x̂(k).

A. The Reconstruction Processes

To elucidate the situation we introduce the discrete recon-
struction processes {θm(k)}k∈N0

, via

θm(k) =

{
1 if ŷm(k) can be reconstructed at time k,
0 otherwise.

Clearly these processes depend on the transmission outcomes,
as dictated by the coding schemes employed. More precisely, if
the m-th sensor uses only independent coding and no network
coding, then θm(k) = γ1

m(k). If, in the estimation architecture
of Fig. 1, at time k the sensor m uses MDC, then θm(k) = 1,
if and only if at least one of the Jm(k) descriptions of ym(k)
is successfully received at the GW and we have:

θm(k) = 1−
∏

i∈{1,2,...,Jm(k)}

(
1− γim(k)

)
.

5This can be handled by the use of a simple cyclic redundancy check.
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γ11(k) γ12(k) ζ11 (k) ζ12 (k) γ̃1(k) θ1(k) θ2(k)
1 1 1 1 1 1 1
1 1 1 0 0 1 1
1 1 0 1 0 1 1
1 1 0 0 0 1 1
1 0 1 1 1 1 1
0 1 1 1 1 1 1
1 0 1 0 0 1 0
1 0 0 1 0 1 0
1 0 0 0 0 1 0
0 1 1 0 0 0 1
0 1 0 1 0 0 1
0 1 0 0 0 0 1
0 0 1 1 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0

TABLE II
RECONSTRUCTION PROCESSES OF THE ARCHITECTURE IN FIG. 2 WITH

NETWORK CODING AS DESCRIBED IN SECTION II-D. NOTE THAT THE

RELAY TRANSMITS ONLY IF IT HAS RECEIVED BOTH SYMBOLS s1(k) AND

s2(k).

If ZEC with dominant coder m? is used, then

θm(k) =

{
γm(k)γm?(k) if um(k)um?(k) > 0,
0 if um(k)um?(k) = 0,

(11)

for all m ∈ {1, 2, . . . ,M}, see [21, Eq. (17)]. On the other
hand, if in the setup with relays, see Fig. 2, network coding is
used at time k, then θm(k) also depends upon the transmission
outcomes involving the relays, namely, γ̃`(k) and ζ`m(k). For
example, for the case given in Table I, the processes θ1(k)
and θ2(k) are determined as per Table II.

B. System Model

The GW knows which coding method was used at current
time k and also has access to the M reconstruction process
realizations. Thus, for state estimation purposes, the overall
system amounts to sampling (1)-(2) only at the successful
transmission instants of each sensor link. It is convenient
to model the overall estimation architectures by introducing
the discrete stochastic output matrix process {C(k)}k∈N0

and
associated measurements {y(k)}k∈N0 as in:6

C(k) = C(θ(k)) ,


θ1(k)C1

θ2(k)C2

...
θM (k)CM

 , y(k) ,


θ1(k)ŷ1(k)
θ2(k)ŷ2(k)

...
θM (k)ŷM (k)

 ,
(12)

where
θ(k) ,

[
θ1(k) θ2(k) . . . θM (k)

]
.

The following time-varying KF gives the best linear esti-
mates of the system state in (1) given the information available

6We note that, if MDC is used, then ŷm(k) in (12) denotes the reconstruc-
tion of ym(k) based on the 0 ≤ j ≤ Jm(k) received descriptions. This value
differs from ym(k) due to the measurement noise vm(k) and the quantization
noise.

at the GW, for both estimation architectures under study:

x̂(k) = x̂(k|k − 1) +K(k)
(
y(k)− C(k)x̂(k|k − 1)

)
x̂(k + 1|k) = Ax̂(k|k − 1) +AK(k)

(
y(k)− C(k)x̂(k|k − 1)

)
P (k + 1|k) = A(I −K(k)C(k))P (k|k − 1)AT +Q

(13)

where the gain K(k) and equivalent measurement noise co-
variance R(k) are given by

K(k) , P (k|k − 1)C(k)T
(
C(k)P (k|k − 1)C(k)T +R(k)

)−1

R(k) , diag
(
R1 +D1(k), . . . , RM +DM (k)

)
.

(14)

Here, Dm(k) are the distortions due to quantization, whereas
Q and Rm are the driving noise and measurement noise
covariances, respectively. The recursion (13) is initialized with
P (0) = P0 and x̂(−1) = 0, see (1). In the linear Gaussian
case, P (k + 1|k) corresponds to the prior covariance of the
estimation error. The posterior error covariance matrix is then
given by [35]

P (k|k) = (I −K(k)C(k))P (k|k − 1). (15)

Remark 1: Since C(k) is known at the GW, the above
Kalman filter uses all successfully reconstructed measure-
ments to form the state estimate x̂(k). Those measurements
where θm(k) = 0 are not taken into account. This prop-
erty is reflected in the expression for the filter gain K(k),
where the time-varying matrix C(k)T pre-multiplies the term(
C(k)P (k|k − 1)C(k)T + R(k)

)−1
. Thereby, x̂(k) is not

updated based on those values, see (13). �

V. ON-LINE DESIGN OF CODING AND POWER LEVELS

We have seen that transmission power and bit-rate design
involves a trade-off between transmission error probabilities
(and, thus, state estimation accuracy) and energy use. We will
next present a predictive controller which optimizes this trade-
off. To keep the sensors simple, the controller is located at the
GW. For the first estimation architecture, the controller output
contains information on the power levels, and the codebooks
to be used by the sensors. In case of the second estimation
architecture, the controller also updates the power levels used
by the relays.

