

Aalborg Universitet

Knowledge Management in Software Development

Jahn, Karsten

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Jahn, K. (2012). Knowledge Management in Software Development. Department of Computer Science, Aalborg
University. Ph.D. thesis

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 25, 2020

https://vbn.aau.dk/en/publications/55e7149d-bcab-4355-a22a-ca0e3d538f81

Aalborg University
Department of Computer Science

Ph.D. Thesis

Knowledge Management in
Software Development

Author:
Karsten Jahn

Supervisor:
Peter Axel Nielsen

November 30, 2012

Knowledge Management in Software Development

Thesis Title: Knowledge Management in Software Development

Author: Karsten Jahn

Supervisor: Professor Peter Axel Nielsen

Associated Paper: Karsten Jahn and Peter Axel Nielsen: “A Vertical Ap-
proach to Knowledge Management: Codification and Personalization in
Software Processes”. International Journal of Human Capital and Infor-
mation Technology Professionals, Volume 2, Issue 2, Pages 26-36, 2011.

This thesis has been submitted for assessment in partial fulfilment of the
PhD degree. The thesis is in part based on a published scientific paper, which
is listed above. As part of the assessment, a co-author statement has been made
available to the assessment committee and is also available at the faculty.

i

Knowledge Management in Software Development

ii

Preface

Preface

“The mere existence of knowledge somewhere in the orga-
nization is of little benefit; it becomes a valuable cooperate
asset only if it is accessible, and its value increases with the
level of accessibility.” (Davenport and Prusak, 1998, p. 18)

iii

Knowledge Management in Software Development

Abstract
Software development is a very knowledge-intense discipline. People often work
in project teams not only to bundle the powers, but also to enable easier sharing
of knowledge, because the acquisition of knowledge always involves spending re-
sources. If there is a way to utilize internally available knowledge, the company
gains a competitive advantage out of it. Knowledge management is the system-
atic approach to enable people to share what they know. However, there is no
general solution. In order to be successful, a knowledge management system
always has to be customized to the environment of each case. The involved
people as well as the company’s organization are of high importance.

As a part of the EU-founded FP7 project “KiWi – Knowledge in a Wiki”, my
studies deal with the design of a knowledge management system for a software
development company, whose analysis showed a number of knowledge manage-
ment problems, grouped to four problems regarding isolated islands of knowledge
and three problems regarding the inadequate bridging of knowledge. The anal-
ysis led to a distinction of two organizational layers within the case company:
Management and development. Each of the layers follows a different strategy to
share the knowledge. The management layer follows a codified strategy and the
development layer a personalization strategy. These differences are the reason
for several knowledge management problems, which influence the whole com-
pany.

Based on that understanding, I propose four design ideas on which the
knowledge management system is based upon. First, the layers are separated
and each is being supported with its own knowledge management strategy. Sec-
ond, the layers have to be connected. That includes the people in the layers, the
strategies and the realizing knowledge management systems. Third, the person-
alization strategy in the development layer is supported by a wiki. Fourth, the
codification strategy in the management layer is supported by an enterprise sys-
tem. All four design ideas form the foundation for a prototype of a large knowl-
edge management system, composed of three sub-systems: The KiWi platform,
a Data Exchange Agent and a Project Management Application.

This thesis presents a design study, with an analysis of a case company, the
design of a knowledge management prototype, and its evaluation through the
case company. I followed the action design research methodology, organized
in iterations and focused not only on the IT artefact, but also its environment
within the company.

My research contributes to different aspects of the knowledge management
theory. I elaborate on the codification and personalization knowledge man-
agement strategy by presenting how to adapt more than one strategy in an
organization. Further, I connect the knowledge management strategies to the
knowledge bases and show how specific knowledge bases have advantages in the
different strategies.

Additionally, this thesis provides the implementation and evaluation of the
realization of a larger prototype dealing with the organizational knowledge man-
agement processes.

Keywords: knowledge management, knowledge management strategy, knowl-
edge management system, software development, wiki, enterprise system, action
design research

iv

Preface

Resumé
Softwareudvikling er en meget videns-intens disciplin. Folk arbejder ofte i
projektgrupper eller teams, ikke kun for at samle kræfterne, men ogs̊a for
at muliggøre deling af viden, da erhvervelse af viden altid indebærer brug af
ressourcer. Hvis der er en m̊ade at udnytte internt tilgængelige viden, f̊ar virk-
somheden en konkurrencemæssig fordel ud af det. ‘Knowledge management’
(vidensledelse) er den systematiske tilgang til at give folk mulighed for at dele
hvad de ved. Der er imidlertid ingen generel løsning. For at blive successfuld,
skal et knowledge management system altid tilpasses til miljøet i hvert enkelt
tilfælde. De involverede personer, samt virksomhedens organisation, er af stor
betydning.

Mine studier beskæftiger sig med design af et knowledge management sys-
tem til et software udviklingsselskab. Analysen af det viste en række af knowl-
edge management problemer, grupperet i fire problemer vedrørende isolerede
øer af viden, og tre problemer i forbindelse med utilstrækkelig vidensbro. Anal-
ysen førte til en sondring mellem to organisatoriske lag i denne virksomhed:
Ledelse og udvikling. Hvert af lagene følger en foskellig strategi til at dele
viden. Ledelseslaget følger en kodificering strategi og udviklingslaget en person-
orienteret strategi. Disse forskelle er årsagen til flere vidensdelingsproblemer,
som har indflydelse p̊a hele virksomheden.

Baseret p̊a denne forst̊aelse, foresl̊ar jeg fire designideer som knowledge man-
agement systemet er baseret p̊a. For det første, adskilles lagene, og hvert bliver
understøttet med sin egen knowledge management strategy. For det andet, skal
lagene forbindes. Det omfatter menneskerne i lagene, strategierne og de re-
aliserede knowledge management systemer. For det tredje, er personorienteret
strategien i udviklingslaget understøttet af en wiki. For det fjerde er kodificering
strategien i ledelseslaget understøttet af et enterprise system. Alle fire desig-
nideer at danner grundlag for en prototype af et stort knowledge management
system, sammensat af tre subsystemer: KiWi platformen, en Data Exchange
Agent og en Project Management Application.

Denne afhandling præsenterer et design studie, med en analyse af et case sel-
skab, udformningen af en knowledge management prototype, og dens evaluering
af case selskabet. Jeg fulgte en metode som hedder design action research, der
er organiseret i iterationer, og som ikke kun fokuserer p̊a IT-artefaktet, men
ogs̊a dens miljøi virksomheden.

Min forskning bidrager til forskellige aspekter af knowledge management
teori. Jeg uddyber p̊a kodificering og personorienteret knowledge management
strategien ved at præsentere hvordan vi kan tilpasse mere end én strategi i en
organisation. Desuden, forbinder jeg knowledge management strategier til en
knowledge base og viser, hvordan specifikke knowledge baser har fordele i de
forskellige strategier.

Desuden fremsætter denne afhandling gennemførelse og evaluering af realis-
ering af en større prototype som beskæftiger sig med de organisatoriske knowl-
edge management processer.

v

Knowledge Management in Software Development

Acknowledgements
Being provided with the opportunity to study the topic that interests you for
several years, in a very professional environment and surrounded by very skilled
people is a great luxury. I want to express my appreciation of all the support
and inspiration that I experienced during my PhD studies.

First of all, I want to thank Peter Axel Nielsen for believing in me. His
continuous support and constructive critiques in many, many fruitful discussions
made him a very valuable supervisor to me.

At Aalborg University I met an environment staffed with a number of tal-
ented people. The S+I group was at all times a great source of support and stim-
ulation. I am grateful for the fruitful discussions, the valuable feedback and not
forgetting the nice times we have had together. Thanks to all of you: Ivan Aaen,
Anders Bruun, Peter Dolog, Fred Durão, Lise Tordrup Hermansen, Janne Jul
Jensen, Jesper Kjeldskov, Fulvio Lizano Madriz, Andreas Munk-Madsen, Ken-
neth Møller Porto Nielsen, Jeni Paay, John Stouby Persson, Dimitris Raptis,
Jeremy Rose, Mikael B. Skov, Henrik Sørensen, Jan Stage and Gitte Tjørnehøj.

Outside our group, I want to mention everyone else at the Department of
Computer Science, especially the secretaries. Whomever I had business with
was always very supportive and nice to me. Thank you all.

My research would not have been possible without the support of the FP7
project “KiWi”. All the project partners helped me a great deal in discussing,
shaping and realizing the ideas described in this thesis. Thanks across Eu-
rope: Andreas Blumauer, François Bry, Julia Eder, Norbert Eisinger, Szaby
Grünwald, Inka Havlova, Jana Herwig, Josef Holy, Petr Knoth, Jakub Kotowski,
Thomas Kurz, John Pereira, Mihai Radulescu, Peter Reiser, Matthias Samwald,
Sebastian Schaffert, Thomas Schandl, Marek Schmidt, Rolf Sint, Pavel Smrž,
Henry Story, Stephanie Stroka, Klara Weiand and Michael Zach.

A special role in my research played Logica. The people involved into the
KiWi project were available for me at any time, engaging in discussions and
providing feedback on many levels. Thanks to Daniel Grolin, Keld Pedersen
and Søren Rieck. I also want to thank the developers of Logica that helped
realizing the systems, Filip S. Adamsen, Bertrand Dechoux and Mogens Kraus.

During these years that I spend working on this thesis, I had the pleasure
of getting to know a huge variety of impressive individuals, people with many
different backgrounds. This also goes to all the wonderful people I know, that
joined my quest every once in a while. Thanks for inspiring me, for engaging in
fertile conversations with me and for providing unconditional moral support.

Further, I want to thank all those marvellous people that helped making
Aalborg a home to me. We shared many moments to remember, in the AaB
stadium, the Studenterhuset, Jomfru-Ane-Gade or wherever. This addresses a
variety of lovely people, close friends for live, thank you all. However, three
guys peak out: Hernan, Ricardo and Ubaldo – You are family!

Special thanks go to Wolfram Conen, who encouraged me to apply for the
PhD position at Aalborg University.

Finally, I want to thank my family for putting up with me. Bernd, Brigitte,
Claas, Georg, Marcus, Milo, Petra und Wibke. . . Danke für alles!

Karsten Jahn,
August 2012

vi

Contents

Contents

Preface iii
Abstract . iv
Resumé . v
Acknowledgements . vi

1 Introduction 1
1.1 Personal Motivation . 1
1.2 Area of Concern . 2
1.3 Research Question . 4
1.4 How to read this Dissertation . 5

2 Related Research 7
2.1 Knowledge Creation and Transfer 8

2.1.1 Tacit & Explicit Knowledge 8
2.1.2 Knowledge Management Processes 9

2.2 Relevance of Knowledge Management in Software Development . 11
2.3 Approaches to Knowledge Management in Software Development 13

2.3.1 Collecting Experience . 13
2.3.2 Learning to Improve . 16

2.4 IT Support in Knowledge Management 19
2.4.1 The People Perspective . 19
2.4.2 The Company Perspective 21

2.5 Summary . 22

3 Theory 25
3.1 Definition of Terms . 25

3.1.1 Knowledge . 25
3.1.2 Knowledge Management . 28
3.1.3 Knowledge Management System 30

3.2 Knowledge Management Strategies 30
3.2.1 Codification . 31
3.2.2 Personalization . 32
3.2.3 Combination of Strategies 34

3.3 Knowledge Management Systems 34
3.3.1 Knowledge Bases . 35

vii

Knowledge Management in Software Development

3.3.2 Wikis as Knowledge Management Systems 37

4 KiWi Project 41
4.1 Project Organization . 41

4.1.1 Work Packages & Deliverables 42
4.1.2 Scheduling . 43

4.2 The Logica Case . 43
4.2.1 Case Company: Logica . 45

4.3 KiWi: A Knowledge Management System 46
4.3.1 The Semantic Web . 47
4.3.2 Semantic Wikis . 49
4.3.3 The KiWi Platform . 51
4.3.4 Enabling Technologies . 52

4.4 Summary . 55

5 Research Approach 57
5.1 Action Design Research . 58

5.1.1 Prerequisites . 58
5.1.2 Ensemble View of IT Artefacts 60
5.1.3 ADR Method . 62

5.2 Appropriateness of ADR . 66
5.3 Implemented Research Method . 69

5.3.1 Data Collection . 70
5.3.2 Data Analysis . 75

6 Problem Analysis 83
6.1 Background . 83
6.2 Overview of Identified Problems . 85
6.3 Isolated Islands of Knowledge . 87

6.3.1 Information Access (A1) . 87
6.3.2 Expert Finding (A2) . 89
6.3.3 Sharing Support (A3) . 90
6.3.4 Documentation Level (A4) 92

6.4 Inadequate Bridging of Knowledge 94
6.4.1 Process Complexity (B1) . 94
6.4.2 Feedback Circle (B2) . 95
6.4.3 Connected Documentation (B3) 97

6.5 Summary of Identified Problems . 98

7 Building 101
7.1 Underlying Ideas . 102

7.1.1 Strategies and Layers . 103
7.1.2 Strategies and Problems . 104
7.1.3 Improving the Situation . 106
7.1.4 Connecting the Layers . 107

7.2 Overall Design . 108
7.2.1 Supporting the Layers . 109
7.2.2 Connection between the Layers 110
7.2.3 A Heterogeneous Knowledge Management System 111

7.3 Functional Design . 112

viii

Contents

7.3.1 KiWi Platform . 112
7.3.2 Project Management Application 114
7.3.3 Shared Knowledge Model 116
7.3.4 Data Exchange Agent . 118

7.4 Technical Design . 119
7.4.1 Templates . 119
7.4.2 Data Exchange . 120

7.5 Workflow Design . 122
7.5.1 Initial Data Collection . 124
7.5.2 Entity Definition . 125
7.5.3 Publish . 127
7.5.4 Entity Editing . 127
7.5.5 Update . 127

8 Intervention & Evaluation 129
8.1 Consecutive Intervention & Evaluation 129
8.2 Final Evaluation . 131

8.2.1 Organization . 131
8.2.2 User Test Setting . 135
8.2.3 Results . 137

9 Discussion 147
9.1 Contribution . 147

9.1.1 Design Idea 1: Multiple Strategies 148
9.1.2 Design Idea 2: Connecting the Layers 150
9.1.3 Design Idea 3: Wiki for Personalization 152
9.1.4 Design Idea 4: ES for Codification 154
9.1.5 The KiWi Systems . 156

9.2 Limitations . 158
9.3 Future Research . 159

10 Conclusion 161

Appendices

A Knowledge Model 165

B Feature List 167

C Use Cases 173
C.1 Use Case 1: Project Planning . 174
C.2 Use Case 2: Project Monitoring . 177
C.3 Use Case 3: Development or Project Work 178
C.4 Use Case 4: Process Design . 179
C.5 Use Case 5: Data Access . 182

Bibliography 184

ix

Knowledge Management in Software Development

x

List of Figures

List of Figures

1 Structure of this Thesis . 6

2 Modes of Knowledge Creation, from (Nonaka, 1994) 9

3 Knowledge Transfer among Individuals in a Group, based on
(Alavi and Leidner, 2001) . 10

4 Experience Factory and Project Organization, from (Basili and
Caldiera, 1991) . 15

5 The IDEAL Model, from (McFeeley, 1996) 17

6 Pyramid of Knowledge, based on (Rowley, 2007). 26

7 Knowledge Management System has a Knowledge Base 35

8 Workflow in a Wiki . 38

9 The KiWi Project’s Participants 42

10 Time Schedule for the Project Knowledge Management Use Case 45

11 Project Phases for the Logica Case 46

12 Data Representation in the Semantic Web 48

13 Ontology or Knowledge Model for the Semantic Web 49

14 Resources in the Semantic Web . 50

15 A KiWi Page and its Contents . 51

16 Research Goals and Activities, from (Mathiassen, 2002) 58

17 Dual Approach in Information Systems Research 58

18 Design Science Research Cycles, from (Hevner, 2007) 59

19 The Ensemble View of an IT Artefact 61

20 Stages in the ADR Method, from (Sein et al., 2011) 63

21 The BIE Cycle . 64

22 The Generic Schema for IT-Dominant BIE, from (Sein et al., 2011) 65

23 Organization of the Design Study 70

24 Data Collection and its Sources . 71

25 Knowledge Management Problems in Logica 86

26 Knowledge Management Strategies and their Shares 103

xi

Knowledge Management in Software Development

27 Logica’s Organizational Layers with their Knowledge Manage-
ment Strategies . 104

28 Knowledge Sharing between the Organizational Layers 107
29 Different Strategies in different Layers of the Organization, from

(Jahn and Nielsen, 2011) . 108
30 The KiWi Systems . 112
31 The KiWi Platform, Edit Mode (Screenshot) 113
32 The KiWi Platform, View Mode (Screenshot) 114
33 The Project Management Application (Screenshot) 115
34 Relational Database Table . 116
35 Semantic Web Triplets . 116
36 Shared Knowledge Model between the PMA and KiWi 117
37 The Type Project Plan and its Conceptual Relationships (RDF

Diagram), from (Dolog et al., 2009b) 117
38 The Data Exchange Agent (Screenshot) 118
39 The KiWi platform: Editing a Template (Screenshot) 119
40 The KiWi platform: Editing a Template, Detailed View (Screen-

shot) . 120
41 Directions of Data Exchange among the KiWi Systems 121
42 The Route of Information in the KiWi Systems 123
43 Synchronization Status Circle within the Knowledge Loop 124
44 KiWi Page for Discussions (Screenshot) 125
45 Definition of the Process Entity (Screenshot) 126
46 Publishing the First Draft of the Process to the KiWi Platform

(Screenshot) . 127
47 Published Process Definition (Screenshot) 128

48 Snippet of a Use Case for the User Tests 133
49 Snippet of a Use Case Description for the User Tests 134
50 The Usability Lab . 135
51 Test Person and Moderator during User Test Session 137

52 The Type Defect and its Relations (RDF Diagram), from (Dolog
et al., 2009b) . 165

53 The Type LessonsLearned and its Relations (RDF Diagram),
from (Dolog et al., 2009b) . 166

xii

List of Tables

List of Tables

1 Knowledge Perspectives and their Implications, from (Alavi and Lei-

dner, 2001) . 12

2 Knowledge Bases, based on (Davenport and Prusak, 1998) 36

3 Deliverables of the KiWi Project . 44

4 Output of Requirements Specification Phase 76
5 Output of Knowledge Model Phase 77
6 Output of Prototype Development Phase 78
7 Output of Evaluation Phase . 80

8 Diagnostic Map for Problem “Information Access” 87
9 Diagnostic Map for Problem “Expert Finding” 89
10 Diagnostic Map for Problem “Sharing Support” 91
11 Diagnostic Map for Problem “Documentation Level” 92
12 Diagnostic Map for Problem “Process Complexity” 94
13 Diagnostic Map for Problem “Feedback Circle” 95
14 Diagnostic Map for Problem “Connected Documentation” 97
15 Logica’s Knowledge Management Problems 98

16 Mapping Logica’s Knowledge Management Problems to the Organiza-

tional Layers and Knowledge Management Strategies 106
17 Horizontal Approach to Knowledge Management 111

18 Design Ideas addressing Knowledge Management Problems 156

19 The Numbering System for Features, from (Grolin et al., 2010a) . . . 167
20 The complete Feature List, from (Grolin et al., 2010a) 172

21 Use Case Evaluation Coverage, from (Grolin et al., 2010a) 173
22 Use Case 1, from (Grolin et al., 2010a) 177
23 Use Case 2, from (Grolin et al., 2010a) 178
24 Use Case 3, from (Grolin et al., 2010a) 179
25 Use Case 4, from (Grolin et al., 2010a) 182
26 Use Case 5, from (Grolin et al., 2010b) 183

xiii

Knowledge Management in Software Development

xiv

Chapter 1. Introduction

Chapter 1
Introduction

This first chapter explains the background of this PhD study and provides initial
explanations to it. I describe my personal background (section 1.1) and how it
led to this area of concern (section 1.2). Accordingly, I formulate my research
question (section 1.3) and summarize the thesis’ structure (section 1.4).

1.1 Personal Motivation

After graduating in media informatics, I was employed as an IT consultant
at Valtech1 in Germany. My working area involved mainly quality assurance,
system administration and software development. However, asides from my
project related tasks, I learned that the internal communication is a vital aspect
of the everyday work in a software development company.

Through my everyday life I learned what knowledge management means for
a company and that it is really represented through communication in different
forms. This observation was not just made at Valtech itself, but also at the
different companies I was involved with as a consultant. Knowledge management
helps to spread specific information and background knowledge as well as to
locate experts. Often the consultants asked each other for specific skills or
experiences with specific technologies. Once the desired knowledge was found,
the consultants could either be introduced into the project directly and thus
made billable, or support each other internally. But the communication also
works the other way around. Valtech organized seminars for all consultants on

1http://www.valtech.de/

1

Knowledge Management in Software Development

a regular basis. These provided the opportunity for presentations of different
kinds. The consultants often presented their work results, but they also talked
about technologies and other activities regarding the organization of project
work. As a result these meetings raised an awareness of expertise within the
company.

After the presentations a timeslot was booked for all participants for reg-
ular interaction among each other. As many of them are involved at different
customers or in different projects, this opportunity supports the general com-
munication and exchange of ideas. Aside from these seminars, different other
meetings were held on a regular basis. These were usually organized by different
groups of people, formed according to interests.

In addition to the personal interaction, several IT systems were utilized to
support the communication among the employees. Valtech’s intranet consists
of different systems to exchange information in multiple ways. One example for
that is a wiki, which is a communication platform that allows users to work on
shared sources collaboratively. Valtech makes use of its wiki as a documentation
platform, allowing all consultants to view and edit the results immediately. Con-
sultants document progress in projects and thus inform others about updates,
as everyone can follow the development.

After working with the wiki for a while, I understood its value and explored
its possibilities. A wiki’s ability to support knowledge sharing amazed me. I
helped to advance the use of the wiki. This includes technical improvements
as well as new ways of using it. Eventually, I was considered a wiki expert.
Based on the good experiences internally, Valtech was able to convince others
to adapt this practice. Some customers bought a wiki and set up support,
others needed guidance for the operation of a wiki. Either way, we organized
introduction sessions and small workshops where my colleagues and I explained
the utilization of wikis. Personally, I was strongly involved in this. I was part of
many of these seminars, wrote a white paper about wikis in an enterprise context
and held a presentation about that at an industrial conference (OOP2008).

During the three years as an IT consultant, I observed the necessity and
ability of knowledge management in different software development companies.
I was additionally able to recognize, comprehend and experience the power of a
wiki as a knowledge management system. As an employee of Valtech I experi-
enced knowledge management mainly approached through personal interaction
with the support of a wiki. But time and possibilities for studying these fields
in detail was too limited in a company that had to focus on its business. Due to
my curiosity I found the way to a university again. I wanted to learn more about
knowledge management approaches. I wanted to investigate the utilization of
knowledge management systems.

1.2 Area of Concern

Software development is a rather recent engineering discipline that grew to
become the widely spread profession that it is today. People all around the globe
are grouped to create software. This is done in very different circumstances and
for very different purposes. There are loosely coupled open-source developers
that work free of charge as well as companies with hundreds of employees.
However different they might be established, all of these organizations have a

2

Chapter 1. Introduction

lot in common: In each of them the most important resource is the knowledge
held by the developers.

In every software development company the developers have to understand
the systems and programming languages they work with. It is further important
for them to know the company’s guidelines and processes. Accordingly, software
development is a very knowledge-intense activity. For being able to organize the
knowledge beneficially, knowledge management becomes a vital task (Bjørnson
and Dingsøyr, 2008). The final product is software and every step leading there
is or can be realized through a computer. Hence, literally everything is digital.
This aspect makes it particularly interesting to study computer-based knowledge
management in software development.

In the mid-1980s the rising amount of available information and the in-
creasing complexity of software development initiated an awareness of a need
for knowledge management. This triggered researchers as well as professionals
from the industry to analyse what knowledge management might be and how
to support it (Rus and Lindvall, 2002).

In “The Knowledge-Creating Company” (Nonaka and Takeuchi, 1995) the
authors analyse the learning and innovation process in Japanese companies.
They show that knowledge creation is the result of actively processing knowl-
edge. Especially the knowledge that is difficult to express can best be shared
through demonstration and practice.

Knowledge management can therefore be best described as the approach to
handle the know-how of a company. It is done to use the already existing knowl-
edge more efficiently and to maximize the gain of it. Hence, knowledge can be
a competitive advantage (Davenport and Prusak, 1998). Different technological
solutions were created to facilitate the management of knowledge. These were
computer programs that support the handling of the internal know-how, which
were later labelled as knowledge management systems.

Much research addressed knowledge management in the recent decades. A
variety of different approaches was designed, analysed and documented. It shows
that knowledge management is generally structured into two aspects: Collecting
the experience or knowledge of employees and learning from that collection.
Only a successful combination of both aspects results in effective knowledge
management.

Knowledge management can be approached in various ways. The so called
experience factory (Basili, 1996) asks employees to codify their experiences and
store it in a centralized database. Others can later access this in similar situa-
tions in order to learn from it. But not all knowledge management approaches
cover details about the whole practice in detail. Most of them focus on different
aspects, like the recording of experiences through post-mortems or processes
that control the access to these reports.

As knowledge management is a complex field with different requirements for
different companies, the approaches differ from one another. The company itself
is of high importance. A knowledge management approach has to reflect the
company’s strategic orientation in order to be successful (Hansen et al., 1999).
And further, it is the company’s knowledge management approach that has to
fit to the company, not the other way around (Davenport and Prusak, 1998).
However, there are no general solutions and every knowledge management has to
be customized, which should involve the whole company, including its employees,
processes, culture, etc.

3

Knowledge Management in Software Development

Knowledge management systems, the IT support for a knowledge manage-
ment approach, also show a high variance, because different knowledge man-
agement approaches need different kinds of support (Rus and Lindvall, 2002).
Some focus on document management, while others focus on the communica-
tion between its users. The range of systems reaches from file servers, over
groupware to wikis. There are also very specialized solutions, which combine
particular aspects from different systems. Finding or creating a fitting knowl-
edge management system is one of the complexities in knowledge management.

In software development knowledge management is emphasized, because the
work is very abstract and knowledge intense (Bjørnson and Dingsøyr, 2008).
Every developer constantly shares their knowledge with others, extends the
own knowledge and applies gained knowledge. They are additionally challenged
to work in teams, where each member has different experiences and expertise.
Knowledge management can thus make their work easier or more effective, espe-
cially regarding key problems, like gathering domain knowledge, decreasing the
learning curve for new team members or facilitation of different technologies.

Recently, improvement of knowledge management in software development
has taken two forms: Agile development and research on knowledge manage-
ment systems. On one hand, agile software development is a methodology that
emphasizes the necessity and value of interactions among individuals and values
it higher than processes or tools2. The approach involves the grouping of people
to engage the knowledge sharing (Larman, 2003). On the other hand, research
on knowledge management systems mainly deals with the support of knowledge
management through IT systems (Rus and Lindvall, 2002). The focus in this
thesis is on the knowledge management systems in software development.

1.3 Research Question
Knowledge management improves the utilization of a company’s internal knowl-
edge, in order to be more efficient and beneficial. This is a general statement
and counts for companies in virtually every field. However, my studies focus on
knowledge management in software development.

The landscape for software development companies is defined by various
different obstacles. It is fairly common that customers expect a document-
driven development. This acts like an insurance for level-headed work, the
people involved have to follow detailed process descriptions. This includes, that
they have to report intermediate and final results in specific documents to higher
management levels in the company or even to the customers.

Many projects assigned by governments in Europe (e.g., in defence or finan-
cial sectors) must be realized only by companies that fulfil the requirements of
higher levels of the capability maturity model (CMM). And even if the customers
do not oblige a certified maturity standard, it is often considered as a competi-
tive advantage in the market. Accordingly, companies fulfil these standards to
be more competitive.

With the aim of increasing the efficiency of the development, companies
define their business processes. These can be realized differently. Either way,
the goal is to describe the structure of a work procedure. Business processes
define the tasks of different employees and how they have to fulfil them, in form

2The Agile Manifesto: http://www.agilemanifesto.org/

4

Chapter 1. Introduction

of a process description. Additionally, a business process contains guidance for
the lines of communication. When applying such a business process, it has to
be clear whom and in which way the employees have to contact after finishing
a task or in case of problems with it.

Business processes are also related to the hierarchy of the company. Flat
hierarchies are widely spread in software development companies these days.
This involves that the management structure is reduced to a minimum in order
to accelerate the decision process. The idea is, to equip the developers with the
possibility to take responsibility in corporate decisions.

The communication in flat hierarchies becomes more important, as it is
not covered by hierarchical responsibilities anymore. Instead, it is addressed
through teams in the company, to tackle the workload. Grouping the employees
improves the communication between people that work on the same tasks.

Software development gains complexity due to the fact that the work mate-
rial evolves. Most applied programming languages, frameworks, tools or utilities
are under constant development themselves, so that new versions are available
every now and then. Sometimes, whole new technologies enter the market or
the company decides to facilitate different technologies. Every change requires
the developers to get familiar with the new environment.

Knowledge management could address many of these aspects. It could assist
developers communicating outside their team. It could improve the decision
making process in the whole company by including or applying knowledge that
already exists. It could provide support for developers in learning about their
field. It could help the creation and maintenance of business processes. It could
support the whole documentation activities. But to achieve any of these goals,
it has to be carefully designed.

In this thesis I explore the challenges of system-based knowledge manage-
ment in software development companies, which leads to my research question:

Research Question: How can IT systems support knowl-
edge management in software development?

The research question has two objectives. First, it aims at gaining an un-
derstanding of what it is that knowledge management needs, with a focus on
software development companies. Second, it limits the scope to system-based
approaches. The goal is to design a knowledge management system that is able
to support the knowledge management in software development. This includes
not only a knowledge management system, but also a fitting workflow, to make
the system valuable within software development.

My research is part of the EU-founded FP7 project “KiWi – Knowledge in
a Wiki”.

1.4 How to read this Dissertation

This thesis’ structure follows a straight line of argumentation (figure 1). After
this introduction (chapter 1) I present the findings of other research (chapters
2 and 3). Then I explain the different elements of my research (chapters 4 - 8).
And finally, I oppose the two and show the impact of my work (chapters 9 and
10).

5

Knowledge Management in Software Development

Figure 1: Structure of this Thesis

This means in detail that the related research is presented in (chapter 2),
followed by my definition of the terms I use and an introduction to the theories
I utilize (chapter 3). Afterwards, I describe the project setting, in which my
studies take place (chapter 4), and the applied research methodology (chapter
5). Then I explain the analysis of the case company’s problem (chapter 6).
Subsequently, I describe the design of a prototype accordingly (chapter 7) and
its evaluation (chapter 8). I close this thesis with a discussion of my research
(chapter 9) and a conclusion of my studies (chapter 10).

The thesis itself deals with knowledge management. Hence, it contains a
variety of concepts that begin with the term knowledge (e.g., knowledge man-
agement, knowledge model, knowledge sharing, knowledge management system,
knowledge management strategy. . .). All of these are rather long words. How-
ever, to not confuse the reader, I abstain from using abbreviations. I always
spell out the full term of these concepts in order to avoid missunderstandings.
Granted, this thesis is not abbreviation-free, but the few exceptions applied are
standard abbreviations for distinct terms (e.g., ADR, ES. . .). I explain all of
them in the text.

Footnotes within this thesis are only used to provide the internet address
to a tool or technology. This is intended to support the reader, in the case of
desired additional information. All relevant information is included in the text.

6

Chapter 2. Related Research

Chapter 2
Related Research

Knowledge management in software development has been approached by many
researchers from a variety of different angles. This chapter contains my struc-
tured literature study, I analyse the published results and contributions, related
to my research in this field in one way or the other.

For my literature study I needed to find research that tries to answer the
same or a similar research question as I have (see section 1.3). The search for
publications within this area was mainly realized through Google Scholar3. I
used it to search for the terms “Software Development” or “Systems Develop-
ment” in combination with “Knowledge Management”. The list of publications
was then extended with publications that were referenced to, within the same
area. This process led to a large number of publications from many different
outlets. I then filtered the collection of publications for relevance. That means
that a publication has its focus on knowledge management in software devel-
opment and in particular on IT support. Articles with a purely technical focus
and no consideration for support of knowledge management or software devel-
opment were excluded. After this selection process, my literature study is based
on more than one hundred books, journal articles and conference proceedings
in total.

This chapter describes the findings of the related research for knowledge
management in software development organized in two main parts, general and
applied. However, I begin with providing a bit of necessary background on
knowledge and knowledge management (section 2.1). Then I explain the rele-
vance of knowledge management in software development and the reasons for

3http://scholar.google.com/

7

Knowledge Management in Software Development

knowledge management systems (section 2.2). Afterwards, I describe actual
examples of knowledge management in software development (section 2.3), in-
cluding case studies and specific approaches. Followed by an overview of con-
siderations and difficulties regarding the IT support in knowledge management
(section 2.4). The chapter is then concluded by a short summary (section 2.5).

2.1 Knowledge Creation and Transfer

Before I describe actual knowledge management approaches, the theories behind
the publications that are covered by this literature study need to be explained. I
therefore take a little detour into the general theory of knowledge management.
In this section I describe the related research regarding knowledge as such and
the necessary activities in knowledge management.

Note that I elaborate on the related theories and terminology in detail below
(chapter 3). This section’s purpose is to provide an understanding to the reader
of what knowledge management means.

2.1.1 Tacit & Explicit Knowledge

When trying to make people share their experiences, it is important to be aware
of the distinction between different kinds of knowledge. Polanyi defines tacit
knowledge and explains it as “we can know more than we can tell” (Polanyi,
1966, p. 4). He describes that not everything that we know is conscious. Riding
a bike, for instance, might be an easy task for many people, yet, most of us fail
to explain how to do so. Tacit knowledge is described as the knowledge that is
hard to formalize and as a result difficult to express. Explicit knowledge is the
opposite of tacit knowledge and thus easy to codify or already codified.

Nonaka based his work on the knowledge states tacit and explicit (Nonaka
and Takeuchi, 1995; Nonaka, 1994, 1991). He understands knowledge creation
as the conversion of knowledge between these states and distinguishes between
four modes of knowledge creation: Socialization, externalization, combination
and internalization (figure 2). It is often referred to as the SECI model, based
on the first letters of the modes.

Nonaka states that “the key to acquiring tacit knowledge is experience”
(Nonaka, 1994). A focus in terms of knowledge management lies on the two con-
version patters that involve both states, as they seem complementary, i.e., from
explicit to tacit knowledge (internalization) and from tacit to explicit knowledge
(externalization). Nonaka’s model of knowledge conversion however consists of
a combination of all four modes. The interchange from one to the other, through
all four modes in an iterative manner, increases the knowledge of a company
on different ontological dimensions. Nonaka and Takeuchi (1995) call this a
knowledge-creating company.

The principles of the knowledge-creating company are used as a theory on
which many researchers of knowledge management in software development
build upon. One study elucidates the use of the SECI model in the semiconduc-
tor equipment industry (Moriya and Benton, 2008). Another one is related to
software development and explains socialization and externalization for every
step in a software life cycle (Wu, 2010). Some contributions use Nonaka’s find-
ings also and extend into different directions. For instance, researchers investi-

8

Chapter 2. Related Research

Figure 2: Modes of Knowledge Creation, from (Nonaka, 1994)

gate on possible learning strategies for three different actors (workers, managers,
and human resource developers) along different project organizations (Poell and
van der Krogt, 2001). Others utilized the modes of knowledge creation to create
a knowledge transfer model (Liyanage et al., 2009).

Critique on Nonaka’s Theories

The SECI model has been widely discussed in the different research communi-
ties that it concerns. Walsham (2005) explains that Nonaka’s view considers
knowledge as an object only, being transferred from one individual to another,
while knowledge is much more than that. He points out that the influence of
the context and the communication as such is being left out by Nonaka. Many
researchers have a similar standpoint and disagree with Nonaka’s SECI model.

Another point of the knowledge-creating company that is critizised by other
researchers relates to the contextual constraints, which have to be handled with
care as they are deep-seated in the Japanese culture and could not be simply
taken over without adjustments (Glisby and Holden, 2003).

However, when managing knowledge in software development, it is important
to not just focus on the knowledge that is explicit already or easily expressive,
but to take care of the tacit dimension as well. Many approaches for knowledge
management get back to the concepts created by Nonaka for that.

2.1.2 Knowledge Management Processes
Alavi and Leidner (2001) describe the knowledge management processes of a
company, based on what they call knowledge system, the individuals and groups
that share their knowledge in a company (figure 3). In this knowledge system the
authors elaborate on the different activities related to knowledge management.

This whole web of knowledge management activities is constructed on top of
the modes of knowledge creation as outlined by Nonaka (1994). On an individ-
ual level, every person has tacit and explicit knowledge. The knowledge is being
transferred back and forth through the modes externalization and internaliza-
tion within the individual or through combination and socialization between
individuals.

However, similarly to tacit and explicit knowledge of individuals, every group
of individuals (e.g., team members) has two types of memory: Episodic and se-
mantic. A group’s semantic memory represents the available explicated knowl-
edge, for example a document on a file server. The explicit knowledge of an

9

Knowledge Management in Software Development

Figure 3: Knowledge Transfer among Individuals in a Group, based on (Alavi
and Leidner, 2001)

individual can be made available for the rest of the group by transferring it to
the semantic memory of the group. Also, an individual can increase its explicit
knowledge by accessing the group’s semantic memory. For this learning from
the group’s semantic memory, the group’s episodic memory is a critical neces-
sity. An episodic memory represents the collection of shared experiences of the
group. Every individual contributes with parts of their tacit knowledge to it.

Beyond the interaction of people is the utilization of knowledge. The knowl-
edge application is always based on an individual’s tacit knowledge. At the
same time, when applying knowledge, the individual learns from that, which
feeds back to the tacit knowledge of the individual. Additionally, the applica-
tion of knowledge can also be based on the semantic memory of a group directly,
which feeds back to the group’s episodic memory.

This system of knowledge sharing among individuals in a group occurs in

10

Chapter 2. Related Research

different areas of a company. Each of these groups then shares their knowledge,
via a group-dialogue.

2.2 Relevance of Knowledge Management in Soft-
ware Development

As software development is a very abstract engineering discipline, knowledge
management is an important issue. Here, I explain that relevance. When de-
veloping software, a high degree of coordination (Kraut and Streeter, 1995) and
management (Sommerville, 2001; Pressman, 2000) become vital tasks. Because
the focus is to solve specific problems, the organization of software projects
often differs enormously from one to the other (Mockus et al., 2002). Sveiby
(1997) points out that most companies face similar problems when it comes
to administrating the own intellectual capital. He explains that employees are
usually highly educated and qualified professionals whose everyday job is using
their competence to develop software. Their major resource is their knowledge;
therefore, they are called knowledge workers. And because knowledge is such
an important asset in these companies, so called knowledge organizations, the
knowledge management becomes a crucial activity. This counts for software
development in particular. Hence, knowledge management for software devel-
opment companies is a wide field with a variety of different approaches (Aurum
et al., 2008).

Rus and Lindvall (2002) describe three aspects of software development to
be supported by knowledge management: Core software engineering activities,
product & project memory and learning & improvement. The core activities
of software engineering contain the management of documents or competences
as well as software re-use. With product and project memory the authors refer
to the evolution of software, e.g. with the help of systems for version con-
trol, change management or design documentation. Finally, the learning and
improvement includes a recording of results and experiences. The reason is to
learn from that and improve future decisions or activities. The desire to improve
in these three areas of concern is the motivation for knowledge management in
software development.

To conduct knowledge management successfully, many different approaches
are possible and documented. Liebowitz and Megbolugbe (2003) propose a
framework for implementing knowledge management, which combines an activ-
ity cycle of knowledge management levels and the resulting knowledge objects.
The different knowledge management levels are conceptualization, reflection,
acting and review. Each of these lead to the four knowledge objects: Goals,
risks, constraints or measures. The diversity of dimensions illustrates the com-
plexity of knowledge management.

Information systems that are applied in order to manage a company’s knowl-
edge or to support the managing of a company’s knowledge are referred to as
knowledge management systems. Alavi and Leidner (2001) conducted a liter-
ature review and illustrate six perspectives on knowledge with their implica-
tions (see table 1). They identify the differences in perception of knowledge
and describe the influence of a perspective on knowledge management and the
knowledge management system.

11

Knowledge Management in Software Development

Perspectives Implications for
Knowledge Man-
agement (KM)

Implications for
Knowledge Man-
agement Systems
(KMS)

Knowledge
vis-à-vis
data and
informa-
tion

Data is facts, raw
numbers. Informa-
tion is processed/
interpreted data.
Knowledge is per-
sonalized informa-
tion.

KM focuses on ex-
posing individuals
to potentially use-
ful information and
facilitating assimila-
tion of information.

KMS will not ap-
pear radically dif-
ferent from existing
IS, but will be ex-
tended toward help-
ing in user assimila-
tion of information.

State of
mind

Knowledge is the
state of knowing
and understanding.

KM involves en-
hancing individual’s
learning and under-
standing through
provision of infor-
mation.

Role of IT is to
provide access to
sources of knowl-
edge rather than
knowledge itself.

Object Knowledge is an
object to be stored
and manipulated.

Key KM issue is
building and man-
aging knowledge
stocks.

Role of IT involves
gathering, storing,
and transferring
knowledge.

Process Knowledge is a
process of applying
expertise.

KM focus is on
knowledge flows
and the process of
creation, sharing,
and distributing
knowledge.

Role of IT is to pro-
vide link among
sources of knowl-
edge to create wider
breadth and depth
of knowledge flows.

Access to
informa-
tion

Knowledge is a con-
dition of access to
information.

KM focus is orga-
nized access to and
retrieval of content.

Role of IT is to pro-
vide effective search
and retrieval mech-
anisms for locating
relevant informa-
tion.

Capability Knowledge is the
potential to influ-
ence action.

KM is about build-
ing core compe-
tencies and under-
standing strategic
know-how.

Role of IT is to en-
hance intellectual
capital by support-
ing development
of individual and
organizational com-
petencies.

Table 1: Knowledge Perspectives and their Implications, from (Alavi and Leidner,
2001)

12

Chapter 2. Related Research

The perspective on knowledge differs from case to case. Rus and Lindvall
(2002) or Nonaka (1994) for example, as mentioned above, apply the object
perspective in their research. They understand knowledge as the intellectual
capital of a company and suggest systems that support the gathering and sharing
of knowledge. On the other hand, the frameworks presented by Liebowitz and
Megbolugbe (2003), for example, relate to the access to information perspective.
They focus more on finding the needed knowledge and sharing it.

To analyse knowledge management systems, a framework is structured into
seven components: Knowledge goals, acquisition, processing, preservation, dis-
tribution, utilization and validation (Althoff et al., 2000b). Each of these com-
ponents contains a different set of attributes, to value the tool accordingly. The
outcome is a detailed analysis which helps understanding the system and eval-
uates its benefit.

Over the time many different knowledge management systems, with different
approaches were created and applied. The variety is huge (Rus and Lindvall,
2002; Andrade et al., 2003), it reaches from sophisticated and specialized en-
terprise systems (Davenport, 1998) over groupware applications (Falbo et al.,
2004) to light knowledge tools (Hosbond and Nielsen, 2008).

2.3 Approaches to Knowledge Management in
Software Development

Knowledge management is a complex operation (Walz et al., 1993) with the
goal to improve the performance of software development significantly (Tiwana,
2004). I categorize specific approaches into the collection of experience (section
2.3.1) and the learning to improve (section 2.3.2). It is difficult to draw a
line between these categories, as one cannot exist without the other. Collecting
experience does not make sense, if it is not used for anything. Also, it is difficult
to improve, when no experience has been collected to learn from.

Note that the reason for this categorization is to structure the contributions
found in the literature study within this thesis, according to the main focus.
The idea is not to strictly separate the aspects or to make a general distinction,
as most approaches cover both of them anyway.

2.3.1 Collecting Experience

The work of any software engineer can be understood as gaining experience. It
is quite common for a developer to research a certain topic, e.g., a technology
or a work flow, in order to use it. Then by applying the gathered insights,
experience is built. There are different approaches to collect this experience, in
order to learn from it later. I call this the recording knowledge phase.

Post-Mortems in Software Development

The post-mortem analysis or post-mortem review (short: post-mortem) is a
study of a project or project phase, after its termination. It is a well-known in-
strument in software project management and can also be called lessons-learned
or retrospective analysis, depending on the applied methodology. Though there

13

Knowledge Management in Software Development

are differences in the processes, all of these approaches aim to collect the expe-
riences of the past and reflect on it, with the intention to learn and therefore
improve over time.

Researchers argue that conducting post-mortems helps employees to articu-
late what was gained as experiences, hence the conversion from tacit to explicit
knowledge (Desouza et al., 2005). As a collective learning activity post-mortems
are conducted with the majority of the participants during a project or project
phase. The focus here lies on reflection, in order to learn from the past, and not
on evaluating the work results.

There are basically two different ways of documenting a post-mortem anal-
ysis: Creating stories or reports (Desouza et al., 2005). Stories are explanations
of the occurrences and progressions, in form of articles. As each story is unique,
one story can be very different from another, they can follow a similar general
structure though. Reports in contrast follow a very strict structure, they fo-
cus on the facts. All reports are very much alike, which makes them easier to
comprehend and faster to create.

Case studies show that each type has advantages and disadvantages. On
one hand, stories leave space for different interpretations by every individual.
Reports present the plain facts and do not leave space for interpretations, but
it makes them more difficult to comprehend. Also the possibility of misunder-
standing can never be completely eliminated. On the other hand, stories deliver
a fuller picture to people who want to understand the occurrences. As they
are usually more detailed, the information it contains is much broader. The
homogenous nature of reports does not allow that level of detail. And even
though it is more easily searchable automatically, the readers of a report will
have more difficulties remembering the specifics compared to stories (Desouza
et al., 2005).

Combining both approaches is a possibility through the preparation of stories
followed by the creation of reports out of these (Schalken et al., 2006). This
gains the benefits of both approaches, but it is also very time consuming and
therefore expensive.

Pedersen (2005) pointed out 31 barriers to post-mortems, organized in the
four categories “designing the organizational context”, “focusing the effort and
collecting the data”, “analysing and interpreting the data” and “sharing and
exploiting the resulting knowledge”. Case studies show that post-mortems are
hardly conducted in software companies, despite the fact that managers agree on
their advantages (Kasi et al., 2008). Especially when a project was a financial
loss, the additional costs of post-mortems are often avoided. But especially
here the impact can be much higher and similar problems can be avoided in
the future. Further, post-mortems are more successful in companies that have
a sufficient learning capability developed.

Experience Base in Software Development

The post-mortem is an instrument to capture the experience of software devel-
opment projects after their execution. The gained insights are then filed into
what we call experience base or knowledge base. But there are different ap-
proaches to build and use these. Experiences are gained during the process of
a project and some methods take the continuing work into consideration. The
experience factory as outlined by Basili (1989) is a concept that helps software

14

Chapter 2. Related Research

development companies to collect experience and use previous experiences to
improve the performance of the current work. The approach separates the ac-
tivities of software developers into related to the project work and related to the
experience base. Hence, the work for a project and the recoding of the gained
experience are different tasks, that are clearly distinguished from one another.
This independence allows multiple forms of project organizations throughout a
company access its one experience factory, as it is not related to specific pro-
cesses of a certain unit.

Figure 4: Experience Factory and Project Organization, from (Basili and
Caldiera, 1991)

Figure 4 depicts the concept of the experience factory. It analyses and syn-
thesises all kinds of experience that can be externalized and made available,
including the outcome of conducted post-mortems, but also different forms of
project results and documentation, like plans, products and data. This exter-
nalized software project experience is then bundled into a standardized form,
so called experience packages, which makes the explicit knowledge easier to ac-
cess. Developers can thus access these experience packages and learn from them.
At the end of every learning process, the developer has to feed the gained in-
sights back into the experience base, to make it richer (Basili, 1989; Basili and
Caldiera, 1991; Basili, 1993; Basili and Green, 1994; Basili and Caldiera, 1995;
Basili, 1995).

The experience factory draws on the two basic activities in knowledge man-
agement: collecting experience and learning to improve. It transforms experi-
ence into packages, which is the required step for the following improvement
paradigm. This paradigm includes an incremental learning methodology that
applies mathematical formalization and organizational institutionalization with
the target to support software projects (Basili, 1989; Basili and Caldiera, 1991).
The focus of the experience factory however is not on the learning, but on the

15

Knowledge Management in Software Development

creation of an experience base.
An extension of the experience base is an experience management system

that allows different methods of packaging experience, that help the user to iden-
tify the valuable experiences (Lindvall et al., 2001). An alternative approach
to the experience factory organizes the experience packages in a dual approach,
combining goal-oriented and similarity-based retrieval (von Wangenheim et al.,
2000). To be goal-oriented the experience factory has to structure the experi-
ences according to retrieval goals, so that different re-use scenarios can easily be
supported. Similarity-based retrieval builds up on the assumption that similar
situations can be solved with similar solutions and that future problems can be
analogue to current ones. The system then helps retrieving the best fitting re-
sults from the experience base for the user. These approaches are generally also
known as need-based and case-based. Need-based, as it is driven by requests for
input (Komi-Sirviö et al., 2002), and case-based, as it records the experiences
of certain cases (Henninger, 1997).

