
 

  

 

Aalborg Universitet

Nonlinear Least Squares Methods for Joint DOA and Pitch Estimation

Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Jensen, Søren Holdt

Published in:
I E E E Transactions on Audio, Speech and Language Processing

DOI (link to publication from Publisher):
10.1109/TASL.2013.2239290

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Jensen, J. R., Christensen, M. G., & Jensen, S. H. (2013). Nonlinear Least Squares Methods for Joint DOA and
Pitch Estimation. I E E E Transactions on Audio, Speech and Language Processing, 21(5), 923-933.
https://doi.org/10.1109/TASL.2013.2239290

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 25, 2020

https://doi.org/10.1109/TASL.2013.2239290
https://vbn.aau.dk/en/publications/7a1afd1d-0688-40bd-b8fa-54ae5ae95205
https://doi.org/10.1109/TASL.2013.2239290


IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, MONTH 20XX 1

Nonlinear Least Squares Methods for Joint DOA
and Pitch Estimation

Jesper Rindom Jensen, Member, IEEE, Mads Græsbøll Christensen, Senior Member, IEEE,
and Søren Holdt Jensen, Senior Member, IEEE

Abstract—In this paper, we consider the problem of joint
direction-of-arrival (DOA) and fundamental frequency estima-
tion. Joint estimation enables robust estimation of these parame-
ters in multi-source scenarios where separate estimators may fail.
First, we derive the exact and asymptotic Cramér-Rao bounds for
the joint estimation problem. Then, we propose a nonlinear least
squares (NLS) and an approximate NLS (aNLS) estimator for
joint DOA and fundamental frequency estimation. The proposed
estimators are maximum likelihood estimators when: 1) the noise
is white Gaussian, 2) the environment is anechoic, and 3) the
source of interest is in the far-field. Otherwise, the methods still
approximately yield maximum likelihood estimates. Simulations
on synthetic data show that the proposed methods have similar
or better performance than state-of-the-art methods for DOA
and fundamental frequency estimation. Moreover, simulations
on real-life data indicate that the NLS and aNLS methods are
applicable even when reverberation is present and the noise is
not white Gaussian.

Index Terms—Direction-of-arrival estimation, fundamental
frequency estimation, joint estimation, non-linear least squares,
Cramér-Rao lower bound.

I. INTRODUCTION

BOTH direction-of-arrival (DOA) estimation and funda-
mental frequency estimation are very important signal

processing topics, and, individually, these two estimation prob-
lems are widely studied research topics. DOA estimation, for
example, has been treated in many text books and research
papers (see, e.g., [1]–[6]) and has a multitude of applications
in areas such as geophysics, radio astronomy, biomedical engi-
neering, radar and microphone arrays. Fundamental frequency
estimation (we will also refer to this as pitch estimation),
on the other hand, has applications such as compression,
separation and enhancement of, e.g., audio and voiced speech
[7], [8], automatic music transcription and music classification
[9]. For an overview of existing pitch estimation techniques,
see, e.g., [9]–[13]. That is, both DOA and pitch estimation are
relevant for processing of audio and speech signals. A few ex-
amples of applications which can benefit from the knowledge
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of both the DOA and the pitch are hands-free communication,
teleconferencing, surveillance applications and hearing aids.

It is therefore natural to consider joint spatio-temporal
processing of audio and speech signals which is the topic
of this paper. More specifically, we consider joint DOA and
pitch estimation. Besides the convenience of being able to
estimate the DOA and the pitch simultaneously, joint spatio-
temporal processing potentially has two significant advantages.
For instance, if a source parameter is similar for both sources
in a two-source scenario, the sources are not resolvable if
we only estimate this parameter separately. If joint parameter
estimation of several parameters is performed and just some of
the parameters are distinct, then the sources are possibly still
resolvable. Another important advantage of joint estimation
relates to the estimation accuracy. For example, DOA and pitch
estimation of periodic sources such as many musical instru-
ments and voiced speech can be conducted by first estimating
the DOA, then by extracting the signal impinging from that
DOA, and, finally, by estimating the pitch from the extracted
signal. However, the extraction can be seen as a linear data
transformation which most likely increases the Cramér-Rao
bound (CRB) for the pitch estimate, meaning that the resulting
estimates may be suboptimal. Other important issues regarding
processing of multi-channel signals are, e.g., reverberation and
array calibration errors. We refer the interested reader to [14],
[15] for an overview of methods dealing with these problems
as these topics are out of the scope of this paper.