A. Signaling

To save signal processing energy at the sensors and relays,
we would like to limit power control signaling as much
as possible. The command signal for each sensor m will
contain, in addition to the codebook index Im(k), a finitely
quantized power increment, say δum(k). Upon reception of
(δum(k), Im(k)), the sensor chooses the codebook Im(k) (to
be used for encoding ym(k)), and reconstructs the power level
to be used by its radio power amplifier by simply setting
um(k) = um(k − 1) + δum(k). For the second estimation
architecture, see Fig. 2, only one bit is needed to convey each
of the relay power levels µ`(k), see (10).
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B. Cost Function

To trade energy consumption for estimation cost, at each
instant k, the controller determines the power level increments
δum(k + 1) and codebook indices Im(k + 1) and, for the
estimation architecture in Fig. 2 also the relay power levels
µ`(k + 1), by minimizing the cost function

V (S(k + 1))

, E
{

trP (k + 1|k + 1)
∣∣ g(k), P (k + 1|k), S(k + 1)

}
+ %VE(S(k + 1)),

(16)

where

S(k + 1) = {Im(k + 1), δum(k + 1), µ`(k + 1)}
m ∈ {1, 2, . . . ,M}, ` ∈ {1, 2, . . . , L}.

(17)

The first term in (16), quantifies the estimation quality. The
conditional expectation in (16) is taken for given P (k+ 1|k),
and channel gains g(k), which are available at the GW at
time k. Averaging is with respect to the set of possible
reconstructions and transmission outcomes due to receiving
different subsets of descriptions for each sensor. The prob-
ability distribution of these sets depends upon the decision
variables, i.e., the bit-rates, coding schemes and power levels.

The second term in V (S(k+ 1)), quantifies the energy use
at the next time step.7 Thus, % ≥ 0 is a tuning parameter
which allows the designer to trade-off estimation accuracy
for energy use at the sensors and relays. For the architecture
without relays the latter is given by:

VE(S(k+1)) = V SE (S(k+1)) ,
M∑
m=1

Em(bm(k+1)um(k+1)),

whereas, for the estimation architecture with relays,

VE(S(k+ 1)) = V SE (S(k+ 1)) +

L∑
`=1

Ẽ`(b̃`(k+ 1)µ`(k+ 1)).

On-line optimization of the cost function in (16), gives rise to
the desired power levels and coding strategy,

S(k + 1)opt = arg min
S(k+1)∈ Sk+1

V (S(k + 1)), (18)

where the finite set Sk+1 represents the constraints on the
decision variables Im(k + 1), δum(k + 1), and µ`(k + 1).
In particular, power levels and their increments are finite-set
constrained such that (9) and (10) are satisfied. The resulting
controller is non-linear, constrained, stochastic and adapts to
channel conditions and current estimation quality, i.e., we have

S(k + 1)opt = κ
(
g(k), P (k + 1|k)

)
(19)

for some mapping κ(·, ·). It is worth noting that, in general,
due to the cost function being nonlinear and constraints
finite, no closed form expression for κ(·, ·) exists. Instead,
the optimization in (19) needs to be performed numerically.
To keep computations low, the cost in (16) looks ahead at

7If desired, a term which penalizes the size of the power control signal
δum(k+ 1) (or of S(k+ 1)), which is transmitted from the gateway to the
sensors can be readily included in the cost function.

only one step.8 In Section VI, we discuss some computational
issues.

C. Performance Bound

The effect on packet drops on Kalman filter stability and
performance has received considerable attention in the recent
literature [36]–[38]. Despite the fundamental importance of
power control and coding in wireless communications, it is
somewhat surprising that these techniques have received so
little attention in this context. In fact, to the best of the
authors’ knowledge, the only works examining power control
for Kalman estimation with packet dropouts are our own [19],
[21], [23], [39]. Theorem 1, stated below, establishes sufficient
conditions for the expected value of the state estimation error
covariance P (k + 1|k) to be exponentially bounded. Whilst
the main interest of the current work is on state estimation for
stable systems, Theorem 1 also applies to unstable systems,
extending our recent results documented in [39]–[41] to con-
troller structures such as (19) which are allowed to use the
covariance matrices P (k + 1|k).

Theorem 1: Consider the stochastic process

η(θ) ,

{
1 if C(θ) is full rank,
0 otherwise

and define9

ν(P, g) , Pr{η(θ(k + 1)) = 0 |P (k + 1|k) = P, g(k) = g}.

