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Abstract—Existing methods for sparse channel estimation ty-
pically provide an estimate computed as the solution maximizing
an objective function defined as the sum of the log-likelihood
function and a penalization term proportional to the ℓ1-norm of
the parameter of interest. However, other penalization terms have
proven to have strong sparsity-inducing properties. In this work,
we design pilot-assisted channel estimators for OFDM wireless
receivers within the framework of sparse Bayesian learning
by defining hierarchical Bayesian prior models that lead to
sparsity-inducing penalization terms. The estimators result as
an application of the variational message-passing algorithm on
the factor graph representing the signal model extended with
the hierarchical prior models. Numerical results demonstrate the
superior performance of our channel estimators as compared to
traditional and state-of-the-art sparse methods.

I. INTRODUCTION

During the last few years the research on compressive

sensing techniques and sparse signal representations [1], [2]

applied to channel estimation has received considerable atten-

tion, see e.g., [3]–[7]. The reason is that, typically, the impulse

response of the wireless channel has a few dominant multipath

components. A channel exhibiting this property is said to be

sparse [3].

The general goal of sparse signal representations from

overcomplete dictionaries is to estimate the sparse vector α

in the following system model:

y = Φα+w. (1)

In this expression y ∈ C
M is the vector of measurement sam-

ples and w ∈ CM represents the samples of the additive white

Gaussian random noise with covariance matrix λ−1I and

precision parameter λ > 0. The matrix Φ = [φ1, . . . ,φL] ∈
CM×L is the overcomplete dictionary with more columns than

rows (L > M ) and α = [α1, . . . , αL]
T ∈ CL is an unknown

sparse vector, i.e., α has few nonzero elements at unknown

locations.

Often, a sparse channel estimator is constructed by solving

the ℓ1-norm constrained quadratic optimization problem, see

among others [4]–[6]:

α̂ = argmin
α

{
‖y −Φα‖22 + κ‖α‖1

}
(2)

with κ > 0 and ‖ · ‖p, p ≥ 1, denoting the ℓp vector norm.

This method is also known as Least Absolute Shrinkage and

Selection Operator (LASSO) regression [8] or Basis Pursuit

Denoising [9]. The popularity of the LASSO regression is

mainly attributed to the convexity of the cost function, as well

as to its provable sparsity-inducing properties (see [2]). In [4]–

[6] the LASSO regression is applied to orthogonal frequency-

division multiplexing (OFDM) pilot-assisted channel estima-

tion. Various channel estimation algorithms that minimize the

LASSO cost function using convex optimization are compared

in [6].

Another approach to sparse channel estimation is sparse

Bayesian learning (SBL) [7], [10]–[12]. Specifically, SBL aims

at finding a sparse maximum a posteriori (MAP) estimate of

α

α̂ = argmin
α

{
‖y −Φα‖22 + λ−1Q(α)

}
(3)

by specifying a prior p(α) such that the penalty term Q(α) ∝e

− log p(α) induces a sparse estimate α̂.1

Obviously, by comparing (2) and (3) the SBL framework

realizes the LASSO cost function by choosing the Laplace

prior p(α) ∝ exp(−a‖α‖1) with κ = λ−1a. However, instead

of working directly with the prior p(α), SBL models this

using a two-layer (2-L) hierarchical structure. This involves

specifying a conditional prior p(α|γ) and a hyperprior p(γ)
such that p(α) =

∫
p(α|γ)p(γ)dγ has a sparsity-inducing

nature. The hierarchical approach to the representation of p(α)
has several important advantages. First of all, one is free to

choose simple and analytically tractable probability density

functions (pdfs). Second, when carefully chosen, the resulting

hierarchical structure allows for the construction of efficient

yet computationally tractable iterative inference algorithms

with analytical derivation of the inference expressions.