The experience factory is a widely known concept and implemented in many
different organizations. One of them is the Software Engineering Laboratory at
the NASA Goddard Space Flight Center, which documents a dramatic increase
of re-use across different projects (Basili and Caldiera, 1995). A different study
presents an architecture for a “software engineering experience environment”
and implements main parts of that into an “intelligent retrieval and storage
system” following the principles of the experience factory (Althoff et al., 2000a).
This system is instantiated in three projects and users of this system can store
artefacts or their contexts or search for these.

Even though the experience factory is well-defined, it is not the only form
to manage an experience base. However, comparing different approaches of
computerized software experience bases shows that even though the methods
differ, the main challenges remain the same (Conradi and Dingsøyr, 2000). For
instance, one major key to success, for any form of experience management, is
the commitment of the people inside the company, regardless of the hierarchy.
Connected to this issue is the feedback to the users, as it is a method to support
people involvement. It can increase the motivation to contribute, when one sees
benefits. Another challenge in experience management is that it is important
to assess the costs and benefits regularly. The authors here recommend an
overhead of 1-2%.

2.3.2 Learning to Improve
Most of the studies described in the previous section focus on the recording and
management of experience. However, the gathering of experience is useless, if
the company does not learn from it in order to improve practice. I call this
learning the applying knowledge phase.

As software developing projects are usually organized in processes, it makes
sense that learning and improvement play a role in these. Processes are defined
to establish a context for technical methods and work products to aim at quality
goals or other targets (Pressman, 2000; Sommerville, 2001). Striving for a way
to improve the operational quality, researchers and practitioners defined a field
called software process improvement (SPI). Here, I provide an introduction to
the principles of SPI followed by descriptions of actual approaches for learning
in software development.

16

Chapter 2. Related Research

Software Process Improvement

SPI can be approached in three different ways: Evolution, norm or commitment
(Aaen et al., 2001). The evolutional approach changes the existing processes
incrementally, based on the experiences gained in previous executions. Adopt-
ing the existing standards is classified as norm approach and active support of
the senior management with attention and resources is called the commitment
approach. The underlying idea of SPI is always to learn from own practices and
improve evolutionary (Basili and Green, 1994). The IDEAL model (figure 5),
for example, divides improvement actions into five phases: Initiating, diagnos-
ing, establishing, acting and learning (McFeeley, 1996). The different activities
are hereby based on the principles of Nonaka’s knowledge-creating company
(Mathiassen et al., 2002).

Figure 5: The IDEAL Model, from (McFeeley, 1996)

The SPI literature can be categorized into prescriptive, descriptive or reflec-
tive (Hansen et al., 2004). Reviewers noticed a domination of the capability
maturity model, CMM (Humphrey, 1989), in the field and that publications are
rather prescriptive and not reflective. The approaches for SPI on the particu-
lar cases differ clearly; many studies that compare SPI approaches in different
settings show this (Basili and Green, 1994; Arent and Nørbjerg, 2000; Iversen
et al., 1999). It appears that small and medium sized companies are the pre-
ferred target of research, as these more often face changing environments and
therefore have to match the changing circumstances with updated processes to
stay successful (Ward et al., 2001). Kautz (1998, 1999) delineates four critical
factors for successful SPI: A tailored approach, functioning networking, external
assistance and external financial support. Others describe a framework which
distinguishes between the layered concepts for the company’s standard, pro-
cess and practice (Müller et al., 2008). Here, one feeds into the other through
directed communication lines, where each layer informs the adjacent.

The specific SPI differs from case to case. A fundamental element however
is always the sharing of knowledge or experience and the intention to learn
from that. Mathiassen and Pourkomeylian (2003) explain that the knowledge
management has to be a part of the SPI activities for successful software de-
velopment. They describe a unit that is responsible for the SPI initiatives of a
case company and also for the knowledge management. This unit is responsible

17

Knowledge Management in Software Development

to develop a strategy, provide supporting systems and control whether the plan
is followed.

Improvement Approaches in Software Development

Learning from shared experiences can be very beneficial in software development
and is therefore a crucial aspect within knowledge management. As projects and
companies are never identical, the degree of knowledge management affiliation
to the processes varies as well. In the experience factory, for example, the pro-
cess is a significant driver of the whole method. In process-oriented knowledge
management the knowledge management is no longer a minor task in a pro-
cess, but operated systematically (Jablonski et al., 2001; Auerbach and Hauser,
2009).

One study investigated the learning of project managers, utilizing a tool
for process description (Kjærgaard et al., 2010). This so called handbook is
continuously enhanced. When managers follow the defined processes, they leave
comments according to their experiences. As a result, the reality, in form of
experience descriptions, is at the same place as the plain process description.
Project managers are then able to use these reports of recent implementations
to adapt the process.

Other case studies describe the combination of a knowledge management
system with a workflow management tool (Kwan and Balasubramanian, 2003;
Auerbach and Hauser, 2009; Ramesh and Tiwana, 1999; Falbo et al., 2004).
Similar to the handbook approach, the idea is to collect the experience about
the process execution and the actual process description in the same place.

Also the scope and method of knowledge management varies from one case
to the other. One study for example examines the knowledge sharing during
a review process of software architectures (Sherman et al., 2010). Here, the
use of collaboration systems enhances the traditional process. As a result the
plain study of possible architectures is extended by the company’s experience
base. Hence, the applied and experience-based input adds to general theories
of architectures.

Another field study describes the process of a knowledge management sys-
tem that is implemented in a software company (Wei et al., 2002). This process
intends employees to search a system for support, if they have a problem. In case
no applicable solution can be found, the employees can describe the problem
and leave a request for support in the system. Experts then find these questions
and contact the person directly. Once the problem is solved, the whole com-
munication flow is published in the system and therefore adds, in a case-based
manner, to the knowledge base.

But also the processes of learning can have different impact. Different mod-
els are described: Direct-impact and mediated-impact (Ravichandran and Rai,
2003). In the direct-impact model the software development is directly bene-
fitting from the employees that gained the original experience. The mediated-
impact model is in contrast to that more restrictive. It allows access only to
the experience base. However, this can also include requests to employees, what
knowledge shall be added to the experience base. Though it might be misun-
derstood as a restriction or disadvantage here, it is basically nothing more than
a different strategy, like leveraging an experience base. Either structural model
can improve the software development.

18

Chapter 2. Related Research

Improving development practice can also be achieved by analysing knowl-
edge flows through a mapping technique (Kautz and Hansen, 2008). The re-
sulting map supports the understanding of the knowledge flows in a company.
It provides a census and broader view and can therefore be valuable.

Knowledge Networks

When talking about sharing knowledge, one, of course, must not forget about
the most obvious way: Through direct and personal communication. Instead
of building and consulting an experience base, like in the examples above, here
people contact the expert directly.

The direct communication is driven by the social network that everybody
has, a connection of one’s co-workers and contacts. However, not all people in a
company are equally well connected. And in addition, the quality of these con-
nections differs. Knowledge is shared along the connections of a social network
solely; it is therefore also called knowledge network (Nielsen and Tjørnehøj,
2009). Information flow within a network of direct contacts is of different qual-
ity. However, it decreases severely when indirect contacts are involved. This
holds for the individuals and on group or unit level.

Beyond the opportunity for its members to exchange ideas and experiences,
social networks have the strategic potential to lead to new sources of value and
of knowledge (McKeen and Smith, 2007). The network effect can thus be very
important (Bansler and Havn, 2002, 2004).

The problem with knowledge networks is that their maintenance is easily un-
derestimated. And time invested into maintenance cannot be spent on project-
related tasks (Hansen et al., 2002).

2.4 IT Support in Knowledge Management
The research presented in this section applies the different approaches to col-
lect experiences and learn from them, which are portrayed above. However,
the scope is extended. This section deals not only with the knowledge manage-
ment as such, but also with IT systems to support it, the so called knowledge
management systems.

This section describes aspects of knowledge management that are important
to mind, in order to be successful. Additionally, I explain that the introduction
of knowledge management systems is complex and not free of disappointments.
Hence, to achieve an effective approach, it is important to analyse reported
results of different approaches and follow guidelines to reach positive outcomes.

2.4.1 The People Perspective
The introduction and utilization of knowledge management systems in com-
panies is reported by many different researchers that illustrate problems and
achievements. An example is a study of a knowledge management system’s im-
plementation in a multi-national pharmaceutical company (Bansler and Havn,
2001, 2002, 2003, 2004). After the system failed, five reasons were spotted:
Time pressure, missing incentives, low acceptance for bragging, the preference
of personal networks and poor quality of the contributions. These reasons illus-
trate that the system was not accepted by its users. The authors noticed a direct

19

Knowledge Management in Software Development

connection to the network effect, which implies that the knowledge management
system becomes more useful, the more people use it. In other words, the qual-
ity and the support for the implementation process of knowledge management
improves, if more people are involved.

That example shows that it is important to emphasize the role of the em-
ployees for the success of a knowledge management approach within a company.
This is seconded by many other studies, like a case study that implemented
knowledge sharing processes within a company, which were supported by IT
(Kautz and Thaysen, 2001). The authors found that in many cases too much
focus is set on the IT, while the communication and collaboration between the
people is more important and reaches results of higher quality. Other research
agrees with that and illustrates that the technical component is not the most
important aspect in knowledge management generally (Davenport and Prusak,
1998; McDermott, 1999; Conradi and Dingsøyr, 2000).

Instead of focusing on the IT, knowledge management systems should sup-
port the knowledge related processes (Fehér and Gábor, 2006). These again
have to take the whole company into account: The technological perspective,
the personal situation and the company’s culture. Focusing on just one com-
promises the balance, which is important for a successful approach.

McDermott (1999) states that knowledge sharing is leveraged through ex-
isting communities, which should be developed as an activity of the knowledge
management. He suggests supporting communities in a company, with tech-
nology and resources. These are not only sharing the knowledge within the
community, but also act as experts throughout the company.

These findings demonstrate that a major issue of many knowledge manage-
ment approaches is the focus on the IT. The users of the system should be
stressed instead, as well as their involvement into the knowledge management
approach. A knowledge management approach is likely to run into problems,
if the communication between employees is not being supported well enough
to share their knowledge. Knowledge management cannot solely consist of the
implementation of an IT solution, but has to follow an approach that takes the
whole company into account. The people within a company have to be an essen-
tial aspect. They should be given with the opportunity to share their knowledge
within the company.

A knowledge management system, however, strongly influences the knowl-
edge management approach. It can leverage or diminish the knowledge sharing
within the company. Therefore, it is very important that knowledge manage-
ment and the supporting IT system fit together (Swan et al., 1999a). Addition-
ally, the people that are affected by the knowledge management are sometimes
heavily demanded to fulfil knowledge management issues, which are difficult to
follow. Especially when it comes to tacit knowledge, the requests of managers
are often too high. In some companies there is a high pressure on the people,
forcing them to stoically follow the knowledge management approach, which is
counterproductive and limits the knowledge management approach’s success.

A successful knowledge management approach therefore has a clear focus
on the people involved. As described above (see section 3.1.1), knowledge is
always individual and the people cannot be forced to share it. Hence, a knowl-
edge management system should support the users in sharing their knowledge
following the way they prefer and the way that suits the company’s strategy.

20

Chapter 2. Related Research

2.4.2 The Company Perspective

Apart from the involvement of the people there are also other things to con-
sider when designing a knowledge management approach. A literature review
delineates 13 aspects that influence the sharing of tacit knowledge (Joia and
Lemos, 2010). These contain plenty of different facets. Generally, employees
need a common language, mutual trust among each other and the company has
to provide time for the knowledge management task for every individual. The
company itself impacts the sharing of tacit knowledge through the internal hi-
erarchy, a reward system, the knowledge management strategy and the training
for the people. Also, the knowledge management system influences everything,
by itself and through the media that it uses. The remainding aspects focus
on the people in the company: Their personal network, their understanding of
knowledge sharing, the way they question each other and generally the way they
cooperate. All these aspects should be considered in knowledge management,
as the sharing of tacit knowledge is an important factor.

The long list of aspects that influence the management of tacit knowledge
only visualizes that knowledge management is a complex task. It is one out of
three problems that many knowledge management implementations suffer from
(Desouza, 2003): First, it is utopic to think all experiences can be externalized.
Second, software engineers often do not want to be seen as experts. Their future
assignments might then be stronger affected by their experiences than they want
to. And third, even a sophisticated experience base cannot contain the answers
to all questions. Alternatives have to be available for optional use, be it in form
of personal peers or different accessible knowledge sources.

The number of possible difficulties is very high, but that stresses the im-
portance to treat a knowledge management approach as a work in progress,
not a final result (Desouza, 2003). All these aspects have to be controlled and
maintained continuously. A company is obliged to stay flexible and evaluate the
possible problems in order to react and solve issues. The knowledge management
strategy then would have to be adjusted where it makes sense.

Another important aspect of knowledge management is to balance the ef-
fort between exploring and exploiting the available knowledge (Mathiassen and
Pedersen, 2005). Providing time to the people for exploring their knowledge
and thus experimenting with the available insights and searching for new ones
is very important. Exploiting the knowledge is much more focused on increasing
the performance, by lowering the variance. This is where expertise is created
and strengthened, by knowing details about a potentially best solution. In
many cases the exploitation is not at all or just barely considered. But a plain
exploration-based knowledge management does not result in developed skills
and competences, like learning through exploitation does.

Much research agrees with this dilemma and calls it a fundamental problem
in IT-driven knowledge management approaches (Swan et al., 1999b). This
issue focuses on the processes of a knowledge management strategy. Processes
regarding the knowledge management should be carefully designed, considering
the people to interact, the company’s culture and the environment.

Fundamental problems in IT-driven knowledge management approaches are
that tacit knowledge is not easily codified (as explained above in the people
perspective) and the supply-and-demand misunderstanding (Swan et al., 1999b).
The latter bases on the general assumption “build it and they will come”, which

21

Knowledge Management in Software Development

does not apply when it comes to IT solutions. Dixon (2000) calls this one of
the biggest myths in knowledge management. The mere existence of any tool
does not make people use it. And the fact that a knowledge base is filled with
insights and experience does not guarantee that its content will be applied. The
system should help encouraging people sharing their knowledge and use it as
a base of communication to overcome irregularities between the supplied and
demanded knowledge. People should share their knowledge through it, but also
learn and search through the system.

From the technical perspective of knowledge management, a major issue is
that in many cases simply the wrong tools are used to support the employees
(McDermott, 1999). To avoid this issue, there are many different frameworks
to analyse knowledge management systems, Liebowitz and Megbolugbe (2003)
present some of these. The authors explain that frameworks like theirs provide
the knowledge managers with an important lever to improve the knowledge
sharing among people inside the companies. These frameworks help to find out
whether one system fits to the company’s needs or not and provides help for
knowledge sharing activities.

One of these frameworks assess the knowledge management systems accord-
ing to seven components: Knowledge goals, acquisition, processing, preserva-
tion, distribution, utilization and validation (Althoff et al., 2000b). Knowledge
management approaches and their IT support can be evaluated according to
these components. This helps the designers to compare different approaches
and to find the best fitting one according to the company’s needs. These frame-
works can be used not only for choosing the fitting knowledge management
strategy or knowledge management system, but also as a controlling mecha-
nism. This can help the managers to investigate, whether or not the objectives
of the knowledge management are still met or changes become necessary.

2.5 Summary
Knowledge management in software development is a research field with many
different objectives and approaches. This chapter provided a study of related
literature and introduced the reader to the field of knowledge management in
software development. I which show that knowledge management is a complex
venture. The portrayed research illustrates that there is no correct or generally
best solution, but several ways to approach the collection of experience and
to learn from it. Many aspects and perspectives are involved, that have to be
considered. Additionally, it is important to see, that a knowledge management
approach is never finished, it has to be maintained continuously in order to stay
beneficial.

I described a variety of specific approaches to knowledge management in
software development. The different contributions show that every knowledge
management approach can be divided into four basic categories (Meehan and
Richardson, 2002):

• Create. How is the knowledge recorded (e.g. through post-mortems)?

• Store. How and where are the gained insights saved?

• Share. How and when should these experience bases be consulted?

22

Chapter 2. Related Research

• Leverage. How should employees access the included information?

These categories are grouped into two phases. First, the knowledge recording
phase with the first two categories (create and store), which focuses on building
up a knowledge base. Second, the knowledge adaption phase with the latter two
categories (share and leverage), which makes use of the knowledge base in order
to improve practice. In the part of this chapter that deals with the knowledge
recording (section 2.3.1), post-mortems are explained and the use of an experi-
ence base, with a focus on the experience factory. The knowledge adaption part
(section 2.3.2) then describes different learning approaches, which are closely
related to the research field of software process improvement. Additionally,
with knowledge networks an alternate approach of knowledge management was
presented, which almost entirely skips the knowledge recording.

Further, the research shows that the employees of the company play an
important role within knowledge management. Their requests should not be
ignored, as it is on them to share what they know. Additionally, the company
has a major interest in creating a knowledge management approach that ful-
fils the standards and strategies. The knowledge management approach can
only be successful, when a suitable balance regarding the people and the com-
pany perspective can be maintained. The company’s culture and the knowledge
management method have to fit:

“When you need to transfer knowledge, the method must al-
ways suit the culture.” (Davenport and Prusak, 1998, p. 93)

The related research shows that knowledge management in software develop-
ment is a complex task, which combines a variety of different aspects regarding
the treatment of knowledge. The presented findings and considerations should
influence the design of any knowledge management approach. It is important
for the implementation of any knowledge management approach to not only
provide appropriate IT support, but also to define fitting processes.

23

Knowledge Management in Software Development

24

Chapter 3. Theory

Chapter 3
Theory

The aim of this chapter is to provide the relevant reference theory for my studies
in the field of knowledge management in software development. I begin with
the definitions of the terms knowledge and knowledge management as well as
how I apply them in this thesis (section 3.1). Then, I describe the selected
core theories regarding different knowledge management strategies (section 3.2)
and IT support in knowledge management (section 3.3). With these I build
theoretical foundation of my research.

3.1 Definition of Terms

In the previous chapter, I describe different approaches to knowledge manage-
ment in the related research. This section defines my understanding of the terms
knowledge and knowledge management.

3.1.1 Knowledge

The debates on what it is, that we call knowledge, lead back to the ancient
Greece (Platon, 1986). An entire philosophical discipline was formed, called
epistemology. It is concerned with three questions regarding knowledge: What
is it? How is it acquired? And how do we know what we know?

Philosophers all around the globe dedicated their lives to find answers to
these questions, to which a precise answer will probably never be found. How-
ever, most of them can possibly agree on a rough statement like this: “Knowl-

25

Knowledge Management in Software Development

edge arises in experience. It emerges from reflection. It develops through infer-
ence.” (Audi, 2010)

But more than a clear definition of the term knowledge itself, I strive for
an understanding of how to utilize it. In my field of interest this leads to what
is often referred to as the pyramid of knowledge (Davenport and Prusak, 1998;
Rowley, 2007). It does not provide a definition, instead, it is a delimitation of
the terms data, information and knowledge, with one building on top of the
other (figure 6).

Figure 6: Pyramid of Knowledge, based on (Rowley, 2007).

Pyramid of Knowledge

The general understandings of data, information and knowledge are widely
agreed upon, but the detailed definitions vary. Zins (2007) for example doc-
umented 130 definitions of these terms, where the differences mostly root in the
perspective and target of the research.

The following represents my understandings, based on the literature. I gen-
erally agree with Ackoff (1989) and Davenport and Prusak (1998).

Data is raw. It represents symbols that exist, without further significance,
and in any form, usable or not. Data is also the product of observation (Ackoff,
1989). Note that data has no meaning, not even to itself, it is pure. Data
also denotes objective and discrete facts or statements about events, without
relation to anything else (Bellinger et al., 1997; Davenport and Prusak, 1998).

In IT data can, for example, take the form of a field in a spread sheet.
Further, it is a material characteristic that data is comparable.

Information is data with a meaning (Ackoff, 1989). This meaning is given
through a relational connection and can be useful, but that is not a necessity.
The difference between data and information is not structural, but functional.
Information as a message, which a sender provides to inform a receiver (Dav-
enport and Prusak, 1998, p. 3). The purpose of the message is to impact the
receiver’s insight or outlook through data.

In IT information is realized through relational databases, for example. Here
the relations between single fields of data provide the meaning.

26

Chapter 3. Theory

Knowledge is processed information (Davenport and Prusak, 1998). The
acquisition of knowledge is generally called learning (Ackoff, 1989). It is always a
personal insight that cannot be separated from the individual. It is further based
on accessing and interpreting information. However, this is a very simplified
view and focuses on the role of this concept in the pyramid of knowledge. Not
a definition, but a characterization, which I can agree with, is this:

Knowledge is a fluid mix of framed experience, values, con-
textual information and expert insight that provides a frame-
work for evaluating and incorporating new experience and
information. It originates and is applied in the mind of
knowers. In organisations, it often becomes embedded not
only in documents or repositories but also in organisational
routines, process, practices, and norms. (Davenport and
Prusak, 1998, p. 5)

I explain knowledge management in more detail in the next section (3.1.2);
however, the pyramid of knowledge makes it obvious that the conversion between
the different levels plays a role there. Knowledge is always subjective and cannot
be shared or transferred directly.

Above (see section 2.1.1), I describe the knowledge creation according to
Nonaka (1994), which involves different states of knowledge. An individual has
to externalize the gained knowledge. This can then be accessed by another indi-
vidual or group in order to create their own knowledge through internalization
(e.g., learning, practicing, organizing or judging). The externalization means to
express what one knows and the internalization is to make sense or to learn from
what others expressed. These knowledge creating activities contain the conver-
sion between knowledge and information and vice versa. So, what Nonaka calls
externalized knowledge is according to the definition above information. Need-
less to state that knowledge cannot be transferred to a computer-based system
either. Explicit, formalized and codified knowledge always becomes information
(Grundstein, 2009).

The conversion from data to information or the other way around is mainly
a matter of providing a meaning or detaching it. The meaning is commonly
achieved through context, purpose or relevance of the data (Davenport and
Prusak, 1998, p. 4). Continuing the picture of a message, it is always the
receiver that judges the value of it. Only the receiver can decide whether the
message truly informs or contains just a meaningless set of data.

Sharing knowledge of one individual with another contains always the con-
version from knowledge to information or data (depending on the medium) and
vice versa. One person has to express their knowledge in order for another one
to create knowledge from that. While this process is discussed above (section
2.3.1), it is important to understand the transition between the layers in the
pyramid of knowledge. This is the prerequisite for sharing what one knows.

Perspective of Knowledge

In section 2.2 I explain the perspectives of knowledge (see table 1 on page 12),
by Alavi and Leidner (2001). These perspectives describe the view of knowledge
and the implications to the knowledge management approach and a knowledge
management system. In the literature many contributions do not state clearly

27

Knowledge Management in Software Development

what perspective of knowledge they apply. I chose to put a focus on Access to
Information: “organizational Knowledge must be organized to facilitate access
to and retrieval of content.” (Alavi and Leidner, 2001, p. 110)

This perspective implies that knowledge cannot be accessed directly. As I de-
scribe in the definition of knowledge above, knowledge is always residing within
individuals. Externalizing knowledge equals a transformation of knowledge to
information. Therefore the perspective is not concerned with knowledge itself,
but with the conditions of accessing information. I understand accessing infor-
mation as a way to communicate directly, but also as a way to make documents
available.

This choice is reflected in my reseach throughout this thesis. This includes
the ideas that knowledge management helps providing access to information
(details in section 3.2) and a knowledge management system as the leading tool
to actually access information (details in section 3.1.3).

I want to have a look at some other perspectives that were implied earlier:

State of Mind. This perspective represents the state of mind that we call
knowing or understanding. It reflects my definition of knowledge.

Process. This perspective focuses on adopting expertise. It is an isolated view
on what I labeled the applying knowledge phase in the related research
(see section 2.3.2). An example is SPI, where knowledge is utilized in a
the process to improve (McFeeley, 1996).

Object. This perspective understands knowledge as a thing to be exchanged
and used. Large parts of what I labeled the recording knowledge phase in
the related research (see section 2.3.1) have this view. An example is the
experience factory by Basili (1989), where knowledge is stored and can be
found in specific knowledge bases.

One could argue that these three perspectives are inherited in the “Access to
Information” perspective. It can be understood as an extension to the “Object”
perspective, emphasizing “the accessibility of the knowledge objects” (Alavi and
Leidner, 2001, p. 110). Also, processes play an important role in all organiza-
tional communication, just as the “Process” perspective suggests. And finally,
the “State of Mind” is covered, due to the necessity to convert knowledge to
information and vice versa. I understand the “Access to Information” perspec-
tive not as a blend of perspectives, but as the organization of knowledge “to
facilitate access to and retrieval of content” (Alavi and Leidner, 2001, p. 110).

However, I recognize the adjacencies of the different perspectives. Although
my studies focus on the “Access to Information”, I want to explore the differ-
ences and their utilization in a larger knowledge management approach.

3.1.2 Knowledge Management

The main goal of knowledge management is to obtain a competitive advantage
and increase the internal performance (von Krogh, 1998). Knowledge manage-
ment attempts to enable the employees sharing what they know, in order to
benefit from other people’s expertise and improve quality of work results. Dif-
ferent possibilities of knowledge management are presented above (see section

28

Chapter 3. Theory

2.3), where I explain a variety of knowledge management approaches that fol-
low different strategies. I show that they all have in common to implement
four different activities (section 2.5): creating, storing, sharing and leveraging
knowledge (Meehan and Richardson, 2002).

Unlike many other resources in a company, knowledge actually cannot be
managed. However, knowledge managers can influence the knowledge creation
processes positively and thus enable sharing (von Krogh, 1998). Knowledge is
always subjective and individual, as I state above, and people cannot be forced
to share what they know. Knowledge sharing fully depends on the individuals
and is always voluntary. However, a knowledge management approach makes
an effort to enable sharing.

There are three different aspects to knowledge management: Organizational,
technological and individual (Rus and Lindvall, 2002). The organizational
aspect of knowledge management provides a culture that encourages sharing
among employees or defines processes that sustain it (von Krogh, 1998). The
technological aspect describes IT solutions that assist and support people shar-
ing what they know (Davenport, 1998, p. 18). The individual aspect focuses
on the people, that need a certain freedom for effective knowledge sharing (von
Krogh, 1998). But these three different aspect must not be seen isolated from
each other. Based on the related literature we can see that knowledge man-
agement has to address all three aspects, in order to be successful (see section
2.4).

In the literature the two terms knowledge management and knowledge shar-
ing are often used interchangeable. Compared to the four knowledge manage-
ment activities creating, storing, sharing and leveraging (Meehan and Richard-
son, 2002), sharing is just one part of the whole. Yet, many sources do not
distinguish between sharing and managing knowledge. Others use the terms
knowledge sharing, knowledge exchange and knowledge transfer synonymously.
Some even emphasize this and call knowledge transfer a key activity in knowl-
edge management (Sveiby, 1997). It appears that the choice of terms and their
usage varies from researcher to researcher, which again is disparaged by other
ones (Walsham, 2005).

This confusion is based on our language (in this case: English), which treats
knowledge as something one can have, i.e., own (Davenport, 1998). No matter
whether I share, exchange or transfer my knowledge, all of these terms imply
that something is being taken away from me. But that is not the case, as I
explain above (section 3.1.1). When we are being literal, all of these terms are
confusing. A solution could be to abandon them, but better ones are hard to
find and it would still confuse many readers as the term knowledge is part of
our common language in everyday usage.

I acknowledge the diversity. Throughout this thesis I use the terms knowl-
edge management, knowledge sharing and knowledge transfer as they are estab-
lished in current usage:

Knowledge management enables the knowledge sharing be-
tween people, where one person transfers their knowledge to
another one.

This statement reflects the common understanding of the terms. Common
expressions like “employees share their knowledge” cover the full process,which

29

Knowledge Management in Software Development

ends with one person learning something. However, when I describe details re-
garding the knowledge management system, I utilize the pyramid of knowledge.

The related research (chapter 2) shows that knowledge management is a
complex task with a variety of possibilities. Research shows that knowledge
management activities often represent the communication between two parties
that create a shared understanding among each other and thus create knowl-
edge (Kautz and Kjærgaard, 2008; Kjærgaard et al., 2010). It is an important
condition that people have access to the provided knowledge, be it externalized
or in form of direct contact to individuals. This matches the perspective of
knowledge that I chose to apply above, the “Access of Information”.

3.1.3 Knowledge Management System

This section briefly defines the term knowledge management system. A distinc-
tion and description of different types can be found in section 3.3 below.

In this thesis, I call an IT solution that supports the knowledge management
a knowledge management system. However, the term knowledge management
system does not include the processes of how to use this system. It represents
exclusively software.

In combination with the definition of the term knowledge management it is
important to clarify, that a knowledge management system is only a tool with
the aim to support the knowledge management, and not its focus. Davenport
and Prusak (1998, p. 4) describe this with an analogy: The medium itself is
never the message; the medium can influence the message, but the delivery is
always more important than the vehicle.

The ability of a system to support knowledge management is limited (Rus
and Lindvall, 2002). Any knowledge management system is able to store in-
formation only (Grundstein, 2009), as knowledge cannot be separated from the
individual. The support in knowledge management is therefore restricted to the
storing and retrieving of information. Additionally, a knowledge management
system can aid the communication between peers, which in a broader sense,
and in combination to the retrieval abilities, can be argued as supporting the
activity of knowledge sharing.

I acknowledge that the term “knowledge management system” itself is in
principle very misleading. According to my definitions above, a system can
only deal with explicated knowledge and thus information. Correctly, it should
therefore be called an “information management system”. However, in the
literature the term “knowledge management system” is widely accepted, using
a different one would only result in general confusion.

3.2 Knowledge Management Strategies

The variety of approaches to knowledge management in companies is big. In the
previous chapter (section 2.3) I introduce some of these and show the differences.
A main characteristic of knowledge management is the focus. Some approaches
focus on collecting, in the sense of post mortems or the experience factory, and
others have a stronger focus on learning, like the creation of networks or the
branch of software process improvement. This variety of approaches illustrates
that the ultimate knowledge management strategy does not exist. Instead, a

30

Chapter 3. Theory

company has to tailor a strategy that fits, depending on its own needs and
conditions.

Hansen, Nohria, and Tierney (1999) analysed different consulting compa-
nies according to their knowledge management strategy and state that it should
reflect the company’s competitive strategy in order to be successful. Two fun-
damentally different strategies are defined: Codification and personalization.

My research goals involve the creation of a knowledge management system
and at the same time the literature study shows that it is important to focus
on people. The theory of knowledge management strategies by Hansen et al.
(1999) is relevant, because it explains strategies with a focus on people (person-
alization) and on systems (codification). Hence, I select this theory as part of
my theoretical foundation.

I explain both knowledge management strategies below, based on (Hansen
et al., 1999).

3.2.1 Codification
The goal of codification is the re-use of knowledge (Hansen et al., 1999, p. 110).
The underlying idea is to extract the knowledge from people and store it some-
how. This approach is especially used by process-driven companies, which focus
on documentation. Here, employees are supposed to fill out forms and create
reports about on-going work or intermediate results. The company’s processes
intend to codify the gained knowledge, to constantly build up a knowledge base
with formalized content about specific tasks or problems. This knowledge base
should then be accessed, when similar problems occur in future projects. The
target is to learn from the past and approach current problems in similar ways
as in the past (similarity-based). Hansen et al. (1999) call this approach the
codified knowledge management strategy or codification.

To utilize codified knowledge two aspects are of high importance. First, it
requires a precisely described problem domain. Without that, finding a fitting
report according to the current needs can get more complicated. Second, pursu-
ing the strict formalisms is a vital task. The reported results can be difficult to
find, if they do not follow the intended structure sufficiently. This is supported
by fine-grained and highly specific input fields. Employees have to understand
where they can find the desired information or enter their experiences (people-
to-documents).

The codification strategy’s goal is to provide scaffolds that lead to stan-
dardized reports (Hansen et al., 1999, p. 108). These then are collected in a
knowledge base. This standardization makes it easy to search for the docu-
mentation of previous results, which, if similar enough, can help in the current
situation.

Hansen et al. (1999) explain that a competitive strategy, which would apply
the codified knowledge management strategy, typically aims to provide high
quality solutions that are reliable and specialized in a certain field (Hansen
et al., 1999, p. 110). A company that produces high-end solutions to a specific
problem for different customers is an example for that.

The codification process is often executed by higher organizational hierar-
chies. Creating reports is in many cases related to responsibilities and act like
a communication channel between the different hierarchy levels. These reports
are commonly used as a controlling tool in crucial and complicated tasks such

31

Knowledge Management in Software Development

as project management, where previous reports act as guidance. So the reports
follow two targets at the same time, to communicate between organizational
hierarchies and to build up a knowledge base.

Supporting Knowledge Management System

A knowledge management system in the codified knowledge management strat-
egy has to take care of managing this form of documentation and providing help
for its users to find the desired information. Hansen et al. (1999, p. 109) specif-
ically state that heavy investment in IT is essential as “the goal is to connect
people with reusable codified knowledge”.

Codified knowledge, e.g., stored in form of reports, has to be comparable
and computable to fulfil its purpose. This is achieved by following a consistent
structure, which makes spread sheet or database applications typical imple-
mentations. So called enterprise systems are applications that also fit into this
category, they commonly handle data in forms and support a company-wide
analysis; typical for codification (Davenport, 1998). Today, most companies
have an enterprise system applied for operational support. Employees are able
to insert and access information in a formalized way. Additionally, many enter-
prise systems have features that verify the data inputs or automatically create
an analysis based on previously entered data.

The experience factory by Basili (1989) is a good example for a knowl-
edge management system supporting codification (see page 14). Separated from
the actual problem solving, the gained experiences are packaged by employees.
These experience packages are then stored in a form of repository. To make
the experience re-usable, the packaging has to fulfil certain standards. It has to
be assured that each package contains all necessary input, in order to provide
assistance for the experience’s consumers. This completeness contains aspects
like a problem definition, a generalization, an analysis and the description of
the execution. Potentially helpful experience packages can then be located by
filtering the available ones for the needed input. The strict formalization here
supports the finding, as every user of such a knowledge management system
has an awareness of where to expect what kind of information. Searching is
further simplified through the uniform coding of the packages and its contained
information.

A knowledge management system that supports codification has to follow
strict patterns, in both the way it is used and the way it takes care of the involved
knowledge. All employees are active users and access the system when the
company’s processes expect them to. Guidelines define how to codify knowledge
in order to simplify the access.

3.2.2 Personalization

The focus of personalization is on people and their direct communication among
each other (Hansen et al., 1999, p. 108). Especially in companies, that follow flat
organizational structures, the internal communication is important. Encourag-
ing the employees to exchange ideas and experiences is the main principle here.
Thus, the employees continuously build up and improve their social network
within the company, which they utilize to localize desired knowledge or experts

32

Chapter 3. Theory

in the case of need (goal-oriented). Hansen et al. (1999) call this approach the
personalized knowledge management strategy or personalization.

A company, which is following a personalization strategy, typically tries to
support creative and individual approaches to unique tasks (Hansen et al., 1999,
p. 110). It faces only very special problems, embracing the difference of each
project and customer in order to provide a specialized solution, where different
levels and areas of expertise are important. Therefore, the knowledge manage-
ment is more focussed on connecting the employees (person to person). This is
often supported by an open company culture that aids personal communication
and provides circumstances to share knowledge (e.g., in form of meetings).

A competitive strategy that applies the personalized knowledge management
strategy typically concentrates on customized solutions of high complexity and
quality (Hansen et al., 1999, p. 111). It is very common for this kind of compa-
nies to have different customers in different domains. Hansen et al. (1999) point
out that the corporate network is then used to find people with expertise (e.g.,
knowledge, experience, interest, etc.), who then share their knowledge. The
result is that specialists work on solutions and share their knowledge, which
increases the company-wide expertise.

Supporting Knowledge Management System

A knowledge management system in personalization has the purpose to orga-
nize direct communication. Hansen et al. (1999, p. 109) state that moderate
investment into IT is sufficient, as “the goal is to facilitate conversations and
the exchange of tacit knowledge”. The authors explain further that “Knowledge
is shared not only face-to-face but also over the telephone, by e-mail, and via
video-conferences” (Hansen et al., 1999, p. 108). It becomes clear that the focus
is on direct communication between two parties, the knowledge-owner and the
knowledge-seeker.

The major task in this strategy is the establishment of networks that help
spotting a knowing person, who could help solving a problem. The communi-
cation itself is considered a minor aspect, technologically. This could be solved
by simple e-mail, instant messaging or other peer-to-peer solutions (McKeen
and Smith, 2007). But IT can support the networking as well. The internet is
heavily used to connect to people and establish and deepen the contacts nowa-
days. Good examples for that are LinkedIn4 or Facebook5. Both connect people
and provide different features to communicate, however, Facebook focuses on
personal life and LinkedIn focuses on business contacts. Either system allows
you to insert personal information, like in a curriculum vitae, after registra-
tion. Then you can connect to other people, see their information and contact
them directly. These systems are thus implementations of the personalization
strategy, as people build networks and can contact the person of interest.

Systems like these are called social web or web 2.0 and rose in the first decade
of the 21st century. Before that, Hansen et al. (1999) published their article
in 1999, they could therefore not foresee the impact on enterprises and their
knowledge management approaches. Different forms of social web applications
provide different possibilities (Dolog et al., 2009d). Not all of them have a focus

4http://www.linkedin.com/
5http://www.facebook.com/

33

Knowledge Management in Software Development

on the networking aspect, like LinkedIn or Facebook. Others emphasize the
communication, like wikis.

Contrary to the statements by Hansen et al. (1999), a higher investment in
knowledge management systems can improve the communication between em-
ployees. Social software was not considered in their article. Its influence on
communication increased in the recent decade and the use of tools in commu-
nication changed a great deal through systems of the social web (Dolog et al.,
2009d).

3.2.3 Combination of Strategies

Researchers show in different examples and case studies, that the coexistence
of both strategies in an equal share is counterproductive and would do harm.
A company should find the one that suits its needs best. Hansen et al. (1999,
p. 112) argue though, that choosing a primary strategy, supported by the other
one can be a successful blend. They suggest realizing that in an 80-20 split: 80%
of one, the main knowledge management strategy, and 20% of the other, the
supporting knowledge management strategy. A 50-50 share is counterproductive
as none of the characteristics of a company is suitably supported or emphasized.

While Hansen et al. (1999, p. 114) suggest one corporate strategy to be fol-
lowed throughout the whole company, a study by Mathiassen and Pourkomeylian
(2003, p. 72) took a different route. They dealt with a unit in a company, which
provides seven different services. The authors assigned four of these services
to follow a codification strategy and the other three of them to follow a per-
sonalization strategy. They successfully showed that differentiation in different
areas within the same company is feasible and makes sense, because the differ-
ent services followed different aims and an overall strategy for all of them would
diminish some of the services.

Finally, it has to be mentioned, that there is not one strategy generally
better than the other. One might fit the company better than the other or the
employees of a specific company might relate better to one than the other. A
general statement however cannot be made, it differs from case to case (Hansen
et al., 1999, p. 115). Researchers particularly state that formalized knowledge is
equally relevant as other types of knowledge (Mathiassen and Pedersen, 2005).
Choosing one over the other is an important choice and has to be made wisely as
a wrong decision can confuse employees or lower the quality of results (Hansen
et al., 1999, p. 113).

3.3 Knowledge Management Systems

Hansen et al. (1999) write about general and operational strategies for knowl-
edge management in a company. These strategies aim at the communication
between employees, the knowledge management system support is not a focus of
their article. However, this support is explicitly stated in my research question
(see section 1.3). Therefore, knowledge management systems are an important
part of my studies and a theoretical foundation is necessary. This section deals
with different approaches for knowledge management systems and what I chose
to base this thesis on.

34

Chapter 3. Theory

Note that there is not necessarily a direct relation between strategies and
systems. In fact, it is possible to use the same tool for different strategies; the
same knowledge management system could be used in either strategy. Choos-
ing a system depends on the knowledge management approach. The variety of
knowledge management systems is huge, and the approaches follow wide varia-
tions (Andrade et al., 2003). Rus and Lindvall (2002) provide an overview by
presenting different tools and their use in software development. Frameworks
help finding a system that fits to the knowledge management approach (Hahn
and Subramani, 2000).

3.3.1 Knowledge Bases

The concept of a stock for codified knowledge is called a knowledge base or
knowledge repository (Davenport and Prusak, 1998, p. 146). I show examples
for that in the literature study, like the experience base (see page 14), which
can be consulted by employees to learn from other people’s codified knowledge.
Storing the codified knowledge is a key element of any knowledge management
system (figure 7). The system itself however is more than just a storage manager.
It assists users externalizing their knowledge and provides the functionalities
to access codified knowledge (Davenport and Prusak, 1998; Davenport, 1998;
Davenport et al., 1998).

Figure 7: Knowledge Management System has a Knowledge Base

Different types of knowledge bases exist. As I show below, Davenport and
Prusak (1998) distinguish between structured and informal knowledge bases.
This distinction is particularly valuable in the context of different knowledge
management strategies. I therefore chose this as part of the theoretical founda-
tion of my research.

Knowledge management systems can basically vary in two ways: In features
provided by the knowledge management system and in the handling of knowl-
edge in the knowledge base. Both influence the knowledge management system
significantly.

The features of a knowledge management system are mostly of importance
regarding the comforting level, including usability aspects, and the range of func-
tions. For example, the different providers of wikis as knowledge management
systems result in huge differences of features (Wagner, 2004). All wikis share a
general feature set, but the implementation of some functionalities varies from
one to the other. The same counts for basically every classification of systems,
e.g. the different groupware applications (Rus and Lindvall, 2002; Andrade
et al., 2003).

35

Knowledge Management in Software Development

A much stronger impact on the utilization of a knowledge management sys-
tem has the underlying knowledge base, as it defines both the type of information
to be included and how it is stored. Despite the name, a knowledge base can
only store externalized knowledge and thus information, as shown above (see
section 3.1.1), however, this can be achieved in many different ways.

Davenport and Prusak (1998, p. 146) define three different knowledge bases:
external, structured internal and informal internal. These are distinguished
according to the formalization of the included information, which relates to
the purpose (table 2). The formalization is classified as either structured or
informal. With this classification the authors want to illustrate the differences of
information representation. Structured information is for example represented
by tables or forms, whereas informal information is a simple text, like an article
or letter.

Knowledge Base Information Content

External Any Reports, articles, analysis and background
input about the market, competitors and
partners.

Structured Internal Structured Different kinds of materials for documenta-
tion and marketing, both research and prod-
uct oriented.

Informal Internal Informal Documentation of discussions and commu-
nication filled with experiences and know-
how.

Table 2: Knowledge Bases, based on (Davenport and Prusak, 1998)

The external knowledge base contains what people know or knew about the
competitive environment. Information regarding the market and competitors
can be found here, as well as related research or other third party input. The
wide range of information is reflected in different types of information to deal
with. It includes reports and other forms of codified knowledge, but not ex-
clusively. Moreover, the variance in source and relevance is an indicator that a
consistent structure is difficult to maintain.

However, as my studies focus on the management of the company’s internal
knowledge, the external knowledge base is out of scope.

Davenport and Prusak (1998) distinguish the internal knowledge base fur-
ther between structured and informal. The structured internal knowledge base
contains the company’s formal information, where the contents are document-
based and mostly related to products or methods of the company. Everything
included is considered as codified knowledge. The structure makes it easy to
find, compare and apply the information. Examples for inserted information are
presentations or reports, as well as any kind of background information regard-
ing a product, tactics or users. All these are created to be re-used by colleagues
in similar situations and reduce the consumption of resources by avoiding to do
the same work again.

The informal internal knowledge base on the other hand covers that part
of the knowledge, which is not formalized, i.e., plain text. This loose com-
munication is the best medium to distribute tacit knowledge. Polanyi (1966)

36

Chapter 3. Theory

defined tacit knowledge as the knowledge that is not easy to express (see also
section 2.1.1). A lack of formalization addresses the possibility to externalize
tacit knowledge more easily and to store it in this knowledge base.

Approaches to share the knowledge of the people led to the implementation
of community based electronic forms of discussions. Over the time these systems
pile up a history of discussions and textual communications, which can be used
like an archive. The topics here are of various kinds, including insights from
project experiences. The aim is to accelerate and simplify the work for colleagues
by providing expertise in text form. Hence, internal informal knowledge bases
are actually communication tools, because they:

• provide support during cooperation

• help finding people with expertise

• make asynchronous communication possible

Both internal knowledge bases are worth considering for knowledge manage-
ment of any company. The advantages or disadvantages depend on the context
of their utilization.

3.3.2 Wikis as Knowledge Management Systems
Walsham (2005) advocates that knowledge cannot be transferred, but merely
communicated within a context, much research explains that the social nature
of knowledge is lost through the processing of information (Pentland, 1995).
The social web (also known as Web2.0) acknowledges this flaw and supports
the communication between people, while providing the context (Dolog et al.,
2009d). This kind of applications promotes collective intelligence, by enabling
and supporting the collective work of communities (Jimenez and Barradas, 2010;
Wheeler et al., 2008). Hence, the social web reflects the natural knowledge
management in software, which is mostly lightweight, encouraging and non-
restricting.

An example for a social web application that are candidates for knowledge
management systems is the wiki (Gonzalez-Reinhart, 2005).

Since Ward Cunningham developed the WikiWikiWeb (“wiki wiki” is Hawai-
ian for “very quick”) in the mid-1990s (Leuf and Cunningham, 2001), wiki sys-
tems (short: Wikis) have been increasingly used as communication platforms
for collaborative work, particularly in software development (Wagner, 2004). A
wiki is a web application, where users can create, read and edit content in a
simplistic manner (Leuf and Cunningham, 2001; Wagner, 2004). The content is
stored in form of pages, which then can be interlinked, like in hypertext. While
users have the power to create and change the content, the system keeps track
of edits. Therefore, users have not to worry that old content might get lost, in
contrary, it encourages them to simply update pages. Everybody can see the
history of pages at every time and jump back to older versions (illustrated in
figure 8). Another key functionality in wikis is the search functionality, which
helps finding content of interest (Leuf and Cunningham, 2001; Wagner, 2004).

As wikis are not limited regarding domain or context, they are very flexible.
In addition, it is the core principle, that wikis are very easy to use and support
simple collaboration on text. This flexibility and simplicity is part of the in-
volved philosophy to use these systems: The Wiki Way (Leuf and Cunningham,

37

Knowledge Management in Software Development

Figure 8: Workflow in a Wiki

2001). It relates to a culture of no worries regarding editing or creating content
and supports collaboration. The popularity of the wiki way made scholars and
practitioners consider wikis as knowledge management systems, especially in
software development (Louridas, 2006).

The strong focus on collective work makes wikis a reasonable choice for
knowledge management systems (Gonzalez-Reinhart, 2005) and many compa-
nies utilize wikis in their intranet. However, the wiki way is a significantly differ-
ent approach to knowledge management compared to traditional approaches or
systems (Hasan and Pfaff, 2007). Utilizing a wiki requires a unique approach to
knowledge management, with a variety of practices (Kussmaul and Jack, 2009)
and patterns (Mader, 2007), which are important to consider in order to be
valuable (Raman, 2006).

To argue that a wiki is a knowledge management system, I want to briefly
discuss its impact on the three aspects of knowledge management, stated by Rus
and Lindvall (2002), which I describe above (see section 2.2). Wikis support
the core software engineering activities by assisting not only in direct group
communication, but the collaboration actually results in widely available doc-
umentation. This substitutes single documents on file servers, but the authors
also display their competence to readers. Another consequence of the collab-
oration is the product and project memory. The evolving contents document
the projects progress and experiences made through its realization. Learning
and improvement is covered as every employee is able to check for previous
achievements and build up on that.

Recently, wikis as knowledge management systems in organizations were
addressed by research to show the benefits. This includes different case stud-
ies (Chau and Maurer, 2005; Raman, 2006) and a survey among corporate wiki
users, which confirmed the sustainability of wikis (Majchrzak et al., 2006). Stud-
ies show that wikis help to easily exchange ideas and to support the communi-
cation process in companies (Raman, 2006; Sousa et al., 2010).

Sousa et al. (2010) analysed the contribution of wikis to the knowledge cre-
ation in a company, based on the SECI model (see section 2.1.1). They state

38

Chapter 3. Theory

that the emphasis of the applied processes is on internalization, because wikis
are mostly accessed by users that seek for information.

Hasan and Pfaff (2006, 2007) point out that corporate wikis have the poten-
tial to accumulate the collective experience of a company to a shared knowledge
repository, but at the same time abandon knowledge authority. They show that
wikis are only successful as knowledge management systems, if they are utilized
democratically and not under the monopolistic control of a few.