Motivated by the above observations, and due to an increas-
ing computational capability, the computationally demanding
problem of joint DOA and pitch estimation has attracted
considerable attention in the recent years. As a result, some
methods have been proposed for solving the joint estimation
problem. Basically, these methods can be divided into two
groups. The first group jointly estimates the frequency and
the DOA of a single sinusoid defined in two dimensions (e.g.,
time and space). A few examples of such methods are [16],
where a state-space realization technique is used, [17]–[19]
which is based on the 2-D minimum variance distortionless
response (MVDR) method, [20] which is based on the ESPRIT
method, and [21] where a signal-dependent multistage Wiener
filter (MWF) [22] is used. This group of methods is not
commonly used in speech and audio processing. In most of the
literature (see, e.g., [23]–[27]), DOA estimation of audio and
speech recorded using a microphone array, has been treated
as a broadband problem. In this paper, however, we shall
assume a harmonic model which describes, e.g., many musical
instruments and voiced speech well; this will incontrovertibly
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enable us to treat the joint DOA and pitch estimation problem
as L narrowband problems. Methods utilizing this fact forms
the other group of estimators that consider the case with one or
more harmonically related, two-dimensional sinusoids. These
methods can, therefore, be seen as a generalization of the
first group of methods. A few methods dealing with this case
have been proposed; in [28] a ML-based method is proposed;
in [29]–[31] subspace-based methods are proposed; in [32],
[33] a correlation-based method is proposed; and in [34], [35]
some spatio-temporal filtering methods based on the linearly
constrained minimum variance (LCMV) beamformer [36] and
the periodogram are proposed. Note that some of the above-
mentioned methods consider time delay estimation and not
DOA estimation, however, these two parameters are closely
related.

In this paper, we also consider joint DOA and pitch
estimation. Based on the harmonic model, we derive the
exact and asymptotic CRBs for the joint DOA and pitch
estimation problem. Moreover, we propose a non-linear least
squares (NLS) method for joint DOA and pitch estimation. The
proposed estimator is derived under the assumptions that the
noise is white Gaussian, the array is a uniform linear array, the
environment is anechoic, and the source of interest is located
in the far-field of the array. When the assumptions hold, the
proposed NLS estimator is also the maximum likelihood (ML)
estimator as opposed to most of the existing joint DOA and
pitch estimators [28]–[35]. Moreover, the proposed estimator
is applicable in scenarios with any number of sensors, and it
is easily generalized to support any array structure as opposed
to the joint estimators in [29], [30]. Finally, we propose an
approximate NLS (aNLS) method which is computationally
more efficient.

The rest of the paper is organized as follows: in Section
II, we introduce the spatio-temporal harmonic signal model.
Then, in Section III, we derive the exact and asymptotic
CRBs for the joint DOA and pitch estimation problem; the
asymptotic bounds are used to motivate why the DOA and
pitch should be estimated jointly. We derive the NLS and aNLS
estimators for joint DOA and pitch estimation in Section IV,
and the estimators are evaluated on synthetic as well as real-
life signals in Section V. Finally, Section VI concludes our
work.

II. SIGNAL MODEL

In this paper, we consider joint estimation of the DOA, θ,
and the pitch, ω0, of a quasi-periodic source, also referred to
as the source of interest (SOI), which is recorded using a Ns-
element uniform linear array (ULA) in a noisy and anechoic
environment. We assume that the noise is uncorrelated with
the SOI. The ULA and the definition of θ are illustrated in
Fig. 1. Real-life examples of quasi-periodic sources are, e.g.,
voiced speech and musical instruments. We assume that the
quasi-periodic source is in the far-field of the ULA. The signal
measured on the nsth sensor at time instance nt for ns =
0, . . . , Ns − 1 and nt = 0, . . . , Nt − 1 is then given by

yns(nt) = βnss(nt − fsτns) + wns(nt)

= xns(nt) + wns(nt) , (1)

where βns and τns are the attenuation and the delay of the wave
generated by the SOI from sensor 0 to sensor ns, respectively,
fs is the sampling frequency, s(nt−fsτns) is the delayed quasi-
periodic signal, and wns(nt) is the noise picked up by the nsth
sensor. Note that, in the rest of the paper, (·)ns means that the
variable or constant is related to the nsth sensor. Due to the
array structure, we know that the delay is given by

τns = ns
d sin θ

c
, (2)

where d is the inter-element spacing of the ULA, and c is the
wave propagation velocity. Since the SOI is assumed to be
quasi-periodic, we know that it can be modeled as a harmonic
source

s(nt) =

L∑
l=1

αle
jlω0nt , (3)

for nt = 0, . . . , Nt − 1, where L is the model order, αl =
Ale

jφl , and Al > 0 and φl are the real amplitude and
phase of the lth harmonic. In case the desired signal has
inharmonicities, the model can be extended to account for
this [12], [37], [38]. Note that the signal model is complex as
opposed to many real-life signals which are real. However, it
is common to use complex signal representations since it leads
to a simpler notation, and the complex model can easily be
applied on real signals if we convert these to analytic signals
using the Hilbert transform [6], [9]. In this paper, we consider
the model order L as a known parameter (see, e.g., [6], [39]
and the references therein for an overview of existing model
order estimators).

Using the signal model in (3), the desired signal at sensor
ns can be written as

s(nt − fsτns) =

L∑
l=1

αle
jlω0(nt−fsτns ) (4)

=

L∑
l=1

αle
jlω0nte−jlωsns , (5)

where ωs = ω0fsτ1 is the so-called spatial frequency. Note
that the spatial frequency is dependent on the fundamental
frequency, ω0.