Suppose that there exists a uniform bound ρ ∈ [0, 1) such that

ν(P, g) ≤ ρ

‖A‖2
, ∀(P, g) ∈ Rn×n × Ω, (20)

where Ω is the support of the (complex) channel gains. Then

E
{
‖P (k|k−1)‖

}
≤ ρk trP0+

$c+ trQ

1− ρ
(1−ρk), ∀k ∈ N0,

(21)
where

c , max
θ∈{0,1}M : η(θ)=1

‖C†(θ)TC†(θ)‖,

C†(θ) , (C(θ)TC(θ))−1C(θ)T

$ , ||A||2
(

(πe/6)σ2
ym

M∑
m=1

2−2b̌m +

M∑
m=1

Rm

) (22)

and b̌m , min{Bm}, see (5).
Proof: See appendix.

Theorem 1 establishes a bound on the expected value of
‖P (k|k−1)‖ which decays with exponential rate ρ. The latter
quantity depends on the spectral norm of the system matrix
A and the conditional probabilities of the observation matrix
C(θ) being full-rank. Thus, our result allows one to infer
upon estimation accuracy from conditional channel dropout
probabilities.

8Multi-step extensions can be easily formulated, following as in [21]
9It follows from the analysis in the appendix that this conditional probability

is independent of time k.
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VI. COMPUTATIONAL ISSUES

In the estimation architecture considered, the sensors do
not need to carry out significant computations. In particular,
optimizations and Kalman filter recursions are performed by
the gateway, see Fig. 1. In relation to Kalman filtering, it is
necessary to invert the matrix C(k)P (k|k− 1)C(k)T +R(k)
given in (14). This matrix is of size M × M and there-
fore scales with the number of sensors. Since it is positive
semidefinite and symmetric, its inverse can be obtained with
efficient algorithms based upon Cholesky factorizations and
having complexity on the order of O(M3).

To analyze computational cost of the optimizations in (18),
we first note that, from (15), we have P (k + 1|k + 1) =(
I−K(k+1)C(k+1)

)
P (k+1|k). Thus, to evaluate the cost

function in (16) and find the constrained optimizer S(k+1)opt,
the controller first uses P (k|k−1) and θ(k) to calculate C(k)
and P (k+1|k) using (12), (13) and (14). Clearly, K(k+1) and
C(k+1) depend upon P (k+1|k), θ(k+1) and R(k+1). The
latter quantity depends upon the decision variable S(k + 1).
On the other hand, the reconstruction processes at time k +
1 depend upon the transmission outcomes processes at time
k + 1, as per the mapping induced by the codebook choice;
see, e.g., Tables I and II. Thus, for the architecture in Fig. 1,
the conditional expectation in (16) can be evaluated by using
the conditional probabilities Pr{γim(k+ 1) = 1 | g(k), P (k+
1|k), S(k + 1)} as required. Note that, by using (7) and the
law of total probability, one obtains that

Pr{γim(k + 1) = 1 | g(k), P (k + 1|k), S(k + 1)}
= Pr{γim(k + 1) = 1 | g(k), S(k + 1)}
= E

{
Pr{γim(k + 1) = 1 | gm(k + 1), g(k), S(k + 1)}

}
= E

{
Pr{γim(k + 1) = 1 | gm(k + 1), S(k + 1)}

}
= E

{
λim(k + 1)

}
,

where expectation is taken with respect the conditional channel
gain distribution Pr{gm(k+ 1) | g(k)}, see the FSMC model
in Section III-A.

A. Two-stage search strategy

As outlined above, at every instant k, the proposed con-
troller first finds the optimal set of power value increments
and bit-rates. In the estimation architecture with relays, the
sensors simply perform independent coding. In contrast, in
the estimation architecture depicted in Fig. 1, each sensor can
either do independent coding, ZEC, or MDC. Moreover, in the
case of MDC, for any given bit-rate, the controller also needs
to decide upon the number of descriptions Jm(k+ 1) and the
level of redundancy between the Jm(k + 1) descriptions, see
[22].

To develop a simple but efficient method to select the coding
scheme for the estimation architecture without relays, we
propose a two-stage search strategy. In the first stage, the GW
only evaluates whether independent coding or MDC should
be used at each sensor. In the second stage, if independent
coding is chosen for more than one sensor, then the GW
further evaluates whether ZEC should be used across these
sensors (or a subset of them). The second stage uses exhaustive
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Fig. 5. MDC vs. SDC as a function of channel power gain, |gm|2. The total
bit-rate is fixed at 9 bits/sample; um = 5 · 10−5.

search. The first stage can be implemented very efficiently.
Here it is important to note that the energy consumption at
a given sensor is independent of the number of descriptions
chosen. Furthermore, under high-resolution assumptions, it is
reasonable to assume that the quantization error at any given
sensor does not contain significant information about current
and past measurements of any of the sensors.10 Thus, from the
KF point of view, ŷm(k) amounts to a noisy version of ym(k);
the smaller the variance of this noise, the better the estimate
x̂(k). This motivates us to adopt a method where, having cho-
sen the optimal (δm(k), bm(k)) and, thus um(k), the controller
selects the quantization scheme which results in the minimum
expected distortion on ym(k).11 Furthermore, given the bit-rate
bm(k) and by considering {λim : i = 0, . . . , Jm(k)},∀Jm(k)
as weights, the simple method to find the optimal number
of descriptions as well as the optimal amount of redundancy
between the descriptions proposed in [27] will be used. The
following example illustrates the procedure:

B. Example of the First Stage Search

We consider a second order linear time-invariant system
with transfer function

5.2978(s+ 19.46)

(s2 + 0.05214s+ 33.3)
,

which upon sampling with a sampling period of 0.1 [s] can
be written in the form (1) with

A =

[
1.6718 −0.9948

1 0

]
. (23)

The system poles are oscillatory, located at 0.8359± 0.5441ı.
The driving noise covariance matrix is chosen as Q = 1/2I ,

10Unless one utilizes substractively dithered quantizers, the quantization
error will generally not be independent of the input signal. However, the
quantization error can be made uncorrelated with the input signal.

11Our results in Section VII, use x(k) and rather than y(k) and therefore
take the effect of the Kalman filter into account when finding the coding
scheme that yields the minimum expected distortion.
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Fig. 6. Channel power gains: |g1(k)|2 (blue) and |g2(k)|2 (red); Predictive
controller with SDC and constraints as in (24).

whereas P0 = 0.3I . We study an estimation architecture
having no relays, M = 2 WSs with noise variances R1 =
R2 = 1/100. The individual observation matrices are C1 =
[1 0], and C2 = [0 1], thus, c = 1, see (22).

We analyze the first stage of the two-stage search strategy
proposed in Section VI. In other words, we show that the
GW can decide up-front whether MDC or independent coding
should be used for any given bit-rate. We focus on a single
sensor and fix the bit-rate bm(k) = 9 bits/sample and the
power level um(k) = 5 · 10−5. Fig. 5, shows the expected
distortion as a function of the channel power gain, |gm|2 as
observed by the GW before applying the KF. In this plot, the
expected distortion depends upon the coding scheme.

In the case of independent coding (denoted SDC for “single-
description coding”), the encoded description sm(k) is either
received error-less or considered lost with probability λm(k)
and 1 − λm(k), respectively. Thus, the expected distortion is
given by λm(k)Dm(k) + (1−λm(k))σ2

ym(k), since, if sm(k)
is lost, we have ym(k)−ŷm(k) = ym(k). Similarly, with MDC
the expected distortion is a weighted sum over the distortion
due to receiving subsets of descriptions. In Fig. 5, 2-MDC
refers to the case of using 2 descriptions at the given sensor
and 3-MDC refers to the case with 3 descriptions.

The analysis suggests that when the channel is in a deep
fade, it it better to use three descriptions. In the mid-range
of channel SNR, it is better to use two descriptions. When
the channel is very good, SDC is preferable. (Recall that
when MDC is used, the total bit-rate is fixed at bm(k) = 9
bits/sample and evenly split across the descriptions. Hence,
in the case of 3 descriptions, each description is encoded at
3 bits/sample. Since the packet length (bit-rate) is reduced,
it becomes more probable that a description will be received
without errors.)

VII. RESULTS AND DISCUSSION

We consider the system described in Section VI-B and use
measured channel gain data obtained at the 2.4 GHz ISM band
within an office space area at the Signals and Systems group
at Uppsala University, Sweden. The top diagram of Fig. 6
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Fig. 7. Simple logic-based scheme.

illustrates the channel power gains of two realizations, one
with horizontal and one with vertical polarization. All our
subsequent results use the same channel data, thus facilitating
performance comparisons.

A. Estimation Architecture without Relays

We first examine the performance of the controller of
Section V for the architecture in Fig. 1.

1) Independent Coding: A simple instance of the controller
proposed is where only independent coding (i.e., SDC) is
allowed. Power levels and increments are constrained as per

0 ≤ um(k) ≤ 3× 10−4, δum(k) ∈ {±3× 10−5}. (24)

We allow each sensor to use a scalar quantizer at a bit-rate
of bm(k) ∈ {3, . . . , 8} bits/sample. The second plot in Fig. 6
shows the resulting power levels for the given channel data.
Notice that when the channel power gain is dropping, the
power level is increased until reaching saturation. Then the bit-
rate is decreased to compensate for the increased expenditure;
see e.g., g2(1800) and g1(4750). The third and forth plots in
Fig. 6, illustrate the chosen bit-rates b1(k) and b2(k).

2) Simple logic-based controller: The independent coding
scheme described above constitutes our baseline predictive
controller. It is interesting to note that it provides a vast
improvement over a simpler algorithm, where the choice of
the sensors transmission power and bit-rates are based only on
the predicted channel gains. In particular, let us compare the
product of the estimated channel gain ĝm(k+1) and the sensor
transmission power um(k) (from the previous time instance)
to a pre-defined threshold Tu. If it is above the threshold,
then the power is decreased by δum(k) and if it is less than
the threshold, then the power is increased by δum(k). If the
choice of power is above its maximum allowable power or
below its minimum, it is saturated at its previous level. This
simple decision logic, approximately inverts the channel. Let
us define the threshold so that when the channel gain is at
-110 dB, the transmission power is 0.2 mW, which gives
Tu = 10−110/10 × 2× 10−4 = 2× 10−15.