The simplicity and flexibility of wikis provide many possibilities as a knowl-
edge management system, which is highly appreciated by software engineers
(Kim and Yan, 2010). Additionally, it allows technological enhancements to
wikis, to improve the usefulness for specific tasks (de Almeida Ferreira and
da Silva, 2009; Uenalan et al., 2008; Schaffert, 2006).

39

Knowledge Management in Software Development

40

Chapter 4. KiWi Project

Chapter 4
KiWi Project

In this chapter I explain the environment in which my studies were conducted.
I begin with a description the project’s general organization (section 4.1). My
studies deal with one case, which focussed on the creation of a prototype (sec-
tion 4.2). This mainly consists of the cooperation of two participating parties:
Logica, the case company, and Aalborg University. The whole project is rather
large and complex, with a strong focus on technology. That and the vision of
the prototype conclude this chapter (section 4.3).

4.1 Project Organization

The project KiWi – Knowledge in a Wiki6 was funded by the European Com-
mission as part of the FP7 framework. Its defined objective was to study the
possibilities of a semantic wiki in knowledge management (Schaffert et al., 2009).
The aim was to design, implement and evaluate a prototype that addresses this
objective. To successfully do that, two distinct cases were utilized. These repre-
sent business cases in collaboration with industrial partners. One of them was
realized with Sun Microsystems (Prague, Czech Republic) and the Semantic
Web Company (Vienna, Austria). The other one, which is the one my studies
took place in, involved Logica (Aalborg, Denmark). These business cases were
labelled as use cases in the original planning, even though the term use case has
a different meaning in the literature (Mathiassen et al., 2000). To avoid confu-

6http://www.kiwi-project.eu/

41

Knowledge Management in Software Development

sion here, I will use the term business case or simply case for the organization
of the KiWi project.

The scholars of the project came from three universities: Aalborg University
(AaU; Aalborg, Denmark), Brno University of Technology (BUT; Brno, Czech
Republic) and Ludwig-Maximilians-Universität München (LMU; Munich, Ger-
many). Their tasks included specific research and development tasks, according
to their field of interest. The development of specialized solutions was called
enabling technologies within the project.

Figure 9: The KiWi Project’s Participants

The remaining member of the seven party consortium of the KiWi project
(figure 9) was Salzburg Research (Salzburg, Austria). People from there were
responsible for the project organization and management as well as the devel-
opment of the core functionality.

4.1.1 Work Packages & Deliverables
The whole project was divided into several work packages, with different re-
sponsibilities for the participants. Each work package contained a list of tasks
or deliverables. The work packages were structured into the following classifi-
cations:

1. Management and Assessment

2. Enabling Technologies

3. Core System

4. Component Implementation & Integration

5. Requirements (Business Cases)

6. Application Building (Business Cases)

7. Evaluation and Testing (Business Cases)

42

Chapter 4. KiWi Project

8. Dissemination & Exploitation

9. Demonstration

Not every project member was involved into each work package. Also, the
work packages were not necessarily sequential, some were organized in parallel.
Some other work packages were barely related at all. Only the work packages 5
to 7 were really building up on each other, as they concerned the tasks for the
cases (details in section 4.2 below).

To finalize a task within a work package, a concluding delivery had to be
made. This delivery had to be sent to the coordinating partner (Salzburg Re-
search), who handed it over to the European Commission. The type of a deliv-
erable depended on the task. Some were reports, others the actual software or
the work results in different forms.

For the creation of the reports an internal review process was applied. Every
document was reviewed by one to three project members that were not directly
involved in the work package’s tasks. After the internal approvement then, it
was sent to the European Commission. Table 3 lists the created deliverables
that were reports, all of them are publicly available7. The little star (☀) next
to the title marks documents which were related to my studies and where I was
a contributing author.

4.1.2 Scheduling

The project was running from March 2008 to February 2011. In this time
range the different tasks from all work packages were scheduled. However, the
organization of work within the different work packages was left open for the
participants. Cooperating partners could thus organize themselves, within the
boundaries of the project plan.

For a good communication among the team members regular meetings were
arranged. The entire consortium met three times a year to present and discuss
results. These meetings were also used to settle agreements and plan further
steps.

Asides from these regular meetings that involved representatives from every
participant, several meetings were arranged in smaller circles. They had the
focus on specific work packages and only included the people that were directly
affected. Additional meetings, which depended on work packages, were orga-
nized by the involved people. All kinds of meetings were scheduled among the
participants.

4.2 The Logica Case
The whole project contained two business cases, which were identified through
case companies. These case companies were project partners, cooperating in the
development of a prototype. They were also the target environment to apply
the prototype and evaluate it.

I was part of the case that involved Logica as a case company. Internally
it was therefore labelled Logica Case, even though the name according to the

7http://kiwi-project.eu/index.php/publications/33-deliverables/

43

Knowledge Management in Software Development

No. Title Reference

D2.1 Reasoning & Querying – State of the Art (Bry et al., 2008)

D2.2 Reasoning & Querying – Concept and Model (Bry and Weiand, 2009)

D2.3 Reason Maintenance – State of the Art (Bry and Kotowski, 2008)

D2.4 Reason Maintenance – Concept and Model (Bry and Kotowski, 2009)

D2.5 Information Extraction – State of the Art (Knoth et al., 2008)

D2.6 Information Extraction – Concept and Model (Schmidt and Smrž, 2009)

D2.7 Personalisation – State of the Art (Durão et al., 2008)

D2.8 Personalisation – Concept and Model (Durão and Dolog, 2009b)

D3.1 Architecture Revision (Schaffert et al., 2008c)

D5.1 State of the Art Software Knowledge Man-
agement

(Samwald, 2008)

D5.2 Requirements Software Knowledge Manage-
ment

(Holy et al., 2008)

D5.3 State of the Art Project Knowledge Manage-
ment

(Nielsen and Dolog, 2008)

D5.4 Requirements Project Knowledge Manage-
ment ☀

(Nielsen et al., 2008)

D6.1 KIWI Knowledge Model for Sun CEQ Use
Case

(Dolog et al., 2009a)

D6.2 Application Building Report Sun Expert
Manager Use Case

(Holy et al., 2010)

D6.3 Knowledge Model: Project Knowledge Man-
agement ☀

(Dolog et al., 2009b)

D6.4 Implementation: Project Knowledge Man-
agement ☀

(Dolog et al., 2009c)

D7.2 Test Plan: Logica Use Case ☀ (Grolin et al., 2010a)

D7.4 Evaluation and Testing Project Knowledge
Management ☀

(Grolin et al., 2010b)

D8.5 KiWi Vision (Schaffert et al., 2008b)

Table 3: Deliverables of the KiWi Project

44

Chapter 4. KiWi Project

original planning was the Project Knowledge Management Use Case. It was
targeted on knowledge management as a project management activity.

The original planning followed a waterfall manner: Beginning with the col-
lection of the requirements, followed by the building of the application and
concluded with an evaluation (figure 10). Each period here stands for a work
product and ends with the delivery of a report summarizing the results. In-
termediate results were communicated in additional deliverables. The work
products and every deliverable were scheduled in a detailed work plan, which
was accessible for every project participant.

Figure 10: Time Schedule for the Project Knowledge Management Use Case

The project plan contained three work packages for the Logica case: Re-
quirements, development and evaluation. As explained above this organization
follows the waterfall paradigm, each work package builds on top of the preceding
one. But a closer look at the implementation period, which mainly covered the
application building work package, reveals that it actually contains two distinct
assignments: Creating a knowledge model (D6.3) and developing a prototype
(D6.4). Again the one builds on top of the other, the knowledge model is part
of the prototype. These two assignments are sequential with milestones and
fixed delivery dates (figure 10). Due to the fact that the KiWi platform is a
semantic wiki, a properly developed knowledge model is of high importance.
To emphasize its significance, this aspect of the development period became a
project phase on its own.

The Logica case was therefore internally understood as being divided into
four phases: The requirements specification, the creation of a knowledge model,
the development of a prototype and the evaluation of that prototype (figure
11). All four phases were realized mainly in close cooperation with the project
partners Logica and the Aalborg University. Below I describe the case company.

Note that one aspect of the Logica cases’ work was to utilize the core system
and the enabling technologies. This necessitates collaboration with the other
partners. They however were hardly involved in the conceptual work of the case
and therefore not further mentioned here.

4.2.1 Case Company: Logica

Logica Denmark8 is a company that provides IT and business solutions with
more than 40.000 employees worldwide. About 800 IT and software specialists
work in five different cities in Denmark. Software is developed in projects of dif-

8http://www.logica.dk/

45

Knowledge Management in Software Development

Figure 11: Project Phases for the Logica Case

ferent areas (e.g., banking, governmental agencies, and the educational sector).
Most of the development projects are realized in Java.

A project in Logica represents a work unit and is as such staffed with a set
of people. Many projects share the administrative matters and different parts
of the managing level, but the developers are usually involved into one project
at a time. Further, Logica does not have a universal IT infrastructure that is
binding for every project. The setup of each project can differ, as the highest
priority is solving a customer’s problem.

The driver for Logica’s participation in the KiWi project is the company’s or-
ganization in projects. It leaves high potential for improvement through knowl-
edge management, as the inter-project communication is difficult to maintain.

The knowledge management problem of Logica is being analysed and dis-
cussed below (chapter 6). Logica’s involvement focused on the role of a case
company: Helping to understand the problem, defining the requirements, dis-
cussing intermediate-results and evaluating prototypes.

4.3 KiWi: A Knowledge Management System

The KiWi project had a clear objective: The development of a knowledge man-
agement system: The KiWi Platform. It was therefore a project that focused on
technical aspects, which are very complex. But the KiWi platform also followed
a vision, which was the driving force in this project (Schaffert et al., 2008b).

This so-called KiWi vision describes that social software became an im-
portant aspect of communication among many people world-wide. People are
connected to networks and exchange ideas and thoughts about multiple different
things. The KiWi project’s approach to knowledge management makes use of
that.

One aim of the KiWi project is, according to the KiWi vision, that users
should be able to share their knowledge in a simpler way than most knowledge
management systems allow. To achieve that, the user has to be the central
element, from the beginning of the project. The system shall support the users

46

Chapter 4. KiWi Project

in finding what they need and help them in sharing what might be beneficial
for others. The user plays a crucial role in knowledge management generally, as
explained above (see section 2.4.1). If the users do not work with the system, the
whole approach is likely to fail. Therefore the knowledge management systems
have to represent additional value to the users. This could be achieved through
efficiency or advanced features. The KiWi project aims for both.

The KiWi vision explains that high efficiency is approached through simplic-
ity. Accordingly, a tool’s processes can increase the complexity of simple tasks.
The wiki way seems like a solution to that, with its simplicity and flexibility.
That is the reason for the KiWi project to build a platform on top of the wiki
technology. As explained above (see section 3.3.2), a wiki is a collaboration plat-
form that allows users to cooperate on text pages. The KiWi vision describes
that systems of this kind are popular because of their simplicity: Any user, who
wants to edit a page, can simply click a button. Desired content changes are
easily committed, but the system’s history allows users to roll-back the changes.
These simple steps also support the collaboration among colleagues, the wiki
way (Leuf and Cunningham, 2001).

The KiWi platform’s goal was to follow the wiki way. Users should have
to be able to collaboratively edit pages. This strong focus on the social web
and the wiki way as the underlying philosophy is the basic idea of the KiWi
project and as thus the one of the whole approach to knowledge management.
To realize a system that follows this philosophy, different technological aspects
were necessary.

4.3.1 The Semantic Web

The semantic web was defined as a basic technology in the project’s vision
(Schaffert et al., 2008b). Berners-Lee et al. (2001) outlined the semantic web
as a new form of the internet. They criticised that information on web pages
is only apprehensible by human beings. The result was an envisioned scenario,
where the data can be accessed and processed by computers directly (Berners-
Lee et al., 2001). Based on this vision, much research and development has
been done (Shadbolt et al., 2006; Feigenbaum et al., 2007). A strong focus is
the development of technologies to store the data on the web.

The underlying concept is radically different from traditional approaches,
i.e., the basic ideas behind relational databases. The semantic web follows the
open world assumption, which does not claim to be complete. It expects that
things exist, which are not represented in the data, yet. The closed world
assumption, being the opposite, has a fully defined set of data. That means
that something does not exist, if it is not in the data. To illustrate, the KiWi
vision mentions the example of a white raven. The closed view states that there
are no records about a white raven, therefore it does not exist. The open view
instead states that we have no knowledge about a white raven, but that does
not necessarily mean it does not exist.

This open world assumption results in the expectation that new input will
be added eventually and that the data is at all times likely to be incomplete.
Technically, this is realized through different standards and languages. Two
commonly used ones are applied in the KiWi project: Resource Description

47

Knowledge Management in Software Development

Framework (RDF9) and Web Ontology Language (OWL10). RDF is a set of
specifications and OWL a family of languages. Both are under the wings of the
World Wide Web Consortium (W3C11) and both are providing the possibilities
to describe data.

Data in the semantic web is defined through statements about a resource
using simple expressions like “a person has the name Paul” (figure 12). The data
is actually described using a subject for the resource (denoting “a person”), a
predicate for a condition of the subject (denoting “has the name”) and an object
for the target of the predicate (denoting “Paul”). This notion of three parts in
RDF is called a triple.

Figure 12: Data Representation in the Semantic Web

In the semantic web lingo, when it comes to realization, the resource is
defined by a type (commonly used is also the term class), the predicate is called
a property, targeting at either plain data or another resource. Data, that is
structured like this, i.e., the data within in the semantic web, is called semantic
data.

A set of RDF statements can be used to describe a data structure in a
labelled, directed multi-graph (figure 12). But RDF can not only be used to
describe data; it can also define a general data structure. Classes can be defined
with properties and relations to other types. Such a data structure in the
semantic web is called knowledge model or ontology (figure 13).

The technical realization in the semantic web is a complex field. Many
different standards and specifications exist. RDF itself does not specify a syntax.
Instead, it defines guidelines, concepts and features to describe data. To put
this description into a language, XML12 is one commonly used form. As RDF
is rather limited, when it comes to the creation of more complex knowledge
models, other technologies were built on top of that. The knowledge models for
the semantic web, which the KiWi platform is supposed to operate, are authored
in OWL.

9http://www.w3.org/TR/rdf-primer/
10http://www.w3.org/TR/owl-ref/
11http://www.w3.org/
12Extensible Mark-up Language: http://www.w3.org/TR/xml/

48

Chapter 4. KiWi Project

Figure 13: Ontology or Knowledge Model for the Semantic Web

Endorsed by the W3C, OWL is a family of languages that utilizes RDF in
XML to define ontologies. But unlike data schemas for relational databases,
a semantic data structure is not strict. In contrary, it can be compared to a
temporary agreement, made to be extended or improved over time. The whole
system is built to embrace evolving ontologies (Berners-Lee et al., 2001; Shadbolt
et al., 2006; Feigenbaum et al., 2007).

RDF is not only used to describe data structures in general, but also to
provide the actual data. In the semantic web, the goal is to provide information
that is not only understandable by human beings, who can read a text, but
also by machines. The RDF approach to this vision understands a web address,
represented by its Unified Resource Identifier (URI) as a resource. Each resource
then can have two documents, one containing the textual content for humans
and one containing the semantic data, i.e., the RDF formatted data (figure 14).

An extension of RDF however, allows the combination of textual content and
semantic data into the same document. RDFa13 (RDF in Attributes) enables
the use of RDF within the attributes of an XHTML14 document. This way
passages from the textual content can be directly assigned to properties of the
semantic data.

4.3.2 Semantic Wikis

The possibilities of the semantic web are huge, which is why it became a can-
didate to be utilized in knowledge management. There is a variety of different
approaches, which try to use the semantic web to integrate enterprise knowl-
edge (Gu et al., 2006). Some create ontologies to define and organize knowledge
at a generic level and to enable querying (Gómez Pérez and Benjamins, 1999;

13http://www.w3.org/TR/xhtml-rdfa-primer/
14Extensible Hypertext Mark-up Language: http://www.w3.org/TR/xhtml1/

49

Knowledge Management in Software Development

Figure 14: Resources in the Semantic Web

Fernandes et al., 2003) or discuss how ontologies can support knowledge sharing
generally (Gruber, 1995).

As wikis are widely utilized for knowledge management activities today (see
section 3.3.2), it was recently approached to integrate the semantic web into
wiki systems. The KiWi vision (Schaffert et al., 2008b) acknowledges this de-
velopment and explains that, as users got used to working with wikis, their
expectations on this technology rose. The result is called semantic wiki (Schaf-
fert et al., 2008a). It is based on the idea to combine the strengths, wikis
have strong support for collaboration, but the content lacks structure, which
is provided by the semantic web (Oren et al., 2006). This enhances the tech-
nical abilities of handling data within a wiki (Rauschmayer, 2009). Semantic
wikis can for example support the re-use of software and knowledge in software
engineering (Decker et al., 2005; Shiva and Shala, 2008).

Schaffert (2006) presents a semantic wiki called IkeWiki that follows the
basic wiki principles, enhanced with semantic web technologies. Content then
can not only be text but also semantic data. A similar approach extends an open
source wiki to deal with RDFa (Schmedding et al., 2008). This technological
solution allows the user to edit the semantic data directly in form of XML
tags through the editor of the main text content. Other technologies require
separated files and/or editors. KnowWE is another different semantic wiki
that focuses on active problem solving capabilities (Reutelshoefer et al., 2008).
Missing links to concepts or relations are derived utilizing the explicit knowledge
that is described in a formal syntax. Another approach focuses more on the data
access and search functionalities (Oren et al., 2006).

A wiki can be tailored for a task or objective. This focussing or specialization
is a quality of wikis in general, which also applies for semantic wikis. The
examples above show the variety of focus for different ones.

50

Chapter 4. KiWi Project

4.3.3 The KiWi Platform

The prototype imagined in the KiWi vision was supposed to integrate the se-
mantic web with wikis and basic ideas of social software (Schaffert et al., 2008b,
2009). Users were supposed to log on and use it as their knowledge manage-
ment system. The system works page-based, users have to create pages, edit
their contents or comment on them to share knowledge. This system was named
KiWi platform or short KiWi.

Figure 15: A KiWi Page and its Contents

Pages in the KiWi platform are called KiWi pages. Each of these basically
consists of two things: Text content and meta data (15).

The text content can technically be substituted with all kinds of media that
can be displayed in a wiki, e.g., videos or images. Our studies however focused
on textual contents. The reasons are simple: Text is the easiest and the most
common form of content to create and edit. Additionally, it makes a lot of
sense to use text for knowledge sharing, as the people in software development
companies are used to creating and editing text. The textual content on a KiWi
page therefore symbolizes everything the users write directly through the editor,
like with any other common wiki.

The meta data contains the additional information to that page, which is
partly hidden or marked as specific information. The page info, to begin with,
is automatically attached to any page. It contains information about the date of
creation, the authors, etc. When editing, the author can add tags to a page. A
tag is a free form term that does not follow a defined structure. If the page deals
with the profile of a person for example, tags could be “personal profile” and
“employee”. Users can add tags to pages and thus use catchwords to illustrate
the page’s content. The user can also assign types from the ontology to a page.
With these types a user defines the class of a page. A profile page can for
example be assigned to the type “person”. Hence, a KiWi page is a resource
and can contain semantic data. This data can be added and edited manually,
supported by the enabling technologies. Semantic data represents the textual
content of the page. For the exemplary profile page it could thus be “Person
hasName Paul” and the other triples from the example of the semantic web
(figure 12).

51

Knowledge Management in Software Development

Note that a KiWi page has more meta data than a regular semantic web
URI (cf. figure 14). The semantic data of a regular semantic web resource
corresponds to the semantic data in a KiWi page. KiWi pages however have
more meta data, based on its background as a wiki. This does not mean that
the tags of a KiWi page for example are not handled through semantic data.
The KiWi platform however distinguishes between the different types of meta
data and utilizes them differently.

4.3.4 Enabling Technologies
The KiWi vision (Schaffert et al., 2008b) explains that the semantic data pro-
vides the additional value, for the system to operate on the user generated con-
tent. This shall provide a variety of possibilities, which were investigated and
utilized by that part of the KiWi project that is responsible for the enabling
technologies. The vision describes that these enabling technologies should help
to create a system, which is driven by the idea of a system that follows the wiki
way.

The enabling technologies are described as a set of components that enhance
the KiWi platform by providing specific functionalities in the vision. They are
part of the project to show that enhancing a knowledge management system
with these technologies increases its quality. Consequently, the two business
cases then utilize the enabling technologies and show how they can be applied in
knowledge management and how that can be beneficial for the case companies.

The enabling technologies are:

• Reasoning and Querying

• Reason Maintenance

• Personalization and Adaptation

• Information Extraction.

The development of each of the enabling technologies was performed in close
cooperation with the development of the core functionality and with the busi-
ness cases. A close cooperation with the core development was necessary as the
component had to be integrated into the system. So the developers communi-
cated on a rather technical level. The relationship to the cases on the other
hand was more on a conceptual level. The involved people tried to investigate
possibilities and ways to a successful realization, however, the technological pos-
sibilities and the envisioned systems did not provide a complete match. Some
requirements had to be declined, as they were not feasible to be realized due to
technological limitations. On the other hand, the technology provided features
that were not anticipated, but utilized afterwards.

Reasoning and Querying

The features provided by the reasoning and querying component allow both sys-
tem and users to operate on the semantic data within the KiWi platform. The
system contains computable data, this component helps processing it. Devel-
oped by researchers from LMU, this component was separated into two aspects:
Reasoning and querying. Both operate on the ontologies and on the provided
data.

52

Chapter 4. KiWi Project

Querying is a search or filtering mechanism to find pages within KiWi
utilizing freeform expressions, types and tags. Users can actively use KWQL, the
KiWi Query Language, to define commands which are then interpreted to access
and query the semantic data of all pages within the KiWi platform (Bry and
Weiand, 2010). The commands can be typed in manually, but also by utilizing a
graphical user interface. The main focus of the querying is to improve the search
functionality, which can interpret queries, if formulated in KWQL. However,
templates for the most common queries are also provided. This functionality
supports the users in finding what they are looking for. Additionally, KWQL
can filter the search results to specific aspects, so that the number of search
results is limited and stays manageable.

Reasoning is handled by an engine, which adds implicit types or infers ad-
ditional ones to pages. An example: A user assigns the type Java to a page. The
system supports the user by adding the implicit type ProgrammingLanguage.
The reasoning engine infers this from the ontology, which states that Java

is a subclass of ProgrammingLanguage. The system further adds the type
ObjectOriented. The reasoning engine infers this from a defined rule, which
defines Java as one of the programming languages that are object-oriented.

These two examples are of very different nature, even though both result in
adding one type. In the first example, the type is concluded according to the
class hierarchy within the ontology. All, or relevant, super-types are added. The
second example takes rules into account. A rule is a manually defined order of
commands the system has to perform, once the condition is fulfilled or an event
occurs (like: if A, then B). Here it was a simple rule like: if the page is of

type Java, then add type ObjectOriented.

The reasoning engine does all this work in the background. It is triggered
by the system every time a user saves a page.

Reason Maintenance

The project participants from LMU were also responsible for the reason main-
tenance. This component has basically two tasks related to the reasoning: Ex-
plaining it to the user and triggering it.

As the reasoning is running in the background, users might be confused by
automatically added types. To avoid that, the system is obliged to explain the
details behind these added types and provide reasons for its behaviour. This
makes the system better comprehensible for users.

The reasoning can be started manually, but it is also triggered by different
events, e.g., when a page is saved. While the reasoning adds or infers types, the
reason maintenance component additionally revises these actions.

An example: A user assigns the type WorkInProgress to a page. An existing
rule defines that every page of type WorkInProgress has to be of type ToDo,
too. The reasoning engine therefore adds the type ToDo to the page. Mean-
while the reason maintenance component creates a message for the user with
an explanation, where the new type came from. Once a user deletes the type
WorkInProgress, the reason maintenance component takes care of deleting the
ToDo type as well, because the condition is no longer fulfilled. The component
also creates a message, why the type was deleted.

53

Knowledge Management in Software Development

However, it is not the reason maintenance component’s task to avoid incon-
sistencies within the system. The KiWi platform is considered as a collaborative
platform, which human beings use to interact. While doing so, inconsistent data
on a page has to be possible and is actually even an expected state. The users
have to have full control over all data. The reason maintenance component is
therefore just a helper in the background, which tries to support the user. If a
user disagrees, the changes of the component can be undone without difficulties.

Personalization and Adaptation

The personalization and adaptation targeted on matching the view of pages or
the system in general to individual preferences and behaviour. The component
was developed by people from AaU. They focused on supporting users in finding
content that is useful for them (Dolog et al., 2011). To do that, the system
provides recommendations based on the context. The system knows what pages
the users read, which ones they open, edit or comment on. This information
is used to create a profile, which allows the system to predict the interests or
focus of users.

An example: George is a developer who creates and edits a lot of pages in the
KiWi platform that cover databases and programming languages, as that is his
main focus. He writes about the technical realization of different projects, dis-
cusses set ups with his colleagues and comments on different approaches. When
George searches for a specific project, it is quite likely that he is not interested
in the financial establishment. Instead, he is interested in the technical aspects
of the project. A list of search results could therefore sort the results according
to relevance for him.

This example uses the personalization and adaptation component to sort
search results. Other applications are the recommendation of pages that might
be interesting to the user. This should happen directly, without the need of a
user even searching for it. When viewing any KiWi page, the system displays
recommended pages that might be relevant to the user in this context. Another
possibility is an overview of pages that generally might be interesting for users.

Information Extraction

The researchers from BUT were responsible for the information extraction com-
ponent. Its target is the analysis of the text content and creation or suggestion
of semantic data and tags based on that.

The manual task of adding any form meta data can scare people off. This
information extraction assists users in assigning the semantic data. It analyses
the textual content of the page and provides suggestions accordingly. This
supports the users in their editing speed and at the same time assures that the
pages contain proper semantic data.

Many users do not see the direct need for assigning semantic data all the
time. Therefore, they have a tendency to not take it very serious and dismiss
the tagging activities. The reasons for that are simple; nobody likes to do things
they do not value. But the whole system would suffer from poor tagging. Not
properly tagged pages would decrease the ability of processing the content. It is
therefore important to have support, which makes this activity a simple task for
the users and increases the quality of the semantic data at the same time. The

54

Chapter 4. KiWi Project

information extraction component is therefore an important aspect to assure
quality of service.

4.4 Summary
This chapter introduced two basic yet very different aspects of the KiWi project,
which have a major impact on my research. On the one hand there is the
vision of a knowledge management system and on the other hand there was the
organization of the project.

The development of the KiWi platform followed a clear vision. The knowl-
edge management system had to utilize the semantic web, which is an approach
to make the internet better computable by providing semantic data to web re-
sources. This knowledge management system also had to follow the wiki way,
which does not just include the wiki functionalities on text editing, but a general
approach to simplistic systems. The KiWi platform further was being enriched
by what in this project was realized through enabling technologies, which add
features for querying, reason maintenance, personalization and information ex-
traction.

The development of the KiWi platform was planned in several aspects. The
business case, which is reflected through the research in this thesis, was arranged
in close cooperation with the case company, Logica. This case was organized in
a waterfall manner, running through four major phases: Requirement specifica-
tion, knowledge model creation, prototype development and evaluation.

55

Knowledge Management in Software Development

56

Chapter 5. Research Approach

Chapter 5
Research Approach

This chapter describes the approach to my research. As I explain in the previous
chapter, the project organization was defined prior the beginning of the project,
which set the boundaries for my research. The project was planned in the way
that the research is conducted in close cooperation to the case company. A
prototype for a knowledge management system had to be built, approaching
the problems of the case company.

With this setting and in respect to the involved partners the scope for a
research approach is roughly outlined already. however, in order to be successful,
the detailed organization is very important. The dilemma between practical
concerns and research goals in collaborations with arrangements like this has
been addressed by much research. Both parties, the industrial and academic,
strive for different things and the cooperation can only be successful, if both
reach their goals. The scholars therefore are obliged to not only use the gained
knowledge for own benefits, but also apply it for the practitioner’s good. The
goals of the industrial partner have to be reflected in the research goals as well.

In a setting like the given one, Mathiassen (2002) distinguished three kinds
of research goals and the activities to reach these (figure 16). These three goals
are namely: Gaining an understanding, supporting the industrial activity and
improving its results. They make it clear that the scholars’s role goes beyond
a plain observational activity. Instead, successful research in close cooperation
with industrial partners requires interaction.

A methodology that takes these goals into account and fits into the setting
of the KiWi project is action design research as outlined by Sein et al. (2011).
In the following sections I explain this in more detail (section 5.1), give reasons

57

Knowledge Management in Software Development

Figure 16: Research Goals and Activities, from (Mathiassen, 2002)

for my choice (section 5.2) and explain how I applied it for my studies (section
5.3).

5.1 Action Design Research

Sein, Henfridsson, Purao, Rossi, and Lindgren (2011) outlined a strategy to
perform research, which interacts in close cooperation with industrial partners,
called Action Design Research (ADR). This section is an introduction of the
concepts and processes utilized in ADR.

5.1.1 Prerequisites

ADR is based on a broad consensus within the field of Information Systems
research, to approach this kind of research with a dual process. The goal is to
make a contribution to both aspects: One aspect is supporting the practitioners
in an application domain and the other one is the formation of a theory to be
added to the general body of knowledge (figure 17).

Figure 17: Dual Approach in Information Systems Research

IS research always has the goal to gain relevance (Benbasat and Zmud, 1999).
The two areas of concern are hereby of equal importance. On one hand, the
research’s mission is making a theoretical contribution and thus extending the

58

Chapter 5. Research Approach

general body of knowledge. The analysis of the work in an industrial environ-
ment, its evaluation and results are supposed to be documented and published,
in order to be beneficial for future research. On the other hand, the scholars are
interacting with practitioners within an application domain and should support
them in their problem solving.

As displayed in figure 16, the cooperation between academic and industrial
staff can result in better processes or products. The scholars can contribute to
the problem domain by the findings they gained from their studies. This includes
knowledge gained from the literature and from the results of the interpretation of
the practitioners’ current and anticipated problems. Thus, research can support
the practitioners in solving these problems (Wieringa, 2009).

In order to gain a better understanding of ADR it makes sense to have a
brief look where it came from. ADR is a methodology that is based on design
research. The objective of design research is the study of the design process.
Doing so, design research aims at getting a better understanding of the design
process, in order to improve it (Eekels and Roozenburg, 1991). Many different
methodologies build on top of design research. A popular representative of this
is Design Science Research (DSR) as outlined by Hevner, March, Park, and
Ram (2004). Even though both approaches have the common understanding in
basic, ADR began as a criticism to DSR.

Figure 18: Design Science Research Cycles, from (Hevner, 2007)

DSR follows the dual process as explained above and works iteratively, simi-
larly to ADR. In DSR, an IT artefact is being developed and evaluated, based on
an existing problem in the practitioner’s environment. Seven guidelines describe
this process, which are repeated throughout the project. The whole process is
organized in three cycles (figure 18): The relevance cycle, the design cycle and
the rigor cycle (Hevner, 2007; Hevner and Chatterjee, 2010). The relevance
cycle combines the work environment with the research project. It gathers in-
put for requirements and acceptance criteria, in order to create and evaluate
the artefact. The rigor cycle connects the knowledge base and the research
project. Its main target is to ensure research contributions. This is achieved
by understanding the state-of-the-art theories and methods. Extensions or new
approaches to theories and methods, as well as other findings can thus be com-
municated, based on an informed grounding. The design cycle is internal for
the research activities. It iterates more rapidly than the other two circles and
combines the creation of artefacts, their evaluation and refinement based on
preceded feedback.

59

Knowledge Management in Software Development

ADR agrees with the understanding of the three cycles and their allocation.
However, it emphasizes the relevance cycle’s influence (Sein et al., 2011, p. 38).
On the contrary to DSR, ADR provides a concerted research effort through the
explicit guidance for a combination of building, intervention and evaluation (see
section 5.1.3).

5.1.2 Ensemble View of IT Artefacts
In both, DSR and ADR, artefacts are created to investigate a problem. The
creation of such an artefact and especially its evaluation in cooperation with
the practitioners help the scholars to gain new insights about a problem, which
can lead to a possible solution. The quality of each artefact is then evaluated
and discussed in an iterative process. Based on the reached understanding and
findings of the previous evaluation, a new artefact is then created.

Any artefact is built to provide the researchers with an opportunity to anal-
yse it by applying empirical and qualitative methods. The detailed definition of
what an artefact is, however, is widely discussed within the field of information
systems. In this thesis I do not want to find my own definition, but align to the
ones that are used by the authors of the methodologies I utilize.

An IT artefact, in the sense it is used in DSR, is mostly represented in a
rather structured form:

IT artifacts are broadly defined as constructs (vocabulary
and symbols), models (abstractions and representations), meth-
ods (algorithms and practices), and instantiations (imple-
mented and prototype systems). (Hevner et al., 2004, p. 77)

Hevner et al. (2004, p. 77) mention in their article that much research is
focused on the instantiations, i.e., the creation of systems. In opposition to
that, Orlikowski and Iacono (2000) argue that technology, though it might be
a central element, is just one aspect of a dynamic and social process. They
explain that any technology is always the result of interaction between people
and that technology emerges through design, development and maintenance.
The IT artefact is therefore not only dependent of the people working on it, but
also the context in which it is developed and applied (Orlikowski and Iacono,
2000). Based on this understanding, the authors suggest to extend the focus
from the IT artefact and take the social interaction into account:

IT artifacts are designed, constructed, and used by people,
they are shaped by the interests, values, and assumptions
of a wide variety of communities of developers, investors,
users, etc. (Orlikowski and Iacono, 2001, p. 131)

A plain focus on the technology is therefore too limited. The people using
the technology and those that develop it have to be taken into consideration
as well. The same counts for the context, in which the technology is applied.
Orlikowski and Iacono (2001) coined the term ensemble view for this.

The ensemble consists of the IT artefact and the dynamic interactions to
people at the same time. The IT artefact here represents the plain technology,
as described in DSR. However, it is clearly stated that the technological aspect
is just one element of the ensemble. Five premises were created to support the
theorization of IT artefacts within an ensemble (Orlikowski and Iacono, 2001):

60

Chapter 5. Research Approach

1. IT artefacts are shaped by the developers and context.

2. IT artefacts are embedded in a specific environment.

3. IT artefacts mostly consist of different components that have to cooperate.

4. IT artefacts undergo various transitions during development.

5. IT artefacts mostly evolve over time, even after the original development
finished.

One of the main points of criticism on DSR from ADR is precisely this focus
on the IT artefact. Sein et al. (2011, p. 38) explain that the shaping of the
design and the deployment of an IT artefact within an organizational context
is of high importance in a research project. They therefore apply the ensemble
view for ADR. This position widens the perspective in comparison to DSR from
a view focused on just the IT artefact itself to the whole context of the IT
artefacts; its design, development and application.

Note that the understanding of the IT artefact as such stays the same, similar
to what it is described like in DSR. But a plain focus on the IT artefact would
be too restrictive and ignore its environment. Therefore the centre of attention
within the method is shifted. Instead of plain focus on the IT artefact, the
ensemble view takes the dynamic interaction between people and technology
into consideration (figure 19).

Figure 19: The Ensemble View of an IT Artefact

The shaping of both the design and the deployed artefact is widely influenced
by the organizational context, which is what ADR wants to take into account.
Working on the ensemble view of IT artefacts therefore contains the interpreta-
tion of the situation, the design of an alternative approach and the intervention
through it. These are also the actions that lead to the general research goals
(Mathiassen et al., 2002) as described above (figure 16 on page 58). Hence, the
ensemble view itself is already an attempt to reach the research goals.

DSR acknowledges that the organizational context is of high influence and
importance for the research (Hevner et al., 2004, p. 78). However, it does not

61

Knowledge Management in Software Development

provide guidance to deal with these different dimensions. In contrary, ADR
stresses this aspect in its procedure, which I explain in the next section. A
core concept of the methodology is the utilization of the ensemble view of IT
artefacts, in order to take the organizational context into account.

Sein et al. (2011) call the ensemble view of IT artefacts in ADR simply
ensemble artefacts. Personally, I find this term misleading, as it can be inter-
preted like a substitute to the IT artefact. Instead, the ensemble view extends
the circle of attention (figure 19). The IT artefact is still a central part of the
research, yet just one part. Hence, I will use the term ensemble view as coined
by Orlikowski and Iacono (2001) in this thesis. The description of IT artefacts
and the ensemble view in my studies follows in section 5.3.1 below.

5.1.3 ADR Method

A major critique on design research approaches is the sequencing and therefore
the separation of building and evaluating the artefact. Especially in the case of
the ensemble view of artefacts the creation is a process of constant alternation
between the design and evaluation within the organizational context. Therefore,
Sein et al. (2011) combined action research characteristics and design research
approach and created ADR.

In design research problems are approached by the creation of artefacts and
their evaluation. The reason is to find out whether the problem was properly
understood, the design of a solution was appropriate and the result can solve
the problem (March and Smith, 1995). DSR, as briefly introduced above, is one
approach of a research method that builds upon design research (Hevner et al.,
2004).

Equally to design research, action research is a problem solving paradigm.
But action research has an emphasis on the intervention by scholars. Introducing
change and observing its effects is the core idea.

Action research approaches to solve organizational problems through a com-
bination of intervention and theory generation (Babüroglu and Ravn, 1992).
ADR is a design research approach that is strongly influenced by these action
research concepts (Sein et al., 2011).

Further, ADR is a method that focuses on building, intervention and eval-
uation. This is tackled by the utilization of the ensemble view of IT artefacts.
Each of these has two goals. On the one side, they should be reflecting the
researchers’ theoretical objectives and, on the other side, they aim to influence
the context (Sein et al., 2011, p. 40). To achieve these goals, ADR is organized
in four stages: The problem formulation, building intervention and evaluation
of the artefact, reflection and learning, and finally the formalization of learning
(figure 20).

These four stages build upon seven principles, which I explain within the
description of each stage.

Stage 1: Problem formulation

The perception of a problem triggers people to express the need for research
effort. In the first stage the initial research questions are formulated, the initial
scope is determined and the participation of practitioners is defined (Sein et al.,
2011, p. 40). A research opportunity is then identified, based on existing theories

62

Chapter 5. Research Approach

Figure 20: Stages in the ADR Method, from (Sein et al., 2011)

and technologies. The problem formulation further outlines the research efforts
and knowledge creation opportunities.

These are the tasks to follow in this first stage (Sein et al., 2011, p. 41):

1. Identify and conceptualize the research opportunity

2. Formulate initial research questions

3. Cast the problem as an instance of a class of problems

4. Identify contributing theoretical bases and prior technology advances

5. Secure long-term organizational commitment

6. Set up roles and responsibilities

Note that task 3 points out, that the problem should be defined as an in-
stance of a class of problems. This classification helps the researchers to gener-
alize and create knowledge that is better applicable in different contexts. Task
5 strives for sustainability. It stresses that the scholars should try to make sure
that the results are used in long-term and beyond the research effort.

The whole stage’s work is drawn on two principles: Practice-inspired re-
search and theory-ingrained artefact (Sein et al., 2011, p. 40). The practice
inspired research principle emphasizes that the knowledge-creation opportuni-
ties are field problems and not theoretical puzzles. Doing so, scholars are not
supposed to act as consultants that solve a specific problem. Instead, the action
design researcher should create knowledge, which is applicable to the problem
class.

63

Knowledge Management in Software Development

The theory-ingrained artefact principle emphasizes that the design of IT
artefacts is informed by theories. Structuring the problem, identifying possible
solutions and guiding design activities are partly overlapping, but generally
the acknowledged ways of using theories (Sein et al., 2011, p. 41). These reflect
explanation and prediction theories as well as design and action theories (Gregor,
2006).

Stage 2: Building, Intervention and Evaluation

The second stage utilizes the problem framing and theoretical premises from the
first stage. Based on them an initial IT artefact is created. Through following
design cycles and organizational use, it is then shaped further. In an iterative
process the three phases of a BIE cycle are then held: Building of the IT artefact,
intervention in the company and evaluation of the ensemble view (Sein et al.,
2011, p. 42). During the execution of the BIE cycle (figure 21) the problem and
the artefact are under continuous evaluation.

Figure 21: The BIE Cycle

The tasks for this second stage are (Sein et al., 2011, p. 43):

1. Discover initial knowledge-creation target

2. Select or customize BIE form

3. Execute BIE cycle(s)

4. Assess need for additional cycles, repeat

The execution of the BIE cycle, see task 3, is described in a generic schema
(figure 22). It shows that initial interactions take place among the scholars only,
before the practitioners of the collaboration partners are involved for an alpha
version and later end-users get involved for a beta version. These two version
synonyms mark a quality state of the artefact, more than a version number.
It illustrates the state of development of the IT artefact and also the level of
intervention within the company.

Additionally, three principles are involved in this stage: Reciprocal shaping,
mutually influential roles, as well as authentic and concurrent evaluation (Sein
et al., 2011, p. 43). The reciprocal shaping principle emphasizes that the IT
artefact and the organizational context influence each other. They are under
constant mutual effect.

The mutually influential roles principle emphasizes the learning from the
other project participants. While the scholars have knowledge in theory and

64

Chapter 5. Research Approach

Figure 22: The Generic Schema for IT-Dominant BIE, from (Sein et al., 2011)

technological advances, the practitioners have knowledge in practices. Sharing
of knowledge and exchange of ideas is part of the research process.

The authentic and concurrent evaluation principle emphasizes that evalua-
tion is not a separated research activity. Instead, it should be interwoven with
the design of the IT artefact and the intervention in the company. Evaluation
is an on-going activity held in parallel.

Stage 3: Reflection and Learning

The third stage happens in parallel to the first two stages. The problem for-
mulation and the ensemble view of the IT artefact are continuously reflected on
(Sein et al., 2011, p. 45). Thus contributions to the body of knowledge can be
identified and further, the research process can be adjusted.

The tasks to follow in this third stage are (Sein et al., 2011, p. 44):

1. Reflect on the design and redesign during the project

2. Evaluate adherence to principles

3. Analyse intervention results according to stated goals

This stage draws on the guided emergence principle, which emphasizes that
the ensemble artefact reflects two aspects (Sein et al., 2011, p. 45). The first is
the preliminary design as intended by scholars (see the theory ingrained artefact
principle in stage 1). The second aspect is that the artefact is under on-going
shaping by the organizational use and the project participants (see the principals
reciprocal shaping and mutually influential roles in stage 2), but also as the
result of evaluation (see the concurrent evaluation principal in stage 2). These
alterations of the ensemble view of the IT artefact are wanted and the ADR
team is supposed to embrace them.

65

Knowledge Management in Software Development

Stage 4: Formalization of Learning

The fourth stage is not in direct interaction to the project work, which is de-
scribed in the first, second and third stage. Instead, it focuses on the formal-
ization of the learning (Sein et al., 2011, p. 45). The project findings should be
developed into a general solution concept, which is based on the class of problems
as defined in stage one. The goal is to share the findings in a form that makes
them applicable for future use. Therefore, addressees are the practitioners and
colleagues in the project, but also the research community.

These tasks should be followed in this fourth stage:

1. Abstract the learning into concepts for a class of field problems

2. Share outcomes and assessment with practitioners

3. Articulate outcomes as design principles

4. Articulate learning in light of theories selected

5. Formalize results for dissemination

This stage’s work builds upon the principle of generalized outcomes. Gener-
alizing findings from a highly situated ADR project can be difficult. However,
it is important in order to communicate findings and make them applicable for
others. Sein et al. (2011, p. 45) suggest to do this in three levels: First, to
generalize the problem instance, then, the solution instance, and finaly, derive
design principles from the outcomes.

5.2 Appropriateness of ADR
In the information systems field many researchers employ research methodolo-
gies that support the interaction between scholars and practitioners. Especially
Europe has a long history and successful tradition in that (Winter, 2008). An
overview of the process elements in different disciplines within the field of in-
formation systems shows that the evaluation of IT artefacts is always a central
element (Peffers et al., 2008). Even though it is very popular to utilize design
science research (Hevner et al., 2004; Peffers et al., 2008; Iivari, 2007), I chose to
apply action design research (Sein et al., 2011) instead. In this section I explain
the reasons for that choice and show that utilizing ADR is appropriate.

Sein et al. (2011) argue that ADR is a legitimate approach within information
systems research, as it does not only focus on the technological aspects. They
explain that ADR, in comparison to other methodologies, provides more support
for the building, intervening and evaluation (Sein et al., 2011, p. 45). The
guidance offered by this methodology enables researchers to focus on learning
and reflecting. The interaction between the technology and the people, including
the client’s infrastructure, is focused on and being observed carefully. Knowledge
creation based on emergent changes is thus made possible. ADR follows a more
holistic approach than other methodologies, when it comes to the design of the
IT artefact. ADR understands itself “as a design research methodology that
explicitly recognizes the emergence of artefacts at the intersection of IT and
organization” (Sein et al., 2011, p. 52).

66

Chapter 5. Research Approach

One of the big advantages compared to other design research methodologies
is that the building of the IT artefact and its evaluation is not sequenced and
separated in ADR.

To find out whether ADR is suitable for my specific case however, it seems
appropriate to examine my research goals and the environment in which my
research takes place. In order to do that, I re-visit my research question, which
I formulate in section 1.3:

Research Question: How can IT systems support knowl-
edge management in software development?

I describe in chapter 1 that I want to study the knowledge management
challenges with IT support for knowledge management in software development
companies. There, I explain my background and my experiences with knowl-
edge management in software development companies. I further portray the
landscape of many software development companies. One of the reasons for
doing that is to show that I am well aware of the fact, that there is no ultimate
solution to knowledge management and IT support for knowledge management
in software development. Every company is different and needs a specific ap-
proach. The literature study in chapter 2 supports that claim (see section 2.5).
The literature also shows that knowledge management approaches, which can
easily over emphasize system’s features and that is problematic (see section 2.4).
Based on this understanding, the research question itself is very general.

Even though my research is situated in a project with very specific and
applied targets (see chapter 4), I want to study the problem on a more abstract
level as well. My goal is not to only help the case company (section 4.2.1) with
their problem in knowledge management (chapter 6). ADR provides guidance in
achieving both: Supporting the case company with a specific challenge through
addressing a general issue. In stage 1 of the ADR methods the scholars have to
analyse the problem and the problem area in order to define a problem class.
This generalization assures that the findings of the specific case can be applied
in other environments as well.

The research question also stresses the support of knowledge management
in software development. Mathiassen (2002) depicts support as one of the three
research goals (see figure 16 on page 58). The same figure illustrates activities
to reach these goals. In the case of support it is design. The author stresses
thus the creation of some kind of artefact. This design process is followed to
gain knowledge, which then can be used to improve practice (Mathiassen, 2002,
p. 327).

The other two research goals are gaining an understanding through inter-
pretation and improving practice through intervention. It can thus be argued,
that these three goals together describe the BIE cycle of ADR’s second stage.
The ensemble view of the IT artefact is constantly evaluated and the design is
collaboratively shaped by the involved people. Sein et al. (2011) define ADR
as a research methodology that is based on design research and has therefore
a native focus on the design. Hence the research question is well addressed
through ADR, but this methodology additionally respects the other research
goals, namely understanding and improving.

As I describe in chapter 4, the KiWi project was scheduled before it began
and before I was enrolled. A research methodology would have to be combinable
with the given configuration. The project was organized in three phases with

67

Knowledge Management in Software Development

several different milestones to document the work progression and intermediate
results (see figure 10 on page 45). It was also defined that a prototype for a
knowledge management system had to be built in close cooperation with people
from a case company (see section 4.2).

One of the prerequisites for ADR is the collaboration with practitioners.
Scholars and practitioners are partners that work together on achieving a shared
goal. Also, they share knowledge among each other about the problem domain
and the available theories. Without the combined engagement of scholars and
practitioners this methodology would not make any sense.

The other aspect, the pre-defined scheduling of the project, is not equally
straight forward to combine with ADR. The project is organized in a waterfall
manner, which expects finalized deliverables when reaching specified milestones.
Within the first two phases, the requirements specification and the prototype
development, ADR can be applied as a small project for each milestone targeting
at the specified deliverables. However, the outcome of one milestone feeds into
the subsequent one. These deliverables can therefore also be understood as
intermediate results in a long term ADR project.

A special case is the final project phase, the prototype evaluation. Here, the
project plan intended the intervention of the developed prototype. As the BIE
cycles make sure that constant intervention takes place, this phase would be re-
dundant. However, it leaves space to gain deeper knowledge about the ensemble
view of the IT artefact and allows further shaping of the design. Additionally,
because the original scheduling was separating and sequencing the building from
the intervention, ADR thus helps to gain results of higher quality.

