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Robust Utilization of Wind Turbine

Flexibility for Grid Stabilization

M. Juelsgaard, J. Bendtsen and R. Wisniewski

Dept. of Automation and Control, University of Aalborg, Denmark,
e-mail: {mju, dimon, raf}@es.aau.dk

Abstract: This work considers the use of wind turbines for stabilizing an electrical grid, by
employing temporary overproduction with respect to available power. We present a simple model
describing a turbine, and show how the possible period of overproduction, can be maximized
through a series of convex problems, where the load is distributed among several turbines
in a farm. We then present an optimization scheme that guarantees a lower limit for the
overproduction period and subsequently propose an adaptive implementation that is robust
against parameter uncertainties.

Keywords: Smart power applications; Wind turbine control; Robust control; Convex
optimization; Adaptive control;

1. INTRODUCTION

For a number of years, the Danish use of wind turbines for
electrical power generation has increased, and is further
expected to increase in the future. However, incorporat-
ing significant penetration of wind power, poses several
difficulties in order to maintain a stable grid and ensure
security of supply. On this basis, much research is currently
focused on how to incorporate wind power and other
volatile energy sources into electrical grids on a far greater
scale than previously, while maintaining the stability of
the grid (Dansk Energi (2010), Tarnowski et al. (2009b),
Margaris et al. (2010), etc.).

One measure of grid stability, is the grid frequency. If this
deviates from the nominal value, there is an imbalance
between the produced and consumed power. If the grid
frequency decreases, more power needs to be produced,
and vice versa. Usually this increase or decrease of pro-
duction is handled by thermal plants, but recent research
has also revolved around utilizing wind generated power
for grid stabilization. Down regulation of the grid, i.e.,
lowering production, can be aided by wind turbines, simply
by lowering their production also. However, below rated
power, wind turbines usually produce whatever power is
available in the wind, so the question is whether wind
turbines are also capable of participating in up regulating
the grid, i.e., by increasing production above available
power.

This is explored by Tarnowski et al. (2009a) and Tarnowski
et al. (2009b). Here it is illustrated that turbines are
temporarily capable of increasing production above the
available power, by extracting energy from the rotating
mass in the rotor plane. Consequently, the rotor will slow
down, so the overproduction can only be maintained for a
limited period of time.

In this paper, we investigate some of the limitations by
utilizing this overproduction. We introduce the optimiza-

tion problem of exploiting the rotational energy stored
in a wind farm, such that the overproduction period is
maximized. This is desirable since an increased period of
overproduction, would entail that turbines on a larger scale
could be used for grid stabilization, as an alternative to
thermal plants. We show that assuming perfect knowledge
about model parameters, this problem can be solved as
a series of convex problems. We then present an alter-
native approach, robust against uncertainties in model
parameters. This alternative approach initially provides a
lower bound for the overproduction period, given a certain
definition of the uncertainties. Subsequently, we apply an
adaptive optimization scheme for obtaining this period,
while subjected to the same uncertainties.

We will initially elaborate on the background for the
flexibility introduced by employing overproduction from
wind turbines. This is presented in Section 2, along with
the model a wind turbine. The presented model is capa-
ble of mimicking the results of Tarnowski et al. (2009a).
Section 3 provides a formal formulation of the problem
of maximizing the overproduction period, whereafter Sec-
tion 4 considers parametric uncertainties in formulating a
robust lower bound for the overproduction period, and also
presents our adaptive implementation. This is followed by
a numerical example in Section 5. Section 6 presents the
conclusions and suggestions for further work.

2. BACKGROUND AND MODELING

This work is motivated by Tarnowski et al. (2009a), where
the possible overproduction from a turbine is explored.
The basic idea is that when the turbine operates at normal
conditions, below rated power, and produces the available
power of the wind, the rotating mass of the rotor can be
seen as an energy storage. Extracting energy from this
storage, entails that the power production can be increased
above available power, by increasing the generator torque.
However, this slows down the rotor. The rotor must not
be slowed below some lower limit, so at this point, the



generator torque must be reduced, allowing the rotor to
accelerate back to optimal operating conditions. This is
illustrated in Fig. 1(Tarnowski et al. (2009a)).
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Fig. 1. The electrical, mechanical and available power of the

turbine, during normal, OP (over production) and UP (under

production) periods.