When the channel is poor, the probability that a long bit
sequence is received error-free is low. On the other hand, in
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Fig. 8. Predictive controller with SDC and ZEC. The dots indicate that ZEC
is used and that the given sensor is dominating.

good channel conditions, it makes sense to use longer bit
sequences and thereby improve the estimation accuracy of
the KF. With this in mind, the channel gain is split into four
regions and the bits are allocated using the following rules:

bm(k+ 1) =


8, if ĝm(k + 1) ≥ −110 dB,
6, if −110 > ĝm(k + 1) ≥ −120 dB,
4, if −120 > ĝm(k + 1) ≥ −130 dB,
3, if ĝm(k + 1) < −130 dB.

(25)

The performance of this simple architecture is presented in
Fig. 7. This simple control algorithm, when used on the given
channel data, leads to an estimation accuracy of D = 0.0637
with a total energy usage of 98.5 nJ. For comparison, the
baseline predictive controller with independent coding, uses
only 45.5 nJ at the same estimation accuracy. Thus, energy
savings above 50% are possible with the predictive controllers
proposed in the present work.

3) Robustness towards uncertainties in model dynamics:
The proposed controller relies upon knowledge of the dy-
namics of the underlying process. In particular, the update
of the Kalman gain requires knowledge of A, and proper
scaling of the quantizers require knowledge of the variances of
the processes ym,m = 1, . . . ,M , which depend upon A. To
illustrate robustness of the scheme to model uncertainties, let
us consider the independent coding scheme described above
and assume that the controller uses A given in (23), whereas
the actual system dynamics is characterized by

Ã =

[
1.68 −0.99

1 0

]
.

Then, the resulting variances using Ã are σ2
ỹ1

= 19.95 and
σ2
ỹ2

= 21.93, which are very close to those obtained using
A, i.e., σ2

y1 = 21.48 and σ2
y2 = 21.93. Indeed, based on

simulations we have measured the average empirical entropies
(bit rates) to differ by only 0.02 bits/sample in the two cases.
On the other hand, since the Kalman gain is not correctly
updated in each iteration due to model mismatch, the state
estimator becomes suboptimal and the estimation accuracy is
reduced. Indeed, simulations show that the estimation accuracy
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Fig. 9. Predictive controller with SDC and MDC. The dots indicate that
MDC is used.

measured by the average squared error D = 1
K

∑K
k=1 ‖x(k)−

x̂(k)‖2 is D = 0.2056 when A is not perfectly known, as
compared to D = 0.0637 when A is known. In both cases,
the energy expenditure is the same (45.5 nJ).

4) Independent Coding and ZEC: Fig. 8 shows results
based on the same system and channel data as in Fig. 6;
however, this time we allow the proposed controller to use
SDC as well as ZEC, see Section II-B. In the plots showing
the bit-rates, we have used dots at the bottom to indicate when
ZEC is being used. In particular, a dot indicates that ZEC is
being used across the two sensors and that the given sensor is
the dominant sensor, i.e., the given sensor is using independent
coding whereas the other sensor is using dependent coding.
As an example, |g1(k)|2 is dropping at k ≈ 4000. The
controller decides upon power saturation for that channel and
a subsequent decrease in the bit-rate b1. Here Sensor 2 is
dominant, whereas Sensor 1 uses dependent coding.

5) Independent Coding and MDC: We next examine a
situation where the controller is allowed to use SDC and MDC
with two descriptions. Contrary to the case of ZEC, the sensors
can use MDC independently of each other. The total bit-rate is
restricted to bm(k) ∈ {6, 7, 8} bits, so that the side description
rates are restricted to {3, 3.5, 4} bits. The results are shown in
Fig. 9. The dots at the bottom of the bit-rate plots show when
MDC is used at the particular sensor. Notice that especially
when the channel is weak, e.g., |g2(1800)|2 and |g1(4000)|2,
MDC is utilized.

6) Independent Coding, ZEC, and MDC: We finally com-
bine all of the above methods and thereby allow the predictive
controller to choose SDC, ZEC, as well as MDC. We adopt
the two-stage strategy as described in Section VI. Thus, we
first evaluate whether SDC or MDC should be used at the
different bit-rates. If MDC is chosen, then the controller also
finds the optimal trade-off between side and central distortions.
If SDC is chosen for both sensors, then the controller applies
the second stage involving a brute-force search over all the
bit-rates in order to find out whether it is beneficial to use
ZEC instead of SDC. The results are shown in Fig. 10, where
the dots at the bit-rate level 3 indicate that ZEC is used and
that the given sensor is the dominating one; the dots at bit-rate
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Fig. 10. Predictive controller with independent coding, MDC, and ZEC. The
dots at bit-rate level 3 indicate that ZEC is used and that the given sensor is
the dominating one. The dots at bit-rate level 2 indicate that MDC is used.