Chapters 2 and 3 explain the theory behind knowledge management and
related approaches, which show that knowledge management is a complex field.
For instance, a plain focus on the technological issues would ignore the perspec-
tive of the company and of the people (section 2.4). Both are important aspects
of a successful knowledge management approach. A system has to fit the com-
pany’s goals and respect the users. The KiWi project however has a strong focus
on technological aspects. It involved many different and complex technologies.
In order to avoid the trap of approaching knowledge management from a plain
technical perspective it is important to study more than just the plain proto-
type. ADR takes all these aspects into account by utilizing the ensemble view
of IT artefacts, which emphasizes the impact of the company’s context and the
participating people.

As a final argument for the appropriateness of applying ADR in this research
I would like to stress that ADR has the ability to reach results of both, high
quality and relevance. Especially the aspect that ADR emphasises the ensemble
view, instead of plainly focusing on the IT artefact, makes a lot of sense. With
my background in knowledge management in software development (section 1.1)
I understand this as a crucial aspect to succeeding and finding a way to support
knowledge management in software development.

Following the arguments provided in this section I conclude that ADR is
highly appropriate for my research. The main arguments are that it addresses
my research question and fits into the project plan. But limiting the decision
to those two reasons would be too easy. The many different aspects add to a
summary of good motives that are in favour of action design research.

68

Chapter 5. Research Approach

5.3 Implemented Research Method

The research conducted within the Logica case of the KiWi project followed the
ADR method. As explained above (section 4.2), the case’s work was organized
into four project phases: The requirement analysis, the creation of the knowl-
edge model, the development and the evaluation of the prototype (see figure
11 on page 46). These phases include different milestones, which require the
creation of deliverables. The ADR method was applied within each phase. All
four stages of the ADR method as explained above (section 5.1.3) were utilized
for the shaping of the ensemble view of IT artefact and as guidance for the
collaboration.

Note that the project’s evaluation phase and the actual evaluation of the
prototype are two completely different matters. The IT artefact was under
constant or regular evaluation during the development, as mandatory in ADR.
However, based on the organization of the project in a waterfall manner, a final
phase was scheduled to evaluate the developed system. The final project phase
was therefore used to conduct detailed user tests. This was realized through
continuing the ADR method through the evaluation phase and emphasizing the
evaluation aspect of the BIE cycle. This way the development could solve minor
issues and the user tests were able to evaluate the prototype to a broader sense
in the context than it was possible during the main development.

In this thesis the different stages and aspects of the ADR method are rep-
resented in different chapters. The problem formulation (stage 1) is presented
in chapter 6, which is my analysis of Logica and its knowledge management
problems. Then I present my design and the development of a knowledge man-
agement system, in chapter 7. That represents the first aspect of the BIE cycle,
the building (stage 2). The rest of the BIE cycle, namely intervention and eval-
uation (stage 2) is described afterwards, in chapter 8. Here I justify the design
according to the situation in Logica and report on user tests. Finally, in chapter
9, I represent the reflection and learning (stage 3) of my research. Here I discuss
the whole knowledge management approach, its limitations, the implication for
practice and my contribution in general. The formalization of learning (stage
4) is represented through this thesis and other reports that were created as part
of my research.

This section deals with details how ADR was applied and how the outcome
was treated. Similar to a case study, the conducted research followed the tradi-
tional three areas of research: Design, data collection and data analysis (Dubé
and Paré, 2003). Although the research followed a comparable pattern, it is
crucial to understand, that this is not a case study. Several conditions for this
kind of research are not met. My research is not focused on the case company
or on their knowledge management system. Instead, the research is focused
on designing a knowledge management system within the case company. It is
therefore better framed as a Design Study, which matches the design-focus of
ADR.

The research of this design study (figure 23) was organized following the
guidelines of ADR as described above. During the project work different kinds
of data were collected following qualitative approaches. An analysis of the data
collection resulted then into reports on one hand side and feedback into the
process on the other.

69

Knowledge Management in Software Development

Figure 23: Organization of the Design Study

5.3.1 Data Collection

The data collection in this section does not refer to an activity that follows the
project work. In contrary, it is a collection of data, resulting from the project
work. Gathering the data is one aspect of the research work by documenting
the work process. Based on the different tasks for the scholars, the variety of
data in the collection is rather big. Different sources were utilized (figure 24):
Data is collected from the IT artefact, i.e., the prototype itself, but also from the
ensemble view. Additional sources for the data collection are the design process
of the IT artefact within the context of the company and the collaboration with
involved people.

Note that even though there are different sources to collect data from, these
are not equally used throughout the project. During the requirement analysis
the IT artefact for example was of lower significance than it was in the final
evaluation phase of the project. However, this was not tracked, nor do I specif-
ically report about it. The different sources feed into an equal data collection
which then was utilized as an entire unit for the analysis (figure 24).

The data was collected through interviews, observations, user tests and the
provided access to internal documents. All these provided sources with recorded
data during different phases in the project collaboration. This section describes
these activities and the data that was collected.

70

Chapter 5. Research Approach

Figure 24: Data Collection and its Sources

Documents

The case company granted access to documents for the scholars, which are used
for project management. The intention was to provide an impression and better
understanding of the project management tasks and problems during the first
project phase, the requirement analysis. These official documents assisted the
understanding of the scholars, especially in combination with the other data
collection methods (Bryman, 2008; Creswell, 2009).

The documents’ nature was exemplary to see the format and understand the
structure of communication. For that purpose documents dealing with specifi-
cation and documentation were made accessible.

Interviews

Different types of interviews were applied throughout the project. One took
place in the beginning of the first project phase, during the requirement specifi-
cation phase. Here, the needs of Logica were explored by visiting development
projects and talking to the participants. The other type of interview was part
of the evaluation phase and helped to investigate the user test experience. How-
ever, every interview conducted as part of my studies followed the seven stages
of an interview investigation (Kvale, 1996, p. 88): Thematizing, designing, in-
terviewing, transcribing, analysing, verifying and reporting.

The project visiting interviews had the target to find out how the project
organization works and what problems there could be. Two projects were met
face-to-face, with two representatives of each project at the same time. A qual-
itative approach was followed here, as the focus was on investigating a problem
(Creswell, 2009, p. 179). This way the employees had the opportunity to explain
the current situation and express their needs directly (Bryman, 2008, p. 437).

71

Knowledge Management in Software Development

Both interviews took place in a very early stage of the project in order to ex-
plore Logica’s knowledge management problems. Even though the two projects
address the same domain (municipality administration software) they were very
different. Differences were visible in basically every core aspect: The amount
of people, the involved technology, the applied infrastructure. These differences
were also the reason for choosing them. They provide insights in the company’s
alterations of the variety of Logica’s projects. The focus of the interviews was
mainly about the settings in the projects, no technical development details are
documented here. These interviews built the foundation for the scholars’ un-
derstanding of the case company.

The data collected from the meetings was mainly in form of minutes and
notes. Internal reports were created afterwards to summarize the interviews
and document the statements of the practitioners and the impressions they left.

The user test interviews were part of the evaluation phase (details in chap-
ter 8). After every test run the test user was interviewed in order to explore
experiences and opinions about the system under test. These test runs were
conducted in three iterations with two test users each. Every test user was in-
terviewed one-on-one immediately after the test run (Creswell, 2009, p. 179). It
was therefore directly connected to the objectives and actions of the user test.

The interview itself was semi-structured (Bryman, 2008, p. 438): An in-
terview guide was created that helped to investigate the user’s experience and
opinion on the test objective. The questions were not fixed or settled so that
the interviewer was able to change the order or formulation depending on the
interview. In the end however all questions were answered and the aimed insight
was achieved.

Each test user was an employee of Logica. They were therefore aware of
possible problems and common practices in the company. During the interviews
the users were able to express what they liked and what they disliked. The
feedback of the users provided valuable insights to the scholars and helped to
improve the prototype. All user test interviews were video and audio recorded.
Additionally, notes were taken and a report was created.

Observations

During the first project phase, the requirement analysis, different project man-
ager meetings at Logica were observed. These were normal meetings at the
case company’s offices, which the practitioners hold regularly and scholars were
allowed to follow. Hence, they were observations in realistic and natural situ-
ations (Järvinen, 2000, p. 147) without active participation by the researcher
(Creswell, 2009, p. 181).

Similarly to the project visiting interviews, the observations took place in
a very early stage of the project, with the target to explore the knowledge
management problem of Logica. A defined focus was not the behaviour of the
participants, but the topics and the way agreements were found. During the
meetings business necessities were discussed between project managers and the
project office in order to evaluate a project’s status.

Project management is a very complex task and these meetings helped the
scholars to understand how Logica deals with it. The gained insights supported
the process of studying the problem in knowledge management for Logica. Three

72

Chapter 5. Research Approach

meetings of this kind were observed. Each of them was audio recorded and
transcribed afterwards.

Participant Observations

Throughout the project many different meetings were held with varying partic-
ipants and targets, like discussing the objectives of the project and evaluating
the findings. My involvement during these meetings was in the role of a com-
plete participant, which means that I was not restricted to observations of the
other people’s interactions only, but was contributing myself (Bryman, 2008,
p. 411).

The meetings, that included with me as a complete participant and that
are relevant for my studies, can be grouped into three categories: KiWi meet-
ings, Logica case meetings and internal meetings. All of these meetings were
documented in different forms, in order to utilize insights in later stages. Field
notes were always taken. Each meeting involved participants of different circles,
including practitioners and researchers with different backgrounds and experi-
ences. The meetings were then used to discuss the progress and ideas. Hence,
every meeting was a pool of input (e.g., opinions, suggestions, critique) from
various different sources.

The KiWi meetings were organized three times a year at different locations
across Europe and involved all project participants. A meeting with larger sub-
sets of the project participants, with a focus beyond the business case relevant
for my studies, join this classification. These meetings addressed general is-
sues of the project and were used to communicate intermediate results to the
partners. They were thus a simple opportunity to gain feedback from other
researchers that are familiar with the project goals.

These meetings were organized in presentations followed by discussions. One
person gave an introductory presentation about a topic (e.g., state of develop-
ment, ideas for improvement or management activities), in order to gain shared
knowledge. The topic was then discussed among the participants, which in-
volved the feedback from different areas. The slides of these meetings were
shared among the participants. Additionally, minutes document the presenta-
tions, the discussions and the taken agreements.

The Logica case meetings took place in Aalborg, either at the university or
the offices of Logica. Multiple times a year, the issues related to the Logica case,
and therefore my studies, were addressed. The participants of these meetings
included people from Aalborg University and the case company. Additionally,
sometimes also people from other partners were involved, who contributed on
specific occasions, even though they were not directly related to the business
case.

The relevant project deliveries were prepared within Logica case meetings, as
well as the creation of the prototype and its specifications. These meetings were
documented in different ways. Meeting minutes were taken every time. Some
meetings were additionally voice recorded and if discussions led to drawings on
whiteboards, these were photographed afterwards.

The internal meetings usually took place at Aalborg University on a regular
level, focusing on aspects of the Logica case and the whole project. One aspect
was the strategic part of the cooperation with the case company. The other
one was the scientific discussion of the planned activities and narrowing down

73

Knowledge Management in Software Development

a focus on what is scientifically more interesting. It was therefore referred to
as design meetings, as they dealt with the design of the prototype. All of these
meetings are documented in minutes; additional drawings on white boards were
photographed.

These three kinds of meetings (KiWi, Logica case and internal) correspond
to two of the three cycles as defined by Hevner (2007), which are also referred to
within ADR. The case meetings represent the relevance cycle and the internal
meetings the rigor cycle. During the Logica case meetings the participants
discussed the use of the current ideas and whether it addresses the problems
correctly. Prototypes were created and adjusted according to the opinion of
the employees of the case company, as they are the experts in the problem
domain. In the internal meetings the academic rigor was discussed, approaches
were grounded in the literature and articles have been prepared.

User Tests

Evaluation of the ensemble view of the IT artefact is an on-going task and one of
the three elements in ADR’s BIE cycles. This evaluation took place in different
meetings as explained above. Intermediate versions were widely discussed in
Logica case meetings, but also in KiWi meetings with project participants in-
volved in the other business case or development of different sub components. A
working prototype was then presented and explained in a deliverable that closed
the implementation phase of the project (Dolog et al., 2009c). This subsection
however describes the data collection during the final project phase regarding
the evaluation of the prototype. It was used for intensive shaping and finalizing
of the prototype within the organizational context. This evaluation phase had
a focus on user tests and on improving the prototype (details in chapter 8).

Just like the rest of the data collection, the user tests were conducted in
qualitative studies, because there the “emphasis is placed on the uniqueness of
human experiences” (McDavid and Hawthorn, 2006, p. 175). A close engage-
ment between scholars and practitioners (van de Ven, 2007) helps evaluating
IT artefacts in their totality, not only according to its functionality. Therefore
the user tests were held in three iterations with two test users each, who are
employed at the case company.

The risks and uncertainty that a project can face during the evaluation in
design research do not differ to those in industry (Carney and Wallnau, 1998).
Either strives for the same main goal: Achieving results of high quality. In order
to avoid negative impact due to the risks and uncertainties, risk management
becomes an important task (Baskerville et al., 2008). Addressing the risks helps
to avoid problems and reach the goals. It is thus of high importance that
not only the evaluation as such can be finished successfully, but also that the
outcome is of a certain quality.

In order to minimize the risks it was decided that the user tests take place
in a usability laboratory and not within the case company’s environment. The
intention was not to examine the usability of the prototype; the focus was on
the usefulness only. However, this provided the opportunity to record the test
runs in video and audio. This implies that the test system did not operate on
real data, but in a synthetic, though real-world-like, test environment, based
on realistic data. Therefore, the tests could be set up with a better focus on

74

Chapter 5. Research Approach

the test objectives, because the manipulation of data accordingly was easy and
without consequences (Mitchell, 2007, p. 42).

Every user test had the same agenda: A test user obeys a test script, by
fulfilling tasks in the prototype, followed by an interview regarding the objectives
of the test session. The user tests were moderated (Dumas and Loring, 2008),
the moderator guided the users through the tasks and offered support. Hence,
questions with the test script or other issues with the system could be solved
immediately (Albert et al., 2010, p. 62).

The user tests were executed in three iterations, so that the outcome of one
iteration can influence the prototype for the next iteration. The final prototype,
and thus the one including the changes from the results of the user tests, is
described in this thesis (section 7.2). It contains slight differences to the project
deliverable of the development phase (Dolog et al., 2009c).

5.3.2 Data Analysis

The data analysis is the heart of a design study and has the goal to achieve an
understanding (Järvinen, 2000, p. 75). During this research the data analysis
was conducted in an on-going process, as part of the BIE cycles of ADR. The
constant evaluation resulted in a continuously increasing data collection, whose
analysis was an important aspect of the shaping process. This was possible
by processing the gathered data and feeding back into the design process from
the gained insights, which is reflected in the methodology’s stage 3 (see section
5.1.3).

Besides feeding back into the design directly there is also the documenta-
tion and communication of (intermediate) results. As explained above (section
4.1.1), during this project each project phase had to be concluded with an out-
put in form of reports. In this section I describe the process, how these reports
were created as a result of the analysis, for each project phase separately.

Even though this is a design study, the activities follow the standards for a
traditional software development building process (Järvinen, 2000, p. 101). It
begins with a requirement analysis, followed by the design of both a knowledge
model and the prototype, and is then concluded with an evaluation of the pro-
totype. The reason for this is very simple: Despite the different goal between
the design and the development of a system, the steps to be taken are similar. It
is therefore important to stress that this data analysis focussed on the research
aspects of the design study.

The previous section explained the data collection and its sources (section
5.3.1). In a design study like this, the analysis of this data is a crucial aspect
of the project work. In the following I describe the analysis in detail, organized
according to the project phases. The data analysis is strongly influenced by its
qualitative research background and the focus of a design study. Therefore, I
describe the steps being taken in prose. This makes it easier to understand the
actions that were taken, as well as the reasons for these and their results.

Note that each of the project phases build on top of each other. As shown
above (see section 4.2.1), the outcome of one phase is always the input for the
following one (see figure 11 on page 46).

75

Knowledge Management in Software Development

Requirement Analysis

The goal of the requirement analysis was to achieve an understanding of Log-
ica’s knowledge management problems. To investigate the internal strategies
and IT support for knowledge management, project representatives as well as
project managers were interviewed and observed. The findings were then, in
Logica case meetings, discussed. It was compared whether the gained insights
from the interviews represent a realistic view on the company’s status. The
employees during these meetings represented a different layer of the case com-
pany’s hierarchy and could provide more input regarding problems and the need
for knowledge management. They further provided documents that illustrate
the communication within Logica.

In internal meetings, the results of the different interviews and the input
from the case meetings were then combined and discussed, in order to form a
broader picture. A combination of the views from inside and outside the projects
helped to gain the necessary overview. This then was analysed and resulted in a
first draft for a document, which sums up the findings by explaining the process
management, knowledge flows, knowledge management challenges as well as a
scope for the planned knowledge management system.

Through multiple iterations with the KiWi project members of the case
companies the draft was then elaborated on and extended with an outline of
what the targeted knowledge management system is supposed to do. The system
is sketched on the level of use cases and class diagrams. The latter provides an
overview of the most significant concepts and their relation to each other.

Once a draft was finished, on which all involved authors could agree, it was
forwarded to the reviewers. Two participants of the KiWi project that are not
directly involved into the cooperation with this case company provided com-
ments regarding the rigor and quality. These were then considered, objectives
were corrected and the final document could be delivered to the KiWi project
management.

Type Content Form Reference

Report Requirements KiWi Project Deliverable D5.4 (Nielsen et al., 2008)

Table 4: Output of Requirements Specification Phase

I was one out of the two researchers that conducted the interviews with the
project representatives and project managers in the beginning of the require-
ment analysis phase. I participated in all Logica case meetings, which then
helped to raise a shared understanding of the involved people. These meetings
consisted of shorter presentations of ideas or understandings and discussions
among all participants. Based on this gained understanding, I then created a
first draft for the deliverable. Large parts of the original content were signifi-
cantly changed; however, it provided a ground for discussion and collaborative
improvement.

Knowledge Model

After submitting the specification of the requirements, the targeted system was
further discussed in case meetings. Here, different possibilities were elaborated.

76

Chapter 5. Research Approach

Based on the understanding gained through the requirement analysis a system
was envisioned that would support the process work, in a three column layout.
After debating it in several meetings, this concept was detailed in a document
with use case descriptions. Further development took place, before this concept
was discussed in a KiWi meeting, with multiple project members outside this
business case.

The feedback from the various discussions was worked into the concept. A
new document was created, which contained an adaption of the proposed system
to the project’s needs and possibilities. This document also extended the class
structure of the previous deliverable to a more general knowledge model. It was
more detailed and translated into an ontology to be supported by the semantic
wiki (see section 4.3).

A description of this knowledge model and its structure was added to the
document. The first draft of the deliverable then followed the exact same process
as the one during the previous project phase. First, all contributing authors
elaborated on it iteratively until they agreed to have reached a final state. Then,
the draft was handed over to the reviewers, i.e., project members that are not
involved in the documented work. Resulting comments about rigor and quality
were appreciated and worked into the draft, which was then finally officially
delivered to the project management.

Type Content Form Reference

Report Knowledge
Model

KiWi Project Deliver-
able D6.3

(Dolog et al., 2009b)

Specification Ontology Knowledge Model in
OWL

Table 5: Output of Knowledge Model Phase

The prototypes that were developed during that time already made use
of a data structure, which was created by a Logica employee, based on the
requirement analysis document. A fellow PhD student, who was also enrolled
in the KiWi project, and I translated this data structure from relational tables
into an ontology. The deliverable then, a result of shared responsibilities and
collaborative writing and editing, compiles the concepts used for the prototypes
and the insights gained and discussed through them.

Prototype

The prototype’s design began figuratively with the first project phase. Both
the requirement specification and the knowledge model add to the design of the
prototype. As the development took place in a bigger project with deliverables
to the funder, the previous documented insights should be applied. The design
therefore had not only to be informed by the previous project phases, but also
match the requirements specification and utilize the knowledge model. Also,
the design followed a building process that applies the BIE cycles (Järvinen,
2000; Sein et al., 2011).

During this project phase possible designs of the knowledge management
systems were further and continuously discussed in various circles and all dif-
ferent meetings. In several iterations an approach evolved from the achieved

77

Knowledge Management in Software Development

findings and dialogues, which addresses the issues of the case company and fits
to their environment. For these issues the collected data from the requirement
analysis was often consulted and discussed with people from the case company.

A technological proof of concept was then developed in order to show that
the envisioned solution is realizable. In short iterations one of these prototypes
were discussed in Logica case and internal meetings. The shaping of the design
was therefore based on a technologic proof of concept. When the design reached
a level of certainty the development of the complete prototype began.

The prototype of the approached knowledge management system was devel-
oped through support by programmers of different units in the KiWi project.
That happened according to the design as defined within the Logica case. Here,
demands on the included technology were defined that advanced the general
features of the KiWi platform. These demands were discussed and designed
among the developers in regular exchange with the case team. A first working
prototype was then presented on all different kinds of meetings with various
circles of participants. The resulted feedback was documented and worked into
preliminary prototypes.

Finally, the thus collected data was reported in the first draft of the next
project deliverable. A user guide was created and the developers documented
their implementation themselves. Additionally, the contributing authors wrote
about the background, the reasons that led to the design decisions and the final
system architecture. They referred their work back to the requirement speci-
fication document (Nielsen et al., 2008) and the knowledge model description
(Dolog et al., 2009b). Within multiple iterations this document was edited by
all contributing authors until they all agreed on having reached a preliminary
status. This document was then sent to the internal reviewers. Their feedback
was worked into the draft in order to deliver the final version to the project
management.

Type Content Form Reference

Report Implementation
of Prototype

KiWi Project Deliverable
D6.4

(Dolog et al., 2009c)

Software Prototype Knowledge Management
System

Table 6: Output of Prototype Development Phase

The original idea of the three column layout as well as the related use case
descriptions were provided by a Logica employee. Long before this phase in the
project began, I used them to create concepts for systems and prototypes that
apply them. First, the entire development was done by me alone. Later, Logica
applied three student developers, who I managed.

The different prototypes, that were initially conceptual, evolved to a pro-
totype of the KiWi systems. In many meetings and in front of varying KiWi
project participants, I presented the status of the different prototypes, collected
feedback and enhanced the concepts for the further development. My role was
therefore much of a coordinator of the developing activities relating the KiWi
systems.

The KiWi systems are described below in detail (section 7.3), consisting

78

Chapter 5. Research Approach

of the KiWi platform, the Project Management Application (PMA) and the
Data Exchange Agent (DxA). The KiWi platform was developed by the project
partners who were responsible for the core and the enabling technologies. The
PMA was developed by Logica according to its own needs. And the DxA was
developed in close cooperation between a student developer of Logica and me.
My role here was again the coordinator; I was responsible for the integration of
the different systems.

Large parts of the final deliverable were then written by me, based on ad-
ditional material. I describe the knowledge management problems of Logica
briefly and then explain the idea of the circle of knowledge, which was provided
by an employee of Logica. For the remainder of the document, I wrote most
of the documentation of the KiWi systems and a user guide. I contacted the
developers of the particular features to gather information and compile them to
the larger picture. Every involved developer was then able to edit the document
before its submission.

Evaluation

The final project phase had the target to evaluate the created prototype. It was
used to compare the developed knowledge management systems to the require-
ment specification and to examine whether it could be beneficial for Logica.
As evaluation is an on-going process in ADR, minor changes to the prototype
were performed after the delivery of it due to the project’s milestone, finishing
the previous project phase. These changes however were based on the results
of presentations and discussed in Logica case meetings. The major target of
the final project phase was the evaluation of the design. The usefulness of the
prototype was to be investigated.

The tasks during the evaluation phase were planned carefully, which be-
came a difficult task, because of two major issues. First, the timetables of the
necessarily participating people and the period of the actual evaluation showed
difficulties regarding the scheduling. And second, the software was not very
stable after two years of development, which, at that time, was not fully fin-
ished by all project partners. Based on these considerations the evaluation was
planned to utilize an iterative approach. Similar to agile software development
(Larman, 2003) the idea was to evaluate aspects of the system in different it-
erations. This provided the possibility to plan the evaluation to certain detail,
but keep a particular flexibility at the same time. This has certain advantages,
when it comes to optimization and preparation of the system for specific parts
of the evaluation and regarding the involvement the available people.

The iterative evaluation was planned by describing the roles of the involved
people as well as a timeframe in which the iterations take place. Also, the
test cases were defined in form of use cases, borrowed from the literature on
requirements engineering (Cockburn, 2000).

Use cases describe a common scenario and the process in which the system
should be used. These were carefully created by participants of the business
case and further discussed in Logica case meetings. The process qualifies the
created report as an artefact and not just as a simple plan for the evaluation.
The planning actually included the documentation of detailed process thoughts,
i.e. how to use the knowledge management system.

79

Knowledge Management in Software Development

It was planned that during the evaluation these processes then should be
followed by employees of the case company. An interview follows the system
test, to investigate the opinion of the test person about the system. The test
itself was planned to take place in the usability laboratory (Rubin and Chisnell,
2008). Thus, it can be recorded in video and audio.

All these aspects were thoroughly discussed and planned for the evaluation.
The results were then described in a document, which after some iterations of
editing by the authors was send to other project participants for review. The
resulting comments were then worked into the draft and it was delivered to the
project management as the official evaluation plan.

After finalizing the plan, the actual evaluation period began. In a case
meeting the first objective was chosen, so that the system could be optimized
accordingly. Once the required stability was reached, the test runs with the test
persons took place. The findings of the user tests were discussed in a Logica case
meeting, which resulted in change requests for the software. And finally a report
was created describing the evaluation iteration’s outcome. This procedure was
followed for each of the three iterations.

After finishing the final iteration a document that describes the complete
evaluation was created. It included and was based on the iteration reports.
The contributing authors edited the document in different iterations, before it
was sent to not involved project participants for reviewing. The draft was then
modified to include the comments and delivered to the project management as
the final delivery, documenting the evaluation of the knowledge management
system.

Type Content Form Reference

Report Evaluation Plan KiWi Project Deliver-
able D7.2

(Grolin et al., 2010a)

Report Evaluation Results KiWi Project Deliver-
able D7.4

(Grolin et al., 2010b)

Software Improved Prototype Knowledge Manage-
ment System

Table 7: Output of Evaluation Phase

One of the researchers of the Logica case had the idea to create a complete
feature list of the KiWi systems. I created a draft of this list, documenting all
features of the different systems that I have knowledge about. To enable the
other project participants to view and extend this list, I created a page in the
project-internal wiki with it. I contacted everyone and asked for their partici-
pation. Further, I used the feature list, to enhance the use case descriptions, so
that every work step additionally lists the involved features. Both, feature list
and use case descriptions can be found in the appendix of this thesis.

Based on the problematic situation in the project, a researcher of the Logica
case came up with the idea to conduct the evaluation iteratively. I picked up
that idea and outlined a systematic evaluation approach, following the patterns
of agile software development. I based the evaluation iterations on the use
case descriptions created earlier and defined a process as well as a rough time

80

Chapter 5. Research Approach

schedule to be followed. Based on these I created a draft of the deliverable,
which was slightly edited by the rest of the involved people before submission.

The evaluation itself was entirely conducted by me. I planned, executed,
documented and reported on the user test sessions. Further, I had the idea of
an iteration that does not follow the plan, to improve the results by widening the
focus of the evaluation. After all test runs, I compiled the reports and created
a draft for the deliverable, which again was slightly edited by the rest of the
involved people before submission.

The development of the software throughout this phase followed the same
lines as described above.

81

Knowledge Management in Software Development

82

Chapter 6. Problem Analysis

Chapter 6
Problem Analysis

This chapter describes my analysis of the knowledge management problems in
Logica. As such, it represents the first stage, the problem formulation, of the
ADR methodology applied in my research (see section 5.1.3).

I first describe the background of Logica (section 6.1), before I provide an
overview of the identified problems (section 6.2). Then follows a detailed expla-
nation of the two general problems: Isolated islands of knowledge (section 6.3)
and inadequate bridging of knowledge (section 6.4). Finally, I summarize the
problems of Logica (section 6.5).

6.1 Background

The focus of my problem analysis is the development department of Logica in
Denmark. In fact, my cooperation with Logica focussed on the continental part
of Denmark, Jutland. All people involved in my studies worked in Logica of-
fices in Aalborg and/or Århus. I roughly outlined Logica and its organization
above (section 4.2.1). In this section, I provide more details to the background
of the case company and describe the environment, in which the problems oc-
cur. The identified problems are described afterwards. Here, I explain Logica’s
operational business.

For the sake of illustrating the context and in order to explain the operational
business of Logica in Denmark, I extend the focus to Logica worldwide briefly.
Note that this is only done to reveal the implications to the local business (i.e.,
Denmark). The focus of my analysis remains unaffected.

83

Knowledge Management in Software Development

Logica operates globally, providing consultancy for IT and management from
offices in many different countries. In this worldwide setting every local business
focuses on its own markets. The different situations in these countries lead to
a diversity of Logica branches. The different areas of concern (i.e., the markets
of the local businesses) decrease the chances of cooperation between the local
businesses of different countries. However, some of these local businesses focus
on international collaboration. Logica in India, for example, is often included
with offshoring projects. On a global scale, Logica thus tries to make use of its
international man power in order to gain a competitve advantage.

Logica is a rather new company in Denmark. Just before the beginning of
the KiWi project in early 2008, Logica aquired WM Data, a Swedish company
from the 1970s with many offices throughout entire Scandinavia. Since the
acquisition, Logica runs offices in five different cities with about 800 employees
in Denmark alone. This includes technical specialists from a variety of fields as
well as experienced managers.

After the acquisition all business activities were continued. Logica gradually
introduced organisational changes only, in order not to interrupt the day-to-
day business. Employees, for example, kept working on the same projects, in
the same offices, with the same colleagues. So even though Logica is new in
Denmark, the company itself figuratively just changed its name. The company
therefore already has a developed self-perception: Providing services and solu-
tions of high quality. This confidence is based on the experience of many years
of successful projects. The employees are carefully selected and well educated.

Logica’s customers are from many different domains, including the health
sector and telecommunications. Clients are for example banks and insurances,
but also Danish municipalities. Some customers have collaborated with Logica
(and its predecessor WM Data) for many years and the collaboration is on-
going. With every project, Logica investigates the possibilities of follow-up
assignments. The goal is to obtain long-term relationships between Logica and
the customers; conducting one project after the other. Sustaining collaboration
is easier and more cost effective than establishing new ones.

In addition to the divergent backgrounds of customers, the profile of work
varies. Sometimes the whole development is done by Logica employees alone and
takes place in Logica offices. But sometimes projects have to be developed in the
customer’s offices. Also, the staffing is not always Logica exclusive. Sometimes
cooperation is unavoidable. Projects then involve employees of the customer or
even from other contractors by the customer.

The services provided by Logica are organized in projects. Customer re-
quests or assignments are always dealt with in projects. Logica’s main business
is therefore project work. Projects are considered extremely important and are
of high priority within the company. For the lifetime of a project, Logica em-
ployees are figuratively working for the customer. Once a project ends, the
employees are free to be assigned to other projects.

Every project at Logica reaches a level of independence, its purpose is of
high importance. This is the result of the project-orientation in Logica: A
project entirely focuses on solving a customer’s problem and everything else
within Logica is focused on successful projects. The organization of a project
holds certain liberties. To some extend projects in Logica therefore become
autonomous.

Additionally, the projects themselves differentiate from each other as every

84

Chapter 6. Problem Analysis

project is specifically tailored to the customer’s needs. The time frame and
staffing of a project does not follow fixed rules, but varies. While some projects
only last a few months, others are running for many years, often including
follow-up projects.

Because the project’s budged is occasionally very high, Danish and Euro-
pean law requires a public call for bids. And even if it is not a legal necessity,
customers usually compare offers. Logica is therefore always in competition with
other companies. Any customer-related knowledge can thus be a competitive
advantage.

The project manager is in control of and responsible for a project. Due to
the importance of projects within Logica, a project manager is very powerful.
Project managers are responsible for the entire internal organization of a project.
They plan and coordinate the work of the project team. Project managers are
responsible for reaching the defined goals of their projects. To be prepared for
such a responsibility, they are highly educated. Most of them have a masters
degree. Further, Logica provides internal trainings and many project managers
additionally take external certifications.

The education is important, because a project manager has to take au-
tonomous decisions within the boundaries of a project. The communication
between customer and project team, for instance, is strongly influenced by the
project managers. The same counts for many different aspects of projects in
Logica. Every project manager arranges projects according to its goals, the
applied technologies and the involved people.

The company’s rules regarding the organization of a project are very strict.
Project managers have to report to the management level of Logica. These
reports contain the schedules and data about resources, i.e., the financial aspects
of a project. The detailled contents and timeframes of such reports are defined
in process descriptions. In fact, the whole organization of projects is regulated
by process descriptions. A process description is basically a list of tasks to
follow, similar to a to-do list. In Logica these process descriptions explicate the
company’s strategy. They are supposed to make sure that project managers
work in the company’s interest and with an organized risk management.

In Logica process descriptions are defined by a committee of different people.
Such a committee includes (among others) process auditors, project managers
and process designers. A creation of a process description is a complex act that
involves many people with different backgrounds and intentions. The target of
a process description has to be specific enough in order to be used easily. At the
same time a process description has to be as general as possible, in order to fit
for many different projects. The finalized process descriptions are then stored
in Logica’s intranet, where every employee can access and utilize them.

To summarize, Logica operates with a strong focus on projects. Project
managers are very important within Logica, as they are responsible for the
organization and the success of a project. Process designers define the process
descriptions, which support and control project managers in their work.

6.2 Overview of Identified Problems

The analysis of the empirical data in the KiWi project (section 5.3) shows that
Logica faces several knowledge management problems. Two areas of concern in

85

Knowledge Management in Software Development

Logica negatively affect the internal knowledge management (figure 25). On the
one hand, there are issues resulting from the strong focus on project work. The
concentration on projects is so high, that they actually isolate the projects from
each other. I therefore use the term isolated islands of knowledge to describe this
area of concern. On the other hand, there are general issues relating Logica’s
management approach. Problems occur, because the knowledge sharing through
documentation does not work as intended. I use the term inadequate bridging
of knowledge for this area of concern.

The knowledge management problems are hierarchical organized. Both in-
clude several problems, I subdivided and numbered them according to areas of
concern. These are information access (A1), expert finding (A2), sharing sup-
port (A3) and documentation level (A4) for the isolated islands of knowledge,
and process complexity (B1), feedback circle (B2) and connected documentation
(B3) for the inadequate bridging of knowledge (figure 25).

Figure 25: Knowledge Management Problems in Logica

In the following sections I describe each of the found problems separately. I
characterize their occurance and effect on Logica. For each problem I created
a diagnostic map, based on those outlined by Lanzara and Mathiassen (1985).
The original approach is designed to help understanding and describing a project
situation. I use the diagnostic map to pinpoint and specify problems. The
map itself provides an overview, I then describe the background in more details
afterwards.

Each diagnostic map comes with four columns. The first column, “Problem”,
provides the statement of the knowledge management problem in Logica. The
second column, “Reasons”, provides the background to the problem. Here I
explain what the problem emerged from and give reasons for that. The third

86

Chapter 6. Problem Analysis

column, “Consequences”, provides the consequences of the problem. I describe
the circumstances that the problem leads to. And finally the fourth column,
“Approaches”, provides how the problem is already approached within Logica.

6.3 Isolated Islands of Knowledge
As explained in the background description above, Logica is a company with a
strong focus on projects. The analysis of the knowledge management problems
showed that the projects seclude from each other. This focus on project work
results in an isolation of projects from one another. A project can therefore be
considered as an island of knowledge. I found four major problems in this area
of concern.

6.3.1 Information Access (A1)

Problem Reasons Consequences Approaches

Projects inter-
nally encapsu-
late knowledge,
which is cre-
ated through
project work

- Internal collab-
oration organized
autonomously
- Lack of con-
nection to other
projects

- Knowledge re-
use difficult
- Decreasing pro-
ductivity

- Applying tools
(File server &
Sharepoint)

Table 8: Diagnostic Map for Problem “Information Access”

The analysis of Logica regarding problems with the knowledge management
led to a finding concerning the access of information (table 8). During project
work in general, employees create knowledge. For example, they gain experi-
ences from utilizing technology or the results of certain work steps. In Logica,
this knowledge remains within the boundaries of the project, instead of sharing
it with the rest of the company. The information access is the problem: Projects
internally encapsulate knowledge, which is created through project work.

“We have projects that are almost like departments. They
work as if they’d have nothing to do with the rest of the com-
pany and knowledge doesn’t really get in or out.” (Project
manager from Logica during a project meeting)

To explain the reasons for this problem, one has to look at Logica’s main
focus: Projects. The goals of a project are of so high importance that project
managers are figuratively given free rein. My analysis shows that project man-
agers commonly organize projects internally according to the personal experi-
ences and opinions of the project participants. The collaboration strategies and
supporting tools are therefore usually chosen according to personal preferences.

To illustrate the reasons for this problem, I provide insights from two dif-
ferent Logica projects, which I will call here Project Alpha and Project Beta. I
analysed both in detail, focusing on the way they organize their project work.
Both develop software solutions for Danish municipalities and both use similar
technologies for the development.

87

Knowledge Management in Software Development

Each of the projects has their own set up of a versatile issue-tracker called
Jira15. Project Alpha uses it mainly for bug tracking, test documentation and
requirement specification. However, it is not consistently used. A considerable
amount of bugs is reported through direct communication instead (i.e., by e-mail
or personal talk). Hence, the documentation is not complete and certainly not
traceable. Project Beta uses Jira mainly for release management. The project
team keeps track of software changes and briefly describes fixes and features in
Jira. In combination with the comments in the code, this is the only source of
documentation of the software in project Beta.

Both projects work in the same domain with the same technologies and use
the same tools for documentation. And yet, the data sets are very different in
the two projects. The way Jira is utilized virtually resembles a different tool.
The data of project Beta would not make much sense for participants of project
Alpha and vice versa. Both projects use the same tool for different tasks.

The overall project planning, regarding resources etc., follows strict guide-
lines in Logica. For instance, every project manager has to report the details of
the project plan. In contrary to that, the internal organization, e.g., the realiza-
tion of the planning and its communication within the project, does not follow
any rules. In project Alpha the project plan is handled through MS Project16,
while in project Beta this is done in an MS Excel17 spread sheet. This is a
tool-choice based on personal preference of the project manager. The difference
to the previous case is that here both projects realize similar tasks through
different tools.

Direct personal communication is of high importance in both projects. Agree-
ments are partially reached in meetings or direct conversations among people
of the project staff. These are not always documented. Additionally, in both,
project Alpha and Beta, e-mail is an important factor. In project Alpha e-mail
agreements are often not documented elsewhere:

“Most important information is somewhere in an e-mail in
my Outlook.” (Project manager of project Alpha during
project interview)

These examples show that, based on the lack of rules, each project in Log-
ica organizes the internal collaboration autonomously. The documentation of
project work differs and in many cases it is even being let slide. Many projects
have a low level of documentation. This does usually not influence the project
work itself; the strong project internal communication can balance that. But the
project participants hardly externalize their knowledge. It is therefore difficult
to access for other employees of Logica, there is a lack of connection between
projects.

The consequence of the encapsulation of knowledge is that the access to
information becomes too difficult. In Logica, employees from other projects
can hardly access the knowledge of a project. This also makes the knowledge
re-use very difficult. My analysis shows that many projects have to build up
this knowledge independently. This is costly, though, and takes time, as it
decreases the productivity. By leaving knowledge unused, Logica misses out on
a competitive advantage.

15http://www.atlassian.com/software/jira/
16http://www.microsoft.com/project/
17http://office.microsoft.com/excel/

88

Chapter 6. Problem Analysis

Logica is aware of this grievance. In order to loosen the encapsulation of
knowledge two IT systems are available to all employees: A file server and MS
SharePoint18. The latter is not frequently used by either of the projects from
the examples above. Project Alpha uses it to manage links to documents on
the file server. Project Beta uses it for internal notes only. However, both are
not consistent with either.

The file server is a network drive, which holds a folder and a fixed amount
of space for every project. Strict management of the access rights increases the
difficulties with the file server. A member of project Beta explained, that some
of the developers were not granted the access rights until several months into
the project work. The file server was abandoned, because parts of the project
participants were not able to reach it. Project Alpha created a folder structure
on the file server and stores different documents there. These documents usually
relate to the communication with the customer, in form of contracts, reports
and the like.

Hence, the approaches to alleviate the information access fail for the same
reasons that caused the encapsulation of knowledge in the first place. First,
the utilization of the systems can be organized autonomously. Logica does not
determine any rules. Second, the level of documentation in these tools is very
low. From the perspective of sharing knowledge they are of little value.

6.3.2 Expert Finding (A2)

Problem Reasons Consequences Approaches

Finding experts
within the com-
pany is difficult

- No accessible
repository of ex-
pertise
- Expertise of
colleagues is often
unknown

- Expertise has
to be built au-
tonomously
- External experts
have to be hired

- Project supervi-
sors
- Project man-
agers interact

Table 9: Diagnostic Map for Problem “Expert Finding”

The analysis of Logica regarding problems with the knowledge management
led to a finding concerning the pinpointing of experts (table 9). Experts are
generally people with knowledge in a specific field. Logica needs experts to
solve specific problems in project work. Projects often have to be realized with
cutting edge technology, but also outdated technologies are required occasion-
ally. The project then needs employees with expertise in this certain technology.
Localizing the expertise among the employees is therefore a necessity, especially
for the staffing of a project. The problem is to find experts within the company.

“It is too difficult to find all the relevant information when
solving a specific task, sometimes people don’t even know that
relevant knowledge exists.” (Project manager from Logica in
a requirement analysis document)

The problem of finding experts among the employees has a simple reason:
Lack of overview. Logica has no system to provide awareness about its em-

18http://sharepoint.microsoft.com/

89

Knowledge Management in Software Development

ployees’ knowledge. The expertise of employees is therefore discovered by their
colleagues in direct interaction only. Expertise of colleagues is often unknown,
unless the employees worked together directly before. The project organization
in Logica, however, restricts these circles of interaction. Logica’s employees
usually do not know the knowledge of others they have not directly worked
with. This makes finding experts difficult. Often experts cannot be found, even
though they exist in the company.

In order to explain the consequences, I describe the problem in expert finding
in more detail. My analysis shows that experts are needed in different scenarios,
of which I illustrate two. First scenario, projects have the need for an expert
as a permanent member. The expert is then the knowledgeable person in the
project. A common approach is to share this expertise through training on the
job with other project participants. This way more employees gain expertise by
learning from the experts.

The second scenario for the need of experts is that the expert is only needed
for a short period. An expert often acts like an internal consultant. The tasks
in a project then are very different from each other. One task is to solve a
specific problem within the project. This usually happens, when most of the
project work can be done by the project participants themselves. Sometimes a
project faces a very specific problem, which the project participants hardly can
solve themselves. An expert then is utilized to solve this problem. The other
task for experts that are assigned to projects for a short period is to train the
other project participants. Here the expert is not always directly involved into
the project work. The trainings are sometimes also organized in form of general
workshops.

In Logica, experts are employees that help solving specific tasks in projects.
But if no experts can be found, the tasks are not solved. This leads to two
options. First, the project participants have to build up the knowledge on their
own. This can be very time consuming and lowers the quality of the project
work. Second, an external expert has to be hired. External experts work like
the internal ones, but they are expensive. Hence, either of the two influences
the project.

To make the expert finding easier, Logica implemented two different lines
of interaction throughout the company. First, project managers are communi-
cating among each other. There are different meetings where project managers
exchange experiences. The goal is to raise the awareness about experts in the
company. Second, every project is being supervised. Every so called project
supervisor is mentoring a number of different projects. This helps overseeing a
vast number of people and their expertise. But even project supervisors have a
limited view, although they are mentoring several projects. Despite these two
approaches, Logica’s employees claim that experts cannot always be found.

6.3.3 Sharing Support (A3)

The analysis of Logica regarding problems with the knowledge management led
to a finding concerning the support of sharing (table 10). Sharing the knowl-
edge among employees, which can be considered as helping each other, is often
referred to as a culture of sharing. Logica has a well working culture of sharing,
within the boundaries of projects. However, on the company level the opposite

90

Chapter 6. Problem Analysis

Problem Reasons Consequences Approaches

Employees do
not share their
knowledge with
people from
other projects

- Sharing is not
valued high in
company
- No policy on
sharing
- No rules how to
use tools

- Productivity
gain remains un-
used
- Knowledge shar-
ing is considered
a waste of time

- Applying tools
(Forum & Mailing
lists)

Table 10: Diagnostic Map for Problem “Sharing Support”

is the case. And that is a problem: Employees do not share their knowledge
with people from other projects.

“Many people try out new stuff, but they never share their
knowledge. We had trouble with Jboss server. It took my
people too long to install and use it for certain issues. They
tried to google their problems and asked colleagues they knew
from previous projects. But it did not help. In other projects
they even do not know whom to ask. We are always rein-
venting the wheel.” (Project manager of project Beta during
project interview)

This problem, the lack of sharing, has two reasons. The first reason is that
sharing is not valued high in Logica; the focus is on projects. My different
interview partners explained that project participants are open to share among
each other. The employees within a project are keen to communicate and share
their knowledge. And yet, on the company level, the keenness to share is rather
low. The effort seems too high for employees outside the own project, especially
for people that do not know each other directly.

“In most cases, sharing with people outside the own project
happens only if it means low effort for one self.” (Process
designer from Logica during an interview)

The second reason for the lack of sharing is that sharing is not supported
by Logica. There is no policy, no guidelines or rules regarding the sharing
of knowledge in Logica. This can be observed best when looking at the two
different tools that aim at knowledge sharing: A forum and mailing lists.

The forum is standard software (Yammer19) and accessible for every em-
ployee through Logica’s intranet. During an interview I was shown how it works:
Employees can use it to ask a question or provide details about something to the
whole company. Every employee is then able to reply, gather more information
in order to find a solution. Thus, it also helps to establish a connection to a
colleague with certain expertise.

The idea of such a tool seems fine, but there are several problems with the
forum. First, it is hardly used to actively spread information. In most cases
employees rely on previously asked questions and the willingness of knowledge-
able others to reply. Second, no timeframe is guaranteed. An answer could take
a few minutes or hours, but also weeks or months. In worst case the question

19http://www.yammer.com/

91

Knowledge Management in Software Development

will not be answered at all. Third, often questions are simply not seen. A ques-
tion without an answer does not necessarily mean that no one in the company
has the knowledge. Most questions are not seen by every employee. Fourth, a
knowledgeable person has to be willing to reply a request. Even if employees
know the answer to a question, they do not necessarily answer it. Employees
are not always keen on sharing their knowledge with people they do not know.

The mailing lists are used frequently. Many different of these mailing lists
exist, one for each field of interest. Employees can subscribe to them and then
participate (actively or passively) in on-going conversations or start new ones.
According to people I interviewed, the mailing list for architecture for example
contains typically five to ten messages per day. But the value of it was in doubt,
because the mailing lists in general suffer from a major problem: Not all posted
e-mails are read by all employees. Knowledgeable colleagues do not necessarily
read an e-mail targeted at their knowledge. There are various reasons for that.
One reason is that the mailing lists involve too many e-mails for a busy person.
Another reason is that not everyone participates in the mailing list, so the mail
never reaches the knowledgeable person.

Using either of the tools is voluntary. Logica does not have any rules or
guidelines for the use of these or other tools to share knowledge. Neither does
a policy exist of how to share knowledge in general. The tools are not even
company-wide promoted. Many employees in Logica are not aware of the exis-
tence or how to use the two tools. This limits the value of the tools.

As sharing is not supported adequately, many opportunities are missed out
where employees could help each other. This influences the general quality of
all project’s work. My analysis shows that, based on the reasons given above,
the quality level in forum and mailing lists is not always high. I was told that
often questions stay without responses. Some people in Logica claim that the
attention to the tools decrease and that these are partly considered a waste of
time. But also, a possible gain of productivity remains unused.

Logica approaches the problem that knowledge is not being shared through
the application of these two tools. But the missing policy and guidelines for their
utilization decreases their value. They barely improve the lack of knowledge
sharing.

6.3.4 Documentation Level (A4)

Problem Reasons Consequences Approaches

Documentation
of project work
is often incon-
sistent or in-
complete

- Documenta-
tion is different in
each project
- Documentation
of communica-
tion is costly and
time-intense

- Difficulties to
learn from docu-
mentation
- Documentation
not sufficient to
increase produc-
tivity

- Nothing

Table 11: Diagnostic Map for Problem “Documentation Level”

The analysis of Logica regarding problems with the knowledge management
led to a finding concerning the level of documentation (table 11). In general,

92

Chapter 6. Problem Analysis

documentation has to be of certain quality in order to learn from it. To enable
re-use of knowledge in Logica, every project has to provide documentation of
decent quality. This is, however, often not the case. Most projects do not exter-
nalize the knowledge about the project work sufficiently, in order for employees
from other projects being able to learn from it. The analysis shows that the
documentation is usually not detailed enough, incomplete and/or inconsistent,
which is a problem.