In [13] we propose a 2-L and a three-layer (3-L) prior

model for α. These hierarchical prior models lead to novel

sparsity-inducing priors that include the Laplace prior for

complex variables as a special case. This paper adapts the

Bayesian probabilistic framework introduced in [13] to OFDM

pilot-assisted sparse channel estimation. We then propose a

variational message passing (VMP) algorithm that effectively

exploits the hierarchical structure of the prior models. This

approach leads to novel channel estimators that make use

1Here x ∝e y denotes exp(x) = exp(υ) exp(y), and thus x = υ+y, for
some arbitrary constant υ. We will also make use of x ∝ y which denotes
x = υy for some positive constant υ.



of various priors with strong sparsity-inducing properties.

The numerical results reveal the promising potential of our

estimators with improved performance as compared to state-

of-the-art methods. In particular, the estimators outperform

LASSO.

Throughout the paper we shall make use of the following

notation: (·)T and (·)H denote respectively the transpose and

the Hermitian transpose; the expression 〈f(x)〉q(x) denotes

the expectation of the function f(x) with respect to the

density q(x); CN(x|a,B) denotes a multivariate complex

Gaussian pdf with mean a and covariance matrix B; similarly,

Ga(x|a, b) = ba

Γ(a)x
a−1 exp(−bx) denotes a Gamma pdf with

shape parameter a and rate parameter b.

II. SIGNAL MODEL

We consider a single-input single-output OFDM system

with N subcarriers. A cyclic prefix (CP) is added to pre-

serve orthogonality between subcarriers and to eliminate inter-

symbol interference between consecutive OFDM symbols.

The channel is assumed static during the transmission of

each OFDM symbol. The received (baseband) OFDM signal

r ∈ C
N reads in matrix-vector notation

r = Xh+ n. (4)

The diagonal matrix X = diag(x1, x2, . . . , xN ) contains the

transmitted symbols. The components of the vector h ∈ C
N

are the samples of the channel frequency response at the N
subcarriers. Finally, n ∈ CN is a zero-mean complex symme-

tric Gaussian random vector of independent components with

variance λ−1.

To estimate the vector h in (4), a total of M pilot symbols

are transmitted at selected subcarriers. The pilot pattern P ⊆
{1, . . . , N} denotes the set of indices of the pilot subcarriers.

The received signals observed at the pilot positions rP are

then divided each by the corresponding pilot symbol XP =
diag(xn : n ∈ P) to produce the vector of observations:

y , (XP)
−1rP = hP + (XP)

−1nP . (5)

We assume that all pilot symbols hold unit power such that

the statistics of the noise term (XP)
−1nP remain unchanged,

i.e., y ∈ CM yields the samples of the true channel frequency

response (at the pilot subcarriers) corrupted by additive com-

plex white Gaussian noise with component variance λ−1.

In this work, we consider a frequency-selective wireless

channel that remains constant during the transmission of

each OFDM symbol. The maximum relative delay τmax is

assumed to be large compared to the sampling time Ts, i.e.,

τmax/Ts ≫ 1 [3]. The impulse response of the wireless channel

is modeled as a sum of multipath components:

g(τ) =

K∑

k=1

βkδ (τ − τk) . (6)

In this expression, βk and τk are respectively the complex

weight and the continuous delay of the kth multipath com-

ponent, and δ(·) is the Dirac delta function. The parameter

K is the total number of multipath components. The channel

parameters K , βk, and τk, k = 1, . . . ,K , are random vari-

ables. Specifically, the weights βk, k = 1, . . . ,K , are mutually

uncorrelated zero-mean with the sum of their variances nor-

malized to one. Additional details regarding the assumptions

on the model (6) are provided in Section VI.

III. THE DICTIONARY MATRIX

Our goal is to estimate h in (4) by applying the general

optimization problem (3) to the observation model (5). For

doing so, we must define a proper dictionary matrix Φ. In this

section we give an example of such a matrix. As a starting

point, we invoke the parametric model (6) of the channel.