Setup V Performance Gain
Indep. coding 0.1256 —
Indep. coding + ZEC 0.1238 1.43%
Indep. coding + MDC 0.1154 8.12%
Indep. coding + ZEC + MDC 0.1135 9.63%

TABLE III
PERFORMANCE OF THE DIFFERENT PREDICTIVE CONTROLLERS FOR

CONSTRAINTS AS IN (24).

level 2 refer to MDC. From Fig. 10 we note, for example, that
for Sensor 1 ZEC is used at time 3400 with Sensor 1 being
dominant, whereas, at time k = 4000, MDC is used for the
same sensor.

B. Estimation Accuracy vs. Energy Usage

An underlying theme of our present work is the trade-off
between estimation accuracy and energy usage. In particular,
the cost function in (16), quantifies this trade-off. To illustrate
the potential gains which can be obtained by allowing sensors
to perform coding which goes beyond independent coding,
Table III shows the empirical average cost,

V ,
1

5000

4999∑
k=0

V ?(k) (26)

where V ?(k) , minS(k) V (S(k)), for the different control
methods examined so far. Notice that a gain of about 1.4%
is possible simply by replacing the entropy encoders at the
sensors by entropy encoders designed based on the principle
of ZEC. It is worth emphasizing that this strategy does not
rely upon an increase in the online complexity at the sensors.
The offline design of the entropy encoder is of course more
complicated than the design of traditional entropy encoders.

With MDC a gain of about 8.1% is possible. Here, it is
important to recall that MDC is in our case implemented using
a single scalar quantizer followed by a table lookup, which
maps the index of the quantized measurement to indices in side
codebooks. Thus, the online complexity at the sensors is not
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Fig. 11. Predictive controller for the estimation architecture in Fig. 2, with
known power channel gains. The GW successfully received r1(k) in 764 out
of 1291 instances where µ1(k) > 0, thus, the relaying scheme has 59.18%
efficiency.

Setup V Performance Gain
Indep. coding 0.1391 —
Indep. coding + ZEC 0.1363 2.01%
Indep. coding + MDC 0.1326 4.67%
Indep. coding + ZEC + MDC 0.1300 6.54%

TABLE IV
PERFORMANCE OF THE DIFFERENT PREDICTIVE CONTROLLERS FOR

CONSTRAINTS AS IN (27).

increased by this method either. Furthermore, the complexity
at the GW is not increased significantly, due to adopting the
two-stage search strategy of Section VI. The offline design of
the MDC encoders is, however, a lot more complicated than
the design of traditional scalar quantizers, see [27] for details.

Finally, if the controller is allowed to choose between
independent coding, ZEC, and MDC, then the overall gain
is about 9.6%. This shows that the two more advanced coding
schemes, ZEC and MDC, complement each other.

If we increase the maximum allowable power level, then it
becomes more beneficial to use ZEC and less beneficial to use
MDC. This is illustrated in Table IV, where we have shown
the results corresponding to the constraints

0 ≤ um(k) ≤ 5× 10−4, δum(k) ∈ {±5× 10−5}. (27)

C. Estimation Architecture with Relays

We next examine the performance of the predictive con-
troller when used for the estimation architecture in Fig. 2.
Here, the controller decides upon power level increments of
sensors, the on-off state of the relay, and upon bit-rates used by
both sensors. The power levels and increments of the sensors
are restricted as per (24). The relay performs network coding
as in (6) with transmission power µmax

1 = 6× 10−5, see (10).
In Fig. 11, the top diagram shows the sensor to GW channel

power gains |g1(k)|2 and |g2(k)|2 (corresponding to those used
in Section VII-A); the middle diagram show the channel power
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% φ VE [nJ ] Relay Channel Models Reduction of φ System
106 0.0707 63.21 – – Baseline (no relay)
108 0.2021 63.77 Sensor-Relay (predicted), Relay-GW (predicted) – Relay always on

655000 0.0341 63.11 Sensor-Relay (known), Relay-GW (known) 51.77% Relay on/off
680000 0.0382 63.11 Sensor-Relay (predicted), Relay-GW (predicted) 45.87% Relay on/off
430000 0.0682 63.12 Sensor-Relay (fixed at -100 dB), Relay-GW (predicted) 3.54% Relay on/off
560000 0.0391 63.11 Sensor-Relay (fixed at -105 dB), Relay-GW (predicted) 44.70% Relay on/off

1003000 0.0375 63.11 Sensor-Relay (fixed at -110 dB), Relay-GW (predicted) 46.96% Relay on/off
2080000 0.0429 63.11 Sensor-Relay (fixed at -115 dB), Relay-GW (predicted) 39.32% Relay on/off

TABLE V
PERFORMANCE GAINS ACHIEVED BY USING THE RELAY AND USING NETWORK CODING GOVERNED BY THE PROPOSED CONTROLLERS.