“Knowledge is currently not sufficiently explicated and cod-
ified and in such a way which is suitable for other projects
to read.” (Project manager from Logica in a requirement
analysis document)

Logica’s strong focus on project work is also the reason that the documen-
tation level is too low. Logica provides the liberty to every project, to organize
itself autonomously and does not oblige standards for the documentation and
communication within projects. There are no suggestions regarding the gen-
eral practice or tool selection. The level of documentation, and therefore the
externalization of knowledge, depends on every project separately. The docu-
mentation is thus different in each project.

To illustrate, why the ability of organizing the documentation in a project
freely influences the quality of documentation, I again provide insights from a
Logica project (Project Alpha from section 6.3.1). The project manager ex-
plained that knowledge is well shared within the project; the participants gen-
erally have the same knowledge. This is achieved through close communication.
The project team uses instant messengers (MSN Messenger20) and e-mail, but
more importantly, they meet on the fly and have personal discussions. Yet,
none of these conversations (regardless which channel or how many people are
involved) is documented. Many decisions or bug reports are lost in casual com-
munication. The only persistent documentation within project Alpha is done
in Jira, however, not consistently. Not every aspect of personal interaction is
included here, neither are many bugs or tests.

The documentation provided by projects is often too loose and disconnected
to be meaningful. Crucial information is missing in many cases. Most projects
do not document their communication and project work sufficiently, because it is
costly and time-intense. Logica’s employees do not have the time and motivation
to actively document the project work or the internal communication.

“Too much time is used manually moving and transform-
ing information around different media and programs, and
between structured (e.g. risk lists in spread sheets) and un-
structured (e.g. emails) formats.” (Project manager from
Logica in a requirement analysis document)

The level of documentation influences the re-use-ability. In Logica this level
is very low, i.e., the externalized knowledge in form of easily accessible data
is not sufficient in terms of quality and quantity. Inconsistent and incomplete
documentation results in difficulties to learn from it. My analysis shows that
most projects are not able to re-use the externalized knowledge of other projects
in Logica, because of these reasons.

20http://explore.live.com/messenger/

93

Knowledge Management in Software Development

6.4 Inadequate Bridging of Knowledge

The problems described above as part of the project isolation show a strong
relation among each other. In fact, all four of them are consequences of the
strong project-orientation in Logica. In this section, the interconnection be-
tween the problems is much weaker; some of them are barely related. The
inadequate bridging of knowledge works more as an umbrella term here. Each
problem illustrates an approach to bridge the islands of knowledge. They present
grievances or defects within Logica regarding knowledge management. I found
three major problems in this area of concern.

6.4.1 Process Complexity (B1)

Problem Reasons Consequences Approaches

Process de-
scriptions are
too complex
and numerous

- Studying all
process descrip-
tions takes too
long
- No support for
project managers

- Project man-
agers ignore pro-
cess descriptions
- Increases risk
potential for
projects

- Nothing

Table 12: Diagnostic Map for Problem “Process Complexity”

The analysis of Logica regarding problems with the knowledge management
led to a finding concerning the complexity of processes (table 12). In general, a
process description resembles practices, which are based on the experiences of
previous project work. Following such a process description helps to assure a
certain level of stability and security for every project. In Logica it is mandatory
for project managers to follow process descriptions. Project managers have to
know these process descriptions and choose the fitting one for their projects.
The problem is that process descriptions are too complex and numerous.

“We face the problem of ignorance. There might actually be
a standard procedure or standard process or standard way of
doing the job, which likely works, but somehow the people
that do this job don’t really know about it. Maybe they never
heard about it, maybe they have forgotten, maybe something
else. . . And it’s not always easy to find out, whether there are
some standard tools or processes for that.” (Project manager
from Logica during a project meeting)

Before explaining the problem with process descriptions, I want to provide
more details about the background. In Logica, process descriptions are oblig-
atory to follow for three reasons. First, they provide certain stability and op-
timization in the organization. Although following a process description does
not guarantee high quality, a process description can help to increase it. Sec-
ond, the process descriptions are intended to support project managers. They
should help project managers to organize their projects in a Logica approved
way. The third reason for the process descriptions is the conformity. A high

94

Chapter 6. Problem Analysis

grade of similarity in the project organization across the company simplifies the
auditing and controlling tasks.

My analysis shows that Logica has the process descriptions for good reasons,
but also that the project managers are confused and overwhelmed by their
amount and complexity:

“It’s also a matter of complexity and information overload.
There are so many good things you could do, there are so
many things you could consider, there’s so much informa-
tion. . . You more or less just give up and just do it the way
that you think is good.” (Project manager from Logica dur-
ing a project meeting)

The complexity of process descriptions becomes a problem, because project
managers are often not able to choose the best fitting one. This is based on
two aspects. First, Logica has no instance to support project managers in their
choice of process descriptions. A project manager is figuratively left alone with
that decision. There is actually no support for project managers to deal with
the process complexity. Second, my analysis shows that a project manager has
to spend days, if not weeks, in order to study all process descriptions at Logica.
This is very time consuming and a too demanding task, especially in the initial
phase of a project. It simply takes too long to study all process descriptions.

The complexity in finding the right process description has the consequence
that it is too difficult for project managers to do so. It is figuratively impossible
for them to make an informed decision on which process descriptions to choose.
According to my analysis, it is of rare occasion that project managers find the
correct process descriptions and apply them correctly. Instead, project managers
start ignoring the process descriptions and work according to the best of their
knowledge and belief.

In Logica most projects violate the company’s rules by not following the
process descriptions. However, that might not even be based on a conscious
decision, the complexity of process descriptions makes it too difficult for project
managers to find the right one. The downside is, that not following the defined
processes, potentially contains risks for the project, which the project manager
might not be prepared for.

6.4.2 Feedback Circle (B2)

Problem Reasons Consequences Approaches

Communication
between pro-
cess designers
and process
executors is
difficult to es-
tablish

- No easy/direct
channel for feed-
back
- Finding the cor-
rect person to
provide feedback
to is difficult

- Process descrip-
tions are being
ignored
- Process descrip-
tions are not be-
ing improved

- Nothing

Table 13: Diagnostic Map for Problem “Feedback Circle”

The analysis of Logica regarding problems with the knowledge management
led to a finding concerning the feedback circle between the process designers and

95

Knowledge Management in Software Development

the process executors (table 13). Generally, process executors should feed their
experiences back with specific process descriptions, in order to enable process
designers to improve these process descriptions. In Logica this feedback circle is
not closed, feedback is difficult to provide. The problem is that communication
between process designers and process executors is difficult to establish.

“Official documents (e.g., process descriptions, employee guides)
exist and are accessible for every employee. However, chang-
ing them is not a simple task. To modify one of these, the
responsible manager would have to be contacted. But it is
not always easy to find out who the responsible manager is.
This expands the feedback circle. In many cases the effort
for employees to criticize on documents is too high, so that
comments of users are not included.” (Project manager from
Logica in a requirement analysis document)

To understand the problem with the extensive feedback circle, one has to
understand why feedback on process descriptions is important. Logica has em-
ployees creating process descriptions, in order to make the knowledge of previous
project work re-use-able. The focus is here on the process related knowledge,
not the technical aspects. In order to cover the variety of projects, these process
descriptions have to be of general nature. However, not all process descriptions
can easily be applied.

In Logica, project managers have often difficulties to simply apply a pro-
cess description. There are two reasons for these difficulties. First, the process
descriptions are too general. Project managers then have to find a way to imple-
ment the general process in the specific project. Second, the process description
has certain weaknesses. The process description can be imprecise or conflict
with other obligations. Even if project managers are able to apply a specific
process description, they often have comments or suggestions to it. In each of
these cases a project manager should provide feedback to the process designers.
This would raise the awareness, that a process description needs to be improved.
Providing feedback, however, is a problem in Logica.

The problem with a confusing feedback circle is caused by the lack of a
contact line of communication. In Logica, no easy or direct channel between
process designers and process executors exists. And even further, it is very
difficult for employees to find the correct person to provide feedback to.

This problem has the consequence that feedback is in many cases simply not
provided. Taking the extra effort to provide feedback is often too complex for
most employees. My analysis shows that the lack of feedback has two main con-
sequences. First, the process descriptions are not being improved. The process
designers, who do not receive feedback, conclude that the process description
works fine, because nobody comments on it. Second, the process executers get
fed up by the process description and ignore it. Instead of following a process
description the employees sometimes organize their work autonomously. Em-
ployees then violate the company’s policy. Hence, the confusing feedback circle
lowers the usefulness of process descriptions.

96

Chapter 6. Problem Analysis

Problem Reasons Consequences Approaches

Documentation
provided by
projects is not
connected

- Documenta-
tion is different in
each project
- No company-
wide documen-
tation policy or
tool support for
documentation

- Possibility to
re-use is lowered
- Awareness of
knowledge in the
company is low

- Project supervi-
sors

Table 14: Diagnostic Map for Problem “Connected Documentation”

6.4.3 Connected Documentation (B3)

The analysis of Logica regarding problems with the knowledge management led
to a finding concerning localizing the documentation of the different projects
(table 14). It is common in Logica that different projects have similar goals
or tasks. They work in the same domain, with the same technology or the
like. My analysis shows that projects constantly create all different kinds of
documentation of the gained bits and pieces of experiences, which could be re-
used by other projects. But to enable this re-use, a connection between the
different parts of documentation has to be established. A connection allows
employees to find the information of interest. But that is a problem, because
the documentation provided by projects is not connected.

“It is rarely possible in the current technology to find knowl-
edge items, which are not written directly into a particular
document with a particular focus or referred to explicitly by
the authoring manager.” (Project manager from Logica in
a requirement analysis document)

This problem, the lack of connection among the documentation of projects,
is rooted in the autonomous organization of each project. As explained above,
every project is granted the liberty to organize its documentation independently.
My analysis shows that many different types of documentation exist. The doc-
umentation is different in each project. In Logica, every project develops its
own lingo and its own documentation routine. Often, even within one project,
these are followed inconsistently, which makes it difficult to automatically find
the desired information.

An employee that reads a document can relate to most of the topics included
and understand the objections. But this is a very complex task, as employees
would have to open every document manually. That makes the information
difficult to find. Logica could prevent this manual process through company-
wide documentation policies or tool support, but neither exists.

The difficulty to find documentation has two consequences. First, it low-
ers the possibility to re-use knowledge. I learned that even useful information
remains unused, because it cannot be found. Second, the awareness of knowl-
edge in the company is low. A project manager of Logica explained to me that
the difficulty to find documentation results in a decreasing understanding of
the work of other projects. Employees then sometimes do not even consider

97

Knowledge Management in Software Development

searching for other projects documentation, because they have no idea where to
start.

To increase the connection of documentation between projects, a project
supervisor monitors a variety of projects in Logica. Project supervisors support
the projects in finding the recorded experience of other projects. They are able
to connect the documentation between projects they worked with. However,
this is still a manual task and the project supervisors have a limited view.
Despite the help of project supervisors, employees claim that documentation
often cannot be found.

6.5 Summary of Identified Problems
Seven different problems were discovered in Logica (table 15), divided into two
groups. However, the connection among the problems within each group varies.
The problems that are part of the isolated islands of knowledge (Numbered with
the prefix A in table 15) show a strong relation between each other. They are
all aspects of the same big problem, if you will. The connection between prob-
lems described as inadequate bridging of knowledge (Numbered with the prefix
B in table 15) is much looser. Here, the umbrella term shows that each prob-
lem is more general and affected by challenges in Logica’s organization. These
problems are also much more distinct from each other, compared to the project
isolation ones. Each focusses on slightly different aspects within the organiza-
tion of Logica and shows where knowledge management is being prevented or
discouraged.

No. Section Problem

A1 6.3.1 Projects internally encapsulate knowledge, which is created
through project work

A2 6.3.2 Finding experts that are already in the company is difficult

A3 6.3.3 Employees do not share their knowledge with people from other
projects

A4 6.3.4 Documentation of project work is often inconsistent or incom-
plete

B1 6.4.1 Process descriptions are too complex and numerous

B2 6.4.2 Communication between process designers and process executors
is difficult to establish

B3 6.4.3 Documentation provided by projects is not connected

Table 15: Logica’s Knowledge Management Problems

The distinction between different problems is not always easy. Sometimes
different problems intersect or affect another, despite the hierarchical organiza-
tion and visualization (figure 25 on page 86). Interconnections between problems
occur. For example, the lack of connection of the available documentation (see
problem B3 in table 15) is a general problem of Logica. However, it can also
be understood as a result of the knowledge encapsulation within projects (A1)
and the insufficient explication of project knowledge (A4).

98

Chapter 6. Problem Analysis

Even though the distinction between the different problems can be difficult,
because they are related, this is of rather low relevance. Each of the stated
findings is a problem on its own. Looking at one at a time, as done above, shows
the challenges of Logica regarding the knowledge management. The solution to
a single one of them would decrease these knowledge management issues.

“We have a lot of people, who know a little bit of this and
a little bit of that. And we have to combine what all these
people know.” (Project manager at Logica during a project
meeting)

My analysis shows that the knowledge sharing between projects in Logica is
very low. While the implications and perspectives of this are multifaceted (hence
the seven problems), the reasons can be traced back to two simple aspects. First,
there is the missing support by the company. A tool could make a change by
simplifying the sharing aspects. Second, most problems discussed above emerge
from the independent organization of projects. My analysis shows that in many
cases, this liberty is misused as a reason, to ignore what might be good for the
company. Logica also suffers from the attitude of its employees.

“A lot of our project managers have the opinion: It’s my
project, it is unique.” (Project manager from Logica during
a project meeting)

Many project managers think that their projects are very special. This is
based on a level of ignorance, but also out of unawareness. In many cases
project managers simply do not know about other projects and how they could
relate. Be it ignorance or unawareness, both have the same consequence. Either
way, knowledge is not being re-used, but built up over and over again. It is
expensive for Logica that projects do not utilize the knowledge of other projects
within the company or do not provide their knowledge to other projects within
the company. Therefore, Logica wastes available resources and misses out on
achieving a competitive advantage.

99

Knowledge Management in Software Development

100

Chapter 7. Building

Chapter 7
Building

The previous chapter covered the problem analysis, where I described Logica’s
knowledge management problems. That corresponds to the first stage of ADR
as outlined by Sein et al. (2011). In ADR the development of the system then
happens in the second stage: Building, intervention and evaluation (BIE, see
section 5.1.3). Here, the problems are being approached through the constant
iteration of these BIE circles. The software is constantly developed, applied and
evaluated. The final knowledge management system is therefore the product of
an evolution through several iterations. This chapter deals with the first aspect
of this circle, the building.

I describe the underlying ideas of the knowledge management system in
detail (section 7.1), followed by the overall design of a system to approach
the knowledge management problems (section 7.2). Afterwards, the functional
design of this system (section 7.3) and the technical design (section 7.4) are
explained. Finally I provide a workflow, the process description, which explains
the intended use of the envisioned system (section 7.5).

As explained above, ADR follows a strong iterative approach (see section
5.1). The BIE circles are continuously executed to improve the system and
elaborate on it over time. The work of this thesis is based on more than two and a
half years of iterating through these circles in the KiWi project. These iterations
were of varying length and depth. Early iterations focused on conceptual aspects
or proof of concepts. Later the development of the system was expedited. In
general, ideas were rarely invented from scratch. Instead, ideas mostly developed
over time, after discussing an aspect and examining it in the system through
different versions. Sometimes ideas were thought of being good, but once they

101

Knowledge Management in Software Development

made it to the system the evaluation showed that they were not. This led to
different actions, some ideas had to be improved, others were abandoned again.

ADR is a strongly problem-oriented process. It focuses on solving a problem,
by constant evaluation and shaping of an IT artefact. The iteration of BIE
circles results in high quality of the work process, the final system and the
research outcome.

The downside of an iterative approach like this, however, is that it is difficult
to track. The constant changes of the software and its requirements are not easy
to explain afterwards. One has to describe step by step of such a process, which
results in long and tiresome reports. A chronological description of the real
process could be very detailed but often readers would find it confusing and
difficult to comprehend.

In order to tackle Logica’s knowledge management problems a knowledge
management system was created. In this chapter I explain this system in detail.
I describe the design process and clarify reasons and decisions. However, to
communicate all these different aspects to the reader in the easiest way in this
thesis, I step back from the detailed documentation of the iterative process.
Sticking to the iterative description would not help the reader to comprehend
the system and its creation. Instead, I chose to improve the readability by
describing the whole process as if it was linear.

Parnas and Clements (1985) explain that it pays to fake a rational design
process. By presenting the system as if its design followed such a rational and
systematic way increases the readability. Every aspect reported in this case is
relevant for the final system. Intermediate results or dead-ends, despite being
an important aspect of the actual iterative design process, are left out of the
description. The outcome is a coherent documentation, which explains the
design of the final system and the underlying ideas.

I document the system’s design and development as if it was the result of
distinct consecutive phases and as if it precisely followed a rational and system-
atic way of software development. The sections in this chapter build upon each
other and each provides more details to the previous one. The actual iterative
process remains unexposed.

7.1 Underlying Ideas

I utilize the knowledge management strategies by Hansen, Nohria, and Tierney
(1999) as my design theory. I discuss these strategies in more depth above (see
section 3.2). The authors explain that a strategy has to be followed, in order
to successfully organize the knowledge management within a company. Two
different knowledge management strategies are described: Personalization and
codification. Personalization focuses on the direct and personal communication
among employees. They share their knowledge directly from one to the other.
Codification focuses on the externalization of knowledge, by all employees. Oth-
ers then are able to learn from the externalized sources.

Hansen et al. (1999, p. 112) recommend an 80-20 split between the knowledge
management strategies (see section 3.2.3). A company should focus on one
strategy and apply the other one for support (figure 26).

102

Chapter 7. Building

Figure 26: Knowledge Management Strategies and their Shares

7.1.1 Strategies and Layers

One way to look at my problem analysis is that there are different knowledge
management strategies applied within Logica in parallel. Hence, I distinguish
between the development layer and the management layer.

With development layer I refer to those parts of Logica that are involved in
the actual project work. This involves literally all project participants, including
the project manager.

The communication among the participants of every project works very well.
The employees communicate directly and through many different channels (e.g.,
personal talk, e-mail, and messenger). Also, they often meet unscheduled, with-
out much organizational overhead. Their meetings are usually arranged on the
fly. In many cases employees meet spontaneously and discuss project issues. The
constant and direct communication is sharing the personal knowledge among the
employees. This direct communication is what Hansen et al. (1999) describe as
personalization.

My analysis shows that Logica lacks rules or guidelines for the internal or-
ganization of projects (see section 6.1). The effect is that project managers
organize their projects autonomously. As described above, several knowledge
management problems of Logica (see section 6.5) are influenced by this.

The focus of project work is on achieving the project goals. Projects can be
organized autonomously, without direct communication lines to other projects.
The effect is that the project-internal communication is much more direct and
simpler. The problems A1, A4 and B3 (cf. table 15 on page 98) show that an
effect of this is the neglection of documentation. These problems illustrate that
the codification in projects is very low; the developers share their knowledge
through personalization instead. The project work therefore follows a personal-
ization strategy regarding its internal organization.

With management layer I refer to the entire controlling instance of Logica,
i.e. those parts that are responsible for the management of the whole company.
This involves a variety of different aspects of the company, like the strategic
planning, process design or project monitoring. Project managers are also part
of this layer.

The communication within the management layer is mostly document-driven:
Project managers create reports to provide details about the project’s status and
process designers create process descriptions. The reports as well as the process
descriptions are explicated project knowledge, which are being processed and
shared for others to learn from.

This document-driven form of communication is called codification (Hansen
et al., 1999). My analysis shows that codification of knowledge as reports and
documentation is widely used throughout Logica (see section 6.1) and can be

103

Knowledge Management in Software Development

considered as the company’s general knowledge management strategy. Guide-
lines define the codification approach and the internal hierarchy is aligned to it.
However, this is also the reason for several knowledge management problems of
Logica, as described above (see section 6.5). Especially the problems A2, B1
and B2 show that the communication in the management layer is not working
properly. This has a negative impact on projects and the knowledge re-use ap-
proached through the documentation is much lower than aimed. The level of
personal communication in the management layer is rather low. Even though
meetings are performed regularly, the knowledge sharing is almost entirely based
on documents.

Figure 27: Logica’s Organizational Layers with their Knowledge Management
Strategies

From this analysis one can see that different knowledge management strate-
gies are dominant in different layers of Logica (figure 27). This leads to the first
design idea.

Design Idea 1: Supporting the two organizational layers
in Logica with different knowledge management strategies:
The management layer follows a codification strategy and
the development layer the personalization.

The idea is that Logica’s knowledge management problems shall be ap-
proached by taking the division of knowledge management strategies into re-
spect. According to Hansen et al. (1999) a company should pick a primary
knowledge management strategy and use the other one to support it, in a split
of 20 – 80. Design idea 1 however embodies that Logica follows two different
strategies in different layers of the company (Jahn and Nielsen, 2010, 2011).

Additionally, it can be observed that the support of the secondary strat-
egy in either of the layers is very low. As explained above, the management
layer has figuratively no personalization and the low level of codification in the
development leads to several problems.

7.1.2 Strategies and Problems
In order to defend the first design idea, I compare it to the problems I found
through the analysis (section 6.5). I review every problem separately, and dis-
cuss its relation to the design idea 1. This includes that I point out which layer
and which strategy the problem concerns. Afterwards, I provide a summary for
this (see table 16).

Problem A1: Information Access

The problem is that the information access of Logica’s projects is difficult, be-
cause each project can be organized autonomously and the level of documen-

104

Chapter 7. Building

tation is rather low (see section 6.3.1). However, the knowledge sharing works
within the projects on a highly personal basis. Employees outside the own
project are barely considered and the codification of knowledge hardly plays a
role. Therefore, this problem concerns the personalization part within the de-
velopment layer. The personalization works within projects only, not between
them. It is therefore limited, as it does not work across the entire development
layer.

Problem A2: Expert Finding

The problem is that finding experts within Logica is difficult (see section 6.3.2).
The knowledge about skills of colleagues is shared through direct contact only.
Employees only know about the expertise of those colleagues, whom they worked
with. Therefore, this problem concerns the personalization within the develop-
ment layer.

Logica introduced project supervisors and meetings of project managers to
support the knowledge sharing about the expertise of employees. Therefore,
this problem also concerns the personalization of the management layer.

Problem A3: Sharing Support

The problem is that knowledge is not being shared through the application
of two provided tools (see section 6.3.3). As these tools are voluntary and
no guidelines support them, They are hardly in use by employees to codify
their knowledge. Therefore, this problem concerns the codification part of the
development layer.

Also, as explained above, many employees of Logica are not open to share
their knowledge with colleagues they are not directly involved with. Sharing is
not part of the company’s culture. Therefore, this problem also concerns the
personalization of the development layer.

Problem A4: Documentation Level

The problem is that the codified knowledge in form of easily accessible data
is not sufficient, regarding the quality and quantity (see section 6.3.4). The
project participants focus on the project work and do not consider the re-use
possibility. The result is incomplete and inconsistent documentation, which
others can hardly gain insights from. Therefore, this problem concerns the
codification of the development layer.

Problem B1: Process Complexity

The problem is that the high complexity in finding the right process description
has the consequence that it becomes too difficult for project managers (see
section 6.4.1). Project managers have to study all process descriptions for a
long period of time, which is hardly possible in the project work. Therefore,
this problem concerns the codification of the management layer.

105

Knowledge Management in Software Development

Problem B2: Feedback Circle

The problem is that no easy or direct channel between process designers and
process executors exists (see section 6.4.2). The line of communication is dif-
ficult, which shows that the problem concerns the personalization within the
management layer.

Additionally, a lack of feedback decreases the possibility to improve the pro-
cess descriptions. These process descriptions often remain untouched. There-
fore, this problem concerns also the codification of the management layer.

Problem B3: Connected Documentation

The problem is that the lack of connection among the documentation of projects
makes documentation within Logica difficult to find (see section 6.4.3). This
concerns the documentation of the whole company, and therefore the codifica-
tion in both layers. The gaps in the documentation affect not only one layer of
the company. Employees are not able to find it on the management layer and
to use it on the development layer.

Summary

Mapping the knowledge management problems, found in the analysis, to the
design idea 1 shows a large overlap. All problems are concerned with strategies
of the different layers. Table 16 visualizes that the isolated islands of knowledge
(problems A1 – A4) are mostly in the development layer, while the inadequate
bridging of knowledge (problems B1 – B3) take mostly place in the management
layer.

Personalization Codification

Management
Layer

A2, B2 B1, B2, B3

Development
Layer

A1, A2, A3 A3, A4, B3

Table 16: Mapping Logica’s Knowledge Management Problems to the Organizational
Layers and Knowledge Management Strategies

The problem structure matches the first design idea of different knowledge
management strategies in two organizational layers. Whether or not the prob-
lems can be solved through a system that follows this design, however, is the
objective of the evaluation.

7.1.3 Improving the Situation
I just showed that Logica’s knowledge management problems are addressed by
the knowledge management strategies. Here, I briefly discuss how the first
design idea can improve the situation and solve the problems.

My analysis shows that the participants of a project show close cooperation
and extensive personal communication. Between different projects, however,
knowledge is barely shared. The analysis found several problems with that
concern (A1, A2, A3, A4 and B3). The design intention is to strengthen and

106

Chapter 7. Building

thus improve the codification of the project work within the development layer. I
can see the potential for this to support the knowledge sharing between projects.
An increased codification in form of documentation can support the re-usability
of codified knowledge by employees in other projects.

Regarding the management layer the approach is different. The knowledge
sharing here does not work well. My analysis shows that problems emerge from
it (B1, B2 and B3). The implemented codification strategy seems to be too
complex. Employees state that the process descriptions are too numerous (see
section 6.4.1) and difficult to improve (see section 6.4.2). The result, as I describe
in the problem analysis, is that employees undermine the codification strategy.
Personalization is important, supporting it as the secondary strategy is the de-
sign intention. This can improve the codification. When a project manager can
contact the designer of a specific process description directly, misunderstand-
ings or problems can be sorted out immediately. The project manager can then
continue using the process description without problems.

7.1.4 Connecting the Layers

After pointing out the two layers within Logica, it is reasonable to ask how they
connect. The knowledge needs to be shared vertically as well, i.e. across both
layers. In Logica this is the responsibility of the project managers, who is part
of both layers.

Every project manager is responsible for the organization of their projects.
Project managers have to plan and coordinate the project work. This involves
tight communication with the project participants. As Logica holds their project
managers responsible for the project work, they always have to know the current
status of the project. Also, the project managers have to report the project’s
status and findings to the management layer in regular meetings. This is part
of Logica’s general controlling mechanism, in order to avoid bigger problems for
the company based on bad management. By reporting the status and progress
of the project, a project manager figuratively takes the knowledge from the
development layer and brings it to the management layer.

This also works the other way around. Project managers apply the pro-
cess description and follow guidelines on how to manage projects. By re-using
codified knowledge, a project manager actually takes the knowledge from the
management layer and brings it into the development layer.

Figure 28: Knowledge Sharing between the Organizational Layers

The project manager is therefore the only instance that is responsible for
knowledge sharing between the two organizational layers (figure 28). It is the

107

Knowledge Management in Software Development

project manager’s responsibility to share knowledge (e.g., reports, descriptions)
from the management layer to the development layer and vice versa. The project
manager is therefore an important and crucial role in Logica. The second design
idea is supporting the project managers in their tasks.

Design Idea 2: Connecting the two organizational layers
in order to establish and support knowledge sharing between
them.

To improve the knowledge management in Logica, the idea is to connect the
two layers (figure 29). Each layer should focus on its own knowledge manage-
ment strategy (design idea 1).

The system to be designed has to ensure the knowledge sharing between
those layers, i.e. strategies. It is a deliberate decision to improve the sharing
knowledge between the organizational layers, because it helps to tackle all of
the problems, to certain extend.

Figure 29: Different Strategies in different Layers of the Organization, from
(Jahn and Nielsen, 2011)

Hansen et al. (1999) do not mention an approach that involves different
strategies within the same company, neither the connection between different
strategies. However, based on the design ideas 1 and 2 the system to be designed
has to follow a vertical approach through the different organizational layers
(Jahn and Nielsen, 2010, 2011). This can be followed in three different parts:

• Support the codification strategy in the management layer

• Support the personalization strategy in the development layer

• Support the knowledge sharing between the two layers

A knowledge management system has to take these three aspects into ac-
count, in order to improve the knowledge management for Logica. Both layers
and the communication between them have to be considered.

7.2 Overall Design
I base my deliberations regarding the support of the knowledge management
in Logica on the theory of knowledge management systems by Davenport and
Prusak (1998), which I discuss in more depth above (section 3.3). These systems
mainly focus on storing data in one way or the other into a knowledge base. We
distinguish between three different knowledge bases (see table 2 on page 36):

• The external knowledge base contains input on aspects outside the com-
pany, it is therefore not of interest for this study.

108

Chapter 7. Building

• The structured internal knowledge base stores formal information of the
company.

• The informal internal knowledge base represents documentation of com-
munication.

7.2.1 Supporting the Layers

The differed knowledge bases are utilized in supporting the different layers,
according to the first design idea. In the following I describe the approaches for
a knowledge management system for Logica, which look at each organizational
layer separately.

Development Layer

I just described that the development layer is following a personalization strat-
egy. To support the personalization, different systems are available (see section
3.2.2). For this project the design decision has been taken to use a wiki. This
is a reasonable choice, as I showed that wikis are collaborative tools, which
support the communication on sources (see section 3.3.2).

Design Idea 3: Utilizing a wiki in order to support the
personalization strategy within the development layer.

Wikis contain what Davenport and Prusak (1998) call an informal inter-
nal knowledge base. People use wikis to collaborate and to communicate on
shared sources. The content is mostly unstructured information in regular text.
Knowledge management systems of this kind work like an archive of textual
communication.

However, users have to invest manual work, because specific data is not
always easy to obtain. Logica’s employees can use the wiki to share and discuss
topics of interest. They can also use the wiki to collect information about a
certain topic from many different people throughout the company. Hence, wikis
increase the potential for knowledge sharing from one project to the other.
Participants of other projects can simply access the documentation.

Hansen et al. (1999) pointed out that a knowledge management strategy
needs support by the opposite one. A wiki supports the personalization, as it
is a collaboration tool. It helps to bring people together to cooperate. How-
ever, it also strengthens the codification strategy to support the personalization.
The whole collaboration is being stored. This also includes the externalized
knowledge in the documentation of work process. Hence, wikis embody the
codification support of a personalization strategy.

Management Layer

Above, I described that the management layer follows the codification strategy.
This can be realized through a variety of tools, which are mostly used under the
term Enterprise System (ES). An ES supports a company with different aspects
of the management work (e.g., data analytics or business processes) (Davenport,
1998; Hitt et al., 2002; Umble et al., 2003).

109

Knowledge Management in Software Development

This however, is very general. There is a variety of tools for these tasks.
Logica has a very specific need for an ES that supports the process manage-
ment and the project management, a so called process or project management
system (PMS). Every project manager in Logica works with and every project is
managed through a PMS. This is an essential aspect of the work in Logica. The
main focus of such a PMS is to collect, manage, analyse and communicate data
from the project work. For Logica such a PMS is absolutely essential. Even
though different ones are in use, any knowledge management approach has to
take a PMS into account.

Design Idea 4: Utilizing a project management system in
order to support the codification strategy within the manage-
ment layer.

In most cases, an ES contains what Davenport and Prusak (1998) call a
structured internal knowledge base. The general principle of a PMS, to be
more specific, is the collection of structured information. Data is stored in
forms and the user can view (and, depending on the context, also edit) every
field separately. Hence, the documentation through a PMS follows a strict
formalization and every data set is the structured codification of knowledge.
This makes the contents easy to process for computers. Data sets can easily
be compared and calculated. A PMS focuses on bringing the users and the
documents together and therefore supports the codification only, but not the
personalization.

7.2.2 Connection between the Layers

I explained above that the project manager is a crucial role in Logica. It is the
project manager’s responsibility to share knowledge between the development
and the management layer. The project manager is therefore the connection
between the two layers. Design idea 2 projects this role into the knowledge
management system. The systems that support each layer have to be connected.

The connection becomes even more important through the utilization of
design ideas 3 and 4. Exchanging data between the two different knowledge
bases, that are being created for each layer, is a difficult task, which can be very
time consuming and complex. The project managers have to be supported in
order to achieve a working system.

The knowledge management system to be created has to support the entire
company. A plain support of the layers would not benefit Logica. In contrary,
the job of the project managers would become more difficult. This raises the
danger that both layers become isolated from one another. Connecting the layers
therefore also means bringing the different parts of the company closer together.
Knowledge sharing between the two layers can improve the general knowledge
management within Logica and thus provide a competitive advantage.

This connection between the layers is a challenge on the technical level. In
contrary to the knowledge management strategies, which focus on the collabora-
tion of people, this aspect has to be solved when developing the system. Despite
the more detail is this aspect already covered by design idea 2, a new one is
therefore unnecessary.

110

Chapter 7. Building

7.2.3 A Heterogeneous Knowledge Management System

To approach the analysed knowledge management problems (chapter 6), in the
sections above I describe four design ideas for the knowledge management sys-
tem, which are the fundamental tenets of the design.

Design Idea 1: Supporting the two organizational layers in Logica with dif-
ferent knowledge management strategies: The management layer follows
a codification strategy and the development layer the personalization.

Design Idea 2: Connecting the two organizational layers in order to establish
and support sharing knowledge between them.

Design Idea 3: Utilizing a wiki in order to support the personalization strat-
egy within the development layer.

Design Idea 4: Utilizing a project management system in order to support
the codification strategy within the management layer.

In order to improve the knowledge management for Logica, a knowledge
management system is supposed to be created, based on these four design ideas.
But especially the design ideas 3 and 4 indicate two different tools to be utilized
(table 17) in order to support the different knowledge management strategies
(design idea 1). These have to be connected (design idea 2) to create one major
system.

Organizational
Layer

Knowledge Man-
agement Strategy

Type of Knowl-
edge Management
System

IT

Management Codification Structured internal
knowledge base

PMS

Development Personalization Informal internal
knowledge base

Wiki

Table 17: Horizontal Approach to Knowledge Management

The utilization of the theories regarding the knowledge management strate-
gies (Hansen et al., 1999) and knowledge management systems (Davenport and
Prusak, 1998) led to a knowledge management approach with a vertical system
for Logica.

Different aspects of the company were taken into consideration. Both layers
have to be supported separately, the management layer through a PMS and
the development layer through a wiki. Additionally, the sharing of knowledge
between both layers hasbe established easily. Connecting the two different sys-
tems improves the knowledge management for Logica for two reasons. First, it
supports the work of a project manager. Instead of collecting the project knowl-
edge and inserting it manually into an ES the project manager is simply able to
re-use the created project knowledge. Second, connecting the layers supports
the overall knowledge management strategy. This improves Logica’s knowledge
management as a whole, because it is more unified than the separation among
the layers before.

111

Knowledge Management in Software Development

7.3 Functional Design
To approach the different layers separately, following the four design ideas, two
distinct systems were designed, one for each layer. One additional system is
responsible to connect these two. The prototype of a knowledge management
system created for these studies consists therefore of three systems: The KiWi
platform, the Data Exchange Agent and the Project Management Application.
In combination all three are called the KiWi systems (figure 30).

Figure 30: The KiWi Systems

Note that the KiWi systems are not entirely developed by myself. They
are instead the outcome of the project participants’ cooperation between the
different project partners of the KiWi project. Instead of coding, my personal
focus was on the design of the systems and on conducting the BIE circles.

A list of all features of the KiWi systems can be found in appendix B.

7.3.1 KiWi Platform
According to design idea 3, the system to support the personalization in the de-
velopment layer is a wiki. Specifically, the system created is the KiWi platform
(or short: KiWi), which is the main outcome of the KiWi project (see section
4.3). It is a semantic wiki with additional features to improve the knowledge
sharing abilities for software engineers (Schaffert et al., 2009). As mentioned
above, these features are the enabling technologies, namely personalization, in-
formation extraction, reasoning and querying (section 4.3.4).

With KiWi the users are provided a system that allows them to interact on
text. The project participants can use it to share thoughts and discuss different
aspects of their work. They can also use it to collect feedback on ideas. More
generally, KiWi is documenting the project work by storing the different aspects
and its relations to one another. This helps employees from other projects to
recapitulate what happened and to learn from it.

KiWi is divided into several applications like an admin area and the actual
wiki (see the big white links in the header in figure 31). The admin area contains
all those settings an administrator is allowed to take hands on. The wiki part
contains all the pages, which users can read and edit. There is also a dashboard,
which can be considered as the starting point of the KiWi platform. When users

112

Chapter 7. Building

Figure 31: The KiWi Platform, Edit Mode (Screenshot)

log in, they can find an overview of other people’s activities or the personal
recommendations here.

Every KiWi page contains textual information, just like any regular wiki
page. However, in addition to that, it also has semantic data and free form
tags attached. The semantic data contains input about the page (e.g., date of
creation or author), but users can further assign types from available ontologies
and define the properties.

There are two modes of KiWi: Edit (see figure 31) and view (see figure 32).
Toggling between these two modes works through the actions drop-down-list on
top of each page. The edit mode allows users to edit the contents and semantic
values of a KiWi page (figure 31). The different buttons in the editor help the
users to perform the different actions for the content of a page. Further, users
can assign tags and comments to a KiWi page. In view mode, a user can read
the contents of a KiWi page (figure 32) and leave comments.

Both modes of the interface contain a right column, which includes the
references of and to the page currently viewed and a recommendation section
(see right side of the screenshots, figures 31 and 32). The references show the
connections to other pages. That means links that go to or come from the page
currently viewed at. Also, it references the authors and types.

Further down, the recommendations are presented to the user. These are
provided by the personalization component of the enabling technologies of the
KiWi project (see section 4.3.4). KiWi here displays links to pages that could
be of interest for the user. To calculate these recommendations, KiWi analyses
the user’s behaviour. When the user shows interest in certain topics by adding
tags or editing pages, the system suggests further pages of similar topics (Durão
and Dolog, 2009a,c).

The KiWi platform contains many more features than the ones described
above. However, these are those that are the most influential ones for my
studies.

113

Knowledge Management in Software Development

Figure 32: The KiWi Platform, View Mode (Screenshot)

7.3.2 Project Management Application

According to design idea 4, the management layer shall be supported in its codi-
fication strategy by a project or process management system (PMS). The system
created for this task is the Project Management Application (PMA), a system
for enterprise resource planning and process management. It covers the basic
functionality that is needed for management issues of software projects. The
PMA is exemplary for any possible PMS, customized for Logica’s needs. The
analysis showed that different systems are being utilized in different projects.
Therefore, the PMA was developed as a standalone web application.

A project manager uses the PMA to store data about a project. To do
that, the application allows users to view, insert and edit data of different types
(figure 33). These are grouped in the main navigation, on the top row, into
three different categories: Project, organization and process (see the links in
the header in figure 33).

When the user then chooses one type, the system presents an overview page.
It contains a list of all entities of this type, as well as a mask to filter the list.
Every entity is displayed as an entry in a table, with key data and always with
two buttons to view and edit. Clicking on view opens the detail screen for the
chosen entity, including all relations and data fields. This view has an edit
button with the same function as the one on the overview page: It leads to a
screen to edit the chosen entity. Here the user can change the provided data
and save it or delete the whole entity.

The entry overview page also contains a button that allows adding a new
entity. The “enter new entity” mask is almost the same as the “edit entry” one.
References to other entities are always managed through tabs on the bottom of
the page that provides the detailed view. Here, the user can view the related
entities or choose other ones.

Similarly to other PMS, the PMA is commonly accessed by the project
manager and a small circle of people inside the company only. Mostly just one

114

Chapter 7. Building

Figure 33: The Project Management Application (Screenshot)

115

Knowledge Management in Software Development

or two persons per team have access to it, not the whole project team. The
PMA’s main use is the administration of planning and controlling related data
as well as the communication of these to the higher management levels.

7.3.3 Shared Knowledge Model
The realization of design idea 2, i.e., the connection of KiWi and PMA, involves
the synchronization between these systems. Therefore the data within these
systems is important and their approach to store it.

Figure 34: Relational Database Table

The PMA follows a more traditional approach by utilizing a relational database
(figure 34). Typically for an ES, the data is stored in strictly defined tables with
several fields. Every entity is represented by one row in a table. In contrary to
that, KiWi has a knowledge base realized through technologies of the semantic
web (see section 4.3.1). Data is thus stored in form of triplets in a triplet store
(figure 35). The types described in the ontology are instantiated to objects and
the data fields are connected through properties.

Figure 35: Semantic Web Triplets

Design idea 2 states that the combination and exchange of data is an im-
portant aspect of the system. This however becomes a complex task due to
the fact, that both systems are based on different technologies. To achieve the
connection of the systems a shared knowledge model was created (Dolog et al.,
2009b). The idea is that the same data fields can be represented in both systems
(figure 36). The PMA was created on top of it, exemplary for any other ES. Its
structured internal knowledge base in form of a relational database is equal to
the shared knowledge model.

116

Chapter 7. Building

Additionally, an ontology was constructed based on the shared knowledge
model. This ontology can then be loaded into KiWi. The informal internal
knowledge base of KiWi can thus contain data as defined through the shared
knowledge model.

Figure 36: Shared Knowledge Model between the PMA and KiWi

The shared knowledge model covers valuable attributes and data fields of an
application for project management. It is designed to support different fields:
Designing processes, planning & monitoring projects, managing requirements,
configuration management and quality assurance. This is achieved through
a complex data structure that includes entities provided for all contingencies.
The whole shared knowledge model contains more than 80 entities, accessible
in both systems. Each of these entities has several data fields and relations to
other entities.

The entity ProjectPlan, for example, has fields like a version number or
text fields that contain a description of the organization, scope and included
resources of a project. But it further contains a variety of relationships, like the
project participants, risks and goals (figure 37).

Figure 37: The Type Project Plan and its Conceptual Relationships (RDF
Diagram), from (Dolog et al., 2009b)

More details regarding the knowledge model can be found in the deliverable
D6.3 of the KiWi Project (Dolog et al., 2009b). Additionally, a few more details

117

Knowledge Management in Software Development

and a link to the actual knowledge model are attached to this thesis and can be
found in appendix A.

7.3.4 Data Exchange Agent
To support the exchange of data between the two systems for the management
and development layer, the second design idea suggests connecting these. I
showed above, that this connection supports the work of the project managers.
Therefore, the Data Exchange Agent (DxA) was created. It is a middleware
between the PMA and KiWi with the objective to transfer data from one system
to the other. A simple interface allows the user to choose information of the
project management application for publishing into the KiWi platform as well
as updating previously published data. The update works in both ways, the
user can decide whether to update in KiWi or the PMA.

The process of exchanging data is established through the use of the shared
knowledge model. However, the DxA does not depend on specific hard coded
interfaces on either of the systems.

Figure 38: The Data Exchange Agent (Screenshot)

When a user starts the DxA a list of available templates is loaded, which is
then shown on the left side of the application (see “Template List” on the left in
figure 38). These templates represent the entities that are available for import
in the KiWi platform. The user can choose one of these and the DxA displays
the data sets that would be regarded by the exchange mechanisms on the right
side of the application (see “Data View” on the right in figure 38).

As a next step the user picks an entity and decides to start the import process
toward KiWi (the initial step always has to be the publishing of data from PMA
into KiWi) or to update the data set in either, KiWi or the PMA. The system
supports the user by highlighting the three possible states in background colours
of the table rows:

White: New. The entity has not been published, yet, and exists in the PMA
only. Only possible operation is to publish.

Grey: In synch. The entity has been published before and the data in the
PMA and in KiWi are identical. No operation possible.

118

Chapter 7. Building

Red: Out of synch. The entity has been published before and at least one of
the data fields are not equal. Publishing operations are possible, either to
KiWi or the PMA.

These three states support the user to exchange the data between different
systems. The only user of the DxA is the project manager, who is responsible in
updating the critical information in the ES, but at the same time benefits from
the collaboration in the wiki. This is the user that decides which data from the
PMA is published to the KiWi platform. It is also the user that decides which
data will be updated in the PMA based on the results in KiWi.

7.4 Technical Design
This section provides insights about technical details of the KiWi systems. The
realization and technical backgrounds are explained in order to provide more
depth on the design. I explain the realization of the systems, the shared knowl-
edge model, the data exchange and the handling of the templates.

7.4.1 Templates

Moving data from the PMA to KiWi is initialized by the DxA. This process relies
on templates within KiWi. Only the entities of those types can be imported,
for which a corresponding template exists. The DxA then takes the template
for the specific entity and substitutes the place holders by the real data.

Figure 39: The KiWi platform: Editing a Template (Screenshot)

A template is basically a regular KiWi page, which is marked as a template.
This is realized through page types (A in figure 39 or zoomed in in figure 40).
These page types assign a type or class from the accessible ontologies to a KiWi
page (add a type by clicking the add button, B). In this example a template is
created, whose instances should hold the data of employees. Hence, the types of

119

Knowledge Management in Software Development

this page are Template from the KiWi ontology and Employee from the Logica
ontology. The page also has the type Content assigned, which is the case for
any KiWi page.

Figure 40: The KiWi platform: Editing a Template, Detailed View (Screenshot)

The text editor of a KiWi page then provides tools for wiring text parts to
the properties that are part of the chosen classes. To do so a piece of text has to
be written and selected (D) before choosing the fitting tool to assign a specific
property of the ontologies classes (C). As a result the editor will highlight the
text parts within the editor (E). After editing the text and assigning parts of it
to the properties as intended, the page can be saved just like any other page.

When viewing it, the page looks like any other regular page with plain text.
The data assigned to properties however can be edited directly through a meta
data editor. Further, the assignment of the type Template allows the DxA to
identify this page as a template and to use it to publish data.

Note that the page keeps the assignment of properties after using a template
to publish data. This makes it possible to update the data later and use the
other features of KiWi that utilize the semantic data. Further, all instances
of a template are linked to it through internal references, which improves the
browsing.

7.4.2 Data Exchange
The shared knowledge model makes sure, that data can exist in the two sys-
tems. However, to exchange the data from one system to the other it has to
be connected. Whether the entity that describes an employee is actually called
“Employee”, “Worker” or “Person” is irrelevant. Important is only that it has
to exist in both systems, in order to move an employee entity from one system
to the other.

I explain above, that the exchange of data between the two systems is han-
dled by the DxA. It is also the DxA that is responsible for connecting the entities
in the two systems. This is realized through a matching table. The matching
table equates the entities from the PMA to those in KiWi. Hence, it contains

120

Chapter 7. Building

the information that, for example, the field ID of a Worker table translates to
the property WorkerNo of an Employee type. This information is stored using
a simple XML format, which makes it simple to maintain.

The matching table therefore sorts out naming differences between the enti-
ties, but also allows a different data structure. It is important that the required
data exists, the containing entity is mostly irrelevant. This allows to utilize
systems that do not follow the created knowledge model precisely. An ES could
be connected to KiWi, even if the internal data structure differs slightly.

Figure 41: Directions of Data Exchange among the KiWi Systems

The data exchange can then follow different routes (figure 41): There is the
initial publishing, which is always from the PMA to KiWi, and the updating,
which can go both directions. Following are some details about these.

Initial Publishing

The initial step is always to publish data from the PMA to KiWi. Data sets, as
defined in the templates that are not yet published are easily identifiable in the
DxA. Once a user chose to publish one, the DxA starts the publishing process.
First, the DxA sends a request to KiWi, asking for an instance of the desired
template type and provides a name for the page to be created and the data that
should be published on it. All pages’ names are the template’s type plus the ID
of the PMA entity.

Then, KiWi searches for the requested template and creates a copy of it,
with the name that was provided by the DxA. At this point of the transaction
a plain copy of the template exists in KiWi, with a name defined by the DxA.
If this transaction is successfully completed, KiWi inserts the data. This data
insertion uses the exact same service as during the update from PMA to KiWi
(see below).

When the DxA packed the data to be published, it was send in key value
pairs. The DxA knows from the matching table how a data field from the
relation database is called in the ontology. It can thus create the triplets in
RDF, based on the choice of data sets to be published. KiWi‘s update service
receives this RDF and a page’s name. The latter makes it possible to identify
the target page. KiWi then simply substitutes the available triples with the new
ones. If this process finished successfully, KiWi sends a response to the DxA,

121

Knowledge Management in Software Development

which again prompts a message to the user. The user is thus notified about the
success and can open the created KiWi page with a simple click on a button
within the message window.

Update from PMA to KiWi

Previously published data sets provide the possibility to be updated, if they are
not synchronized. The DxA highlights these in red. If the user marks one of
them and clicks the “Update in KiWi” button, the DxA collects the data from
the PMA and creates an RDF with triplets based on it. As the pages names
follow a strict convention, the DxA can send a request to KiWi with the RDF
to update the data of this specific page.

KiWi identifies the page and substitutes its data with the data that was
sent. It follows the principle of a complete flush here. The old data is deleted
and the new data is stored, instead of just overwriting the data. The difference
is that data that was set, but empty in the update, is deleted. This supports
the users that triggered the process, as they can be sure that only those data
sets find their way to the KiWi page, that were chosen. No page can contain
legacy data. If the users prefer that, they have to manually roll back parts of
the data, as all data changes are stored on a page’s history in KiWi.