Making use of this model, (5) can be written as

y = T (τ )β +w (7)

with hP = T (τ )β, w = (XP)
−1nP , β = [β1, . . . , βK ]

T
,

τ = [τ1, . . . , τK ]T, and T (τ ) ∈ CM×K depending on the pilot

pattern P as well as the unknown delays in τ . Specifically,

the (m, k)th entry of T (τ ) reads

T (τ )m,k , exp (−j2πfmτk) ,
m = 1, 2, . . . ,M

k = 1, 2, . . . ,K
(8)

with fm denoting the frequency of the mth pilot subcarrier.

In the general optimization problem (3) the columns of Φ

are known. However, the columns of T (τ ) in (7) depend on

the unknown delays in τ . To circumvent this discrepancy we

follow the same approach as in [5] and consider a grid of

uniformly-spaced delay samples in the interval [0, τmax]:

τ d =
[
0,

Ts

ζ
,
2Ts

ζ
, . . . , τmax

]T
(9)

with ζ > 0 such that ζτmax/Ts is an integer. We now define

the dictionary Φ ∈ CM×L as Φ = T (τ d). Thus, the entries

of Φ are of the form (8) with delay vector τ d. The number

of columns L = ζτmax/Ts + 1 in Φ is thereby inversely

proportional to the selected delay resolution Ts/ζ.

It is important to notice that the system model (1) with Φ

defined using discretized delay components is an approxima-

tion of the true system model (7). This approximation model

is introduced so that (3) can be applied to solve the channel

estimation task. The estimate of the channel vector at the pilot

subcarriers is then ĥP = Φα̂. In order to estimate the channel

h in (4) the dictionary Φ is appropriately expanded (row-wise)

to include all N subcarrier frequencies.

IV. BAYESIAN PRIOR MODELING

In this section we specify the joint pdf of the system model

(1) when it is augmented with the 2-L and the 3-L hierarchical

prior model. The joint pdf of (1) augmented with the 2-L

hierarchical prior model reads

p(y,α,γ, λ) = p(y|α, λ)p(λ)p(α|γ)p(γ;η). (10)

The 3-L prior model considers the parameter η specifying

the prior of γ in (10) as random. Thus, the joint pdf of (1)
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Fig. 1. 2-L hierarchical prior pdf for α ∈ C2: (a) Contour plot of
the restriction to the Im{α1} = Im{α2} = 0 – plane of the penalty
term Q(α1, α2; ǫ, η) ∝e − log(p(α1; ǫ, η)p(α2 ; ǫ, η)). (b) Restriction to

Im{φH
l y} = 0 of the resulting MAP estimation rule (3) with ǫ as a parameter

in the case when Φ is orthonormal. The black dashed line indicates the hard-
threshold rule and the black solid line the soft-threshold rule (obtained with
ǫ = 3/2). The black dashed line indicates the penalty term resulting when
the prior pdf is a circular symmetric Gaussian pdf.

augmented with this hierarchical prior model is of the form

p(y,α,γ,η, λ) = p(y|α, λ)p(λ)p(α|γ)p(γ|η)p(η). (11)

In (10) and (11) we have p(y|α, λ) = CN(y|Φα, λ−1I)
due to (1). Furthermore, we select the conjugate prior

p(λ) = p(λ; c, d) , Ga(λ|c, d). Finally, we let p(α|γ) =∏L

l=1 p(αl|γl) with p(αl|γl) , CN(αl|0, γl). In the following

we show the main results and properties of these prior models.

We refer to [13] for a more detailed analysis.