Additionally, we define a spatio-temporal matrix signal
model, which is useful in the derivation of parameter esti-
mators. The matrix model is defined as

Y(nt) = X(nt) + W(nt) , (6)

where

Y(nt) =


y0(nt) · · · y0(nt −Nt + 1)

...
. . .

...
yNs−1(nt) · · · yNs−1(nt −Nt + 1)

 , (7)

with X(nt) and W(nt) being defined similarly to Y(nt). The
attenuated desired signal matrix X(nt) can be rewritten using
(5) as

X(nt) = β

L∑
l=1

αl(nt)zs(lωs)z
T
t (lω0) , (8)
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Fig. 1. Illustration of the uniform linear array structure assumed in this
paper.

where

αl(nt) = αle
jlω0nt , (9)

β = diag
{[
β0 · · · βNs−1

]T}
, (10)

zs(ωs) =
[
1 e−jωs · · · e−j(Ns−1)ωs

]T
, (11)

zt(ω0) =
[
1 e−jω0 · · · e−j(Nt−1)ω0

]T
, (12)

with diag{·} denoting the operator that transforms a vector
into a diagonal matrix, and (·)T denoting the transpose of a
vector or matrix. Alternatively, the matrix model in (6) can be
mapped to a vector model by stacking the columns of Y(nt)
as

y(nt) = vec{Y(nt)}
= x(nt) + w(nt) = Z̄α(nt) + w(nt) , (13)

where vec{·} is the column-wise stacking operator, and

Z̄ = BZ , (14)

B =


β 0

. . .

0 β

 , (15)

Z =
[
z(ω0, ωs) · · · z(Lω0, Lωs)

]
, (16)

z(lω0, lωs) = zt(lω0)⊗ zs(lωs) , (17)

α(nt) =
[
α1e

jω0nt · · · αLe
jLω0nt

]T
, (18)

with ⊗ denoting the Kronecker product operator. In summary,
the objective considered in this paper is to estimate the DOA
and the pitch jointly from spatio-temporal, observed signal
samples which can be modeled by (13).

III. CRAMÉR-RAO BOUNDS

It is common practice to place a lower bound on the
variance of unbiased estimators. This is useful while evaluating
the performance of such estimators, and it provides insight
into the nature of the estimation problem. There exists a
multitude of such bounds among which the CRB is one of

the most commonly used [40]. In this section, we derive exact
and asymptotic expressions for the CRBs for the joint DOA
and pitch estimation problem. Moreover, we show why it
is beneficial to estimate the DOA and the pitch jointly by
analyzing the asymptotic CRB expressions.

A. Exact Bounds

First, we derive the exact CRBs for the joint DOA and pitch
estimation problem. Let

ȳ(nt) =
[
y0(nt) · · · yNs−1(nt)

]T
(19)

be the observed signal vector from the Ns-element ULA at
nt ∈ [0;Nt − 1]. We can also write the observation vector,
ȳ(nt), as

ȳ(nt) = x̄(nt) + w̄(nt) , (20)

where the noise vector, w̄(nt), is defined similar to ȳ(nt) and

x̄(nt) =
[
β0s(nt − τ0) · · · βNs−1s(nt − τNs−1)

]T
(21)

= βs̄(nt) , (22)

s̄(nt) =
[
s(nt − τ0) · · · s(nt − τNs−1)

]T
. (23)

We derive the CRBs under the assumption that the noise,
w̄(nt), is complex white Gaussian with zero mean and
variance σ2. Under this assumption, we can write the log-
likelihood function of the observed signal as

ln p(ȳ;ψ) = −N ln(πσ2) (24)

− 1

σ2

Nt−1∑
nt=0

[ȳ(nt)− βs̄(nt)]
H

[ȳ(nt)− βs̄(nt)] ,

where

ψ =
[
ω0 θ A1 · · · AL φ1 · · · φL

]T
. (25)

The Fisher information matrix (FIM) for the joint DOA and
pitch estimation problem is given by

I(ψ) = −E
{
∂2 ln p(ȳ;ψ)

∂ψ

}
. (26)

If we assume that the covariance matrix of the noise signal
does not depend on the parameter vector, ψ, the FIM is given
by

I(ψ) =
2

σ2
Re

{
Nt−1∑
nt=0

DH
nt

(ψ)β2Dnt(ψ)

}
, (27)

where Re{·} denotes the real part of a complex number, and
Dnt(ψ) is the gradient matrix at time instance nt defined as

Dnt(ψ) =
[
dnt(ω0) dnt(θ) dnt(A1) (28)

· · · dnt(AL) dnt(φ1) · · · dnt(φL)
]
.