State Gain [dB] pk,k−1 pk,k pk,k+1

1 -117.77 0.0000 0.9990 0.0010
2 -112.88 0.0010 0.9978 0.0013
3 -110.50 0.0013 0.9973 0.0014
4 -108.83 0.0014 0.9971 0.0015
5 -107.49 0.0015 0.9970 0.0015
6 -106.33 0.0015 0.9970 0.0015
7 -105.30 0.0015 0.9971 0.0014
8 -104.31 0.0014 0.9973 0.0013
9 -103.32 0.0013 0.9976 0.0011

10 -102.29 0.0011 0.9981 0.0008
11 -101.08 0.0008 0.9986 0.0005
12 -99.41 0.0005 0.9995 0.0000

TABLE VI
STATE TRANSITION PROBABILITIES AND THE CHANNEL GAINS THAT THE

CONTROLLER USES TO REPRESENT THE STATES.

gains from the sensors to the relay (|g1
1(k)|2: blue solid line,

|g1
2(k)|2: red dashed line) as well as the channel power gain

from the relay to the GW (dotted line); the bottom diagram
illustrates the chosen power levels of the two sensors. The
black crosses indicate the time slots where the controller has
decided to turn on the relay. The red crosses, on the other hand,
indicate when the relay operation was successful, i.e., when
the relay received s1(k) and s2(k) without errors and also
successfully transmitted r1(k), see (6) to the GW. It is clear
from Fig. 11, that the controller trades off energy spent on
the sensors for energy spent on the relay. Only at the deepest
drops in |g1(k)| and |g2(k)| (occurring after k = 3500) the
controller chooses to saturate the sensor power levels. Note
that it is beneficial to rely on the relay and network coding
most of the time.

To compare different scenarios, we next fix the total energy
used by the sensors and relay by adjusting the weighting term
% in (16), see Table V. Therefore, the controller seeks to
distribute the available energy between the sensor nodes and
the relay to minimize the state estimation error variance. As
a performance measure, we adopt the empirical value

φ ,
1

5000

4999∑
k=0

trP (k + 1|k + 1).

Our baseline system uses SDC and no relay; sensor power
levels are governed by the predictive controller. In a second
configuration, a relay which is always on is used. Since the
relay uses most of the available energy leaving very little for
the sensors to spend, the performance is significantly worse
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Fig. 12. The three channels that the GW sees are discretized into K =
12 intervals as shown by the horizontal dashed lines. The GW successfully
received r1(k) in 495 out of 1196 instances where µ1(k) > 0, thus, giving
41.39% efficiency.

than that of the baseline system, see Table V.
Significantly better performance can be obtained if the

controller decides whether the relay shall be on or off. In this
case Table V indicates a performance gain in reduction of φ
of almost 52%, provided the GW has exact knowledge of the
sensor-relay channel gains g1

1(k) and g1
2(k). The performance

gain is almost 46% if the GW uses simple channel power gain
predictions. Table V also illustrates results of situations where
the relay uses only a constant estimate for the power gains of
the sensor-relay channels. Here, we conclude that it is safer
to underestimate the sensor-relay channel power gains than to
overestimate them.

D. Estimation Architecture with Relays and Markov Channel
Models

In the previous study we assumed that the GW was able to
obtain noisy predictions of the future channel gains between
the sensors and the GW as well as the relay and the GW.
In the following, the GW models the instantaneous fading
gains of these three channels by FSMCs, where the possible
fading gains are discretized into K = 12 intervals (states),
see Section III for details. Using the approach described
in [33], the resulting state transition probabilities are shown
in Table VI. The intervals Γk associated with the states are
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% φ VE [nJ ] Relay Channel Models Reduction of φ System
1.12 · 106 0.0658 63.08 – – Baseline (no relay)
1.07 · 106 0.0366 63.00 Sensor-Relay (fixed at -110 dB), Relay-GW (modeled) 44.38% Relay on/off

TABLE VII
PERFORMANCE GAINS ACHIEVED BY USING THE RELAY AND USING NETWORK CODING GOVERNED BY THE PROPOSED CONTROLLERS AND BY

MODELING THE CHANNELS AS FIRST-ORDER MARKOVIAN.

illustrated by horizontal dashed lines in Fig. 12 and the
corresponding state channel gains are shown in Table VI.

The baseline system has two sensors but no relay. The
proposed system has access to one relay. The channels between
the two sensors and the relays are shown in the middle plot of
Fig. 11. These channels are unknown to the GW and simply
modeled by a fixed channel gain of −110 dB. The three
other channels, which are connected to the GW and shown in
Fig. 12, are modeled by the FSMC approach outlined above.
The resulting performance levels are shown in Table VII and
are, to some extent, comparable to those obtained when using
predictions, see Table V. This observation strengthens the case
of using the Markov model in practice.

VIII. CONCLUSIONS

We have studied state estimation with wireless sensors over
correlated fading channels. Our work shows that performance
gains can be obtained by the use of different coding schemes,
when governed by a predictive controller which also deter-
mines power levels. Through use of a stochastic Lyapunov
function argument we have established sufficient conditions
for exponential boundedness of the covariance of the resulting
state estimation error. Numerical results revealed that energy
savings of more than 50% were possible, when compared to
an alternative algorithm, wherein power levels and bit-rates
are determined by simple logic which solely depends upon
channel power gains and not the estimation error covariance.
It is worth noting that the coding schemes examined in
the present work do not require significant additional on-
line complexity, when compared to direct quantization of
the measurements. It is also apparent that the use of relays
with simple network coding has the potential to give notable
estimation performance gains, with essentially no additional
on-line complexity at the sensor and relay nodes. Future work
may include the study of more general network topologies
and also distributed estimation architectures where individual
nodes have additional processing capabilities; see, e.g., [42].