A. Two-Layer Hierarchical Prior Model

The 2-L prior model assumes that p(γ) =
∏L

l=1 p(γl) with

p(γl) = p(γl; ǫ, ηl) , Ga(γl|ǫ, ηl). We compute the prior of

α to be

p(α; ǫ,η) =

∫ ∞

0

p(α|γ)p(γ; ǫ,η)dγ =

L∏

l=1

p(αl; ǫ, ηl) (12)

with

p(αl; ǫ, ηl) =
2

πΓ(ǫ)
η

(ǫ+1)
2

l |αl|ǫ−1Kǫ−1(2
√
ηl|αl|). (13)

In this expression, Kν(·) is the modified Bessel function of

the second kind with order ν ∈ R. The prior (13) leads to the

general optimization problem (3) with penalty term

Q(α; ǫ,η) =
L∑

l=1

log
(
|αl|ǫ−1Kǫ−1 (2

√
ηl|αl|)

)
. (14)

We now show that the 2-L prior model induces the ℓ1-

norm penalty term and thereby the LASSO cost function as

a special case. Selecting ǫ = 3/2 and using the identity

K 1
2
(z) =

√
π
2z exp(−z) [14], (13) yields the Laplace prior

p(αl; ǫ = 3/2, ηl) =
2ηl
π

exp(−2
√
ηl|αl|). (15)

With the selection ηl = η, l = 1, . . . , L, we obtain Q(α; η) =
2
√
η‖α‖1.

The prior pdf (13) is specified by ǫ and the regularization
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Fig. 2. Three-layer hierarchical prior pdf for α ∈ C2 with the setting
a = 1, b = 0.1: (a) Restriction to Im{φH

l y} = 0 of the resulting
MAP estimation rule (3) with ǫ as a parameter in the case when Φ is
orthonormal. The black dashed line indicates the hard-threshold rule and the
black solid line the soft-threshold rule. (b) Contour plot of the restriction to the
Im{α1} = Im{α2} = 0 – plane of the penalty term Q(α1, α2; ǫ, a, b) ∝e

− log(p(α1; ǫ, a, b)p(α2; ǫ, a, b)).

parameter η. In order to get insight into the impact of ǫ
on the properties of this prior pdf we consider the case

α ∈ C2. In Fig. 1(a) the contour lines of the restriction

to R2 of Q(α1, α2; ǫ, η) ∝e − log(p(α1; ǫ, η)p(α2; ǫ, η)) are

visualized;2 each contour line is computed for a specific choice

of ǫ. Notice that as ǫ decreases towards 0 more probability

mass accumulates along the α-axes; as a consequence, the

mode of the resulting posterior is more likely to be located

close to the axes, thus promoting a sparse solution. The

behavior of the classical ℓ1 penalty term obtained for ǫ = 3/2
can also be clearly recognized. In Fig. 1(b) we consider the

case when Φ is orthonormal and compute the MAP estimator

(3) with penalty term (14) for different values of ǫ. Note

the typical soft-threshold-like behavior of the estimators. As

ǫ → 0, more components of α̂ are pulled towards zero

since the threshold value increases, thus encouraging a sparser

solution.

B. Three-Layer Hierarchical Prior Model

We now turn to the SBL problem with a 3-L prior model for

α leading to the joint pdf in (11). Specifically, the goal is to

incorporate the regularization parameter η into the inference

framework. To that end, we define p(η) =
∏L

l p(ηl) with

p(ηl) = p(ηl; al, bl) , Ga(ηl|al, bl) and compute the prior

p(α). Defining a , [a1, . . . , al]
T and b , [b1, . . . , bL]

T we

obtain p(α; ǫ,a, b) =
∏L

l p(αl; ǫ, al, bl) with

p(αl; ǫ, al, bl) =

∫ ∞

0

p(αl|γl)p(γl)dγl

=
Γ(ǫ + al)Γ(al + 1)

πblΓ(ǫ)Γ(al)

( |αl|2
bl

)ǫ−1

U

(
ǫ+ al; ǫ;

|αl|2
bl

)
.