Note that the columns of Dnt(ψ) can be interpreted as
the gradient vectors with respect to each of the unknown
parameters. The gradient vector with respect to the pitch,
dnt(ω0), is defined as

dnt(ω0) =
∂s̄(nt)

∂ω0
, (29)
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and the vectors dnt(θ), dnt(Al) and dnt(φl) are defined similar
to dnt(ω0) for l = 1, . . . , L. The individual entries of the
gradient vectors are given by

[dnt(ω0)]ns
=

L∑
l=1

jlAl

(
nt − fsns

d sin θ

c

)
× ejlω0(nt−fsns

d sin θ
c )+jφl , (30)

[dnt(θ)]ns
=−

L∑
l=1

jlAlω0fsns
d cos θ

c

× ejlω0(nt−fsns
d sin θ
c )+jφl , (31)

[dnt(Al)]ns
=ejlω0(nt−fsns

d sin θ
c )+jφl , (32)

[dnt(φl)]ns
=jAle

jlω0(nt−fsns
d sin θ
c )+jφl , (33)

for ns = 0, . . . , Ns − 1. The exact CRB for the kth parameter
in ψ is defined as the (k, k)th element of the inverse FIM,
i.e.,

CRB ([ψ]k) =
[
I−1(ψ)

]
kk

. (34)

B. Asymptotic Bounds

The exact CRB expressions are rather complicated, and it
is difficult to see how the different parameters and the sample
lengths influence the different CRBs. Furthermore, it is hard to
see from the exact CRB expressions if there are any benefits of
estimating the DOA and pitch jointly compared to estimating
them separately. Therefore, we also derive simpler asymptotic
CRBs for the joint DOA and pitch estimation problem.

The asymptotic bounds are derived under the assumption
that the sensors in the ULA are closely spaced such that β ≈ I.
First, we introduce a new variable,

∆(x, y) =

Nt−1∑
nt=0

Re
{
dHnt

(x)dnt(y)
}

(35)

= ∆(y, x) . (36)

For Ns → ∞ and Nt → ∞, we know that the frequency
spaced sinusoids are orthogonal. For large Ns and Nt, it
follows that

∆(ω0, ω0) ≈
[
Nt(Nt − 1)(2Nt − 1)

6
Ns (37)

+Ntζ
2 sin2 θ

Ns(Ns − 1)(2Ns − 1)

6

−Nt(Nt − 1)

2
ζ sin θNs(Ns − 1)

] L∑
l=1

l2A2
l ,

∆(ω0, θ) ≈
[
− Nt(Nt − 1)

2
ω0ζ cos θ

Ns(Ns − 1)

2
(38)

+Ntω0ζ
2 sin 2θ

2

Ns(Ns − 1)(2Ns − 1)

6

] L∑
l=1

l2A2
l ,

∆(ω0, Al) ≈ 0 (39)

∆(ω0, φl) ≈
[
Nt(Nt − 1)

2
Ns −Ntζ sin θ

Ns(Ns − 1)

2

]
lA2

l ,

(40)

∆(θ, θ) ≈ Ntω
2
0ζ

2 cos θ
Ns(Ns − 1)(2Ns − 1)

6

L∑
l=1

l2A2
l ,

(41)
∆(θ,Al) ≈ 0 , (42)

∆(θ, φl) ≈ −Ntω0ζ cos θ
Ns(Ns − 1)

2
lA2

l , (43)

∆(Ap, Aq) =

{
NtNs, p = q

(≈)0, p 6= q ,
(44)

∆(Ap, φq) =

{
0, p = q

(≈)0, p 6= q ,
(45)

∆(φp, φq) =

{
NtNsA

2
l , p = q

(≈)0, p = q ,
(46)

where ζ = fsd
c . Furthermore, we know that [41][

A U

V B

]−1

=

[
C−1 −C−1UB−1

−B−1VC−1 B−1VC−1UB−1 + B−1

]
,

(47)

with C = A−UB−1V. We now apply (47) on the FIM with
the expressions in (37)-(46) and with

A =

[
∆(ω0, ω0) ∆(ω0, θ)

∆(θ, ω0) ∆(θ, θ)

]
, (48)

U =

[
0 ∆(ω0, φ1) · · · 0 ∆(ω0, φL)

0 ∆(θ, φ1) · · · 0 ∆(θ, φL)

]
(49)

= VH , (50)
B = diag{[∆(A1, A1) ∆(φ1, φ1) · · · (51)

∆(AL, AL) ∆(φL, φL)]} .

The asymptotic CRBs for the DOA and the pitch can then be
found from the diagonal elements of the matrix, C−1. Here,
we only derive the asymptotic CRBs for these two parameters
while the derivations for the other parameters are left to the
interested reader. Some tedious manipulations yield

CRB(ω0) ≈ 6

N3
t Ns

PSNR−1 , (52)

CRB(θ) ≈
[(

c

ω0fsd cos θ

)2
6

NtN3
s

+

(
tan θ

ω0

)2
6

N3
t Ns

]
PSNR−1 , (53)

where

PSNR =

∑L
l=1 l

2A2
l

σ2
(54)

is the so-called pseudo signal-to-noise ratio. In Fig. 2, we
see that the asymptotic bounds indeed approaches the exact
bounds for large Nss and Nts. To obtain the results in Fig. 2,
we used the following set up: the pitch was f0 = 100 Hz,
the DOA was θ = 20◦, the model order was L = 4, the
variance of the noise was σ2 = 0.1, the sampling frequency
was fs = 2 kHz, the wave propagation speed was c = 340 m/s,
and the inter-element spacing was d = 2c/fs. Furthermore,
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Fig. 2. Plot of the exact and asymptotic Cramér-Rao bounds for (top) the pitch and (bottom) the DOA of the joint DOA and pitch estimation problem as a
function of (left) Nt and (right) Ns.

the number of sensors was Ns = 20 for the simulations with
varying Nt, and the number of samples was Nt = 20 for the
simulations with varying Ns.