Once the update was successful KiWi sends a response to the DxA. The user
then receives the note in a window, which also contains a button, to open the
updated page.

Update from KiWi to PMA

The update mechanism works in both ways. The data can be updated in KiWi as
well as in the PMA. The DxA highlights data sets, which are not synchronized.
The user can mark these and click the “Update in PMA” button, in order to
use the data in KiWi and send it to the PMA. After that command the DxA
accesses an interface of KiWi to access the RDF triplets, which belong to the
selected entity.

Every entity in KiWi is stored using a convention based on the primary key
fields of the data model. The DxA can therefore find the related entity without
storing a relation of the two systems. The DxA accesses the RDF data, and
inserts it into the database of the PMA.

The data substitution does not follow a complete flush in this direction. A
data field that is not set in KiWi will not delete existing data in the PMA. The
reason for this behaviour lies in the open world assumption of RDF in general.
As explained above (see section 4.3.1), RDF is not expected to be complete.
Not existing data does not equal an empty data set, it just shows that the
information for this field is not available.

After successfully inserting the data into the PMA, the DXA prompts that
in a message to the user.

7.5 Workflow Design

The combination of data from two different knowledge management systems
enables various ways to deal with, i.e., the data can ‘travel’ different routes.

122

Chapter 7. Building

Part of the design of the knowledge management system is the design of its
workflow. It is called the knowledge loop (figure 42).

Figure 42: The Route of Information in the KiWi Systems

A very first step of the knowledge loop is the collection of data regarding a
specific topic, task or interest. It is advantageous to utilize the wiki functionality
here to benefit from collaborative features. This improves the quality of the
collected data and gives therefore a higher level to start from.

In the next step, the collected data is then taken to create the entity of
interest within the project management application. It can be based on the
content provided by the collaboration in the wiki. Once this entity reaches a
certain quality, it can be published to KiWi and therefore made available to the
authorized people within the company. With this publication, the knowledge
loop is entered.

The knowledge loop describes the constant transition of information within
and between the two subsystems. When an entity is published from the PMA
to KiWi, the connection is never lost. A public accessible entity is barely static.
Employees can edit the page or leave comments. The content is then different
from the one in the PMA.

Something similar can happen within the PMA; the limited access to smaller
circles of people does not mean that the content cannot change. In contrary,
as experts are operating on the system, edits are likely to appear. The result
however would be the same; the PMA then contains different data than KiWi.

123

Knowledge Management in Software Development

Both aspects can also happen in parallel, i.e., the entities both in KiWi and
the PMA change during the same time frame. And though the effect seems more
complex than in both cases before, the consequence would not differ: KiWi and
the PMA represent different data for the same entity.

The KiWi systems provide functionality to synchronize the two systems
again. To do so, an update mechanism can be started. It then takes the data of
one system and inserts them to the other. This process is manually triggered,
so a responsible manager compares both sources and decides which should mark
the new state.

In databases the term “dirty data” is used in comparable cases of data
integrity. Data is dirty, when it is not correct or out-dated. Correcting it can
therefore also be called “cleaning”. In this analogy, the updating mechanism
represents the cleaning of the dirty data of an entity within the KiWi systems.

Note that the terms publishing and public in this context are not meant as
being made available to the public in general. Instead, it refers to the targeted
audience of authorized people within the company. Security issues and rights
management however, are not considered in my studies.

Figure 43: Synchronization Status Circle within the Knowledge Loop

This knowledge loop is the connection of two circles that meet at the point
where the data in one of the two systems is being updated with the data from
the other one (figure 43). In principle, it is even irrelevant whether a system
provides the data for the update or receives it, the important aspect is that
both systems contain the similar data again.

The workflow is based on the descriptions in the deliverable document re-
garding the first prototype (Dolog et al., 2009c). To make it easier to grasp,
I explain this process by using an example in the following subsections. I de-
scribe the work of George, a process designer. He designs processes and relies
on feedback of those that execute them.

7.5.1 Initial Data Collection

George was assigned to design a new auditing process. To do that, he accesses
the KiWi platform and creates a new page (figure 44). This page has the goal

124

Chapter 7. Building

to collect information about this process. Another goal is to allow other people
to influence the process design.

George therefore writes a brief introduction. He explains the goals of the
page, that he appreciates his colleagues providing feedback of any sort and that
this should be done within a certain time frame. He then outlines a rough draft
of the audit process with the data that he has so far.

Figure 44: KiWi Page for Discussions (Screenshot)

Only when the page is rather filled with relevant content, George invites
colleagues to the page and asks them to contribute or provide feedback. The
initial page provides already a sufficient understanding to the other readers, so
that their input can be beneficial.

The invited colleagues then edit the page or leave comments. They provide
further information or links to additional sources. Also, there could be positive
and negative criticism. George is happy about all different forms of contributions
and gratefully accepts the feedback.

7.5.2 Entity Definition

After a certain time frame, George analyses the page that he created to discuss
the new audit process. He reads all the provided feedback carefully and even
contacts some of the authors directly. Further, he follows links, examines the
input and revisions of the page that contains his previous outline for the process.

Based on this newly gained understanding he accesses the PMA and creates
a new entity of the type “process”, which he then defines as the audit process
and provides all the necessary information (figure 45).

125

Knowledge Management in Software Development

Figure 45: Definition of the Process Entity (Screenshot)

126

Chapter 7. Building

George creates this process based on his own expertise, influenced by the
feedback of those that are supposed to follow the process in the future. He is
the expert in process design and is aware of associations that others might not
be. Therefore, he does not simply blend or compile the results of the discussion
page into a process definition, but uses it as additional input.

7.5.3 Publish
After George finished the work at the process definition, he publishes it to the
KiWi platform. To do that, he opens the DxA, chooses the specific process entity
from the list and clicks on the “publish” button (figure 46). The DxA then starts
the publishing mechanism and creates a KiWi page with the information that
George provided in the PMA before.

Figure 46: Publishing the First Draft of the Process to the KiWi Platform
(Screenshot)

7.5.4 Entity Editing
The published audit process is then accessible to George’s colleagues through the
KiWi platform (figure 47). He refers to it from the previously created discussion
page and again asks for feedback on this draft at any time.

George starts monitoring this page, like all the processes he is responsible
for. He then receives notifications whenever people edit or comment on a page
he monitors. This helps him to communicate with the people that actually
apply the process descriptions he created.

7.5.5 Update
The plain use of the process description then might induce people to provide
feedback. However, George might also have to ask users of the process descrip-
tion to do so. In any case, the comments or edits on the process description
page in KiWi will eventually be made. Additionally, George might see the need
for changes of the process description, which he fulfils into the PMA. Either
way, the systems run out of sync.

127

Knowledge Management in Software Development

Figure 47: Published Process Definition (Screenshot)

In order to synchronize them again, George has to enter the DxA again. The
system visualizes which data sets have changed, so that it is easier for him to
find the differences. He then has to compare both systems and make a decision,
which dataset should be used. According to his choice George tells the DxA
by clicking the specific button to update either the PMA or KiWi. Once the
DxA finishes that operation both systems are synchronized and again contain
the same data.

128

Chapter 8. Intervention & Evaluation

Chapter 8
Intervention & Evaluation

In the previous chapter, I describe the design of the KiWi systems (chapter 7),
which are meant to approach the knowledge management problems of Logica
(see section 6.5). In this chapter the remaining parts of the BIE circle follow
(see section 5.1.3), the intervention and evaluation.

I begin with explaining how the intervention and evaluation worked dur-
ing my studies (section 8.1). Afterwards, I report on the results of the final
evaluation of the KiWi systems (section 8.2).

8.1 Consecutive Intervention & Evaluation
The second stage of an ADR project is basically a constant iteration of the
three tasks building, intervention and evaluation, in BIE circles (Sein et al.,
2011, p. 42). I explain these circles, the whole method and how I applied it
above (see section 5.3). In the previous chapter I describe the building aspect
as if it was a linear rational design process (see the introduction of chapter 7).
Nevertheless, the building was part of the BIE circles. In fact, there were many
short iterations of the BIE circle throughout the whole KiWi project.

Mostly, the intervention and the evaluation were not separated, but actually
mixed. This is mainly due to the fact that the created systems were never
applied in Logica. Instead prototypes were evaluated by experts with large
experience as practitioners.

It was a design decision of the whole KiWi project (see section 4.1) that the
prototypes of the KiWi systems were designed, shaped and discussed in close
collaboration with personnel of Logica. The KiWi project’s participants from

129

Knowledge Management in Software Development

Logica were able to reflect on the project’s progress as representatives of the
target group. Each of them is experienced in different management activities and
has detailed knowledge about the processes of Logica. Their gathered expertise
made them to valuable opponents for ideas. Additionally, most of the insights
about Logica were gained through their knowledge and experiences.

The collaboration with these highly skilled people during the project work
was regarded as the intervention at Logica. These people evaluated the proto-
types. The intervention and evaluation became equal aspects of the collabora-
tion, which are difficult to separate.

The BIE circles were executed in visionary, but short iterations. To maintain
the flexibility, the participants agreed on a general timeframe and decided on
meetings with detailed agendas during the process. The timeframe was defined
by the due date of project deliverables. As I state above, the project organization
made the creation of these reports obligatory, which were then reviewed by
outsiders (see deliverables in section 4.1.1).

The project work included a small circle of people from Logica and Aalborg
University mostly; the two parties directly involved into the Logica business case
(see section 4.2). Each participant contributed with their expertise. Ideas were
discussed and decisions were taken in combination, researchers and practition-
ers. The other parties of the KiWi project were involved only when it became
necessary for the progress or it made sense, due to common goals. However,
most of the work was isolated from the others.

The process of work in the Logica case differed. Mainly, the work was orga-
nized straight forward. Every meeting had basically three points on its agenda.
First, the progress since the previous meeting has to be summed up. This in-
volves the presentations of the work results of the participating people, but also
an update of the remaining parties of the KiWi project. Second, the current
state is being discussed. This is often fluidly connected to the presentation of
the work results. And it often leads directly to the final part of the meeting.
Third, the next steps have to be planned. Responsibilities and tasks are being
assigned and the next meeting scheduled. The detailed agenda for each meeting
was defined by the tasks for the participants.

However, there were many exceptions to this standard procedure, two of
which I describe briefly: Workshops and the intense work duet. First, during
a period, which led to a detailed requirement analysis, several workshops were
planned. All meetings were scheduled up front, with an agenda and tasks for
the participants. The results of these tasks were then presented and evaluated
in the meetings. Second, later in the process I spend a couple of consecutive
days in the office of a KiWi project participant, who is employed by Logica.
Together we discussed possible processes and realizations of the KiWi systems.
This lead to the knowledge loop (see section 7.5).

The systems and the project work were not only evaluated within the Logica
case. The remaining researchers and practitioners of the KiWi project were also
able to provide feedback. Several times every year the majority of the KiWi
project participants met to present the current results to each other.

The target of the project work changed according to the project phase (see
section 4.2) and the BIE circles within. The outcome of an iteration of the BIE
circles was not always a new version of the software. Sometimes the circle was
all about gaining a shared and detailed understanding between the participating
parties. This was the case for the whole requirements analysis, for instance. In

130

Chapter 8. Intervention & Evaluation

these cases, the result was often presented in one form of report, like the project
deliverables or internal manuscripts that document an agreement.

Also, sometimes concepts were discussed in a similar way or in combination
with a piece of software that acts like a prototype. This software then has
only the specific task to study a concept and its possibility to be realized. The
resulting software was then not more than a simple test system and a basis for
discussion.

Discussions of concepts in short iterations helped to be more focused on the
main goals and to be more efficient. When ideas proved to be not good in
early stages and could be discarded easily. Short iterations helped to lower the
amount of detours in the system design. Sometimes the proof of concept showed
to be pointless, but led to other ideas.

The people from Logica had a clear understanding of the internal knowledge
management problems. By explaining and discussing it, the involved people
gained a mutual understanding of the situation. Everyone was able to come up
with new ideas. The people from Logica were then able to provide feedback to
these ideas. Often discussions arose from the ideas and feedback to them. In
many cases this led to other ideas.

The interventions and evaluation during the consecutive iterations of the
BIE circles can hardly be separated. A combination of both is the result of
close cooperation between scholars and practitioners in the Logica case of the
KiWi project. In many meetings the different stages were discussed by all
participating parties, which led to the evaluation of the prototype. This was
constant shaping in the sense of Sein et al. (2011); the approach follows therefore
the idea of ADR.

8.2 Final Evaluation

The evaluation of the IT artefact, and therefore of the prototype, was an on-
going process throughout the development (see section 5.1.3). In the final phase
of the KiWi project (see section 4.2.1) user tests were conducted, in order to
evaluate the entire systems. This section focuses on these user tests and the
whole final evaluation of the KiWi systems, i.e., the KiWi platform (KiWi), the
project management application (PMA) and the data exchange agent (DxA).

Note that the KiWi systems are a prototype, the intention was to evaluate
usefulness and feasibility, not to finalize a product.

Large parts of this section are reflections of what was reported in the KiWi
project deliverables D7.2 (Grolin et al., 2010a) and D7.4 (Grolin et al., 2010b).

8.2.1 Organization

The evaluation phase was partitioned into three evaluation iterations. Each
iteration had an objective or a theme, which was agreed upon at the beginning of
the iteration. Also, every iteration followed the same schedule: The preparation
of the system, the user tests and the creation of a report. In the beginning,
the test machine had to be optimized and equipped with test data according to
the objective. This also provides the opportunity to update the systems based
on the feedback of previous test sessions. The user tests were held separately.

131

Knowledge Management in Software Development

Details about this are described below (section 8.2.2). At the end of an iteration
a report was created, which summarizes the test results.

The reasons for the organization in evaluation iterations were the identified
risks. In industrial projects as well as in design research projects a variety
of risks and uncertainty can have a negative impact on the progress (Carney
and Wallnau, 1998). A reason for this is that the people are often spread on
different locations (Persson et al., 2009). Both parties try to achieve results
of high quality and therefore risk management becomes an important task. It
helps avoiding the negative impact due to the risks and uncertainties (Baskerville
et al., 2008). Addressing possible problems increases the likelyhood to finish the
evaluation successfully and with an outcome of a certain quality.

One identified risk was the stability of the software. At the time of the
user tests, the KiWi platform was under on-going development by several other
project participants. That made it difficult to get a stable running system with
all necessary features.

The software also had performance problems. It was not sufficiently stable
to be run in a productive environment inside Logica and needed high amounts
of maintenance. Therefore a test within the company and larger number of
users became impossible. Instead, the decision was taken to have the tests in
a usability lab using real-world settings. The scheduling of dedicated user tests
allowed a more detailed and thoroughly preparation of the test computer.

Iterations

Three iterations were scheduled. In the beginning of the evaluation phase a
plan was created, with respect to the different time schedules of the involved
people. It contained three evaluation iterations. Although the iterations were
scheduled, they were not planned through in detail. The objective of each
iteration was to be set in a kick-off meeting at the beginning of an iteration.
Here, the participants reflect on the current system and the previous results to
come to a decision. The objective describes the goals of the user tests, it set a
focus on certain features to be evaluated.

According to the objective the KiWi systems were prepared. The prepara-
tion had many different aspects. First, the systems were improved. Feedback
from a previous iteration could be implemented into the KiWi systems. This
allowed evaluation of an evolving system, the test users were able to see how
their suggestions work in the system. However, this improvement could be time
consuming and was therefore limited to smaller aspects of the feedback. Second,
a stable version of the KiWi systems had to be prepared. As the software was
not always stable, it had to be made sure that the necessary parts of the KiWi
systems for the objective were working without major problems. Third, test
data had to be included. Before the user tests were able to begin, the system
needed to be filled with data, in order to maintain a real-world scenario. Empty
systems are not realistic. Further, systems that are based on data collections
like the KiWi systems must have a certain level of data included.

Once the systems were prepared, the test users were invited and the user
tests conducted. As this is the major part of each evaluation iteration, I describe
it in detail below (section 8.2.2).

Subsequently, when the user tests were held, I created a report summarizing
the organization and the results of the iteration. The reports were agreed upon

132

Chapter 8. Intervention & Evaluation

by all members of the Logica case. The reports included suggestions or input
for the following iteration. After completion of the final evaluation iteration a
KiWi deliverable was created, mostly based on the evaluation reports (Grolin
et al., 2010b).

Use Cases

The decision on possible objectives for an iteration was mainly based on a pool
of use cases. Each of these focuses on different aspects of the KiWi systems.
The term use case is borrowed from the literature on requirement engineer-
ing (Cockburn, 2000) and describes a general pattern of interaction between a
system and its users in the application domain (Mathiassen et al., 2000).

Each use case was carefully designed by the Logica business case. The par-
ticipants took care to create storylines that reflect realistic procedures of such
systems, if they were implemented in Logica. All of them cover aspects of the
daily work of project managers or process designers in Logica.

Figure 48: Snippet of a Use Case for the User Tests

During the planning and organization of the evaluation iteration four use
cases were designed. They deal with project planning, project monitoring,
project work and process design. During the process of the evaluation a gap
was noticed, the evaluation of information access was not sufficiently covered
by the use cases. To make up for that, a fifth use case was created, which only
focuses on the access of information.

All five of these use cases can be found in the appendix of this thesis (see
appendix C).

The preparation of the use cases also included a mapping of the features of
the KiWi systems to the use cases that work with it. In order to do that, a list
of features was created. Every developer of the whole KiWi project provided
input to the list. The features were ordered according to its affiliation: The core
technology or one of the enabling technologies of the KiWi platform. Also, the
features of the remaining systems (i.e., DxA and PMA) were regarded.

133

Knowledge Management in Software Development

The full feature list contains 55 features and can also be found in the ap-
pendix of this thesis (see appendix B).

The use case then contained three different parts (figure 48): The before
picture, the after picture and the description of the tasks. The before picture
describes the situation in Logica as it used to be, without the KiWi systems. The
after picture describes how the KiWi systems improve the situation of Logica
and what aspects are beneficial in the context of the use case.

Figure 49: Snippet of a Use Case Description for the User Tests

The next part is a description of the tasks to follow the use case (figure 49).
The description uses an imaginary example, which is explained in detail. It is
written in a way that users are able to follow the separate work steps easily.
Each of the tasks shows the involved features as well.

For a better understanding I provide two snippets of use cases here (see
figures 48 and 49), find the full use cases and the feature list in the appendix
(see appendices B and C).

To provide an idea to the reader what the use case looks like, this is a
summary of the project planning use case (the full one can be found in the
appendix, section C.1):

• Before situation: The planning tools and the tools to store the business
model are not integrated.

• After situation: The KiWi systems provide full integration.

• Description:

– The project manager enters the basic information about the require-
ments of product into the PMA.

– The project manager publishes the data to KiWi, using the DxA.

– The project team can provide input to the requirements by giving
feedback.

– The project manager reviews the data and edits it according to the
feedback in KiWi.

– The project manager updates the data in the PMA with that from
KiWi.

The idea behind the use cases is to document a designed work flow with
the KiWi system in Logica’s environment. Therefore they were used for the
evaluation. The use cases were not only approved by Logica employees as being
realistic, they were in large parts designed by them. This provides the necessary
real-world scenario for user tests in a lab.

134

Chapter 8. Intervention & Evaluation

Test Data

The use cases describe scenarios of tasks in the management level of Logica.
However, the realization of these tasks requires data. To maintain the real-
world settings it was a crucial aspect of the evaluation to also have realistic test
data.

This turned out to be difficult to achieve, because original data of Logica
would have to be approved by the board of Logica. That was mostly not possible,
for confidentiality reasons, i.e., non-disclosure agreements with customers. In
order to still have realistic data, artificial test data was created in cooperation
of Logica employees and me. They were able to design the test data similarly
to the data that can be found in Logica.

The only exception was possible for the final evaluation iteration. Use case
descriptions for a real developing project of Logica were provided in a text
document. I created KiWi pages based on this document.

The structure of these pages was similar to the document. I, as a developer,
have created wiki pages similarly in the past. This is a subjective perspective,
but as the use case dealt with data access, it is important that the test users
do not know all details about the realization in Logica. Also, every developer
can organize contents in KiWi differently. Hence, a structure, which the test
persons are not familiar with, made the test even more realistic.

8.2.2 User Test Setting

The user tests were conducted in a usability lab (figure 50). Prior to every
user test session a dedicated computer was prepared with access to the KiWi
systems, which were equipped with test data.

Figure 50: The Usability Lab

For each iteration two test users took part of the evaluation, they had to
follow a use case and were interviewed about their impressions and opinions
afterwards. Both, the user test and the interview happened in the lab.

In this thesis I call the two test persons John and Paul. Both are very
experienced employees in Logica and were therefore able to provide valuable
critique on the KiWi systems. Paul is a process designer and John is a project
manager. As both were part of the KiWi project from the beginning, they
had a good understanding of the objectives and goals of the project, which are

135

Knowledge Management in Software Development

reflected in the user tests. Also, due to their experience in the project, they had
a rather good understanding of how to operate the KiWi systems.

The history of the test users in the KiWi project made the preparation for
the user tests easier, because no new people had to be trained. Additionally,
John was deeply involved into the development of the knowledge model and the
PMA. The test persons are to certain extent familiar with the systems under
test. That kept the focus for the user tests on the usefulness and not on the
usability.

Each user test session was recorded in video and audio. The recording cov-
ered the whole user test session, including the interviews after the user tests. A
camera filmed the test users and the test moderator during their interactions
with each other and the KiWi systems. But not only the involved people were
recorded, also the screen as the test person sees it was. The recording contains
therefore a screen-in-screen image of the people involved in the user test session
and the screen image. Further, a microphone recorded the entire conversation
in the lab.

The user tests with the test persons were held separately. Each one followed
the same simple agenda:

• Introduction to the objective of the test

• Discussion of the use case

• Introduction to the systems

• Test user follows the use case

• Interview of test user

For the whole user test a test moderator joined the test person. It was
the moderator who provided the introductions and who held the concluding
interview. Also, the tests were guided by the moderator. He was following the
progress of the test persons and supporting them, in case problems occur.

The tests had the target to investigate the usefulness of the systems, not
the usability. Therefore, it was part of the moderator’s obligation to help the
test users in handling the systems and maintaining the focus on evaluating the
concepts of the KiWi systems (figure 51 shows a brief discussion between the
test user and the moderator during the user test session; note the picture of the
screen in the top left corner).

For all user tests, I was the person with the moderator role.
The user tests all followed the same simple agenda from above. Note that

the whole test session is videotaped. In the beginning, the moderator welcomes
the test person and explains the objectives of this user test session. Both briefly
discuss the topic to reach a common understanding of what shall be evaluated.
Then, they have a look at the use case, which shall be followed during the user
test. The discussion about the objective is being picked up and aligned to the
context of the use case.

After the clarification of the user test’s purpose, the moderator gives a brief
introduction to the test users. As the test users have a certain experience
with the KiWi systems, based on their involvement in the project work, this
introduction is rather short. Often it contained not much more than an update
about recent changes for the test user. Here, the moderator again points out

136

Chapter 8. Intervention & Evaluation

Figure 51: Test Person and Moderator during User Test Session

that the purpose of the user test is not usability tests, but to evaluate the
usefulness of features and basic concepts of the KiWi systems.

Then the actual user test begins and the test user follows the use case.
The moderator assists in case problems occur, but also asks the test persons to
explain what they are doing. Finally, after the test user finished the whole use
case, an interview is being held. The moderator prepared an interview guide in
advance which helps him to investigate the user’s experience and opinion on the
test objective. These semi-structured interviews also provided the possibility to
change the focus of the discussion according to the events that occurred during
the user test or what the test person say. Then the test session is officially
concluded with the moderator saying goodbye to the test person.

Later, the moderator sums the result of the whole test set (i.e., both test
users) up and writes a test report. At the end of the project’s evaluation phase
the different reports were combined to create the project delivery (Grolin et al.,
2010b).

8.2.3 Results

The previous descriptions show that the final evaluation of the KiWi systems
was conducted systematically, driven by use cases. In three iterations two test
users evaluated the systems’ usefulness according to Logica’s requirements. In
the following I describe these three iterations and the findings that resulted from
the user tests.

137

Knowledge Management in Software Development

As stated above, the goal of the user tests was to evaluate the usefulness of
the KiWi system, not the usability.

Iteration A: Project Planning

The first iteration focussed on project planning. The use case (see appendix
C.1) makes a project manager collect information about the scope and the risks
of a project, to finally estimate and schedule it. The whole process is driven by
the project manager, but requires input of the project team. The underlying
idea is to show that the connection of two different systems can support the col-
laboration within the development layer and that project managers can benefit
from that.

During the tests, the test users played the role of a project manager, prepar-
ing a project. Each test person invented the data of a project on their own
during the tests. The collaboration was simulated by the moderator, while the
test users left the room.

The conclusion of the first iteration was rather negative. These are the
findings:

• Usability of KiWi systems is bad

– KiWi is not stable enough

– Test users were not sufficiently trained with KiWi

• Structure of PMA is confusing

• Publishing through DxA is too bulky

– Related entities should be published together

– Published pages are difficult to find

• Security issues

– DxA does not require a log-in

– Every user of DxA can update all data

• Data changes are difficult to follow

• Collaboration is simple

– Possibility to provide feedback is valueable

During this user test session the users were not very happy with the KiWi
systems. They complained about the usability, even though this was not being
evaluated. The complains had basically two reasons. First, the KiWi platform
was not very stable and crashed during each user test. Even though there was
hardly a loss of data, the test users were interrupted and annoyed by that.

The second reason for the test users’ complains was that I, as the test mod-
erator, over-estimated the their knowledge regarding handling of the KiWi plat-
form. Despite being very familiar with the concepts and technologies of KiWi,
they both had problems in using it. A better introduction to working with KiWi
could have sorted many of these problems out. The lack of knowledge about
the use of KiWi, however, amplified the usability issues of its interface. Both

138

Chapter 8. Intervention & Evaluation

reasons affected the test users’ behaviour during the tests. They had difficulties
to put into practice what they had in mind.

“The usability is so bad, that it is difficult to evaluate even
the basic concepts.” (Test person Paul during user tests)

Additionally to the usability issues with KiWi, test user Paul reported that
he had difficulties to fully comprehend the PMA. He was confused by the struc-
ture of the underlying knowledge model and the organization of entities within
it.

Both test users have large experience with using project management sys-
tems like this, but unlike John, test user Paul was not involved into the develop-
ment of the PMA. When following the use case, he was slightly puzzled during
the tasks in the PMA. He had difficulties finding the specific entities, as he was
not aware of the correct name or how it was organized in the navigation. This
is again a problem related to the introduction to the system.

Also, he was sometimes confused by the structure of the data. He expected
data as part of an entity, which is located in a related entity only. For example,
he was surprised that a ResponsiblePerson of a Project does not have to be
a ProjectParticipant. But despite his confusions, he was able to successfully
finish the tasks. However, he mentioned that he would have designed the system
differently.

Both test users stated that the publishing mechanism through the DxA does
not work straight forward. They expressed two major points of critique. First,
each entity has to be published manually. There is no functionality that auto-
matically includes related entities. Often entities do not make sense on their
own, but only in connection to others. These could then be automatically pub-
lished as well. For example, an OrganizationalUnit should be automatically
published when one of its Employees is published.

Second, the test users commented that published entries are difficult to find.
A published page has a title like DXA-EMPLOYEE-3, which is auto generated,
based on the entity’s type and its ID in the PMA. An elusive title like that
however is not easily traceable for users. Additionally, to browse through the
published pages, users have to open the templates and browse through the
instances. The test users suggested an overview page of a certain kind, where
content could be linked automatically. It would decrease the difficulty to find
the entities. Such an overview page could act like a starting point for a project
or for users that want to browse the available information. Generally, the test
users had major problems finding pages they have previously published.

A broader comment was that the DxA lacks a log-in functionality. Figura-
tively any user could thus import and update data to and from either system.
The test user also commented that every user of the DxA had full access to all
data in KiWi and the PMA. The user would thus have the ability to change
important data without limitations. He did not like these data security issues.

Test user Paul commented that he had problems figuring out the changes of
published data. The DxA showed that a certain data set is different between
KiWi and the PMA, but it does not show which field is different. The user has
to go to KiWi and manually search the history of a page to find the field with
data updates. After trying that once, the test user ignored this step and relied
on the correctness of data. He updated the data from KiWi to PMA directly,
without checking.

139

Knowledge Management in Software Development

Despite the different problems of the KiWi systems the test users remarked
that the collaboration of the project team is well supported in KiWi. Both users
understood the simplicity to provide feedback to basically any KiWi page. They
mentioned that this is especially useful for process related contents, where the
users can comment on process descriptions.

“These KiWi systems are not more efficient for project plan-
ning than the current solutions in Logica. However, I can
see that they [the KiWi systems] are more efficient regard-
ing the collaboration features.” (Test person Paul during
user tests)

These user tests showed that the prototype suffered from a variety of prob-
lems. The test users had problems relating to the usefulness of the systems,
because of the poor usability. For the following user tests this has to be im-
proved and/or the test users have to be better focused on evaluating the features
and not their handling.

Iteration B: Process Design

The next iteration focused on process design. The use case (see appendix C.4)
involves a project manager asking for feedback for a process description and
refines it in two iterations. Similarly to the use case utilized in the previous
evaluation iteration, this use case is driven by a project manager, but involves
the feedback of other people. The idea is to show the collaboration function-
alities of the KiWi systems and how this provides the possibility as well as
the benefits of direct feedback between the people designing and implementing
processes.

During the tests, the test users played the role of a project manager, working
on a process description. Each test person invented a process description on
their own during the tests. The collaboration was this time simulated by the
test users themselves, to better evaluate the collaboration.

As the first user test results were rather negative, different aspects were im-
proved for the second user tests. First, a more advanced version of the software
was used. This approaches mainly the stability of the software. During the first
iteration all KiWi systems underwent further development, which led to higher
stability. During this iteration’s user tests, the software did not crash, but was
very slow for test user Paul.

Second, the test users have been trained with the software in more depth.
I, as the moderator, took better care of the test users and their preparation
to the use case regarding the handling of the KiWi systems. During the user
tests, I was also more active to support the test users to put into practice what
they have in mind. Additionally, the test users were asked in advance as well
as during the test run, to focus more on the evaluation goals and avoid being
distracted.

Third, different changes to the software have been made, which the test
users commented on in the first iteration. For this iteration the DxA contained
a button, which helps its user to jump to specific entities, for example. This
helps the user to find the published content more easily.

The overall conclusion of the second iteration was more positive compared
to the first one. These are the findings:

140

Chapter 8. Intervention & Evaluation

• Problems are confirmed

– DxA is inefficient when publishing related entities

– Confusing structure of data in PMA

• PMA lacks business logic

• KiWi has flaws

– History does not work as intended

– New pages can only be created through a link

– URLs are not static

– Reading comments when editing a page is not possible

– Tag suggestions are not satisfactory

• Concept makes sense

– Customizing process descriptions is valuable

– Collaboration is easy

During these tests, the users had fewer problems than before. However, some
of them remained. For example, when publishing a process definition and the
necessary related entities, both test users commented that the DxA’s function-
ality is too limited. They wished for a feature that allows the project manager
to publish also related entities automatically. In the current implementation a
user has to manually find all the different related entities and publish them, one
after the other. The test users explained that this is very time consuming.

Another problem, which was documented in the first user test by test user
Paul already, is the structure of the PMA. Again, he found it confusing to follow
and had difficulties to find the entities that he needed. One of his comments
was that the TaskDefinition and the ProcessDefinition look too much alike
according to his taste.

The same test person further commented that the PMA lacks business logic.
He investigated the system and criticised that it does not actively support the
users in any tasks. Not even the validity of data fields was checked, i.e., whether
the data has the right format or range.

Both test users mentioned several issues in KiWi. Test user John tried to
investigate on the data changes after an update, but the history function of
KiWi showed no results. On other pages this was possible, the history of a page
was accessible and provided the relevant information.

Further, he missed a connection between the comments to a page and the
content of it. To find out, to which version of a page the comment was given the
user has to compare the time stamps manually. He valued that as a drawback.

John had difficulties to find out how to create a new page in KiWi. The only
way to do so is to create a link to an already existing page. When clicking this
link KiWi tells the user that the page does not exist yet, but it can be created
now. The test user found this procedure strange and would prefer to have a
button provided, which allows the creation of a new page.

The other test user, Paul, tried to copy the URL of a KiWi page and keeping
it as a short cut for later. He argued that this could be a common scenario as

141

Knowledge Management in Software Development

people would want to send the link to a KiWi page through e-mail to their
colleagues. However, this did not work. KiWi uses dynamic URLs, which are
set according to the session. Direct links to a KiWi page, so called permalinks,
are provided on every page. But the test user did not find them, which shows
that they appear hidden.

During the use case it is one task to work the results of the collaboration
into the text of a KiWi page. This collaboration happened to large parts in the
comments of the given page. While test user Paul edited the page, he criticized
that he cannot see the comments while editing. It would make his task easier
to see the comments underneath the editor. The current solution forced him to
save the results, view the comments, remember them and edit the text again.

Another task in the use case was to give tags to a KiWi page. KiWi has
a component to support the users in doing that. It was developed by one
part of the enabling technologies: The information extraction. This component
analyses the content of a KiWi page and shows possible tags that are likely to fit
to the text. Test user Paul commented that the provided tag suggestions were
not helpful at all. He provided tags manually and could not use the suggestions
of the system.

Despite the critique on the systems and problems that I just described, both
test users were very positive about the KiWi systems in general. They said that
the concepts are clear and make sense in a given scenario as the use case.

Test user Paul pointed out that the connection of an enterprise system and
a communication tool like in the KiWi systems are very valuable and do not
exist, according to his knowledge. Both test users saw the strengths in the
collaboration mechanisms of the KiWi platform. They were able to edit, create
and comment on pages without any problems. Each stated separately that
collaboration has to be as simple as this in order to work in Logica.

They can see the use for the KiWi systems especially in the communication
between the process designers and process executers. John explained that the
KiWi systems allow project managers to utilize process descriptions more easily.
They can take an existing one and customize it according to the requirements
of the project.

“With this system, it is actually easier to follow the rules
than to violate them.” (Test person John during user tests)

These user tests showed a major improvement to the previous ones. The
main achievement was that the test users could gain a better focus on the
usefulness of the features, with only minor distraction of the usability. The
feedback on the prototype was rather positive, most features made sense to the
test persons and the systems were considered being valuable.

Iteration C: Information Access

The final iteration had the focus on the information access. The use case (see
appendix C.5) includes different angles to find specific information in KiWi.
Unlike those use cases utilized previously, this one is not based on a realistic
scenario, but it is a list of realistic tasks instead. The idea was to show that
KiWi supports users in finding and accessing relevant information. This user
test session was conducted entirely using the KiWi platform only.

142

Chapter 8. Intervention & Evaluation

During the tests, the test users played the role of a project manager, working
on a use case description for a project. The user does that by searching for
available information and re-using it where possible.

The test data in KiWi was provided by Logica and entered by the moderator
before the user tests. To enable the full strength of any recommendation, a large
data set is required. The data used for this test was too limited to fully exploit
all the features. However, it was enough to see the component work and to get
a grasp of the concepts.

The understanding gained in the previous iterations was that the concepts
of KiWi make sense and that collaboration is valuable for the project work.
However, an important aspect of the features was not yet evaluated: The com-
ponents for recommendation and information extraction. Provided by a part of
the enabling technologies (see section 4.3.4), this set of features is meant to sup-
port KiWi users with finding and re-using information. The test procedure was
therefore slightly changed from use cases to a task list that covers all features
of the recommendation and information extraction.

The conclusion of the final iteration was rather positive. These are the
findings:

• Usability of KiWi is poor

• Navigation in KiWi is confusing

• Tagging

– Users miss guideline

– Suggestions partly helpful

• Recommendation of content

– Does not include available data

– Is valuable for re-use

During this user test session the test users were curious and surprised by the
features of KiWi. But, just as in the previous tests, they had problems with its
usability. For example, test user Paul had difficulties finding the “save” button
after editing a KiWi page.

Closer connected to the actual use case is the fact, that both test users had
problems navigating through the recommendations and links of KiWi. There is
a section on every page, where the incoming and outgoing links are listed. The
test users found this part confusing and hidden.

Also, the navigation through tags felt strange to them. While a tag is a link,
the users expected to reach a list of pages that are tagged with this tag. Instead
the users found a KiWi page which is the representation of the tag, without any
content.

The tagging of a KiWi page delivers valuable data to the system and the
recommendation component builds up on that. When tagging, both test users
felt insecure about how to tag a page. This is not surprising, as they are not
regularly in such a situation. But it showed that users have to be trained
regarding the tagging; test user Paul actually requested a guideline for tagging.
The test users came up with individual solutions and assumed that homogeneous

143

Knowledge Management in Software Development

tagging would be better. When giving tags, KiWi analyses the content of the
current page and shows suggestions for tags to the user accordingly. The test
users reflected on these tags and where not always happy with them. This
depended on the context, sometimes the detailed tags were appreciated, and
other times they were not. Especially for overview pages, the test users preferred
to tag rather general, for pages that carry the data, the tagging was very specific.

When evaluating the access of information, based on recommendations and
search, the test users stated that it “seems to work” and is “to some extend
useful”. Paul explained that this would be a big improvement compared to the
current systems. However, the test users also commented, that some of the
recommendations were too general, which was likely based on the small amount
of data. Also, the recommended pages were not always precise hits compared
to what they were looking for.

A major critique from both test users was that the KiWi systems do not take
all available data into account for the recommendations. Test user John stated,
that the current solution is so general and not specific enough, he explained that
it could also be used for a cookbook. The domain knowledge, which is part of
the system through the ontology is not used. If KiWi would do that, both test
users claimed to value the usefulness even higher.

“The recommendation component might help to re-use exist-
ing solutions. This can make the difference between winning
and losing a case.” (Test person Paul during user tests)

These user tests showed that a key aspect of the KiWi systems, the infor-
mation access, is working well at large. The test users were able to understand
and apply the different ways of accessing information through KiWi. Despite
different drawbacks, it was considered valuable.

Limitations

The project organization had a strong impact on my work, in particular on the
final evaluation phase. This has the effect that, unlike intended in action design
research, the evaluation was not conducted in a fully realistic setting.

As I describe above (see section 8.2.1) a set of risks regarding the evaluation
were identified, which might have hindered an evaluation. A main risk was the
potential lack of stability of the software. The decision to conduct user tests
in realistic lab settings instead assured relevant results nevertheless. However,
this also limits the results.

The final evaluation of the KiWi systems has three major limitations. First,
the software was evaluated in a lab and not in the case company’s usual work
environment. The tests were run on a specifically prepared computer with
realistic data. Second, the evaluation was conducted in a number of short
sessions and not in a longitudinal evaluation. The feedback was mainly based
on domain expertise, not as much on experience with the systems over a longer
time of practicing. Third, the number of people involved in the evaluation is
smaller than what was intended. Two domain experts provided feedback as
representatives for a larger group of project managers.

These limitations weaken the results of the evaluation. However, they are
made out of necessity. The situation in the project had to be taken into consid-
eration and evaluation results had to be achieved. It was a vital aspect of the

144

Chapter 8. Intervention & Evaluation

KiWi project to gain valuable insights about the KiWi systems from the case
company. The opportunity to utilize a usability lab was therefore gratefully
accepted.

This obviously impacted the findings to some degree. Because the domain
experts were very experienced they provided very detailed feedback. What we
do not know is how it would look with a broader group of evaluators with
varying experience. The domain experts made an effort imagining the systems
in the environment of the case company and in their daily business, so they can
provide valuable feedback about the usefulness of the systems, but also regarding
possible improvements. We also do not know how a group of evaluators with
varying interest into this research or the own company’s knowledge management
would have responded.

Overall

The evaluation phase was considered a success for the Logica business case.
However, the results were not completely positive. Generally, the user tests
confirmed the concerns regarding the software. The KiWi systems showed many
usability issues, which would have made it impossible to be evaluated within
Logica. After these tests it became clear that the KiWi systems would have
to undergo large improvements, before it reaches the state of production ready
software. However, this was never the goal of the KiWi project (see section 4.3).

The iterative approach to perform such an evaluation proved to be working
well. It provided the possibility to implement results during the process. Also,
it showed that the systems could be adjusted according to feedback provided
by the test users.

Another positive aspect of the iterative approach is that the procedure could
be adjusted during the process. The participants noticed that the information
access was not evaluated sufficiently and modified the process slightly. Instead
of using one of the complete use cases a task list was created that includes the
required actions. This increased the quality of the evaluation.

Generally, the test users expressed legitimate criticism toward all three parts
of the KiWi systems. Beyond usability issues, they commented on aspects of
the systems, which make regular use figuratively impossible.

The user tests were conducted with close guidance of me as a moderator. A
lack of this form of support would increase the test users’ problems. But despite
the problems with the handling of the KiWi systems, the test users understood
the functionality and considered it valuable.

From the Logica point of view, the prototype showed a variety of pros and
cons. It was valued very positive by the test users, that the information access
through the KiWi systems is a big improvement, compared to the situation at
Logica. It is also positive, that the communication between the people within
the development layer, but also between the two layers, is supported.

Further, the test users valued it positive that the processes are easier to follow
with the KiWi systems. However, the test users also criticized the prototype.
They strongly disliked the usability of the systems, even though it was not in
the scope of the evaluation, they commented on that consistently. Negative
comments were also given to the way KiWi treats the provided information. It
should make more use of what is available. Additionally, one of the test users
regarded the PMA as confusing.

145

Knowledge Management in Software Development

From the KiWi project point of view, the prototype also shows pros and
cons. The final evaluation of the KiWi systems raised much feedback, which
can be used to improve the systems in future research. The only real negative
point is the stability of the systems and their usability. This influenced the
evaluation more than anticipated.

Positive however was the evaluation of the usefulness. Due to their experi-
ence as professionals, Logica’s employees could map the tasks of the use case to
their daily routines and see the benefits. They were convinced that a system like
this would be beneficial in the evaluated settings (i.e., project planning, process
design and information access), as it solves current issues at Logica.

146

Chapter 9. Discussion

Chapter 9
Discussion

In this chapter I discuss the findings of my PhD study. I show to what extend
and in which way the KiWi systems are a solution to the knowledge management
problems of Logica. Further, I explain what other researchers and practitioners
can learn from my studies.

To begin with, I discuss the design ideas that lead to the KiWi systems, being
my contributions (section 9.1). The limitations of my research are explained
afterwards (section 9.2). I conclude this chapter with suggestions for future
research (section 9.3).

9.1 Contribution
The KiWi systems, whose design and evaluation was described in the previous
chapters, are an answer to my research question. I formulated it in the first
chapter (see section 1.3):

Research Question: How can IT systems support knowl-
edge management in software development?

Being a design study, conducted in close cooperation with a case company,
the approach of my research was not to create the perfect knowledge manage-
ment system. Much research shows that each knowledge management approach
has to be customized for its purpose and environment (Davenport and Prusak,
1998; McDermott, 1999; Kautz and Thaysen, 2001; Rus and Lindvall, 2002;
Bansler and Havn, 2001). Instead, I analysed Logica for its very specific knowl-
edge management problems. To address these, I utilize four design ideas (see

147

Knowledge Management in Software Development

section 7.2.3). The design of the KiWi systems is based on the design ideas. My
contribution to the body of knowledge are these design ideas, how they emerge
from the actual knowledge management problems, how they address them and
lead to the design of a knowledge management system and how they are realized
and evaluated in the KiWi systems.

In the following I explain how each of the design ideas for itself solves some
of the identified problems of Logica (see section 6.5). I further describe how
they relate to the literature (see chapter 2 and 3). This shows that the findings
can be generalized and are not limited to the case company of my studies. I
argue where I confirm or disconfirm the literature, for each design idea.

9.1.1 Design Idea 1: Multiple Strategies
The first design idea is presented in section 7.1.1. It has the focus to acknowledge
that Logica consists of different layers. It further recognizes the different needs
for each layer regarding the knowledge management. The idea is to support
both equally.

Design Idea 1: Supporting the two organizational layers
in Logica with different knowledge management strategies:
The management layer follows a codification strategy and
the development layer the personalization.

The two layer organization of Logica is not directly related to the knowledge
management problems. However, it explains their grouping. In the analysis I
distinguish between two groups of problems, according to their area of concern
(see section 6.2): The isolated islands of knowledge (problems A1, A2, A3 and
A4) and the inadequate bridging of knowledge (problems B1, B2 and B3). This
division reflects the two layers.

The isolated islands of knowledge relate to the development layer. The focus,
of the problems grouped together, is on the project work. All of these problems
are based on issues regarding the personalization. Communication of too low
quality between the projects, and thus within the development layer, is the (very
general) reason for all four problems. The first problem (information access,
A1) recognizes that a project encapsulates the internal knowledge and makes
it difficult to communicate to. The second problem (expert finding, A2) points
out that the communication among the people is too low, in order to spread an
understanding of personal expertise. The third problem (sharing support, A3)
illustrates a general lack of support to communicate and share the knowledge
with colleagues across the company. And the final problem (documentation
level, A4) shows that the communication of project results is inconsistent and
incomplete. Supporting the communication addresses all of these problems.
This is covered by the design idea, with a focus to improve the personalization
strategy in the development layer.

The inadequate bridging of knowledge on the other hand, relates to the man-
agement layer. This group of problems has the focus on dealing with the project
work, from a more distant perspective. All of them are based on the codifi-
cation issues, which basically state that the externalization and the re-use of
externalized knowledge do not function as intended. The first problem (process
complexity, B1) illustrates that the codification strategy is too complex. The
second problem (feedback circle, B2) recognizes that communication regarding

148

Chapter 9. Discussion

the codification is difficult. And the final problem (connected documentation,
B3) points out that the codified knowledge is not interconnected. Supporting
the codification addresses all of these problems. This is covered by the design
idea, with a focus to improve the codification strategy in the management layer.

Looking at the different nature of problems, which is reflected in the group-
ing, makes it clear, that the design idea 1 aims at a fitting solution to each of
the two layers in Logica. It acknowledges the difference between the develop-
ment and the management, in order to provide an own knowledge management
strategy for each.

Hansen et al. (1999) explain that the knowledge management strategy should
reflect a company’s competitive strategy. They describe the two strategies codi-
fication and personalization (see section 3.2) and their drivers, showing that the
wrong strategy is counter-productive. The design idea confirms this and applies
one strategy per layer. Each layer shows specific needs, which are addressed
with a fitting strategy (details in section 7.1.1).

Following the suggestion of Hansen et al. (1999), to pick the best fitting
knowledge management strategy according to the existing needs, is the core
of this first design idea. It acknowledges the situation of a layer, and choses
the strategy that reflects the mode of operation best. The task of the system
that is based on the design ideas is then to support the knowledge management
strategies, which address the identified knowledge management problems.

Further, Hansen et al. (1999) emphasize that a company should focus on one
strategy only. They stress that a mix is counter-productive and suggest a main
strategy supported by the secondary strategy in a share of 80-20. However, my
analysis shows the different needs in different parts of the company. It would
be too limiting to simply choose one strategy and force the entire company to
follow it. One of the layers then would have to follow a strategy that does not
fit to its mode of operation.

It would be counter-productive for the development layer, if it would have
to follow the codification strategy. The development layer would most likely
abandon or ignore the strategy, as it can be seen in some of the identified
problems. The management layer is organized with a strong focus on documents
and documentation; it is figuratively incapable of following the personalization
strategy. The whole company operates through a codification.

It would be contradicting to the ideas of Hansen et al. (1999) to overrule one
of the layers and impose a knowledge management strategy that does not fit.
Instead, the design idea follows the sense of the suggestions by the authors on
a more literal way and on a very fine-grained level. Therefore I slice the com-
pany into two logical layers, where each one applies the knowledge management
strategy that suits best to the dominant needs.

Alavi and Leidner (2001) explain that knowledge is being seen from different
perspectives (see table 1 on page 12). This perspective on knowledge influences
the knowledge management approach as well as the knowledge management
system. During my studies it became clear that the perspectives cannot be
separated from one another completely, but strongly depend on the context. For
instance, when users need information about something specific they are driven
by the condition of access to information, and hence the access to information
perspective. But, once the users found the desired information, their perspective
on knowledge changes to the process of applying the expertise. Additionally, in

149

Knowledge Management in Software Development

a knowledge management system the object perspective is usually applied, as
this is the common way to deal with things in IT.

All perspectives on knowledge, as pointed out by Alavi and Leidner (2001),
are represented in a knowledge management approach like the one presented
in my studies. However, the underlying design ideas set a focus. Especially
this first design idea delineates an emphasis on the perspectives. I see it as a
confirmation of the original idea regarding perspectives on knowledge, and an
extension when related to the knowledge management strategies.