(16)

In this expression, U(·; ·; ·) is the confluent hypergeometric

function [14]. In Fig. 2(a) we show the estimation rules

produced by the MAP solver for different values of ǫ and

fixed parameters al and bl when Φ is orthonormal. It can

2Let f denote a function defined on a set A. The restriction of f to a subset
B ⊂ A is the function defined on B that coincides with f on this subset.
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Fig. 3. A factor graph that represents the joint pdf (11). In this figure
fy ≡ p(y|α, λ), fα ≡ p(α|γ), fγ ≡ p(γ|η), fη ≡ p(η), and fλ ≡ p(λ).

be seen that the estimation rules obtained with the 3-L prior

model approximate the hard-thresholding rule. In Fig. 2(b),

we depict the contour lines of the restriction to R2 of

Q(α1, α2; ǫ, a, b) ∝e − log(p(α1; ǫ, a, b)p(α2; ǫ, a, b)). Ob-

serve that although the contours behave qualitatively similarly

to those shown in Fig. 1(a) for the 2-L prior model, the

estimation rules in Fig. 2(a) and Fig. 1(b) are different.

Naturally, the 3-L prior model encompasses three free

parameters, ǫ, a, and b. The choice ǫ = 0 and bl small

(practically we let bl = 10−6, l = 1, . . . , L) induces a

weighted log-sum penalization term. This term is known to

strongly promote a sparse estimate [10], [11]. Later in the

text we will also adopt this parameter setting.

V. VARIATIONAL MESSAGE PASSING

In this section we present a VMP algorithm for estimating

h in (4) given the observation y in (5). Let Θ = {α,γ,η, λ}
be the set of unknown parameters and p(y,Θ) be the joint

pdf specified in (11). The factor graph [15] that encodes

the factorization of p(y,Θ) is shown in Fig. 3. Consider an

auxiliary pdf q(Θ) for the unknown parameters that factorizes

according to q(Θ) = q(α)q(γ)q(η)q(λ). The VMP algorithm

is an iterative scheme that attempts to compute the auxiliary

pdf that minimizes the Kullback-Leibler (KL) divergence

KL(q(Θ)‖p(Θ|y)). In the following we summarize the key

steps of the algorithm; the reader is referred to [16] for more

information on VMP.

From [16] the auxiliary function q(θi), θi ∈ Θ, is updated

as the product of incoming messages from the neighboring

factor nodes fn to the variable node θi:

q(θi) ∝
∏

fn∈Nθi

mfn→θi
. (17)

In (17) Nθi
is the set of factor nodes neighboring the variable

node θi and mfn→θi
denotes the message from factor node

fn to variable node θi. This message is computed as

mfn→θi
= exp

(
〈ln fn〉∏

j
q(θj), θj∈Nfn\{θi}

)
, (18)

where Nfn is the set of variable nodes neighboring the

factor node fn. After an initialization procedure, the individual

factors of q(Θ) are then updated iteratively in a round-robin

fashion using (17) and (18).

We provide two versions of the VMP algorithm: one applied

to the 2-L prior model (referred to as VMP-2L) and another

one applied to the 3-L model (VMP-3L). The messages

corresponding to VMP-2L are easily obtained as a special

case of the messages computed for VMP-3L by assuming

q(ηl) = δ(ηl − η̂l), where η̂l is some fixed real number.

1) Update of q(α): According to (17) and Fig. 3 the

computation of the update of q(α) requires evaluating the

product of messages mfy→α and mfα→α. Multiplying these

two messages yields the Gaussian auxiliary pdf q(α) =

CN
(
α|α̂, Σ̂α

)
with covariance matrix and mean given by

Σ̂α = (〈λ〉q(λ)ΦH
Φ+ V (γ))−1, (19)

α̂ = 〈α〉q(α) = 〈λ〉q(λ)Σ̂αΦ
Hy. (20)

In the above expression we have defined V (γ) =
diag(〈γ−1

1 〉q(γ), . . . , 〈γ−1
L 〉q(γ)).