C. Motivation for Joint DOA and Pitch Estimation

By investigating the asymptotic CRB expressions, it can be
seen that the bound for ω0 is decreasing cubically in Nt and
linearly in Ns. The bound for θ consists of two terms; one of
the terms is linear in Nt and cubical in Ns, and vice versa for
the other term. Moreover, it can be seen that it is beneficial to
estimate the DOA and the pitch jointly rather then separately.
First, we can see from the asymptotic DOA bound in (53) that
the CRB is decreased by taking the harmonic signal structure
into account as opposed to if we estimated the DOA of a single
sinusoid since the bound depends on the PSNR. Moreover, we
can see from the asymptotic bound in (52) that the CRB of
the pitch can be decreased linearly by increasing the number
of sensors, Ns.

The DOA and the pitch could also be estimated separately
using a two-step procedure where we 1) estimate the DOA
and extract the signal impinging from the estimated DOA, and
2) estimate the pitch from the extracted signal. Similarly, we
could also estimate the pitch first, extract the signal with the
estimated pitch, and then estimate the DOA of the extracted
signal. We term such estimation methods as cascaded methods.
The cascaded methods, however, will most likely increase the
CRBs of the parameters to be estimated in the second step. The
cause of the CRB increase is the signal extraction occurring in
the first step of the cascaded methods, since the extraction is
often performed by a filter which, in general, does not span or
contains the subspace spanned by the gradient matrix, Dnt(ψ).

IV. JOINT DOA AND PITCH ESTIMATION

In this section, we propose two estimators that jointly
estimate the DOA and the pitch of a periodic source that is
sampled by a ULA. The methods are based on nonlinear least-
squares (NLS), and they are derived under a white Gaussian
noise assumption.

A. Nonlinear Least-Squares Method

First, we derive the NLS method for joint DOA and pitch
estimation. The NLS method is derived under the assumption
that the noise is white Gaussian. If the noise is indeed white
Gaussian, the proposed NLS method resembles the maximum
likelihood (ML) estimator, i.e., it will attain the CRB. The
proposed NLS method may even provide accurate estimates
when the noise is not white Gaussian, as the NLS method
for a single sinusoid derived for white Gaussian noise is
asymptotically efficient even for colored noise [42].

In this paper, the attenuation matrix β is considered as
known, i.e., the joint NLS estimates of the DOA and pitch
are found by solving{

θ̂, ω̂0

}
= arg min

α,{θ,ω0}∈Θ×Ω

∥∥y − Z̄α
∥∥2

2
, (55)

with ‖·‖2 denoting the `2-norm. Minimizing (55) with respect
to the complex amplitude vector, α, yields

α̂ = (Z̄HZ̄)−1Z̄Hy . (56)

If we then insert (56) into (55), we get that{
θ̂, ω̂0

}
= arg max

{θ,ω0}∈Θ×Ω
yHZ̄

(
Z̄HZ̄

)−1
Z̄Hy , (57)
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The above estimator is referred to as the NLS estimator. If
we keep only the highest order terms, the complexity of the
estimator per point in the search grid Θ×Ω is O(NL2 +L3)
where N = NtNs. On basis of (57), we define the NLS cost-
functions as

JNLS(θ, ω0) =
∥∥Z̄Hy

∥∥2

(Z̄H Z̄)
−1

= Tr
{

Z̄HyyHZ̄
(
Z̄HZ̄

)−1
}
, (58)

with ‖ · ‖2W denoting the weighted `2-norm and W is the
weighting matrix. Instead of only using a single-data snapshot,
y, in the cost-function in (58), we could replace y by

yns(nt) = vec




yns(nt) · · · yns(nt −M ′t )
...

. . .
...

yns+M ′s
(nt) · · · yns+M ′s

(nt −M ′t )


 ,

(59)

with M ′s = Ms − 1, M ′t = Mt − 1, Ms ≤ Ns, and Mt ≤ Nt.
If we then take the expected value, we get

E
{
‖Z̄Hyns(nt)‖2(Z̄H Z̄)−1

}
= Tr

{
Z̄HRZ̄

(
Z̄HZ̄

)−1
}
. (60)

That is, we can also estimate the DOA and pitch jointly by
matching the signal model to the covariance matrix, R, of
yns(nt) as{

θ̂, ω̂0

}
= arg max

{θ,ω0}∈Θ×Ω
Tr
{

Z̄HRZ̄
(
Z̄HZ̄

)−1
}
. (61)

The computational complexity per grid point for the ex-
pectation based estimator is O(L2M + LM2 + L3) where
M = MtMs. Note that even though this complexity looks
worse than for the single snapshot NLS estimator it might not
be the case in all scenarios since M ≤ N . In practice, we do
not know the exact covariance matrix R, but we can replace
it by, e.g., the sample covariance matrix estimate defined as
[19]