The predominant perspectives on knowledge are different in the two layers.
Based on the approach, where the systems play an important role, both layers
have a strong understanding of knowledge as an object. This is because the
knowledge has to be stored somewhere. The development layer has a focus on
access to information and the state of mind. This covers the availability and the
retrieval of information, as well as the opportunity to learn from it. Developers
have to access the necessary information and make sense out of it, in order to
address their problem. The management layer on the other hand has a focus
on the process perspective. This represents the attempt of distributing the
available information. These different perspectives are not contradicting each
other.

Further, every perspective appears in each layer. Yet, the focus is different.
They are not evenly distributed, some are emphasized, others are subordinated.

9.1.2 Design Idea 2: Connecting the Layers

The second design idea is presented in section 7.1.4. Its focus is to avoid a big
gap between the two layers within Logica. The idea is to connect them.

Design Idea 2: Connecting the two organizational layers
in order to establish and support knowledge sharing between
them.

This design idea is based on the understanding that both layers run the
risk to isolate themselves of one another, especially when they are separately
approached, as described in design idea 1. While the first design idea acknowl-
edges the differences of the layers, this second design idea brings them together
and allows interaction between them.

Further, it has to be stressed that this design idea is not entirely represented
in the development of the DxA. Though the DxA covers large parts of the
connection of the systems, it is not entirely responsible for the connection of
the layers. In fact, the design idea is meant in a more abstract manner, beyond
what was implemented.

Design idea 2 tackles two of the identified knowledge management problems
directly: The feedback circle (B2) and the connected documentation (B3). It
approaches the problem B2, which states that the communication between pro-
cess designers and process executers is difficult to establish (see section 6.4.2).
Process designers are part of the management layer and process executers of
the development layer. Hence, the problem can be seen in the way, that the
communication between people from one layer to people from the other layer
is difficult. This is the focus of the design idea: Increasing the communication
between the layers by connecting them.

150

Chapter 9. Discussion

Design idea 2 approaches also problem B3, which states that the documen-
tation, that is provided by projects, is not well connected (see section 6.4.3).
Every project creates its own documentation, but this is very isolated from the
other projects. It is created in the development layer, but the codification level
does not match the needs of the management layer. A project’s documentation
remains isolated, because it cannot be connected to the documentation of other
projects within the management layer. The design idea focuses on connecting
the layers, so that the documentation of different projects can be interconnected.
In this case the connection of the layers’ knowledge management strategies is
of high importance. The results from working with the personalization strategy
have to be connected in a layer that is using a codification strategy.

These two problems describe different levels of connection. Problem B2
focuses on a connection of people working in different layers of the company.
Problem B3 focuses on a connection of the knowledge management strategies
in the two layers of the company. This illustrates the complexity of the second
design idea.

Rus and Lindvall (2002) explain three important aspects of software devel-
opment regarding knowledge management: Core software developing activities,
the product & project memory and the learning & improvement. Only when
the two layers of Logica are connected, all three aspects can be fully supported
across the whole company. Two of these aspects are directly addressed by this
design idea. The support of the “product and project memory” reassembles
problem B3. This aspect focusses not only on the recording of the project
memory (i.e., documentation), but also on its traceability. The connection of
available documentation allows that.

The design idea also improves the access of information, which influences the
support of “learning and improvement”. The connected documentation allows
users to search the history of different projects with similar backgrounds. The
users can then learn from these projects. This is an important aspect of the
work, especially within the management layer.

Hence, the aspects of software development, that have to be supported by a
knowledge management approach according to Rus and Lindvall (2002), are not
equally spread. They cover very different aspects of work within a company. It
takes a larger system, like the KiWi systems, to address all of them.

Connecting the two knowledge management strategies also confirms the
knowledge creation as outlined by Nonaka (1994). He describes that knowl-
edge is created by cycling through the four modes socialization, externalization,
combination and internalization. However, not all modes are covered by each
strategy. Socialization for instance is a primary activity of the personalization
strategy and externalization is a primary activity of the codification strategy.
Hence, the modes of knowledge creation can merely work in a mixture of knowl-
edge management strategies. Following only one strategy would not allow the
full circle of knowledge creation; design idea 2 remedies this issue. Therefore,
the second design idea links the modes of knowledge creation (Nonaka, 1994) to
the knowledge management strategies (Hansen et al., 1999).

Further, the design idea is an extension of the experience factory as outlined
by Basili (1989). His approach is following a strong codification strategy. People
externalize knowledge and store it into an experience base. Others can then
retrieve the formalized knowledge from there. The knowledge that is being
externalized is the result of management tasks. This shows that the experience

151

Knowledge Management in Software Development

factory focuses on management work only.
If compared to the situation in Logica, it becomes obvious that the experi-

ence factory covers only half of the company and ignores the other half. The
experience factory can be seen as the management layer following the codifica-
tion strategy. However, the development layer or a personalization strategy is
not considered. Hence, connecting the two layers and their strategies expands
the experience factory.

On the technological level, the connection of two different knowledge man-
agement strategies resulted in the connection of two different knowledge bases.
The evaluation shows that this approach successfully address the knowledge
management problems. An alternative approach was created by Sint et al.
(2009). The authors focus on the different representations of data in different
parts of the same system, instead of connecting different systems. Their work is
another outcome of the KiWi project and addresses the same identified problems
from a different angle.

9.1.3 Design Idea 3: Wiki for Personalization
The third design idea was presented in section 7.2.1. It defines the choice of
knowledge management system in the development layer.

Design Idea 3: Utilizing a wiki in order to support the
personalization strategy within the development layer.

Wikis are collaboration tools; they support the communication between peo-
ple. This exchange of explicated knowledge can then be viewed or joined by
others. Wikis not only support the sharing of knowledge between the people
that are actively communicating through it, but works as a knowledge base at
the same time.

For Logica, the evaluation shows that the KiWi platform (or short: KiWi)
addresses several of the identified problems regarding the knowledge manage-
ment. The problem regarding the information access involves that knowledge
is encapsulated within projects and people from outside the project can barely
access it (A1, see section 6.3.1). The choice of the KiWi platform as the collab-
oration tool throughout the development layers improves this situation. KiWi
stores the communication and documentation centrally. Every user of it, and
therefore every employee, is able to browse or search through all available con-
tents. This enables the users to learn from and possibly re-use the content of
other projects, which can be a competitive advantage. The evaluation shows
that the technological enhancements in KiWi facilitate the information access.

The problem that relates to the difficulties to find people with a certain ex-
pertise within Logica (A2, see section 6.3.2). These experts exist; however, they
are not easy to spot. Although a wiki is not a direct solution to this problem,
it approaches it indirectly. The same counts for KiWi. It does not provide the
functionality to manage skills of people, but people that are active and write
about their expertise can easily be identified. For example, the employee George
is searching for someone that has knowledge about a certain database. In the
KiWi he then finds a variety of pages about this database, all written and/or
edited by the same person. This person might not even be aware of it, but
for George the experience and expertise of this person is highly beneficial. By
assisting to access relevant information, KiWi thus helps to identify experts.

152

Chapter 9. Discussion

The problem that deals with the lack of sharing support (A3, see section
6.3.3) illustrates that employees do not share their knowledge, because they
mainly lack incentives or opportunities to do so. KiWi addresses this issue.
It is a centralized system, which is utilized by all employees to share their
knowledge. Based on the personalization strategy in the development layer, the
employees also are impelled to use the KiWi platform for their collaboration.
The evaluation shows that KiWi makes it easy for the users to share what they
know.

The KiWi platform as a knowledge management system in the personaliza-
tion strategy also tackles the problem that deals with the documentation level
(A4, see section 6.3.4). In Logica the available documentation is often inconsis-
tent or incomplete. However, KiWi provides certain incentives to improve the
level of a project’s work documentation. One aspect is that everybody in the
whole company can easily benefit from the available content. Another aspect is
that KiWi, like any other wiki, is a platform for collaboration. The people use
it to discuss and document the work steps and results. This results in a living
documentation of the project and its progress, traceable for anyone across the
company. During the evaluation of the prototype, the expert test users assessed
this aspect and were convinced by its value. They stated that the collaboration
features could be very valuable for Logica and a huge improvement.

The problem relating to the connected documentation is that the documen-
tation of the different projects is not interconnected (B3, see section 6.4.3). This
problem was also approached by the design idea 2 above. The basic connection
of documentation in KiWi is very basic and equal to the realization in any other
wiki. Having the whole content in a single system alone provides valuable search
results. This is already an improvement as the documentation in Logica prior to
my studies was scattered across several different systems. However, this is not
a close connection, but KiWi provides other possibilities, based on its techno-
logical enhancements. A main focus here lies on the semantic web technologies.
This allows closer connection of topics through tagging and typing. A page can
be tagged, by assigning labels that reflect the content. And a page can be typed
as being of a specific class from an ontology. Additionally, the typing can be very
fine-grained, single data fields can be assigned to a property of a class. Both,
the tagging and typing can connect content directly in KiWi and by improving
the search results. The evaluation showed that the use of the information that
is available for KiWi is not properly used in the evaluated prototype. However,
both test users explained that a better utilization of the available information
would make KiWi to a powerful tool and be very valuable.

KiWi tackles the different problems with two aspects: First, it is designed
to be a centralized system that is accessed by everyone throughout the whole
company. Second, the evaluation shows that it provides valuable support for
collaboration and communication in projects, which other projects can access.
Both aspects are similar to any regular wiki and can be found in the litera-
ture. Hence, the core feature is the accessibility of information. Davenport
and Prusak (1998) point out that finding what is needed is the main problem
and the accessibility of knowledge is an important aspect of knowledge manage-
ment. The evaluation showed that KiWi successfully addresses these issues and
therefore qualifies as a general knowledge management system.

Much research explains the advantages of wikis as a knowledge management
system (Kim and Yan, 2010; Raman, 2006; Sousa et al., 2010). It is being

153

Knowledge Management in Software Development

shown on different examples that the usefulness of wikis regarding knowledge
management is high. Sousa et al. (2010) specifically state that wikis are a
valuable source for expert finding. Schaffert (2006) provides ideas for a wiki that
utilizes semantic web technologies and explains how knowledge management can
benefit from them. My studies explore these possibilities. The evaluation of
the KiWi systems shows that an enhanced wiki like this (here with additional
enabling technologies, see section 4.3.4) is valuable.

The experience factory by Basili (1989) describes a centralized solution. Ev-
ery employee has access to the experience base, similar to the way Logica em-
ployees access KiWi. But the two systems are applied differently. I explained
earlier that the experience factory follows a codification strategy, which can be
illustrated through the way they are utilized. In KiWi, and for that sake any
wiki in general, the people communicate with each other through the system. In
the experience factory the people communicate with the system only. In a wiki
the connection is directly, people collaborate; they ask questions and receive
responses. The experience factory is very indirect. People document their ex-
periences in a system. Others then are able to search the system for generalized
solutions, without any form of direct communication.

The design idea suggests wikis as general knowledge management systems
for the personalization strategy. Hansen et al. (1999) explain that the goal of
IT here is to facilitate conversations. Wikis are in general capable of that, and
the evaluation shows that KiWi specifically complies this. People are able to
communicate through KiWi by editing a page or using comments on one. But
Hansen et al. (1999) further explain that it makes sense to support a strategy
with a secondary in an 80-20 split. In this case the secondary knowledge man-
agement strategy would be the codification. According to Hansen et al. (1999),
the goal of IT here is to connect people and to allow the re-use of codified
knowledge. This is also achieved by a wiki.

Granted, not all content in a wiki is either communication or codified knowl-
edge, but both are possible in a wiki. And the KiWi platform is even one step
further: Different levels of codification exist. In fact, the levels of strong cod-
ification and weak codification (i.e., in communication) are fluid. A page can
have everything tagged and assigned to the ontology or only parts of it, and
sometimes even nothing. The level of codification in the system depends on its
users. Hence, KiWi represents the codification support of the personalization
strategy; however, the extend varies.

9.1.4 Design Idea 4: ES for Codification
The fourth design idea was presented in section 7.2.1. It defines the choice of
knowledge management system in the development layer.

Design Idea 4: Utilizing a project management system in
order to support the codification strategy within the manage-
ment layer.

A project management system is an enterprise system with the focus on
tasks related to the work of project managers. In this case it also involves
process management, which is closely related, as the processes define the tasks
of project managers. Both, the process and the project management are part
of the management layer. In Logica it is a necessity to use a system like this,

154

Chapter 9. Discussion

because of the general orientation towards the codification strategy. The project
managers use it to organize the project scheduling and for the resource planning.
This gathered information is then assembled in a report to be communicated
with the management layer. Within the management layer all communication is
based on documents, which are created through project management systems.
The utilization of these is therefore needed in the day-to-day business.

Additionally, the knowledge management problem is tackled that deals with
the connection of available documentation (B3, see section 6.4.3). My analysis
shows that every project manager uses their own project management system.
Applying the same system (or connecting the content of the several systems)
throughout the entire management layer of the company addresses the problem.
The isolated applications are avoided by making everybody use the same one.

The evaluation shows that utilizing a project management system in the
management layer is valuable. The test users are experts in the field and expe-
rienced project and process managers. Despite smaller problems related to the
usability, both rated the PMA as valuable. They further explained that it helps
to connect the data and make it easier available. The problem regarding the
connection of documentation (B3) is therefore successfully addressed according
to the test users.

Hansen et al. (1999) describe that the goal of the codification strategy is to
codify, store, disseminate and allow the re-use of knowledge through a system.
With this design idea I confirm this theory and extend it by suggesting a specific
tool for the IT support. I explain and evaluate that an enterprise system that
focuses on process or project management can be successfully applied for that.
Such a system brings all necessities for process and project managers to codify
their work and allow others to re-use or learn from it. The availability of data
and its accessibility is important (Davenport and Prusak, 1998).

But not only on the choice of tools to utilize the strategy, also the gen-
eral utilization of IT is very vaguely defined by Hansen et al. (1999). The
authors basically just state that people codify their knowledge into documents.
This design idea suggests a stronger focus on data: A system that is based on a
structured internal knowledge base as outlined by Davenport and Prusak (1998).
Applying a strict tool in form of the PMA is the result. Hence, the design idea
connects the theories regarding the knowledge bases and the knowledge man-
agement strategies by showing that the codification is well addressed through a
structured internal knowledge base. This connection is done regarding the re-
quirements of the management layer in Logica. The communication is entirely
based on data, representing details about the project and process management.
Additionally, the evaluation of the KiWi systems shows that connecting the
strategy and knowledge base is valuable and addresses the approached issues.

The fact that my contribution regarding this design idea is limited to the
aspects relating to the codification strategy in one of the organizational layers
in the case company is not surprising. This part is very traditional. Basically
every company uses enterprise systems and much research has focussed on it for
a long time. With this design idea, I respect the necessities, which increases the
likelihood that the entire knowledge management approach can be successful.

155

Knowledge Management in Software Development

9.1.5 The KiWi Systems

The resulting prototype of a knowledge management system is more than just
the sum of the four design ideas. Three systems (KiWi, DxA and PMA) are
combined to create an entire new knowledge management approach, which deals
with Logica as a whole, the development layer as well as the management layer.

The combination of all the systems addresses the problem that deals with
the process complexity (B1, see section 6.4.1). The vast number of process
descriptions and the resulting complexity influences the work in the management
layer. The system has to provide support for the user, to find and apply the
correct process description. KiWi provides support in finding the fitting process
description and through the PMA and the DxA the project manager can easily
apply it. The evaluation showed that these aspects work as intended. Further,
the test users explained that with such a system it would be more difficult to
violate the company’s rules than to follow the processes.

In the previous sections, I assign the identified problems to the different
design ideas, which address them. However, the design ideas cannot always be
seen isolated from one another. Especially in the realization they are based on
or require each other. Hence, each of the problems is of course also addressed
by the system as a whole. But instead of describing them together, I chose to
set the focus on the underlying design ideas. Table 18 provides an overview.

Problems

Design Idea 1 A & B

Design Idea 2 B2, B3

Design Idea 3 A1, A2, A3, A4, B3

Design Idea 4 B3

KiWi Systems B1

Table 18: Design Ideas addressing Knowledge Management Problems

The knowledge management approach includes a workflow description (see
section 7.5), which focusses on the handling and interaction with the KiWi
systems. It provides scenarios in which the usage and examples for applications
are explained. My studies do not cover the creation of process descriptions
for Logica, although I acknowledge that knowledge management always has to
inform the processes of a company. It is further a necessity that the employees of
Logica, and thus the potential users, accept the knowledge management systems.
The people additionally have to want to work with the systems, otherwise the
knowledge management approach will not be successful.

These two aspects are important for a successful knowledge management
approach, the considering the company’s processes and the involved people.
Much research documents this, as I report in the related research chapter (see
sections 2.3.2 and 2.4). Both aspects have been valued as being plausible by the
experts during the evaluation of the KiWi systems.

Mathiassen and Pourkomeylian (2003) strongly suggest to acknowledge the
involved knowledge management strategies and to address them directly. The
KiWi systems follow that advice and focus very much on the strategies within

156

Chapter 9. Discussion

Logica. The differences in the natural approach to their work in the manage-
ment and development are acknowledged through a distinction into separate
layers. This extends also the work of Hansen et al. (1999), who state that ev-
ery company should focus on one knowledge management strategy only. The
knowledge management approach presented in this thesis and therefore also the
KiWi systems go one step further and apply a fitting strategy where it is crucial.

My analysis shows that in the company two different layers can be detected,
with different work goals. Each of these is provided with a separate knowledge
management strategy. The KiWi systems then supports each layer separately,
connects both of them and ties them together. This allows to share knowledge
across the entire company, not limited to a layer.

The KiWi systems enable the knowledge sharing also on a different level.
Alavi and Leidner (2001) show that the organizational knowledge management
process includes the sharing of knowledge not only within a group of people,
but also between the different groups in a company. For Logica, a project
team reflects such a group. The problems related to the isolated islands of
knowledge (problems A1, A2, A3 and A4) deal with the lack of knowledge
sharing between the teams of different projects. Alavi and Leidner (2001, p. 123)
present a theoretical approach for the knowledge sharing between groups (see
figure 3 on page 10). The KiWi systems are an implementation of such an idea.
Projects are connected through the KiWi systems and the knowledge sharing
between projects can easily be established. During the evaluation, the test
users explained, that this connection of projects makes the re-use easier and
more likely.

Additionally, the KiWi systems extend the idea of the experience factory by
Basili (1989). The experience factory has a strict separation between project
work and knowledge base. The employees interrupt their project related tasks
to create knowledge items, which then will be stored in the knowledge base. In
the KiWi systems these two different areas are united. The working platform is
also the knowledge base. When people cooperate through KiWi their work and
the containing knowledge items are automatically in the knowledge base.

This connection influences the way the knowledge is treated in the knowledge
management approach. While the KiWi platform allows active communication
as well, the experience factory is limited to passive communication. People have
to create content, which eventually might become useful for someone. In KiWi
this is more targeted. The passive approach to store information of putative
users is also possible.

However, during project work KiWi is supposed to follow the active ap-
proach, i.e., for collaboration with a number of colleagues. Communication
through the system is in both systems the sharing of knowledge. The mere
existence of another approach provides more possibilities. In the end storing
becomes sharing in passive mode only. This reflects the direct and mediated
impact to learn according to Ravichandran and Rai (2003), the KiWi platform
embodies both.

In the related research I show that the IT should not be the focus of a knowl-
edge management approach (Kautz and Thaysen, 2001) and that social aspects
are an important factor in knowledge management (see section 2.4.1). My re-
search acknowledges that, through providing IT support for the personalization
with the social web. This seems contradicting at first, as it sets a focus on the
IT. However, the social web, here represented through the KiWi platform, sets

157

Knowledge Management in Software Development

the focus on the people. And it does this throughout the company, not limited
to one layer.

9.2 Limitations

My PhD studies, the approach to knowledge management presented in this
thesis, as well as the design study itself have a number of limitations. I am
aware of this and want to raise an awareness to the reader with this section.

The role of a scholar in any study involves a variety of decisions, for example
during the interpretation of data or the design. Every decision results in a
chosen focus and is therefore a limitation of the outcome. Further, it can never
be ruled out that these decisions are influenced by personal opinions, views or
attitudes. My PhD studies are of interpretative nature and should be recognized
as such.

The KiWi project was the foundation of my studies. It was a defined out-
come, to create and assess the use of an envisioned system (the KiWi platform)
in knowledge management. Other communication platforms than KiWi were
never an issue.

Additionally, despite being an active part of the KiWi project, my power
was limited. I was able to influence decisions of the project team, but only to
certain extend. The different involved parties had their own agendas, the Logica
business case was one aspect of the KiWi project’s work among many.

Other limitations come with the choice of action design research. The close
collaboration of scholars with practitioners, as in my studies, is always a mutual
exertion of influence. It has thus to be taken into consideration that the mere
engagement influences the outcome of a study significantly.

I discuss above that the case company is not unique, because all problems
are based on the literature. However, all companies are different from each
other, at least to certain extent. The target company is developing software
for different customers in a variety of projects. Even if other companies have a
similar organization or focus that does not imply that the KiWi systems would
solve their knowledge management issues. My research can be generalized along
specific characteristics in an organization. Logica is a big software development
company, with a strong view on processes, but acknowledges that not every-
thing can be completely based on these processes. These characteristics lead
to knowledge management problems, which are addressed in my studies. Com-
panies with similar characteristics as the case company can benefit from my
findings.

Another limitation is the data collection within the design study. The un-
derstanding of the problems is defined by the collected data. The access to the
case company was limited, due to the arrangements set in the project. Legal
issues also influenced the view on the case company’s data. Documents were
under non-disclosure agreements and the practitioners were not allowed to share
them with outsiders. This research therefore relies on the available sources. Dif-
ferent perspectives or further insights can always change the understanding of
problems.

The amount of involved people is always a limitation to the outcome in
ADR. As it emphasizes the intervention and evaluation during the work process
so much, the influence of the people involved in these stages is very strong.

158

Chapter 9. Discussion

In my studies two to three representatives of the case company were involved,
although they are very skilled, knowledgeable and experienced. The engaging of
scholars and practitioners in ADR leads to the work results. Therefore, different
or more people could have led to other results or directions of the study.

For the user tests in the final evaluation phase only two test persons were
involved in three test sessions each, this is a limitation on the outcome of the
whole evaluation of the systems. As I describe above (see page 144), this decision
was made out of necessity. It was not possible to assign more people or more
time for further tests. The stability of the systems as well as the organizational
boundaries of the project limited the available test users. A higher variety of
test persons might have led to a different view on the usefulness of the KiWi
systems.

As shown in many parts throughout this thesis, my research builds upon
existing research. The research that I refer to is the result of a literature study.
The involved works were taken into account due to conscious decisions on focus.
However, they draw from research published in a limited amount of outlets and
over a limited period of time. The field of knowledge management is rather
big and a lot of research in different fields is involved, which made the focus
necessary.

9.3 Future Research

This PhD study provides insights into the design of a knowledge management
approach and a knowledge management system for a software development com-
pany. These insights have limitations and further scrutiny is needed with the
help of different research approaches and further assessment. In particular, more
observations and future research are needed to gain more insights about the ap-
plication of communication tools like wikis in knowledge management and in
hybrid forms of the knowledge management strategies.

The KiWi systems comprise of three different systems. During the final
evaluation one of the comments by the test users was that this is a lot to deal
with. Especially the DxA was criticised. I find it interesting to see whether the
three systems could be integrated into one. The design of such an integrated
system would be very challenging, as it has to provide the necessary functionality
for each distinct layer. Such a system would have to combine both types of
knowledge bases into one. And maybe such a system could also advance the
mix of the knowledge management strategies. The distinct differences of layers
could be blurred and the strategies might be applied on the personal level. As
a result, every user can define themselves which way of dealing with data they
prefer.

My research was bounded to the application of the KiWi platform. How-
ever, there is a variety of other communication platforms in general, and wikis
specifically, available. I am curious to see design idea 3 realized through other
options. The influence of the different systems on the knowledge sharing can be
compared between different communication platforms.

Additionally, to dig a bit deeper, I would like to investigate the use of wikis in
the enterprise context more thoroughly. A focus on the development layer helps
to find out about the challenges that wikis bring. I expect that only through

159

Knowledge Management in Software Development

a proper integration into the company’s processes and people with adequate
motivation for sharing with others wikis can be productive and beneficial.

I think the knowledge model utilized in the prototype is of very high quality,
but has not been explored satisfactory. If the PMA and KiWi provide more
than just input fields for the data models, the entire approach would benefit
from that. For example, it would be possible to use the data more holistic in
KiWi and not just page based.

Also, the KiWi, though built on top of the semantic web technologies, does
not make little use of the possibilities regarding the knowledge model in connec-
tion to the wiki philosophy. It is not very transparent to the users, either. The
possibilities here are wide, though. The knowledge model could be edited by
users directly, which, for obvious reasons, influences other users. Different inter-
actions and their influence on the behaviour of KiWi and the entire knowledge
management approach might be tremendous.

These ideas for further research document my broad interest in knowledge
management and communication tools.

160

Chapter 10. Conclusion

Chapter 10
Conclusion

This thesis dealt with the description and documentation of the design, imple-
mentation and evaluation of a larger prototype dealing with the organizational
knowledge management processes in the setting of a big international research
project. Based on the FP7-funded KiWi project, my research had the goal
to find a way to support the knowledge management in software development.
Hansen et al. (1999) state that a company should pick either a codification
or personalization strategy to support knowledge management. I elaborate on
their work by proposing how to carry out a different strategy in the different
organizational layers of a software development company. This insight is based
on research involving the design of a knowledge management approach and sys-
tem, with people from the software development company. Following the Action
Design Research methodology as outlined by Sein et al. (2011), my research
involves a cyclic organization and ensemble view of IT artefacts. The cyclic
organization with constant iteration of building, intervention and evaluation al-
lowed a continuous shaping of the design. The ensemble view of IT artefacts
allowed consideration of not only the IT, but also the whole environment.

The analysis of the case company showed a number of knowledge manage-
ment problems. I differentiate between four problems regarding isolated islands
of knowledge and three problems regarding the inadequate bridging of knowledge.
These problems and the remaining insights gained from the analysis lead to the
conclusion that I deal with two layers of the case company: A development
layer and a management layer. My analysis shows that these two layers have a
different style of knowledge sharing. Many of the problems occur because of is-
sues between these layers, a knowledge management system has to consider this.

161

Knowledge Management in Software Development

The design is based on four design ideas, which address the different knowledge
management problems.

Design Idea 1: Each of the organizational layers has to be assigned their own
knowledge management strategy: Codification in the management layer
and personalization in the development layer supports the strengths and
overall strategy in each layer.

Design Idea 2: The layers and the strategies have to be connected. As the
gap between both layers caused a variety of problems, it is essential for a
successful knowledge management approach that this gap is bridged and
sharing of knowledge across the borders is feasible.

Design Idea 3: A wiki can support the personalization strategy in the develop-
ment layer. Wikis have strengths to support collaboration and interaction
on shared content, which meet the needs of developers.

Design Idea 4: An enterprise system, focussed on process and project man-
agement, can support the codification strategy in the management layer.
The case company functions very process-driven and a project manage-
ment system like this is basically required.

Based on these four design ideas the prototype of a large knowledge manage-
ment system was created, composed of three sub-systems. The KiWi Platform
is the supporting system for the development layer. This is a wiki enhanced
with different technologies, like a recommendation component or semantic web
technologies. The system to support the management layer is the Project Man-
agement Application. This is a system that focuses on the administration and
creation of data. Both systems are connected through the Data Exchange Agent.
This is an application that allows the project manager to move data from one
system to the other. All three systems in combination are called the KiWi Sys-
tems. A final evaluation by experts showed that the prototype is valuable and
could be beneficial for the case company.

My research contributes to different areas in the field of knowledge manage-
ment theory. My studies mostly deal with the codification and personalization
knowledge management strategies of Hansen, Nohria, and Tierney (1999). I
elaborate on these and present an approach, which adapts both strategies within
the same company by distinguishing between two layers: The management and
the development layer. Additionally, I connected these strategies to the knowl-
edge bases. I argued and provided suggestions regarding to the link between a
knowledge management strategy and a fitting knowledge base.

162

Appendices

163

Appendix A. Knowledge Model

Appendix A
Knowledge Model

The knowledge model is the underlying data structure of the KiWi systems. By
sharing this general data model it is possible to exchange data between the two
systems. The shared knowledge model is therefore an aspect of the realization
that follows the second design idea (see section 7-1-4), to connect the layers.

Figure 52: The Type Defect and its Relations (RDF Diagram), from (Dolog
et al., 2009b)

This general data model has to be translated into the data structure, suitable
for each system (see section 7.3.3). The data between the PMA and KiWi are
to be exchanged; hence the knowledge model has to be translated to a relational

165

Knowledge Management in Software Development

database for the PMA and into an OWL ontology for KiWi. The DxA then has
a mapping table, which is more like a dictionary that can knows all entries of
the knowledge model and how they are represented in the two data models (see
section 7.4.2).

Figure 53: The Type LessonsLearned and its Relations (RDF Diagram), from
(Dolog et al., 2009b)

The knowledge model itself contains elements for all plausible aspects of the
project work. It describes the relationship between entities. Figure 52 shows an
example of the Defect entity, figure 53 the LessonsLearned entity. You can see
the fields it contains and the entities it is related to. Note that for sub-entities
the relations are mostly left out. The reason for this is the readability; this does
not imply that there are none. All three figures (those two above as well as
figure 37 on page 117) are examples for aspects of the knowledge model.

More details regarding the knowledge model can be found in the deliverable
D6.3 of the KiWi Project (Dolog et al., 2009b). The OWL representation of
the knowledge model is online; as a part of the KiWi open repository. It can be
accessed directly under this URL:

https://svn.salzburgresearch.at/svn/kiwi/KiWi2/trunk/extensions/

ontologies/resources/logica/logica.owl

166

https://svn.salzburgresearch.at/svn/kiwi/KiWi2/trunk/extensions/ontologies/resources/logica/logica.owl
https://svn.salzburgresearch.at/svn/kiwi/KiWi2/trunk/extensions/ontologies/resources/logica/logica.owl

Appendix B. Feature List

Appendix B
Feature List

This part of the appendix shows the full feature list of the KiWi Systems. It
is equal to the one previously published in the KiWi project’s deliverable D7.2
(Grolin et al., 2010a). The features are numbered following a simple code to
understand the developing party (table 19).

No. Objective

1xx Core functionality

2xx Enabling technology: Reasoning

3xx Enabling technology: Reason maintenance

4xx Enabling technology: Information extraction

5xx Enabling technology: Personalisation

6xx Data Exchange Application

7xx Logica application

Table 19: The Numbering System for Features, from (Grolin et al., 2010a)

The complete feature list (table 20) covers the following pages. It was created
in close cooperation with all developing participants of the KiWi project.

167

Knowledge Management in Software Development

No. Name Usage

100 Login Click “Login” in the top right corner of the page
to jump to the Login Page. Insert details and click
“Login”.

101 Create User Click “Sign Up” in the top right corner of the page
or “Register first” in the Login Page to jump to
the Sign Up Page. Insert details and click “Store”.

102 Edit Page Click on “Actions” to activate a drop down menu.
Choose “Edit” here to jump to the Edit Page.
After editing the content click “Save” to persist.

103 Comment Page Click “Comments” underneath the page’s content
to open the comments view. Then click “Add
comment” to open an editor; write comment and
click “Add” afterwards to persist.

104 Link to Page In the editor either type the page’s name in double
square brackets [[page]] or click the “create/edit
internal link” icon and enter the target page’s
name.

105 Create Page Create a link (No. 104) to a page that does not ex-
ist. Navigating to that page opens the edit screen
of the new page automatically.

106 Tag Page Viewing a Page; click “Edit” next to Tag under-
neath the Headline. This opens a Tag window.
You can add new tags or use recommended tags
(by clicking the green plus sign) or add weights to
previous set tags (by clicking the green plus sign).

107 Search content Enter the search word(s) into the form on the top
right corner of the screen and press enter or click
on the magnifying glass. You will be lead to the
Search Page and the results are listed.

108 Edit Metadata Click on “Actions” to activate a drop down menu.
Choose “RDF Metadata” here to jump to the
Metadata Page. Here you can edit the values by
just clicking them or deleting it by clicking on
“Delete” at the end of the row.

109 Load Ontology Enter the Admin area; click “Load Ontologies”
from the menu; choose the ontology to load and
click “Load Ontology”.

110 Revert Page Click on “Actions” to activate a drop down menu.
Choose “History” here to jump to the Edit Page.
Click on the link from the list to revert the page
to the specific version number.

111 Compare Page Ver-
sions

Click on “Actions” to activate a drop down menu.
Choose “History” here to jump to the Edit Page.
Choose two or more tickboxes of the versions you
want to compare and click “Compare selected re-
visions” to jump to the comparing page.

112 Add Page Type In Editing Mode (No. 102) below the headline;
users can add types for a page by clicking the
green plus icon and choosing the type from the
list in the pop up window and then clicking the
“Add” button.

Table 20 – Continued on next page. . .

168

Appendix B. Feature List

Continuing from previous page.

No. Name Usage

113 Delete Page Type In Editing Mode (No. 102) below the headline;
users can delete types for a page by clicking the
red minus icon next to the type.

114 Microformat support special formats like hcalender; hcard are gener-
ated out of the rdf data of a contentitem; so these
formats can be imported to the os adress book

115 Semantic Forms Defined in simple HTML that has to be stored
in the filesystem. In the editor it then can be
applied.

116 View Article in
TagIT Extension

If the current wiki-view shows a location-based
ContentItem it is possible to click on the TagIT
extension

117 Dashboard The dashboard is used as kind of a social network-
ing extension; where one can define/refine per-
sonal information; upload a profile picture; add
or remove friends and join/leave groups

200 Reasoning Either online-reasoning is switched on then noth-
ing is required to do or it is switched off. If it is
switched off then go to Admin ? Reasoner and
click “Run reasoner”.

201 User-specified rules Change the rules.txt file.

202 Online reasoning Enable online reasoning in Admin → Reasoner →
Online reasoning

203 Inspect triples Go to Inspector → Base triples or Inspector →
Inferred triples.

204 Extended Search On the normal search results (see 107) click on
“kwql” to get to the search results.

300 Triple explanation Inspector → Explanation Enter a triple id and
click “Explain”. You can get the triple id from
the “Inspect triples” feature.

301 Explanation tooltips Hover mouse over inferred types (in italics) in In-
going/Outgoing relations on the right side of the
Wiki application.

400 Tag Recommenda-
tion

The system provides recommendations for tagging
(see No. 106).

401 Create RDFa Prop-
erty

In Editing Mode (No. 102) mark the text that
should become a RDFa Property’s Value; click the
“Create/edit RDFa property” icon and choose the
property from the list in the pop up. Then click
“Save” to persist.

402 Edit RDFa Property In Editing Mode (No. 102) mark the RDFa Prop-
erty’s Value that should be edited; click the “Cre-
ate/edit RDFa property” icon and choose a dif-
ferent property from the list in the pop up. Then
click “Save” to persist.

Table 20 – Continued on next page. . .

169

Knowledge Management in Software Development

Continuing from previous page.

No. Name Usage

403 Create RDFa Link In Editing Mode (No. 102) mark the text that
should become an RDFa link; click the “Cre-
ate/edit RDFa link” icon; choose the property
from the list in the pop up and write the name
of the page that should become the target of the
link.

404 Edit RDFa Link In Editing Mode (No. 102) mark the RDFa link
that you want to edit; click the “Create/edit
RDFa link” icon; change the property from the
list in the pop up or/and the name of the page
that should be the target of the link.

405 Reject Tag Recom-
mendation

The user can reject a suggested tag recommenda-
tion; when it does not make sense. The recom-
mendation improves and the user is not bothered
with it any more.

406 Tag Active Learning On a page of a tag; a list of all documents that
have this tag as a suggestion is displayed. A user
wanting to use this feature would: 1.manually
tag a small set of example documents using this
tag. 2. Go to the page of the tag. 3. Initial-
ize the classifier by selecting a ‘type’ of the tag
(such as; whether it tags a whole document; or
just specific fragments) 4. Go through the sug-
gestions presented and acknowledge or reject any
of them. The suggestions are computed using
machine learning algorithms based on previously
tagged documents/fragment and learn based on
the user feedback.

407 RDFa/fragments
suggestions.

The user can display/hide suggestions for RDFa
datatype properties; object properties or tagged
fragments in the text. She can then accept or
reject each suggestion separately.

408 Creation and Editing
of Fragments

The user can select a piece of text; click on a Frag-
ment button; which creates a fragment. Tags can
be added to this fragment. To edit a fragment;
one would place the cursor into a fragment and
click the Fragment button. User can add or re-
move tags on the selected fragment.User can also
delete a seleted fragment.

500 Recommendations
by Tag

The system recommends pages with similar tags.

501 Personalized Search First of all tick the “personalized search” check
box. Then; enter the search word(s) into the form
on the top right corner of the search box. You
will be lead to the Search Page and the results
are listed.

Table 20 – Continued on next page. . .

170

Appendix B. Feature List

Continuing from previous page.

No. Name Usage

502 Social Recommenda-
tion

On the head of current content item; select a
friend from your contact list and recommended
the current content item. Your friend will be able
to see the item when accessing the dashboard;
more specifically on the social recommendation
widget

503 Tag purpose On the dashboard; there is a menu option “My
Tags”. Users are able to define the purpose of
their tags such as: qualification (ex: good; bad);
conceptualization (ex: book; city) and so forth.
Such entries will be utilized as filter for later in-
formation retrieval.

600 Get Templates Click on “Get Templates” Button in UI.

601 Choose Template Click on Template in List.

602 Choose Entity Click on one field in the “Data View”. Whole row
has to be marked.

603 Publish Data Click on “Publish” button in UI after selecting
row of interest.

604 Update Logica Ap-
plication

Click on “Update LUC” button in UI after select-
ing row of interest.

605 Update KiWi System Click on “Update KiWi system” button in UI af-
ter selecting row of interest.

606 Open Entity in KiWi Click on “Open Entity KiWi Page” button in UI
after selecting row of interest.

700 Login Click “Login” in the top right corner of the page
to jump to the Login Page. Insert details and click
“Login”.

701 Show Entities Navigate to the entity list using the main naviga-
tion.

702 Show Details On the entity’s list page; click on entity’s name or
“View” in list.

703 Filter Entities On the entity’s list page enter the filter words into
the mask on top and click “Search”.

704 Edit Entity Click “edit” in the entity list or on the entity’s
details page.

705 Create Entity Click “Create Entity” button on the bottom of
the entity list page.

706 Delete Entity Click “edit” in the entity list or on the entity’s
details page and click the “Delete” button.

707 Add 1:Many Rela-
tion

On the Entity Details page underneath the details
in tabs the relations are displayed. Click the “Add
Entity” button to go to an edit page; insert details
of the related entity and “Save”.

708 Edit 1:Many Rela-
tion

On the Entity’s Relation list in the tabs; click
“Edit” to jump to the entity’s details edit page
directly.

709 Delete 1:Many Rela-
tion

On the Entity’s Relation list in the tabs click
“Edit” to jump to the entity’s details edit page
and click the “Delete” button.

Table 20 – Continued on next page. . .

171

Knowledge Management in Software Development

Continuing from previous page.

No. Name Usage

Table 20: The complete Feature List, from (Grolin et al., 2010a)

172

Appendix C. Use Cases

Appendix C
Use Cases

This part of the appendix shows the use cases of the user tests for the evaluation
of the KiWi Systems. It is equal to the one previously published in the KiWi
project’s deliverables D7.2 (Grolin et al., 2010a) and D7.4 (Grolin et al., 2010b).

1xx 2xx 3xx 4xx 5xx 6xx 7xx

UC1 100,
102-109,
112-113,
117

401-405 500,
502

600-605 700-709

UC2 102-107 600-604 700-705

UC3 100-109,
112, 117

201,
204

400-404 501-503 600-604 700-705

UC4 102-107 204 501,
502

600-603 700-705

Not
Eval.

110, 111,
114-116

300,
301

406-408 606

Table 21: Use Case Evaluation Coverage, from (Grolin et al., 2010a)

Each of the use cases states the features of the KiWi systems (see appendix
B). The coverage of the whole system can be seen in table 21. An exception
from this is the fifth use case, as it was created during the process to specifically
evaluate the information access (for details see section 8.2).

173

Knowledge Management in Software Development

C.1 Use Case 1: Project Planning
The first use case deals with the activities of a project manager that concern
the planning of a project.

Before Picture

Missing integration: There is no integration between planning tools and tool
used to store the business model. It is an entirely manual task to produce a
project plan that is consistent with the business model. Doing so is a huge
task given the size and the complexity of the business model (containing several
hundred processes, policies, requirements etc.). Creating the proper sets of
plans based on the business model requires 300 – 700 hours during project start
up, and the project managers are typically overworked at this particular time
because they also have to invest time in contractual issues, forming a team, on
customer relations etc. . . Basically the organization gets trapped in a situation
where the body of valuable and relevant knowledge increases as more experiences
and best practices are collected and integrated in the business model, actually
makes it more difficult for project managers because the amount of knowledge,
as well as the complexity, increases.

IT support for planning: Very modest.
Inconsistency: Making sure that plans are consistent (e.g. that there are

tasks that deals with identified risks) is manual, and very time consuming task.

After Picture

Integration: The planning tool (PMA) and the business model are integrated,
in the sense that the business model can be used directly in the planning task.
Support for planning: furthermore the planning is supported by functionality
that automate parts of the planning process.

Consistency: There are functionalities that can analyse and check whether
a plan is consistent.

Description

The detailled descriptions and the different work steps of the use case are de-
scribed in table 22.

Work Step Features

Part 1 – Analysing the scope of the project

Preparing: The primary input to the planning process is
the requirements and the products that have to be devel-
oped. The requirements specification as well as the contract
is studied in great detail by the project manager, the busi-
ness analyst and a technical architect Requirements are en-
tered into the system. Products are identified and a product-
breakdown-structure (e.g. sub system a, b, c. . .) is created.
For each product a responsible project participant is chosen.

700 - 709

Table 22 – Continued on next page. . .

174

Appendix C. Use Cases

Continuing from previous page.

Work Step Features

Publishing: The product-breakdown structure with infor-
mation about all the products as well as the related require-
ments are published in KiWi.

600 - 603

Collaborative scope analysis: Project participants analyse,
review, comment and add detailed information about the
various products and requirements that they are responsi-
ble for. They might also enter ideas about how to fulfill
the requirements, design ideas etc for later use. During the
process they identify issues that needs to be clarified, and
they challenge and review information about product size
and complexity, since this information is used during the es-
timation process. When doing so the participants exploit
information entered by other projects about how they have
dealt with similar requirements and products. Pages con-
taining relevant information are suggested by the system.
The participants also use process descriptions and checklists
relevant for the tasks, e.g. checklists that highlight impor-
tant issues to remember when reviewing requirements.

100, 102-107

Consolidation: When finished the information is feed back
to the PMA application. Project management establishes an
overall overview over the scope and the requirement related
issues that needs to be resolved with the customer.

604, 701

Part 2 – Analysing Risks

Preparing: The project manager creates one or more pages
in the system for entering information about risks and invites
project participants to take part by entering risks.

100, 104-106

Individual Risk identification: The project participants enter
possible risks into the system. They are supported in several
ways e.g.: They can easily access risks from other projects,
they can use the risk identification process as well as check-
lists stored in the system, and they can access requirements
and product related information from this specific project.

102-104, 107

Risk identification meeting: The project group meets and
discusses the identified risks. During the discussion notes
are documented on the various pages.

102, 103

Risk identification clean up: The project manager enters
the detailed information about the risks (e.g. who’s respon-
sible). Some risks are split up and treated as several risks.
Other risks identified by different persons are merged into
one because they address the same problem. While doing
so the project manager also adds information about possible
resolution strategies.

700-705

Risk resolution meeting preparation: The project manager
publishes the almost finished risk analysis for commenting
and reviewing.

600-603

Risk resolution and review meeting: The project group re-
views the risk analysis and especially the resolution strate-
gies proposed by the project manager. The resulting changes
and comments are documented on the pages containing the
risk analysis.

102, 103

Table 22 – Continued on next page. . .

175

Knowledge Management in Software Development

Continuing from previous page.

Work Step Features

Project plan integration: The project manager imports the
resulting changes into the pm application and integrates the
risk analysis in the project plan.

604, 700-705

Part 3 – Estimating the project

Prepare planning: The project manager chooses a lifecy-
cle model in the PMA application, combines the product-
breakdown structure and the processes to generate a first
version of the estimates. When doing so the estimates are
based on productivity metrics as well as the product size
information. During this process project participants are
appointed as responsible for various activities.

701, 704, 705

Involving participants: The activities and estimates are pub-
lished in KiWi together with all the other kinds of informa-
tion. That is: For each activity the project participants
can, not only se the estimates, they can also see the prod-
uct information (e.g. sizing information), they can see the
requirements for the products, the can see any risks that are
related to the activity, and they can see the metrics that the
risks are based upon, and the processes they are supposed
to use.

600-603

Commenting on the plan: Project participants get the op-
portunity to review, comment and adjust the estimates based
on their experience. When doing so they can exploit infor-
mation from similar projects/activities (how was a similar
task estimated in a previous project?), various checklists as
well as information about products, requirements and risks
for this specific project.

102, 103, 105

When the project manager uses the system, she can eas-
ily get an overview over changes and comments on various
pages, and provide “comments to the comments”.
Finalizing the estimates: When finished the information is
feed back to the pma. The project manager checks the es-
timates, e.g. by comparing estimates across different but
similar activities.

604, 700-705

Part 4 – Scheduling the project

Making a draft: The project manager prepares a schedule
based on the estimates, and dependencies between products
and activities, project participant availability and the num-
ber of hours they are allocated to the project. When doing
so the project manager can chose between making a conser-
vative, realistic, or aggressive schedule.

700-709

Publishing the draft: The schedule is published in KiWi.
The schedule is published in a way that makes it easy for
project participants to see their personal schedule

600-603

Table 22 – Continued on next page. . .

176

Appendix C. Use Cases

Continuing from previous page.

Work Step Features

Reviewing the schedule: The participants (and other stake-
holders) can comment on the overall schedule as well as their
own personal schedule describing when they are supposed to
start and finish activities. When finished the information is
feed back to the PMA application.
The project manager finalizes the schedule, and checks con-
sistency using the PMA application, the consistency check
(e.g. is expected future productivity for remaining activities
realistic compared to past productivity?) becomes a part of
the status report.
A final project plan, schedule etc is published in KiWi.

102, 103, 604,
701-704, 605

Table 22: Use Case 1, from (Grolin et al., 2010a)

C.2 Use Case 2: Project Monitoring
The second use case deals with the monitoring of projects by employees from
the management level.

Before Picture

Un-reliable status reporting: It is not possible to ensure that project status
reports are based on reliable data e.g. about progress. It is almost impossible
for outsiders to check whether a status report actually presents a true picture
of the project.

Missing integration: There is no integration today between the various
documents, spreadsheets etc that contains information used in status reporting.

Lack of tool support: Preparing a complete status report is basically a
manual activity that takes 1-2 days each month for project managers on large
projects.

After Picture

Reliable status reporting: By basing the status reporting on data from
the PMA application and using functionality to do a consistency check a more
reliable status report is established.

Integration: More integration, less manual work
Support for reporting: Status reporting is changed from an activity were

the effort is focused on getting data, to an effort were the focus is on taking
management decisions about future actions based on reliable data.

Description

The detailled descriptions and the different work steps of the use case are de-
scribed in table 23.

177

Knowledge Management in Software Development

Work Step Features

Part 1 – Collecting data about the project

The PMA generates data used for evaluating the project
status.
DxA: The status information is published in KiWi.
KiWi: Project participants enter status information regard-
ing the tasks assigned to them and modifiy estimates if nec-
essary. Project participants also enter status information
regarding other objects that they are responsible for, e.g.
risks and run-resolved issues.
DxA: When finished the information is feed back to the
PMA application.

700-705, 600-
603, 102-107,
604

Part 2 – Finalysing and publishing the status reports

PMA: The project manager prepares a final status report
using the application based on the input from the project
participants. As part of this step, corrective actions are
defined if necessary. These actions might involve that the
schedule is modified, tasks being re-allocated etc.
DxA: The status report as well as a new plan reflecting the
needed changes which are published.
KiWi: Management can read and comment on the status
report in the KiWi, and the project participants can see any
changes to the project than might affect their work.

704, 705, 600-
603, 102-107

Table 23: Use Case 2, from (Grolin et al., 2010a)

C.3 Use Case 3: Development or Project Work

The third use case deals with the general project work of the development layer.

This use case overlaps with the first step of the project planning use case
(section C.1). It does, however take a different perspective and focus to uncover
a different type of usage.

Before Picture

Clarifications lost or non-distributed: A lot of the information that pass
between individual developers and the architects is undocumented because it is
requested and received informally. Other developers working on the same work
package do not benefit from the clarification.

Missing documentation for formal changes: The need for changes to
plans will require justification and without written clarification there is nothing
to refer to in formal requests.

Missing Integration: Planning, distribution and management of work
packages are carried out in different systems.