Fig. 1 illustrates the power production from a turbine,
divided into the three different periods denoted ’Normal’,
’Over production (OP)’ and ’Under production (UP)’ -
operation. In normal operation, the power p(t) ∈ R+,
produced by the turbine, equals the available power in
the wind pavl(t) ∈ R+, i.e., p(t) = pavl(t). Here t ∈ [0; ∞)
is the time and R+ refers to the non-negative numbers.
The power p(t) is limited above by the rated power, pmax,
of the turbine, but we will disregard this concern in this
work.

At some time tc, the turbine power reference increases,
for instance as a result of a frequency imbalance in the
grid. The turbine is now required to produce p(t) =
pop > pavl(t), which is an overproduction. The electrical
power can increase, however as illustrated in Fig. 1, the
mechanical power in the rotor will consequently decrease,
because the rotor slows down. When the lower limit is
reached, the electrical power will have to be reduced,
to that of the mechanical power, which now has to be
returned to the vantage point, by accelerating the rotor of
the wind turbine. This causes a period of underproduction,
with respect to the available power.

2.1 Turbine modeling

We can model the described behavior by approximating
the turbine as a flywheel, as illustrated in Fig. 2. The
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Fig. 2. Flywheel model of a wind turbine.

flywheel consist of an inertia J ∈ R+, with a rotational
velocity of ω(t) ∈ R+ and a viscous friction B ∈ R+.
The rotating motion is driven by a torque τw(t) ∈ R+

produced by the wind. The turbine generator affects the
rotation by a torque τg(t) ∈ R+, opposite the direction of
rotation. Likewise, the turbine is equipped with a brake,
that produces a torque τb(t) ∈ R+, also opposite the
rotation.

The power p(t), is expressed as p(t) = τg(t)ω(t), which
is a non-linear expression. In the sequel, we will use a

linear approximation of this expression. Even though this
is not completely accurate, we will later show that the
error obtained by the approximation, is only minor, when
introducing on-line updates.

A model describing the turbine, can be arranged as

Jω̇(t) = -Bω(t) − τg(t) − τb(t) + τw
p(t) = ωτg(t) + τgω(t) − ωτg,

(1)

where (ω,τ g) is the operating point for the linear approx-
imation of p(t). The ’=’ in the second line is an abuse
of notation, as it is only an approximation and not an
equality.

This model has two controllable inputs, τg(t) and τb(t),
which both have to be non-negative. The use of both
actuators counteracts the incoming wind τw(t), and affects
the rotational velocity ω(t). Employing the generator τg(t)
directly affects the output p(t), whereas τb(t) has no effect
on the output. As we will illustrate later, this model
contains the dynamics illustrated by Fig. 1.

2.2 Farm modeling

We expand the model of a single turbine to cover an entire
farm, simply by aggregation. We leave as future work, any
inter turbine effects, such as changes in wind speed or
turbulence throughout the farm. Models of this have been
studied extensively by for instance Soleimanzadeh and
Wisniewski (2010) and Knudsen et al. (2011). Including
inter turbine effects in this work, could be completed by
including the different phenomena in the modeling of the
torque tw,i(t), provided by the wind, where the subscript
refers to turbine i in the farm.

3. GENERAL PROBLEM DESCRIPTION

In the following, we address the general problem of max-
imizing the overproduction period for a farm, when pre-
sented with a demand exceeding the accumulated available
power. We start by providing a formal definition of the
overproduction period.

Consider a wind farm consisting of n turbines. The farm
is subjected to a demand pdem(t), given by

pdem(t) =



















n
�

i=1

pavl,i(t), t < tc

(1 + γ)

n
�

i=1

pavl,i(t), t ≥ tc

, (2)

where γ > 0.

For t < tc, the demand does not exceed the accumulated
available power, and can thereby be tracked closely. For
t ≥ tc, the farm is required to overproduce. As described,
the farm can only overproduce in a limited time period.
We define this overproduction period by

Top(τg,i, τb,i) = inf

�

t− tc

�

�

�

�

�

t > tc, pdem(t) �=

n
�

i=1

pi(t)

�

,

with pi(t) defined as in (1), and demand as defined in (2).