R̂ =

Ns−Ms∑
ms=0

Nt−Mt∑
mt=0

yms(nt −mt)y
H
ms

(nt −mt)

(Ns −M ′s )(Nt −M ′t )
. (62)

The gradient of the cost-function, JNLS(θ, ω0), is given by

∇JNLS(θ, ω0) =
[
∂JNLS
∂θ

∂JNLS
∂ω0

]T
, (63)

where
∂JNLS

∂θ
=yH

(
GθP

⊥ + P⊥GH
θ

)
y , (64)

∂JNLS

∂ω0
=yH

(
Gω0P

⊥ + P⊥GH
ω0

)
y, (65)

with

P⊥ = (I−P), (66)

P = Z̄(Z̄HZ̄)−1Z̄H , (67)

Gθ = Z̄
(
Z̄HZ̄

)−1
YH
θ B , (68)

Gω0 = Z̄
(
Z̄HZ̄

)−1
YH
ω0

B , (69)

[Yθ]pq = −jqω0ζ cos θks,pe
−jqω0(ζ sin θks,p+kt,p) , (70)

[Yω0
]pq = −jq (ζ sin θks,p + kt,p) e

−jqω0(ζ sin θks,p+kt,p) ,
(71)

ks,p = (p − 1) (mod Ms) and kt,p = bp−1
Ms
c. Note that

y (mod x) denotes that y is modulo x, and b·c is the floor
operator. Using the gradient in (63), we can iteratively obtain
refined estimates of the DOA and the pitch as[

θ̂(i+1)

ω̂
(i+1)
0

]
=

[
θ̂(i)

ω̂
(i)
0

]
+ δ∇JNLS , (72)

where i is the iteration index and δ > 0 is a small constant
which can be found using a line search algorithm.

B. Approximate Nonlinear Least-Squares Method

When the number of spatial and temporal samples are large,
the harmonics are close to being orthogonal, i.e., [9]

lim
M→∞

1

M
ZHZ = I . (73)

Therefore, cf. (14), we know that

lim
M→∞

1

M
Z̄HZ̄ =

‖β‖22
Ms

I . (74)

Inserting (74) into (57) yields the approximate NLS (aNLS)
estimator defined as{

θ̂, ω̂0

}
= arg max

{θ,ω0}∈Θ×Ω
yHZ̄Z̄Hy . (75)

That is, the aNLS cost-function is given by

JaNLS(θ, ω0) = ‖Z̄Hy‖22 . (76)

The computational complexity per search grid point of the
aNLS estimator is O(NL), i.e., it is only quadratic compared
to the complexity of the NLS estimator which was cubic1.
As for the NLS method, we also propose an alternative
covariance-based estimator{

θ̂, ω̂0

}
= arg max

{θ,ω0}∈Θ×Ω
Tr
{
Z̄HRZ̄

}
(77)

The computational complexity of evaluating the expectation
based aNLS estimator in each point of the search grid
is O(M2L + ML2). Note that the alternative aNLS cost-
function in (77) can be interpreted as the output power of
a periodogram-based filterbank when B = I.

The expressions for the partial derivatives of the aNLS cost-
function are given by

∂JaNLS

∂θ
= yH

(
BYθZ̄

H + Z̄Y
H
θ B
)

y , (78)

∂JaNLS

∂ω0
= yH

(
BYω0

Z̄H + Z̄Y
H
ω0

B
)

y . (79)

We can then obtain refined aNLS estimates by using (78) and
(79) in (72).

V. EXPERIMENTAL RESULTS

To evaluate the proposed joint DOA and pitch estimators,
we conducted simulations on both synthetic as well as real-life
data. The results from these simulations are explained in the
following subsections.

1Here, we consider all unknown variables as one variable when counting
the order, i.e., O(NL) is considered as a second order term.
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A. Statistical Evaluation

We conducted several series of Monte-Carlo simulations
using synthetic data. In all of these simulations, the sampling
frequency was fs = 8 kHz, the speed of sound was assumed
to be c = 343.2 m/s, the array was uniform and linear with
d = c

fs
, there was no attenuation across the sensors such that

B = I, and the desired signal was designed to be a harmonic
signal with f0 = 243 Hz, θ = 15◦, L = 5 and αl = 1.
We estimated the pitch and DOA in each of the simulations
using different estimators including the proposed; besides
the proposed estimators, we used the multichannel maximum
likelihood (MC-ML) and multichannel approximate maximum
likelihood (MC-aML) estimators [43] for pitch estimation, and
we used the steered response power (SRP) method, the steered
response power with phase transform (SRP-PHAT) method
[44], [45], and the broadband MVDR (bMVDR) beamformer
[17] for DOA estimation. Finally, we used the position-pitch
plane (PoPi) based estimator in [32], the subspace (Sub.)
method in [30], and the LCMV filtering (LCMV) method in
[35] for joint DOA and pitch estimation. For pitch estimation,
we compared with the MC-ML and MC-aML estimators
since these were shown to outperform the multi-channel pitch
estimators in [46], [47]. Note that, in our implementations of
the SRP and bMVDR methods, we used an FFT length of 256,
and we integrated over all frequency indices whereas in the
SRP-PHAT method we integrated over the frequency indices
corresponding to the interval [200 Hz;Lmax{f0,grid}] with
max{f0,grid} being our maximum pitch candidate. Moreover,
in our implementation of the bMVDR method, we used 20
blocks of length bNt/3c to estimate the cross-spectral density.
We used an FFT size of 1024 for the PoPi method, a block size
of Nt/2 and a smoothing factor of 5 for the subspace method,
and spatial and temporal filter lengths of max{[2, bNs ·2/3c]}
and bNt/4c, respectively, for the LCMV method.