2) Update of q(γ): The update of q(γ) is proportional to

the product of the messages mfα→γ and mfγ→γ :

q(γ) ∝
L∏

l=1

γǫ−2
l exp

(
−γ−1

l 〈|αl|2〉q(α) − γl〈ηl〉q(η)
)
. (21)

The right-hand side expression in (21) is recognized as the

product of Generalized Inverse Gaussian (GIG) pdfs [17] with

order p = ǫ−1. Observe that the computation of V (γ) in (19)

requires evaluating 〈γ−1
l 〉q(γ) for all l = 1, . . . , L. Luckily, the

moments of the GIG distribution are given in closed form for

any n ∈ R [17]:

〈γn
l 〉q(γ) =

( 〈|αl|2〉q(α)

〈ηl〉q(η)

)n
2 Kp+n

(
2
√
〈ηl〉q(η)〈|αl|2〉q(α)

)

Kp

(
2
√
〈ηl〉q(η)〈|αl|2〉q(α)

) .

(22)

3) Update of q(η): The update of q(η) is proportional to

the product of messages mfη→η and mfγ→η:

q(η) ∝
L∏

l=1

ηǫ+al−1
l exp

(
−(〈γl〉q(γ) + bl)ηl

)
. (23)

Clearly, q(η) factorizes as a product of L gamma pdfs, one

for each individual entry in η. The first moment of ηl used in

(22) is easily computed as

〈ηl〉q(η) =
ǫ + al

〈γl〉q(γ) + bl
. (24)

Naturally, q(η) is only computed for VMP-3L.

4) Update of q(λ): It can be shown that q(λ) = Ga(λ|M+
c, 〈‖y−Φα‖22〉q(α) + d). The first moment of λ used in (19)

and (20) is therefore

〈λ〉q(λ) =
M + c

〈‖y −Φα‖22〉q(α) + d
. (25)

VI. NUMERICAL RESULTS

We perform Monte Carlo simulations to evaluate the per-

formance of the two versions of the derived VMP algorithm

in Section V. We consider a scenario inspired by the 3GPP

LTE standard [20] with the settings specified in Table I. The

multipath channel (6) is based on the model used in [21]

where, for each realization of the channel, the total number

of multipath components K is Poisson distributed with mean

of 〈K〉p(K) = 10 and the delays τk, k = 1, . . . ,K , are
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Fig. 4. Comparison of the performance of the VMP-2L, VMP-3L, RWF, RVM, and SparseRSA algorithms: (a) BER versus Eb/N0, (b) MSE versus Eb/N0,
(c) MSE versus number of available pilots M with fixed L = 200 and the ratio between received symbol power and noise variance set to 15 dB. In (a,b) we
have M = 100 and L = 200. In (a) the dashed line shows the BER performance when the true channel vector h in (4) is known.

TABLE I
PARAMETER SETTINGS FOR THE SIMULATIONS. THE CONVOLUTIONAL

CODE AND DECODER HAS BEEN IMPLEMENTED USING [18].

Sampling time, Ts 32.55 ns

CP length 4.69 µs / 144 Ts

Subcarrier spacing 15 kHz

Pilot pattern Equally spaced, QPSK

Modulation QPSK

Subcarriers, N 1200

Pilots, M 100

OFDM symbols 1

Information bits 727

Channel interleaver Random

Convolutional code (133, 171, 165)8
Decoder BCJR algorithm [19]

independent and uniformly distributed random variables drawn

from the continuous interval [0, 144 Ts] (corresponding to the

CP length). The kth nonzero component βk conditioned on the

delay τk has a zero-mean complex circular symmetric Gaus-

sian distribution with variance σ2(τk) = 〈|βk|2〉p(βk|τk) =
u exp(−τk/v) and parameters u, v > 0.3

To initialize the VMP algorithm we set 〈λ〉q(λ) and

〈γ−1
l 〉q(γ) equal to the inverse of the sample variance of y and

the inverse number of columns L respectively. Furthermore,

we let c = d = 0 in (25), which corresponds to the

Jeffreys noninformative prior for λ. Once the initialization

is completed, the algorithm sequentially updates the auxiliary

pdfs q(α), q(γ), q(η), and q(λ) until convergence is achieved.