APPENDIX
PROOF OF THEOREM 1

We shall consider the more general system when the system
matrix A is unstable, and then evaluate the expressions for
stable A. To proceed, we adopt a stochastic Lyapunov function
approach, as presented, e.g., in [43], [44] and first prepare the
following result:

Lemma 1: The process {Z(k)}k∈N0
, where Z(k) =(

P (k|k − 1), g(k − 1)
)
, is a Markov chain.

Proof: With the model in Section III, {g(k)}k∈N0 are
Markovian and

Pr{g(k) |Z(k), Z(k − 1), Z(k − 2), . . . }
= Pr{g(k) | g(k − 1)} = Pr{g(k) |Z(k)}.

(28)

On the other hand, when using the controller of Section V, the
power levels, bit-rates and coding method used at time k de-
pend only on P (k|k−1) and g(k−1) (and deterministic quan-
tities). Thus, (7) and (14) give that the distribution of the term
K(k)C(k) used in (13) satisfies Pr{K(k)C(k) |Z(k), Z(k−
1), . . . } = Pr{K(k)C(k) |Z(k)}, which implies that

Pr{P (k + 1|k) |Z(k), Z(k − 1), Z(k − 2), . . . }
= Pr{P (k + 1|k) |Z(k)}.

Use of (28) shows Pr{Z(k + 1) |Z(k), Z(k − 1), Z(k −
2), . . . } = Pr{Z(k + 1) |Z(k)}.

Having established that {Z(k)}k∈N0 is Markovian, we now
adopt the procedure used to prove Theorem 1 in [41] and
introduce Vk , trP (k|k − 1) ≥ 0.

Lemma 2: Consider ν(P, g) and $ and c defined in (22).
Then,

E
{
V1 |Z(0) = (P, g)

}
≤ trQ+ (1− ν(P, g))$c

+ ν(P, g)‖A‖2 trP, ∀(P, g) ∈ Rn×n × Ω.

Proof: We use the total probability formula to write:

E
{
V1 |Z(0) = (P, g)

}
= E

{
V1 |Z(0) = (P, g), η(0) = 0

}
ν(P, g)

+ E
{
V1 |Z(0) = (P, g), η(0) = 1

}
(1− ν(P, g))

(29)

Following as in the proof of [41, Lemma 2], for η(0) = 0
we consider the worst case, where θm(0) = 0, for all m ∈
{1, . . . ,M}. This gives:

E
{
V1 |Z(0) = (P, g), η(0) = 0

}
≤ ‖A‖2 trP + trQ. (30)

To study the case where η(0) = 1, we consider the simple
state predictor x̄(k + 1) = AC†(k)y(k), where C†(k) ,
(C(k)TC(k))−1C(k)T is the pseudo-inverse of C(k). This
estimator yields the estimation error x(k + 1) − x̄(k + 1) =
w(k) +AC†(k)v(k), thus,

tr P̄ (k + 1|k) , trE{(x(k + 1)− x̄(k + 1))

× (x(k + 1)− x̄(k + 1))T }
= trQ+ tr

(
AC†(k)R(k)(C†(k))TAT

)
≤ trQ+ ||A||2 tr

(
C†(k)R(k)(C†(k))T

)
≤ trQ+ ||A||2‖(C†(k))TC†(k)‖ trR(k) ≤ $c+ trQ,
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where we have used [45, Fact 5.12.7]. Since the Kalman filter
gives the minimum conditional estimation error among all
linear estimators we obtain that

E
{
V1 |Z(0) = (P, g), η(0) = 1

}
≤ $c+ trQ (31)

The result follows by substitution of (31) and (30) into (29).

To prove Theorem 1, we use Vk as a candidate Lyapunov
function. Lemma 2 and (20) give that

0 ≤ E
{
V1 |Z(0) = (P, g)

}
≤ trQ+ (1− ν(P, g))$c

+ ν(P, g)‖A‖2 trP ≤ ν(P, g)‖A‖2V0 + β̄ ≤ ρV0 + β̄,

for all (P, g), and where β̄ , trQ + (1 − ν(P, g))$c ≤
trQ+$c ∈ [0,∞). Since {Z(k)}k∈N0

is Markovian, we can
use [44, Prop. 3.2] (see also [41]) to conclude that

0 ≤ E
{
Vk |Z(0) = Z

}
≤ ρkV0+β̄

k−1∑
i=0

ρi = ρkV0+β̄
1− ρk

1− ρ
,

(32)
for all k ∈ N0. Since P (k|k − 1) � 0, it holds that Vk ≥
‖P (k|k − 1)‖, for all k ∈ N0. Thus, upon noting that P (0| −
1) = P0 is given, (32) establishes (21). �
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[20] D. E. Quevedo, A. Ahlén, and G. C. Goodwin, “Predictive power control
of wireless sensor networks for closed loop control,” in Nonlinear Model
Predictive Control: Towards New Challenging Applications (L. Magni,
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