In each series of Monte-Carlo simulations, the performances
of the estimators were measured in terms mean squared error
(MSE). In the first series of Monte-Carlo simulations, we
measured the estimation performance as a function of the
signal-to-noise ratio (SNR) defined as

SNR = 10 log10

∑L
l=1 |αl|2

σ2
. (80)

The number of sensors were Ns = 2 and the number of tempo-
ral samples was Nt = 80. Then, we conducted another series
of Monte-Carlo simulations where the estimation performance
was evaluated versus the number of sensors Ns while the SNR
was fixed to 10 dB and the number of temporal samples was
Nt = 60. In the third series, we measured the performance as
a function of the number of temporal samples Nt, and, here,
the SNR was 30 dB while the number of sensors was Ns = 2.
Finally, we conducted two series of Monte-Carlo simulations
on synthetic data containing two harmonic sources each with
five harmonics with unit amplitudes. In the first of these series,
both sources had a DOA of 15◦. One of the sources had a pitch
of 243 Hz, while the pitch of the other source was varied. The
MSEs was then measured as the mean of the MSEs for the
two sources. For this experiment, the number of sensors and
samples was Ns = 2 and Nt = 80, respectively. In the other

series, the pitch of both sources was 243 Hz, and the DOA
of one of the sources was 15◦, while the DOA of the other
source was varying. The number of sensors and samples was
Ns = 8 and Nt = 60, respectively.

The results from all of the series of Monte-Carlo simulations
are depicted in Fig. 3, and they reveal several interesting facts.
First, we note that the proposed NLS estimator attains the CRB
for both the DOA and pitch when the noise is white Gaussian
and we have a single harmonic source. This was also expected
according to our previous claims. Moreover, the NLS estimator
has a better or similar performance than all other methods in
the comparison. The proposed aNLS estimator, however, is
slightly biased and does therefore not attain the CRB, but in
many scenarios it closely follows it. The PoPi, MC-aML, SRP
and SPR-PHAT methods are also biased; therefore, as for the
aNLS method, the MSEs of their estimates do not necessarily
follow the CRB for increasing SNRs, Nts or Nss. Another
key observation for the single-source experiments is that the
aNLS method seems to outperform the MC-aML method in
most scenarios in terms of the MSE of the pitch estimates.

In the first two-source scenario2, the DOAs of the sources
were the same while the pitch spacing was varying. The NLS,
aNLS, MC-ML and MC-aML methods outperform the PoPi
and LCMV methods for pitch estimation for pitch spacings
above ≈ 0.0155 in this scenario. Moreover, the proposed NLS
and aNLS estimators clearly outperforms all other methods
for DOA estimation. It is expected that the SRP, SRP-PHAT,
and bMVDR methods fail in this scenario, as the broadband
methods can not resolve sources with the same DOA. In the
other two-source scenario, the two sources had the same pitch,
while the DOA spacing between the sources was altered.
Here, we observe that the proposed methods outperform all
other methods for pitch estimation for DOA spacings below
≈ −0.87. We note that the MC-ML and MC-aML methods
fail in this scenario, since they only conduct a one-dimensional
search. For DOA estimation, the NLS, aNLS and SRP methods
yields the best performance for DOA spacings below ≈ −0.87.

B. Real-life Examples

We also conducted some qualitative experiments to evaluate
the performance of the proposed methods on real-life signals.
These experiments were conducted in a meeting room. The
floor plan of the room and the measurement setup are illus-
trated in Fig. 4, while the height of the room was 2.64 m. In
these simulations, the sampling frequency was fs = 44.1 kHz,
the speed of sound was assumed to be c = 343.2 m/s, the
room reverberation time3 at 1 kHz was T60 ≈ 0.53 s, the
array was uniform and linear with d = 4 cm and Ns = 8, we
assume that there was no attenuation across the sensors such
that B = I, and the desired signal was assumed to consist of
L = 8 harmonics. The estimators used in these experiments
were the same as in the previous simulations with synthetic
data and they were set up similarly.

2The subspace method is not considered in these scenarios as it is only
suited for estimating the parameters of a single source.

3Here, the reverberation time is defined as time required for reflections of
a direct sound to decay by 60 dB below the level of the direct sound.
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Fig. 3. MSE of (a) pitch and (b) DOA estimates obtained in different scenarios with the NLS and aNLS methods proposed herein, the multichannel maximum
likelihood method (MC-ML), the approximate MC-ML method (MC-aML), the steered response power method (SRP), the SRP with phase transform method
(SRP-PHAT), the broadband MVDR beamformer (bMVDR), the position-pitch plane based method (PoPi), a subspace based method (Sub.), and an LCMV
filtering method (LCMV). In all scenarios, 500 Monte-Carlo simulations were conducted for each experimental setup to estimate the MSE of the parameter
estimates.