Obviously, q(η) is only updated for VMP-3L, whereas for

VMP-2L the entries in η are set to M . For both versions we

select ǫ = 0 and for VMP-3L we set al = 1 and bl = 10−6,

l = 1, . . . , L. Finally, the dictionary Φ is specified by M pilot

subcarriers and a total of L = 200 columns (corresponding to

the choice τmax = 144 Ts and ζ ≈ 1.4 in (9)).

The VMP is compared to a classical OFDM channel estima-

tor and two state-of-the-art sparse estimation schemes. Specifi-

3The parameter u is computed such that 〈
∑K

k=1 |βk(t)|
2〉p(β,τ ,K) = 1,

where p(β, τ ,K) is the joint pdf of the parameters of the channel model.
In the considered simulation scenario, 〈K〉p(K) = 10, τmax = 144 Ts, and
v = 20 Ts (the decay rate).

cally, we use as benchmark the robustly-designed Wiener Filter

(RWF) [22], the relevance vector machine (RVM) [10], [11],4

and the sparse reconstruction by separable approximation

(SpaRSA) algorithm [23].5 The RVM is an EM algorithm

based on the 2-L prior model of the student-t pdf over

each αl, whereas SpaRSA is a proximal gradient method for

solving (2). In case of the SpaRSA algorithm the regularization

parameter κ needs to be set. In all simulations, we let κ = 2,

which leads to good performance in high signal-to-noise ratio

(SNR) regime.

The performance is compared with respect to the resulting

bit-error-rate (BER) and mean-squared error (MSE) of the

estimate ĥ versus the SNR (Eb/N0). In addition, in order to

quantify the necessary pilot overhead, we evaluate the MSE

versus the number of available pilots M . Hence, in this setup

M is no longer fixed as in Table I.

In Fig. 4(a) we compare the BER performance of the

different schemes. We see that VMP-3L outperforms the other

schemes across all the SNR range considered. Specifically, at

1 % BER the gain is approximately 2 dB compared to VMP-

2L and RVM and 3 dB compared to SpaRSA and RWF. Also

VMP-2L achieves lower BER in the SNR range 0 - 12 dB

compared to RVM and across the whole SNR range compared

to SpaRSA and RWF.

The superior BER performance of the VMP algorithm is

well reflected in the MSE performance shown in Fig. 4(b).

Again VMP-3L is a clear winner followed by VMP-2L. The

bad MSE performance of the SpaRSA for low SNR is due to

the difficulty in specifying a suitable regularization parameter

κ across a large SNR range.

We next fix the ratio between received symbol power

and noise variance to 15 dB6 and evaluate the MSE versus

number of available pilots M . The results are depicted in

Fig. 4(c). Observe a noticeable performance gain obtained

with VMP-3L. In particular, VMP-3L exhibits the same MSE

performance as VMP-2L and RVM using only approximately

85 pilots, roughly half as many as VMP-2L and RVM. Fur-

4The software is available on-line at http://dsp.ucsd.edu/~dwipf/.
5The software is available on-line at http://www.lx.it.pt/~mtf/SpaRSA/
6Note that this value does not correspond with Eb/N0 as represented in

Fig. 4(a) and 4(b). The specific Eb/N0 depends on the number of bits in an
OFDM block, which in turn depends on the number of pilot symbols M .



thermore, VMP-3L, using this number of pilots, significantly

outperforms SpaRSA and RWF using 200 pilots.

VII. CONCLUSION

In this paper, we proposed channel estimators based on

sparse Bayesian learning. The estimators rely on Bayesian

hierarchical prior modeling and variational message passing

(VMP). The VMP algorithm effectively exploits the proba-

bilistic structure of the hierarchical prior models and the result-

ing sparsity-inducing priors. Our numerical results show that

the proposed channel estimators yield superior performance in

terms of bit-error-rate and mean-squared error as compared to

other existing estimators, including the estimator based on the

ℓ1-norm constraint. They also allow for a significant reduction

of the amount of pilot subcarriers needed for estimating a given

channel.
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