As the demand can be met for all t < tc, Top is the time
between tc and the first following time instance, where the
demand is no longer obeyed. As pi(t) depends on τb,i(t)
and τg,i(t), so does Top.



Given the model (1), the task is to chose τg,i(t) and τb,i(t),
i = 1, . . . , n, such as to maximize the overproduction
period. This can be formulated as

maximize
τg,i,τb,i

Top(τg,i, τb,i)

subject to ω̇i(t) =
-Bi

Ji
ωi(t) +

1

Ji
(-τg,i(t) + τw − τb,i(t))

pi(t) = ωiτg,i(t) + τg,iωi(t) − ωiτg,i
ωi(t) ≥ ωmin, τg,i(t) ≥ 0, τb,i(t) ≥ 0
t ≥ tc,

(3)

with initial conditions ωi(tc) = ωi and τg,i(tc) = τ g,i,
for i ∈ {1, . . . , n}. The first two lines of the constraints,
describes the approximated dynamics of the model. The
last line encompasses the mentioned practical constraints,
where ωmin is the allowed lower limit for the rotational
velocity. It should further be stressed that the cost function
in Problem (3) implies the equality constraint

pdem(t) =

n
�

i=1

pi(t), tc ≤ t < tc + Top.

We can solve this problem by reformulating it as a feasi-
bility problem. This can be done by defining

T̃op = Top(τg,i, τb,i),

and afterwards, solve the feasibility problem

find τg,i(t), τb,i(t)

subject to ω̇i(t) =
-Bi

Ji
ωi(t) +

1

Ji
(-τg,i(t) + τw − τb,i(t))

pdem(t) =

n
�

i=1

(ωiτg,i(t) + τg,iωi(t) − ωiτg,i)

ωi(t) ≥ ωmin, τg,i(t) ≥ 0, τb,i(t) ≥ 0,

0 < t < tc + T̃op,

(4)

with i = 1, . . . , n.

By iteratively increasing T̃op until (4) becomes infeasible,
we find the solution to (3). An abstraction of this is
presented in Fig. 3.
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Fig. 3. Illustration of the feasibility problem, for four values
of T̃op (short dashed), the demand pdem (long dash),
and the available power pavl (solid).

Fig. 3 illustrates how large a power production a farm
is able to maintain, if it is only required to maintain it
for T̃ 1

op, T̃ 2
op, T̃ 3

op and T̃ 4
op seconds. For T̃ 1

op, which is a
very small period, the farm is capable of producing a
very large power before the energy stored in the rotor is
depleted. This power spike is far larger than the demand.
For T̃ 2

op > T̃ 1
op, the farm can produce less power, but still

more than the demand. Similarly for T̃ 3
op. However, T̃

4
op is

too large, in that the farm is not able to obey the demand
for the required overproduction period. By iterating, we

can eventually find the value T̃ ∗

op, where T̃
3
op < T̃ ∗

op < T̃ 4
op,

such that the demand is exactly met, throughout the
period.

For any power reference, not exceeding the rated power of
the turbine, there exists a feasible solution to (4). In fact,
when disregard the concern that the production from each
turbine is limited above by a maximum rated power, it can
be shown that for all γ > 0 in (2), there exists a T̃op > 0,
such that (4) is feasible. It will thereby always be possible
to find a feasible overproduction period. For any value of
T̃op, (4) is convex, and can thereby be solved efficiently
(Boyd and Vandenberghe (2004)).

In both (3) and (4), we have assumed that τw is constant
over time, and equal for all turbines. We maintain this
assumption throughout the work. Even though this to
some extend reduces the practical accuracy of our results,
we maintain this assumption in order to easier illustrate
the implications of our results. Refer to Section 6 for
arguments on improving this assumption.

The approach outlined above is completely general, in
that it makes no assumptions on how large part any
turbine should play in the overall overproduction, or when
any individual turbine should start to overproduce, with
respect to tc. Instead it simply finds the torques that
should be applied to each turbine over time, in order for
the farm as a whole to obtain the longest overproduction
period.