In the first of the real-life experiments, we played back
an anechoic trumpet signal using the speaker ’S2’. The ane-
choic trumpet signal was generated by concatenating anechoic
trumpet signal excerpts4. The played back trumpet signal was
recorded using the ULA to obtain a multichannel trumpet
signal with slight reverberation. From the recording, we es-
timated the pitch and the DOA of the trumpet signal using
the estimators mentioned previously. In Fig. 5, the estimates

4The excerpts were downloaded from http://theremin.music.uiowa.edu/MIS.
html

obtained from this experiment are depicted. We can see that
all of the applied estimators for pitch estimation except the
PoPi and LCMV methods seem to correctly estimate the pitch
of the trumpet signal if we compare the estimates with the
spectrogram. Regarding DOA estimation, we can see that
all estimators obtain estimates relatively close to the true
DOA except the bMVDR and LCMV methods which looks
heavily biased. Note that the NLS and aNLS methods yield
estimates close to the true parameter values even though the
recording contains reverberation and B 6= I in practice. We
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2.7 m

3.8 m

7.7 m

5.8 m
S1

S2

θ2

θ1

Fig. 4. Floor plan of the meeting room used for the real-life experiments.
The angle between the two speakers, ’S1’ and ’S2’, was θ1 ≈ 45◦ and
θ2 ≈ −13◦, respectively.

then conducted a similar experiment where we played back
the same trumpet signal using ’S1’ and a speech signal using
’S2’, and the mixture was recorded using the array. The played
back speech signal was a female speech excerpt taken from
the Keele pitch database [48]. In this experiment, the speech
signal was considered noise, so the objective was to estimate
the DOA and the pitch of the trumpet signal. In Fig. 6, the
results from this experiment are shown. Again, we observe that
the pitch estimators except for the PoPi and LCMV estimators
seem to provide correct pitch estimates except at ≈ 7.3 s.
For DOA estimation, it seems that the proposed methods out-
perform the other methods. The SRP-PHAT method provides
heavily biased estimates, and the estimates of the bMVDR,
PoPi, and LCMV methods seem erroneous. We note that the
proposed methods provide good pitch and DOA estimates even
though the noise is indeed not white Gaussian in this experi-
ment. In summary, the proposed methods show comparable or
better estimation performance than other state-of-the-art DOA
and pitch estimators in our real-life experiments. Moreover,
the results from these experiments indicate that the proposed
methods are applicable on real-life signals, and that they are
robust against reverberation as well as other noise types than
white Gaussian noise. Note that the above observations based
on our qualitative experiments may be different for, e.g., other
sensor and source positions, and array structures, due to the
complicated nature of reverberant signals.

VI. CONCLUSION

In this paper, we have considered joint estimation of the
DOA and the pitch of a harmonic source recorded using a
ULA. First, we derived the exact and asymptotic Cramér-
Rao bounds (CRBs) for the joint estimation problem. From
the asymptotic bounds, it is clear that the DOA can be
estimated more accurately by taking the harmonic structure
into account compared to if we just estimated the DOA of,
e.g., the fundamental tone. Moreover, these bounds reveal that
the pitch can be estimated more accurately when multiple
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Fig. 5. Estimation results from a real-life experiment with a single source;
the source was a trumpet signal played back using ’S2’. The pitch and DOA
estimates of the trumpet signal is depicted in the top and bottom plots,
respectively.
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Fig. 6. Estimation results from a real-life experiment with two sources; the
sources were a trumpet signal and a speech signal played back using ’S1’
and ’S2’, respectively. The pitch and DOA estimates of the trumpet signal is
depicted in the top and bottom plots, respectively.

sensors are used. Then, we proposed two estimators for
joint DOA and pitch estimation, namely the NLS and aNLS
methods. The proposed estimators are maximum likelihood
estimators when the noise is white Gaussian, the environment
is anechoic, and the source of interest is in the far-field.
We conducted numerous simulations on synthetic data where
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the proposed methods and other state-of-the-art methods for
DOA and pitch estimation were applied. The results show that
the proposed methods attain the CRB with the aNLS being
slightly biased. In general, the proposed methods outperform
the other methods for both DOA and pitch estimation in
terms of mean squared error. This is even the case in two-
source scenarios, where the noise is not white Gaussian. The
results obtained from the two-source scenarios also show that
it is beneficial to estimate the DOAs and the pitches jointly
when two sources are having the same DOA or pitch, since
the methods estimating only one of these parameters may
fail. Furthermore, we conducted experiments on real-life data.
The results from these experiments indicate that the proposed
methods have similar or better estimation performance than the
other applied methods. Moreover, these experiments indicate
that the proposed methods are applicable on real-life signals,
and that they are robust against reverberation and noise which
is not white Gaussian. In future work, model order estimation
for the methods proposed herein can be considered, to improve
their robustness and applicability.
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