Monitoring: If an issue is of interest there is no way to stay in the loop
unless all parties discussing it are asked to include the third party.

Difficult to find relevant information: The developers are not aware of
issues that arise for other developers and have no way of finding out.

178

Appendix C. Use Cases

After Picture

Clarifications documented and available: The clarification given to devel-
oper is placed on a page that is searchable and viewable by all project partici-
pants.

Change information available: Change requests and revision can refer
to clarification given.

Integration: The integration allows the architect and project manager to
maintain the work packages in one system.

Syndication: The project participants can get notification when new in-
formation is added to the page about an issue of interest.

Intelligent information finding: The developer can receive recommen-
dations or actively search for solutions to problems that they face.

Description

The detailled descriptions and the different work steps of the use case are de-
scribed in table 24.

Work Step Features

Part 1 – Work package assigned.

PMA: The PMA application generates the scope and con-
tent for each package. The work package is broken down into
assignable development tasks.
DxA: The work package information is published in KiWi.
KiWi: Developers can pose questions about the designs to
the architects to answer. If the question cannot be answered
by the architect the question is passed on to the customer.
Issues raised by the developers and the answers they provoke
may affect estimates and it may cause the customer to make
a change request to designs.
DxA: If feedback causes formal changes to plan or design
these are feed back into the PMA system.

700-705, 600-
603, 102-107,
604

Part 2 – Update information

PMA: Updates are made as a consequence of the clarifica-
tion.
DxA: The updates are published.
KiWi: Developers are notified that their work package or
tasks have been affected.

704, 705, 600-
603, 117

Table 24: Use Case 3, from (Grolin et al., 2010a)

C.4 Use Case 4: Process Design

The fourth use case deals with process design activities.

179

Knowledge Management in Software Development

Before Picture

Disconnected process description and execution: The description of the
process and the application (insofar as there is one) that supports it, are dis-
connected and users do not necessarily consult them.

Inflexible application: The applications are generally not designed for
frequent changes to the process it supports.

No collection of innovation ideas: Since descriptions of the process
and the execution of the process are maintained different places, users seldom
decide to record ideas for change, the application having no place to compile
observations.

After Picture

Support process in execution: The process description follows, side-by-side,
with the pages on which process execution is carried out.

Process change support: The tool support is flexible enough to handle
most change to the process it supports.

Process innovation support: The tool supports the process to gather
process innovation ideas and put them up for general consideration.

Description

The detailled descriptions and the different work steps of the use case are de-
scribed in table 25.

Work Step Features

Part 1 – Call for change recommendation
KiWi: The Project Manager creates a page in KiWi where
he asks for comments or other feedback regarding the audit
process. He then uses the KiWi search and recommendation
to find people, that work with this process and invites them
to give feedback as well. He then watches the page and the
discussion, contributes, when needed, but mostly just reads
the comments.
To create a page, he sets a link on another page to the one
he has in mind (e.g. [[Definition of the Audit Process]]).
Clicking on it automatically opens the edit screen for the
new page. To invite others, he simply sends the link via
e-mail.

100, 105, 102,
103, 107

Part 2 – Refinement
KiWi: After a while, when he does not expect any further
input, the Project Manager refines the discussion’s results.
He might do that on a dedicated KiWi page which links
to the discussion page or directly underneath on the same
page. However, he analyses the feedback and creates a list of
things to change. Editing a KiWi page works basically like
standard text processing tools do. The main functionalities
are represented in icons of the edit screen.

105, 102

Table 25 – Continued on next page. . .

180

Appendix C. Use Cases

Continuing from previous page.

Work Step Features

Part 3 – Publish draft
KiWi: With this list the Project Manager creates a first
version of the new audit process definition. He does not just
copy and paste the refined feedback results but inserts data
bits and bullet points according to these. He understands
it as a draft version and wants to develop it further at a
later point in time. This version is basically a more precise
version of the refined feedback results plus general input from
his experience as a Project Manager.
PMA: In order to do so, he opens the Logica Application in
his browser and uses the main navigation to open the entity
of concern, in this case ProcessDefinition. As he wants to
enter a new data set, he clicks on “create new” on top of the
page.
DxA: The Project Manager might publish it directly to
KiWi to get feedback on this draft. In this case, he jumps
to the last step, then repeats the first step, and updates the
data according to the comments.

102, 700, 705

Part 4 – Revision
KiWi: Of course the data needed for the process defini-
tion is not just given through the feedback and the Project
Manager’s general knowledge. He has to take care about
consistency with the process guidelines, resource planning
and other related topics. As a process manager it is his job
to provide a complete process. But he starts by formulating
the bullet points to complete sentences and defining the data
he just put roughly before.
DxA: In the Logica Application he browses to the list of
ProcessDefinition using the main navigation and clicks edit
behind the entity created in step three. This leads him back
to the editing screen where he can change the entries and
clicks “Save” afterwards to persist his changes.

704

Table 25 – Continued on next page. . .

181

Knowledge Management in Software Development

Continuing from previous page.

Work Step Features

Part 5 – Final publication
DxA: As the Project Manager considers the process to be
defined and done, he publishes it. For that he has to open
the DxA, chooses the template for process descriptions and
then the audit process. By clicking the button “Publish” the
data transfer to KiWi starts. After the successful import,
he browses to the KiWi page with the new created process
definition. The new process is ready for application.
The publishing is handled in the DxA, it monitors the pub-
lished data and checks whether published data has been
changed. After starting it, the Project Manager has to ask
for the Templates by clicking on “Fetch Templates”. The
DxA retrieves a list of templates and displays it. The Project
Manager then chooses the ProcessDefinition template, which
triggers the DxA to provide a list of all data sets the Log-
ica Application contains, which are possible for import. The
DxA shows a list of all the data fields that are affected for
the import. The Project Manager chooses the row that he
created in the Logica Application concerning the Audit Pro-
cess and clicks on “Publish”. After the DxA finished the
download successfully, it provides the user the possibility to
open the created page directly in a browser.

600, 601, 602,
603, 102

Table 25: Use Case 4, from (Grolin et al., 2010a)

C.5 Use Case 5: Data Access
Unlike the use cases above focuses this one on the evaluation of the information
access within KiWi.

Test data, provided by Logica, was inserted into KiWi, and the test users
have to find out details about it, without precise knowledge about it. During
the test run, the users should act like they are not aware of the fact that KiWi
already contains data of interest.

Tasks

The tasks are described in table 26.
Note: The whole evaluation takes part in the KiWi platform only.

182

Appendix C. Use Cases

Task Description

Create a new UseCase The project manager creates a page in KiWi to de-
scribe a use case. He puts a link on the project’s
overview page that leads to the use case. There he
writes a short introduction to what this use case
will be about and saves the changes. Afterwards he
tags the page with freeform tags that represent the
content that is already available and supposed to be
collected on this page and on subpages.
Whenever he finds pages of interest, he leaves com-
ments or adds missing tags. He also links to impor-
tant pages from his project to the related ones.

Finding through Tags To find related pages, the project manager clicks on
the created tags and checks the pages with the same
tags.

Finding through Recom-
mendations

The project manager goes back to the use case page
he created and has a look at the KiWi recommen-
dations in the sidebar, whether related pages are
suggested.

Finding through Dash-
board

As every user has a dashboard, he goes there, and
tries to get help through the provided information.

Finding through Search The project manager uses the search to find and
filter the KiWi repository.

Table 26: Use Case 5, from (Grolin et al., 2010b)

183

Knowledge Management in Software Development

184

Bibliography

Bibliography

Ivan Aaen, Jesper Arent, Lars Mathiassen, and Ojelanki Ngwenyama. A Con-
ceptual MAP of Software Process Improvement. Scandinavian Journal of
Information Systems, 13:81–101, 2001.

Russell L. Ackoff. From Data to Wisdom. Journal Of Applied Systems Analysis,
16:3–9, 1989.

Maryam Alavi and Dorothy E. Leidner. Review: Knowledge Management and
Knowledge Management Systems: Conceptual Foundations and Research Is-
sues. MIS Quarterly, 25(1):107–136, 2001.

William Albert, Thomas Tullis, and Donna Tedesco. Beyond the Usability Lab:
Conducting Large-Scale Online User Experience Studies. Morgan Kaufman
Publishers, 2010.

Klaus-Dieter Althoff, Frank Bomarius, and Carsten Tautz. Knowledge Man-
agement for Building Learning Software Organizations. Information System
Frontiers, 2:349–367, 2000a.

Klaus-Dieter Althoff, Wolfgang Müller, Markus Nick, and Björn Snoek. KM-
PEB: An Online Experience Base on Knowledge Management Technology. In
Knowledge Creation Diffusion Utilization, pages 335–347, 2000b.

Javier Andrade, Juan Ares, Rafael Garćıa, Santiago Rodŕıguez, Andrés Silva,
and Sonia Suárez. Knowledge Management Systems Development: A
Roadmap. In Proceedings of th 7th International Conference on Knowledge-
Based Intelligent Information and Engineering Systems (KES), pages 1008–
1015, 2003.

Jesper Arent and Jacob Nørbjerg. Software Process Improvement as Organiza-
tional Knowledge Creation: A Multiple Case Analysis. In Proceedings of the
33rd Annual Hawaii International Conference on System Sciences, 2000.

Robert Audi. Epistemology: A Contemporary Introduction to the Theory of
Knowledge. Routledge, 3rd edition, 2010.

Mirko Auerbach and Andreas Hauser. Process Oriented Knowledge Manage-
ment – IT System and Case Study. In Proceedings of the International Con-
ference on Knowledge Management and Information Sharing, 2009.

185

Knowledge Management in Software Development

Aybüke Aurum, Farhad Daneshgar, and James Ward. Investigating Knowledge
Management practices in software development organisations An Australian
experience. Information and Software Technology, 50(6):511–533, May 2008.

Oguz N. Babüroglu and Ib Ravn. Normative Action Research. Organization
Studies, 13(1):19–34, January 1992.

Jørgen P. Bansler and Erling C. Havn. Exploring the role of network effects in IT
implementation: The case of knowledge management systems. In Information
Technology & People, 2002.

Jørgen P. Bansler and Erling C. Havn. Sharing Best Practices: An Empiri-
cal Study of IT-Support for Knowledge Sharing. In Proceedings of the 9th
European Conference on Information Systems, 2001.

Jørgen P. Bansler and Erling C. Havn. Building community knowledge systems:
an empirical study of IT-support for sharing best practices among managers.
Knowledge and Process Management, 10:156–163, 2003.

Jørgen P. Bansler and Erling C. Havn. Exploring the role of network effects in IT
implementation: The case of knowledge repositories. Information Technology
& People, 17(3):268–285, 2004.

Victor R. Basili. Software Development: A Paradigm for the Future. In Proceed-
ings of the 13th Annual International Computer Software and Applications
Conference (COMPSAC’89), 1989.

Victor R. Basili. The Experience Factory and its relationship to other Improve-
ment Paradigms. In Proceedings of the ESEC’93, pages 68–83, 1993.

Victor R. Basili. The Experience Factory and Its Relationship to Other Quality
Approaches. Advances in Computers, 41:65–82, 1995.

Victor R. Basili. The Role of Experimentation in Software Engineering: Past,
Current, and Future. In Proceedings of ICSE-18, pages 442–449, 1996.

Victor R. Basili and Gianluigi Caldiera. Methodological and Architectural Is-
sues in the Experience Factory. In Proceedings of the 16th Annual Software
Engineering Workshop, NASA/GSFC, pages 17–46, 1991.

Victor R. Basili and Gianluigi Caldiera. Improve Software Quality by Reusing
Knowledge and Experience. Sloan Management Review, Fall, 1995.

Victor R. Basili and Scott Green. Software process evolution at the SEL. IEEE
Software, 11:58–66, 1994.

Richard Baskerville, Jan Pries-Heje, and John R. Venable. Evaluation Risks in
Design Science Research: A Framework. In Proceedings of the 3rd Interna-
tional Conference on Design Science in Information Systems and Technology,
2008.

Gene Bellinger, Durval Castro, and Anthony Mills. Data, Information, Knowl-
edge, and Wisdom, 1997. URL http://www.systems-thinking.org/dikw/

dikw.htm.

186

http://www.systems-thinking.org/dikw/dikw.htm
http://www.systems-thinking.org/dikw/dikw.htm

Bibliography

Izak Benbasat and Robert W. Zmud. Empirical Research in Information Sys-
tems: The Practice of Relevance. MIS Quarterly, 23(1):3–16, 1999.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001.

Finn Olav Bjørnson and Torgeir Dingsøyr. Knowledge management in software
engineering: A systematic review of studied concepts, findings and research
methods used. Information and Software Technology, 50(11):1055–1068, Oc-
tober 2008.

François Bry and Jakub Kotowski. D2.3 Reason Maintenance – State of the Art,
2008. URL http://kiwi-project.eu/images/stories/deliverables/d2_

3.pdf. KiWi Project Deliverable.

François Bry and Jakub Kotowski. D2.4 Reason Maintenance – Con-
cept and Model, 2009. URL http://kiwi-project.eu/images/stories/

deliverables/d2_4.pdf. KiWi Project Deliverable.

François Bry and Klara Weiand. D2.2 Reasoning & Querying Con-
cept and Model, 2009. URL http://kiwi-project.eu/images/stories/

deliverables/d2_2.pdf. KiWi Project Deliverable.

François Bry and Klara Weiand. Flavors of KWQL, a Keyword Query Language
for a Semantic Wiki. In Theory and Practice of Computer Science (SOFSEM
2010), pages 247–258, 2010.

François Bry, Klara Weiand, and Tim Furche. D2.1 Reasoning & Querying –
State of the Art, 2008. URL http://kiwi-project.eu/images/stories/

deliverables/d2_1.pdf. KiWi Project Deliverable.

Alan Bryman. Social Research Methods. Oxford University Press, 3rd edition,
2008.

David J. Carney and Kurt C. Wallnau. A Basis for Evaluation of Commercial
Software. Information and Software Technology, 40(14):851–860, December
1998.

Thomas Chau and Frank Maurer. A case study of wiki-based experience repos-
itory at a medium-sized software company. In Proceedings of the 3rd Inter-
national Conference on Knowledge Capture, pages 185–186, 2005.

Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Professional,
Reading, Mass., 2000.

Reidar Conradi and Torgeir Dingsøyr. Software Experience Bases: A Con-
solidated Evaluation and Status Report. Product Focused Software Process
Improvement - Lecture Notes in Computer Science, 1840:391–406, 2000.

John W. Creswell. Research Design: Qualitative, Quantitative, and Mixed Meth-
ods Approaches. Sage Publications, 3rd edition, 2009.

Thomas H. Davenport. Putting the Enterprise into the Enterprise System.
Harvard Business Review, 76(4):121–131, 1998.

187

http://kiwi-project.eu/images/stories/deliverables/d2_3.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_3.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_4.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_4.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_2.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_2.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_1.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_1.pdf

Knowledge Management in Software Development

Thomas H. Davenport and L. Prusak. Working Knowledge: How Organizations
Manage What They Know. Harvard Business School Press, Boston, MA,
1998.

Thomas H. Davenport, David W. de Long, and Michael C. Beers. Successful
Knowledge Management Projects. Sloan Management Review, 39(2):43–57,
1998.

David de Almeida Ferreira and Alberto Manuel Rodrigues da Silva. An En-
hanced Wiki for Requirements Engineering. In Proceedings of the 35th
Euromicro Conference on Software Engineering and Advanced Applications,
pages 87–94, 2009.

Björn Decker, Eric Ras, Jörg Rech, Bertin Klein, and Christian Hoecht. Self-
organized Reuse of Software Engineering Knowledge Supported by Semantic
Wikis. In Proceedings of the Workshop on Semantic Web Enabled Software
Engineering (SWESE) at ISWC, 2005.

Kevin C. Desouza. Barriers to effective use of knowledge management systems
in software engineering. Communications of the ACM Magazine, 46(1), 2003.

Kevin C. Desouza, Torgeir Dingsøyr, and Yukika Awazu. Experiences with
conducting project postmortems: reports versus stories. Software Process:
Improvement and Practice, 10(2):203–215, April 2005.

Nancy M. Dixon. Common Knowledge: How Companies Thrive By Sharing
What They Know. Harvard Business School Press, Boston, 2000.

Peter Dolog, Frederico Durão, Daniel Grolin, Josef Holy, and Thomas
Schandl. D6.1 KIWI Knowledge Model for Sun CEQ Use Case,
2009a. URL http://kiwi-project.eu/images/stories/deliverables/

d6_1.pdf. KiWi Project Deliverable.

Peter Dolog, Frederico Durão, Daniel Grolin, Karsten Jahn, Peter Axel Nielsen,
Andreas Munk-Madsen, and Keld Pedersen. D6.3 Knowledge Model: Project
Knowledge Management, 2009b. URL http://kiwi-project.eu/images/

stories/deliverables/d6_3.pdf. KiWi Project Deliverable.

Peter Dolog, Frederico Durão, Karsten Jahn, Keld Pedersen, Marek Schmidt,
Rolf Sint, and Stephanie Stroka. D6.4 Implementation: Project Knowledge
Management, 2009c. URL http://kiwi-project.eu/images/stories/

deliverables/d6_4.pdf. KiWi Project Deliverable.

Peter Dolog, Markus Krötzsch, Sebastian Schaffert, and Denny Vrandečić. So-
cial Web and Knowledge Management, pages 217–227. Springer Berlin Hei-
delberg, 2009d.

Peter Dolog, Frederico Durão, Karsten Jahn, Lin Yujian, and Dennis Kjæ rs-
gaard Peitersen. Recommending Open Linked Data in Creativity Sessions
using Web Portals with Collaborative Real Time Environment. Journal of
Universal Computer Science, 17(12):1690–1709, 2011.

Line Dubé and Guy Paré. Rigor in Information Systems Positivist Case Re-
search: Current Practices, Trends, and Recommendations. MIS Quarterly,
27(4):597–636, 2003.

188

http://kiwi-project.eu/images/stories/deliverables/d6_1.pdf
http://kiwi-project.eu/images/stories/deliverables/d6_1.pdf
http://kiwi-project.eu/images/stories/deliverables/d6_3.pdf
http://kiwi-project.eu/images/stories/deliverables/d6_3.pdf
http://kiwi-project.eu/images/stories/deliverables/d6_4.pdf
http://kiwi-project.eu/images/stories/deliverables/d6_4.pdf

Bibliography

Joseph S. Dumas and Beth A. Loring. Moderating Usability Tests: Principles
and Practices for Interacting. Morgan Kaufman Publishers, 2008.

Frederico Durão and Peter Dolog. Analysis of Tag-Based Recommendation Per-
formance for a Semantic Wiki. In Proceedings of 4th Workshop on Semantic
Wikis (SemWiki2009) in conjunction with the 6th Annual European Semantic
Web Conference (ESWC2009), 2009a.

Frederico Durão and Peter Dolog. D2.8 Personalisation – Concept and Model,
2009b. URL http://kiwi-project.eu/images/stories/deliverables/

d2_8.pdf. KiWi Project Deliverable.

Frederico Durão and Peter Dolog. A personalized tag-based recommendation
in social web systems. In Workshop on Adaptation and Personalization for
Web 2.0 (UMAP’09), pages 40–49, 2009c.

Frederico Durão, Peter Dolog, and Karsten Jahn. D2.7 Personalisation –
State of the Art, 2008. URL http://kiwi-project.eu/images/stories/

deliverables/d2_7.pdf. KiWi Project Deliverable.

J. Eekels and N. F. M. Roozenburg. A methodological comparison of the struc-
tures of scientific research and engineering design: their similarities and dif-
ferences. Design Studies, 12(4):197–203, 1991.

Ricardo A. Falbo, Daniel O. Arantes, and Ana C. C. Natali. Integrating Knowl-
edge Management and Groupware in a Software Development Environment.
Practical Aspects of Knowledge Management, 3336:94–105, 2004.

Péter Fehér and András Gábor. The role of Knowledge Management Support-
ers in software development companies. Software Process: Improvement and
Practice, 11(3):251–260, 2006.

Lee Feigenbaum, Ivan Herman, Tonya Hongsermeier, Eric Neumann, and Susie
Stephens. The Semantic Web in Action. Scientific American, December 2007.

Ab́ılio Fernandes, Ana Maria de C. Moura, and Fábio Porto. An ontology-based
approach for organizing sharing, and querying knowledge objects on the Web.
In Proceedings of the 14th International Workshop on Database and Expert
Systems Applications, pages 604–609, 2003.

Martin Glisby and Nigel Holden. Contextual constraints in knowledge man-
agement theory: the cultural embeddedness of Nonaka’s knowledge-creating
company. Knowledge and Process Management, 10(1):29–36, January 2003.

Asunción Gómez Pérez and V. Richard Benjamins. Overview of Knowledge
Sharing and Reuse Components: Ontologies and Problem-Solving Methods.
In Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving
Methods, pages 1–15, 1999.

Jennifer Gonzalez-Reinhart. Wiki and the Wiki Way: Beyond a Knowledge
Management Solution. Information Systems Research Center, pages 1–22,
2005.

Shirley Gregor. The Nature of Theory in Information Systems. MIS Quarterly,
30(3):611–642, 2006.

189

http://kiwi-project.eu/images/stories/deliverables/d2_8.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_8.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_7.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_7.pdf

Knowledge Management in Software Development

Daniel Grolin, Karsten Jahn, Peter Axel Nielsen, and Keld Pedersen. D7.2 Test
Plan: Logica Use Case, 2010a. KiWi Project Deliverable.

Daniel Grolin, Karsten Jahn, Peter Axel Nielsen, and Keld Peder-
sen. D7.4 Evaluation and Testing Project Knowledge Management,
2010b. URL http://kiwi-project.eu/images/stories/deliverables/

d7-4.pdf. KiWi Project Deliverable.

Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. International Journal of Human Computer Studies, 43:
907–928, 1995.

Michel Grundstein. Distinguishing knowledge from information: A prerequisite
for elaborating KM initiative strategy. In Proceedings of the 1st Conference
on Knowledge Management and Information Sharing, 2009.

Wendong Gu, Guoping Xia, and Weijia You. Enterprise Knowledge Integration
by Semantic Web. In International Federation for Information Processing,
pages 203–212, 2006.

Jungpil Hahn and Mani R. Subramani. A framework of knowledge management
systems: issues and challenges for theory and practice. In Proceedings of
the 21st International Conference on Information Systems (ICIS ’00), pages
302–312, 2000.

Bo Hansen, Jeremy Rose, and Gitte Tjørnehøj. Prescription, description, re-
flection: the shape of the software process improvement field. International
Journal of Information Management, 24(6):457–472, December 2004.

Morten T. Hansen, Nitin Nohria, and Thomas Tierney. What’s Your Strategy
for Managing Knowledge? Harward Business Review, 77(2):106–116, 1999.

Morten T. Hansen, Hall Soldiers, and Field Park. Knowledge Networks: Ex-
plaining Effective Knowledge Sharing in Multiunit Companies. Organization
Science, 13(3):232–248, 2002.

Helen Hasan and Charmaine C. Pfaff. The Wiki: An Environment to Revolu-
tionise Employees’ Interaction with Corporate Knowledge. Proceedings of the
Australian Conference on Computer-Human Interaction (OZCHI’06), pages
377–380, November 2006.

Helen Hasan and Charmaine C. Pfaff. Democratising Organisational Knowledge:
The Potential of the Corporate Wiki. In Proceedings of the International
Conference on Information Systems (ICIS’07), pages 1–19, 2007.

Scott Henninger. Case-Based Knowledge Management Tools for Software De-
velopment. Automated Software Engineering, 4(3):319–340, 1997.

Alan R. Hevner. A Three Cycle View of Design Science Research. Scandinavian
Journal of Information Systems, 19(2):87–92, 2007.

Alan R. Hevner and Samir Chatterjee. Design Science Research in Information
Systems. In Design Research in Information Systems: Theory and Practice,
chapter 2, pages 9–22. Springer, Boston, MA, 2010.

190

http://kiwi-project.eu/images/stories/deliverables/d7-4.pdf
http://kiwi-project.eu/images/stories/deliverables/d7-4.pdf

Bibliography

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
Science in Information Systems Research. MIS Quarterly, 28(1):75–105, 2004.

Lorin M. Hitt, D. J. Wu, and Xiaoge Zhou. Investment in enterprise resource
planning: Business impact and productivity measures. Journal of Manage-
ment Information Systems, 19(1):71–98, 2002.

Josef Holy, Peter Reiser, and Jakub Franc. D5.2 Requirements Software Knowl-
edge Management, 2008. URL http://kiwi-project.eu/images/stories/

deliverables/d5_2.pdf. KiWi Project Deliverable.

Josef Holy, Peter Reiser, and Thomas Schandl. D6.2 Application Building Re-
port Sun Expert Manager Use Case, 2010. URL http://kiwi-project.eu/

images/stories/deliverables/d6_2.pdf. KiWi Project Deliverable.

Jens Henrik Hosbond and Peter Axel Nielsen. Software Process Improvement
using Light Knowledge Tools. In Peter Axel Nielsen and Karlheinz Kautz,
editors, Software Processes & Knowledge, chapter 7. Software Innovation Pub-
lisher, Aalborg, 2008.

Watts S. Humphrey. Managing the software process. Addison-Wesley, Reading,
1989.

Juhani Iivari. A Paradigmatic Analysis of Information Systems As a Design
Science. Scandinavian Journal of Information Systems, 19(2):39–64, 2007.

Jakob H. Iversen, Peter Axel Nielsen, and Jacob Nørbjerg. Situated assessment
of problems in software development. SIGMIS Database, 30(2):66–81, 1999.

Stefan Jablonski, Stefan Horn, and Michael Schlundt. Process oriented knowl-
edge management. In Proceedings of the 11th International Workshop on
Research Issues in Data Engineering (RIDE 2001), pages 77–84. IEEE Com-
put. Soc, 2001.

Karsten Jahn and Peter Axel Nielsen. Codified vs. Personalized - A Vertical
Approach to the Dilemma of the Knowledge Management Strategies. In 17th
EuroSPI Conference: Industrial Proceedings, pages 3.11 – 3.20, 2010.

Karsten Jahn and Peter Axel Nielsen. A Vertical Approach to Knowledge Man-
agement: Codification and Personalization in Software Processes. Interna-
tional Journal of Human Capital and Information Technology Professionals,
2(2):26–36, 2011.

Pertti Järvinen. On Research Methods. Opinpajan Kirja, Tampere, Finland,
2000.

Guillermo Jimenez and Carlos Barradas. Knowledge Management System Based
on Web 2.0 Technologies. In Jing Tao Yao, editor, Web-Based Support Sys-
tems, chapter 13, pages 273–301. Springer London, London, 2010.

Luiz Antonio Joia and Bernardo Lemos. Tacit Knowledge Transfer within Or-
ganisations. In AMCIS 2010 Proceedings, 2010.

191

http://kiwi-project.eu/images/stories/deliverables/d5_2.pdf
http://kiwi-project.eu/images/stories/deliverables/d5_2.pdf
http://kiwi-project.eu/images/stories/deliverables/d6_2.pdf
http://kiwi-project.eu/images/stories/deliverables/d6_2.pdf

Knowledge Management in Software Development

Vijay Kasi, Mark Keil, Lars Mathiassen, and Keld Pedersen. The post mortem
paradox: a Delphi study of IT specialist perceptions. European Journal of
Information Systems, 17(1):62–78, February 2008.

Karlheinz Kautz. Software process improvement in very small enterprises: Does
it pay off? Software Process: Improvement and Practice, 4(4):209–226, 1998.

Karlheinz Kautz. Making Sense of Measurements for Small Organizations. IEEE
Software, 16(2):14–20, April 1999.

Karlheinz Kautz and Bo Hansen Hansen. Mapping Knowledge Flows. In Pe-
ter Axel Nielsen and Karlheinz Kautz, editors, Software Processes & Knowl-
edge, chapter 6, pages 89–102. Software Innovation Publisher, 2008.

Karlheinz Kautz and Annemette Kjærgaard. Knowledge Sharing in Software
Development. In Peter Axel Nielsen and Karlheinz Kautz, editors, Software
Processes & Knowledge, chapter 4, pages 43–68. Software Innovation Pub-
lisher, Aalborg, 2008.

Karlheiz Kautz and Kim Thaysen. Knowledge, learning and IT support in a
small software company. Journal of Knowledge Management, 5(4):349–357,
2001.

Dan J. Kim and T. Andrew Yan. A New Approach for Collaborative Knowl-
edge Management: A Unified Conceptual Model for Collaborative Knowledg
Management. In AMCIS 2010 Proceedings, 2010.

Annemette Kjærgaard, Peter Axel Nielsen, and Karlheinz Kautz. Making Sense
of Software Project Management: A Case of Knowledge Sharing in Soft-
ware Development. Scandinavian Journal of Information Systems, 22(1):3–
26, 2010.

Petr Knoth, Marek Schmidt, and Pavel Smrž. D2.5 Information Extraction –
State of the Art, 2008. URL http://kiwi-project.eu/images/stories/

deliverables/d2_5.pdf. KiWi Project Deliverable.

Seija Komi-Sirviö, Annukka Mäntyniemi, and Veikko Seppänen. Toward a prac-
tical solution for capturing knowledge for software projects. IEEE Software,
19:60–62, 2002.

Robert E. Kraut and Lynn A. Streeter. Coordination in software development.
Communications of the ACM, 38(3), 1995.

Clif Kussmaul and Roger Jack. Wikis for Knowledge Management: Business
Cases, Best Practices, Promises, & Pitfalls. In Miltiadis D Lytras, Ernesto
Damiani, and Patricia Ordóñez de Pablos, editors, Web 2.0: The Business
Model, chapter 9, pages 147–165. Springer US, 2009.

Steinar Kvale. Interviews: An Introduction to Qualitative Research Interview-
ing. Sage Publications, Thousand Oaks, CA, USA, 1996.

M. M. Kwan and P. Balasubramanian. Process-oriented knowledge manage-
ment: A case study. Journal of the Operational Research Society, 54(2):
204–211, 2003.

192

http://kiwi-project.eu/images/stories/deliverables/d2_5.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_5.pdf

Bibliography

Giovan Francesco Lanzara and Lars Mathiassen. Mapping situations within a
system development project. Information & Management, 8(1):3–20, 1985.

Craig Larman. Agile and Iterative Development: A Manager’s Guide. Addison
Wesley, Boston, MA, 2003.

Bo Leuf and Ward Cunningham. The Wiki Way: Collaboration and Sharing on
the Internet. Addison-Wesley, 2001.

Jay Liebowitz and Isaac Megbolugbe. A set of frameworks to aid the project
manager in conceptualizing and implementing knowledge management ini-
tiatives. International Journal of Project Management, 21(3):189–198, April
2003.

Mikael Lindvall, Michael Frey, Patricia Costa, and Roseanne Tesoriero. Lessons
Learned about Structuring and Describing Experience for Three Experience
Bases. LSO2001, Lecture Notes in Computer Science, 2176:106–119, 2001.

Champika Liyanage, Taha Elhag, Tabarak Ballal, and Qiuping Li. Knowledge
communication and translation – A knowledge transfer model. Journal of
Knowledge Management, 13(3):118–131, 2009.

Panagiotis Louridas. Using Wikis in Software Development. IEEE Software, 23
(2):88–91, 2006.

Stewart Mader. Wikipatterns. Wiley, 2007.

Ann Majchrzak, Christian Wagner, and Dave Yates. Corporate Wiki Users:
Results of a Survey. In Proceedings of the 2006 international symposium on
Wikis (WikiSym’06), pages 99–104, 2006.

Salvatore T. March and Gerald F. Smith. Design and natural science research on
information technology. Decision Support Systems, 15(4):251–266, December
1995.

Lars Mathiassen. Collaborative Practice Research. Information Technology &
People, 15(4):321–345, 2002.

Lars Mathiassen and Keld Pedersen. The Dynamics of Knowledge in Systems
Development Practice. In Proceedings of the 38th Hawaii International Con-
ference on system Sciences, pages 1–11, 2005.

Lars Mathiassen and Pouya Pourkomeylian. Managing knowledge in a software
organization. Journal of Knowledge Management, 7(2):63–80, 2003.

Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen, and Jan Stage.
Object-Oriented Analysis and Design. Marko Publisher, Aalborg, 2000.

Lars Mathiassen, Jan Pries-Heje, and Ojelanki Ngwenyama. Improving Software
Organizations: From Principles to Practice. Addison-Wesley, Upper Saddle
River, NJ, USA, 2002.

James C. McDavid and Laura R. L. Hawthorn. Program Evaluation and Per-
formance Measurement: An Introduction to Practice. Sage Publications, Inc,
2006.

193

Knowledge Management in Software Development

Richard McDermott. Why information technology inspired but cannot deliver
knowledge management. California Management Review, 41(4):103, 1999.

Bob McFeeley. IDEAL: A User’s Guide for Software Process Improvement.
Carnegie Mellon University, Pittsburgh, PA, February 1996.

James D. McKeen and Heather A. Smith. Social Networks: Knowledge Man-
agement’s “Killer App”? Communications of the Association for Information
Systems, 19(1), 2007.

Bridget Meehan and Ita Richardson. Identification of Software Process Knowl-
edge Management. Software Process: Improvement and Practice, 7(2):47–55,
2002.

Peter P. Mitchell. A Step-by-Step Guide to Usability Testing. iUniverse, Inc.,
2007.

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two Case Studies
of Open Source Software Development: Apache and Mozilla. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 11(3):309–346,
July 2002.

Tsuyoshi Moriya and Caroline Benton. Knowledge sharing and creation in the
semiconductor equipment industry. In International Symposium on Semicon-
ductor Manufacturing (ISSM), Tokyo, Japan, 2008.

Sune Dueholm Müller, Peter Axel Nielsen, and Jacob Nørbjerg. Standards,
Processes and Practice. In Peter Axel Nielsen and Karlheinz Kautz, editors,
Software Processes & Knowledge, chapter 3, pages 29–42. Software Innovation
Publisher, Aalborg, 2008.

Peter Axel Nielsen and Peter Dolog. D5.3 State-of-the-Art on Software Project
Management Knowledge, 2008. URL http://kiwi-project.eu/images/

stories/deliverables/d5_3.pdf. KiWi Project Deliverable.

Peter Axel Nielsen and Gitte Tjørnehøj. Social networks in software process
improvement. Journal of Software Maintenance and Evolution: Research and
Practice, 22:33–51, 2009.

Peter Axel Nielsen, Peter Dolog, Daniel Grolin, Karsten Jahn, Andreas Munk-
Madsen, Andreas Grauber, François Bry, and Keld Pedersen. D5.4 Require-
ments Project Knowledge Management, 2008. URL http://kiwi-project.

eu/images/stories/deliverables/d5_4.pdf. KiWi Project Deliverable.

Ikujiro Nonaka. The Knowledge Creating Company. Harvard Business Review,
pages 96–104, 1991.

Ikujiro Nonaka. A Dynamic Theory of Organizational Knowledge Creation.
Organization Science, 5:14–37, 1994.

Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge-Creating Company: How
Japanese Companies Create the Dynamics of Innovation. Oxford University
Press, New York, 1995.

194

http://kiwi-project.eu/images/stories/deliverables/d5_3.pdf
http://kiwi-project.eu/images/stories/deliverables/d5_3.pdf
http://kiwi-project.eu/images/stories/deliverables/d5_4.pdf
http://kiwi-project.eu/images/stories/deliverables/d5_4.pdf

Bibliography

Eyal Oren, Max Völkel, John G. Breslin, and Stefan Decker. Semantic Wikis for
Personal Knowledge Management. In Proceedings of the 17th International
Conference on Database and Expert Systems Applications, 2006.

Wanda J. Orlikowski and C. Suzanne Iacono. The Truth Is Not Out There: An
Enacted View Of The “Digital Economy”. In Erik Brynjolfsson and Brian
Kahin, editors, Understanding the Digital Economy: Data, Tools, and Re-
search, pages 352–380. MIT Press, Cambridge, MA, 2000.

Wanda J. Orlikowski and C. Suzanne Iacono. Desperately Seeking the IT in
IT Research: A Call to Theorizing the IT Artifact. Information Systems
Research, 12(2):121–134, 2001.

David L. Parnas and Paul C. Clements. A rational design process: How and why
to fake it. In Formal Methods and Software Development, volume 186 of Lec-
ture Notes in Computer Science, pages 80–100. Springer Berlin / Heidelberg,
1985.

Keld Pedersen. Managing Learning in Systems Development Projects. Phd
thesis, Computer Science Department, Aalborg University, Denmark, 2005.

Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee.
A Design Science Research Methodology for Information Systems Research.
Journal of Management Information Systems, 24(3):45–77, 2008.

Brian T. Pentland. Information Systems and Organizational Learning: The So-
cial Epistemology of Organizational Knowledge Systems. Accounting, Man-
agement and Information Technologies, 5(1):1–21, January 1995.

John Stouby Persson, Lars Mathiassen, Jesper Boeg, Thomas Stenskrog Mad-
sen, and Flemming Steinson. Managing Risks in Distributed Software
Projects: An Integrative Framework. IEEE Transactions on Engineering
Management, 56(3):508–532, August 2009.

Platon. Theätet. Reclam Verlag, 1986.

Rob Poell and Ferd van der Krogt. Learning strategies of workers in the
knowledge-creating company. Human Resource Development International,
6(3):387–403, 2001.

Michael Polanyi. The Tacit Dimension. Routledge & Kegan Paul, London,
1966.

Roger S. Pressman. Software engineering: A Practitioner’s Approach (European
Adaption). McGraw-Hill International, 5th edition, 2000.

Murali Raman. Wiki Technology as A “Free” Collaborative Tool within an
Organizational Setting. Information Systems Management, 23:59–66, 2006.

Balasubramaniam Ramesh and Amrit Tiwana. Supporting Collaborative Pro-
cess Knowledge Management in New Product Development Teams. Decision
Support Systems, 27(1-2):213–235, November 1999.

Axel Rauschmayer. Next Generation Wikis: What Users Expect; How RDF
Helps. In Proceedings of 3rd Semantic Wiki Workshop at ESWC, 2009.

195

Knowledge Management in Software Development

T. Ravichandran and Arun Rai. Structural analysis of the impact of knowledge
creation and knowledge embedding on software process capability. Engineer-
ing, 50(3):270–284, 2003.

Jochen Reutelshoefer, Joachim Baumeister, and Frank Puppe. Ad-Hoc Knowl-
edge Engineering with Semantic Knowledge Wikis. In Proceedings of the 3rd
Semantic Wiki Workshop (SemWiki 2008) at the 5th European Semantic Web
Conference (ESWC 2008), 2008.

Jennifer Rowley. The wisdom hierarchy: representations of the DIKW hierarchy.
Journal of Information Science, 33(2):163–180, 2007.

Jeffrey Rubin and Dana Chisnell. Handbook of Usability Testing: How to plan,
design and conduct effective tests. Wiley, 2nd edition, 2008.

Ioana Rus and Mikael Lindvall. Knowledge Management in Software Engineer-
ing. IEEE Software, 19(3):26–38, June 2002.

Matthias Samwald. D5.1 State of the Art Software Knowledge Management,
2008. URL http://kiwi-project.eu/images/stories/deliverables/d5_

1.pdf. KiWi Project Deliverable.

Sebastian Schaffert. IkeWiki: A Semantic Wiki for Collaborative Knowledge
Management. In Proceedings of the 15th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE ’06), 2006.

Sebastian Schaffert, François Bry, Joachim Baumeister, and Malte Kiesel. Se-
mantic Wikis. IEEE Software, 25(4):8–11, 2008a.

Sebastian Schaffert, François Bry, Peter Dolog, Julia Eder, Szaby Grünwald,
Jana Herwig, Jozef Holy, Peter Axel Nielsen, and Pavel Smrž. D8.5
KiWi Vision, 2008b. URL http://kiwi-project.eu/images/stories/

deliverables/d8_5.pdf. KiWi Project Deliverable.

Sebastian Schaffert, Rolf Sint, Szaby Grünwald, and Stephanie Stroka. D3.1
Architecture Revision, 2008c. URL http://kiwi-project.eu/images/

stories/deliverables/d3_1.pdf. KiWi Project Deliverable.

Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, Mihai Rad-
ulescu, Rolf Sint, and Stephanie Stroka. KiWi – A Platform for Semantic
Social Software. In Proceedings of the 4th Workshop on Semantic Wikis.
CEUR-WS, 2009.

Joost Schalken, Sjaak Brinkkemper, and Hans van Vliet. A method to draw
lessons from project postmortem databases. Software Process: Improvement
and Practice, 11(1):35–46, January 2006.

Florian Schmedding, Christoph Hanke, and Thomas Hornung. RDF Authoring
in Wikis. In Proceedings of the 3rd Semantic Wiki Workshop (SemWiki 2008)
at the 5th European Semantic Web Conference (ESWC 2008), 2008.

Marek Schmidt and Pavel Smrž. D2.6 Information Extraction – Con-
cept and Model, 2009. URL http://kiwi-project.eu/images/stories/

deliverables/d2_6.pdf. KiWi Project Deliverable.

196

http://kiwi-project.eu/images/stories/deliverables/d5_1.pdf
http://kiwi-project.eu/images/stories/deliverables/d5_1.pdf
http://kiwi-project.eu/images/stories/deliverables/d8_5.pdf
http://kiwi-project.eu/images/stories/deliverables/d8_5.pdf
http://kiwi-project.eu/images/stories/deliverables/d3_1.pdf
http://kiwi-project.eu/images/stories/deliverables/d3_1.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_6.pdf
http://kiwi-project.eu/images/stories/deliverables/d2_6.pdf

Bibliography

Maung K. Sein, Ola Henfridsson, Sandeep Purao, Matti Rossi, and Rikard Lind-
gren. Action Design Research. MIS Quarterly, 35(1):37–56, 2011.

Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. The Semantic Web Revis-
ited. IEEE Intelligent Systems, 21(3):96–101, May 2006.

Sofia Sherman, Irit Hadar, and Meira Levy. Enhancing Software Architecture
Review Process via Knowledge Management. In AMCIS 2010 Proceedings,
2010.

Sajjan G. Shiva and Lubna A. Shala. Using Semantic Wikis to Support Software
Reuse. Journal of Software, 3(4), 2008.

Rolf Sint, Sebastian Schaffert, Stephanie Stroka, and Roland Ferstl. Combining
Unstructured, Fully Structured and Semi-Structured Information in Semantic
Wikis. In Fourth Workshop on Semantic Wikis (ESWC2009), pages 1–15,
2009.

Ian Sommerville. Software Engineering. Addison-Wesley, 6th edition, 2001.

Fernando Sousa, Manuela Aparicio, and Carlos J. Costa. Organizational Wiki as
a Knowledge Management Tool. In Proceedings of the 28th ACM International
Conference on Design of Communication (SIGDOC ’10), 2010.

Karl Erik Sveiby. The New Organizational Wealth: Managing & Measuring
Knowledge-Based Assets. Berrett-Koehler Publishers, Inc, San Francisco, CA,
USA, 1997.

Jacky Swan, Sue Newell, Harry Scarbrough, and Donald Hislop. Knowledge
management and innovation: Networks and Networking. Journal of Knowl-
edge Management, 3(4):262–275, 1999a.

Jacky Swan, Harry Scarbrough, and John Preston. Knowledge management -
The next fad to forget people? In Proceedings of the 7th European Conference
on Information Systems, (ECIS’1999), pages 668–678, 1999b.

Amrit Tiwana. An empirical study of the effect of knowledge integration on
software development performance. Information and Software Technology, 46
(13):899–906, October 2004.

Oezguer Uenalan, Norman Riegel, Sebastian Weber, and Joerg Doerr. Using
Enhanced Wiki-based Solutions for Managing Requirements – Solution Con-
cepts to Support Basic Practices of Requirements Engineering. In Proceed-
ings of the 1st International Workshop on Managing Requirements Knowledge
(MARK’08), pages 63–67, 2008.

Elisabeth J. Umble, Ronald R. Haft, and M. Michael Umble. Enterprise resource
planning: Implementation procedures and critical success factors. European
Journal of Operational Research, 146(2):241–257, April 2003.

Andrew H. van de Ven. Engaged Scholarship: A Guide for Organizational and
Social Research. Oxford University Press, Oxford, UK, 2007.

Georg von Krogh. Care in Knowledge Creation. California Management Review,
4(3):133–154, 1998.

197

Knowledge Management in Software Development

Christiane Gresse von Wangenheim, Klaus-Dieter Althoff, and Ricardo M. Bar-
cia. Goal-oriented and similarity-based retrieval of software engineering ex-
perienceware. Learning Software Organizations, LNCS, 1756:118–141, 2000.

Christian Wagner. Wiki: A Technology for conversational Knowledge Man-
agement and Group Collaboration. Communications of the Association for
Information Systems, 13:265–289, 2004.

Geoff Walsham. Knowledge Management Systems: Representation and Com-
munication in Context. International Journal, 1(1):6–18, 2005.

Diane B. Walz, Joyce J. Elam, and Bill Curtis. Inside a Software Design Team:
Knowledge Acquisition, Sharing, and Integration. Communications of the
ACM, 36(10), 1993.

Robert P. Ward, Mohamed Ebrahim Fayad, and Mauri Laitinen. Software
Process Improvement in the Small. Communications of the ACM, 44:105–
107, 2001.

Chih-Ping Wei, Paul Jen-hwa Hu, and Hung-Huang Chen. Design and Evalua-
tion of a Knowledge Management System. IEEE Software, pages 56–59, June
2002.

Steve Wheeler, Peter Yeomans, and Dawn Wheeler. The good, the bad and the
wiki: Evaluating student-generated content for collaborative learning. British
Journal of Educational Technology, 39(6):987–995, November 2008.

Roel Wieringa. Design science as nested problem solving. In Proceedings of
the 4th International Conference on Design Science Research in Information
Systems and Technology (DESRIST ’09), 2009.

Robert Winter. Design Science Research in Europe. European Journal of In-
formation Systems, 17(5):470–475, October 2008.

ZhiXin Wu. Research on tacit knowledge sharing in the Outsourcing enterprises:
A case study of H company in Hangzhou. In Proceedings of the International
Converence on Educational and Information Technology (ICEIT2010), pages
270–274, 2010.

Chaim Zins. Conceptual Approaches for Defining Data, Information, and
Knowledge. Journal of the American Society for Information Science and
Technology, 58(4):479–493, 2007.

198

	Preface
	Abstract
	Resumé
	Acknowledgements

	Introduction
	Personal Motivation
	Area of Concern
	Research Question
	How to read this Dissertation

	Related Research
	Knowledge Creation and Transfer
	Tacit & Explicit Knowledge
	Knowledge Management Processes

	Relevance of Knowledge Management in Software Development
	Approaches to Knowledge Management in Software Development
	Collecting Experience
	Learning to Improve

	IT Support in Knowledge Management
	The People Perspective
	The Company Perspective

	Summary

	Theory
	Definition of Terms
	Knowledge
	Knowledge Management
	Knowledge Management System

	Knowledge Management Strategies
	Codification
	Personalization
	Combination of Strategies

	Knowledge Management Systems
	Knowledge Bases
	Wikis as Knowledge Management Systems

	KiWi Project
	Project Organization
	Work Packages & Deliverables
	Scheduling

	The Logica Case
	Case Company: Logica

	KiWi: A Knowledge Management System
	The Semantic Web
	Semantic Wikis
	The KiWi Platform
	Enabling Technologies

	Summary

	Research Approach
	Action Design Research
	Prerequisites
	Ensemble View of IT Artefacts
	ADR Method

	Appropriateness of ADR
	Implemented Research Method
	Data Collection
	Data Analysis

	Problem Analysis
	Background
	Overview of Identified Problems
	Isolated Islands of Knowledge
	Information Access (A1)
	Expert Finding (A2)
	Sharing Support (A3)
	Documentation Level (A4)

	Inadequate Bridging of Knowledge
	Process Complexity (B1)
	Feedback Circle (B2)
	Connected Documentation (B3)

	Summary of Identified Problems

	Building
	Underlying Ideas
	Strategies and Layers
	Strategies and Problems
	Improving the Situation
	Connecting the Layers

	Overall Design
	Supporting the Layers
	Connection between the Layers
	A Heterogeneous Knowledge Management System

	Functional Design
	KiWi Platform
	Project Management Application
	Shared Knowledge Model
	Data Exchange Agent

	Technical Design
	Templates
	Data Exchange

	Workflow Design
	Initial Data Collection
	Entity Definition
	Publish
	Entity Editing
	Update

	Intervention & Evaluation
	Consecutive Intervention & Evaluation
	Final Evaluation
	Organization
	User Test Setting
	Results

	Discussion
	Contribution
	Design Idea 1: Multiple Strategies
	Design Idea 2: Connecting the Layers
	Design Idea 3: Wiki for Personalization
	Design Idea 4: ES for Codification
	The KiWi Systems

	Limitations
	Future Research

	Conclusion
	Knowledge Model
	Feature List
	Use Cases
	Use Case 1: Project Planning
	Use Case 2: Project Monitoring
	Use Case 3: Development or Project Work
	Use Case 4: Process Design
	Use Case 5: Data Access

	Bibliography