4. ROBUST OVERPRODUCTION STRATEGY

The general problem formulation in Section 3 suffers
from the disadvantage of requiring information about the
parameter values for all turbines in our wind farm model.
In the following, we will present an alternative formulation,
that is less general, however, it is developed to be robust
against parametric uncertainties.

We shall employ a two step approach for arranging a
robust overproduction strategy:

1. Find a lower bound on the overproduction period,
under parametric uncertainties.

2. Arrange adaptive optimization scheme, for obtaining
this lower bound, given the same uncertainties.

In Item 1, we find a guaranteed overproduction period,
even under parametric uncertainties. It can be translated
to a worst case overproduction period. In a practical set-
ting, this worst case period would give a farm operator a
guarantee for the period in which a given farm can partic-
ipate in the grid stabilization, even when the operator is
uncertain about specific parameter values.

In Item 2 we adaptively find the torques that should be
applied each turbine, in order for the farm to overproduce
for a time corresponding to the lower bound on overpro-
duction period. In this implementation, we would never
attempt to obtain an overproduction period exceeding
the lower bound, in that we cannot guarantee that it is
possible.



4.1 Overproduction Period Bound

Dispatch Strategy

Instead of the completely general problem outlined in (4),
we can decide on the production of each turbine, based on
a dispatch strategy. A dispatch strategy calculates power
references pref,i(t) ∈ R+, i = 1, . . . , n, to each turbine.
We assume that the electrical dynamics of the turbine
generator, are much faster than the mechanical dynamics
of the rotor, so we can assume that pi(t) = pref,i(t), if
pref,i(t) < pavl,i(t).

In the following, we use the dispatch strategy

pref,i(t) = pavl,i(t) +
pdem(t) −

�n

i=1
pavl,i(t)

n
, (5)

If pdem(t) ≤
�n

i=1 pavl,i(t), the references dispatched by
(5) will all be less than the available power for the indi-
vidual turbines, i.e. pref,i(t) ≤ pavl,i(t), and the production
will meet the demand. If however pdem(t) >

�n

i=1 pavl,i(t),
then pref,i(t) > pavl,i(t), and the turbine will only be able
to follow this reference for a limited time, as the rotor will
slow down.

If we employ (5), for the demand in (2), we see that the
production reference to all turbines can be expressed as

pref,i(t) =

�

pavl,i, t < tc

pavl,i + γ

�n

j=1
pavl,j

n
, t ≥ tc

,

where we have omitted the time dependency on pavl(t),
since the assumption on constant wind, entails constant
available power.

Since the demand is constant for t > tc, this entails that
the references will be constant for t > tc, i.e.

pref,i = pavl,i + γ

�n

j=1
pavl,j

n
, t > tc

for i = 1, . . . , n, where pref,i > pavl,i. When tracking this
power reference, the model in (1) is expressed by

Jiω̇i(t) = -Biωi(t) − τg,i(t) + τw
pref,i = ωiτg,i(t) + τg,iωi(t) − ωiτg,i,

for t > tc.

We can solve these differential equations explicitly for
τg,i(t) and ωi(t), for all i when t > tc. We have disregarded
the brake τb,i(t) as it should not be used when the
power references are above available power. Solving the
differential equations reveals

τg,i(t) = di + cie

τg,i−Biωi

Jiωi
(t−tc)

, ωi(t) = ai + bie

τg,i−Biωi

Jiωi
(t−tc)

,

(6)
for t > tc, where

ai =
Bipref,i + Biωiτg,i − τg,iτw

Biτg,i − B2
i
ωi

+
τw

Bi

bi =
τwτg,iωi −Bipref,iωi − Biω

2
i τg,i

τ2g,i −Biωiτg,i
−

pref,i

τg,i

ci =
pref,i

ωi

−
τg,iτw −Bipref,i −Biωiτg,i

τg,i −Biωi

di =
τg,iτw − Bipref,i − Biωiτg,i

τg,i − Biωi

are all constants, with ai > 0, bi < 0, ci > 0, di > 0, and
τg,i −Biωi

Jiωi

> 0.

From this, we can derive an expression for the time interval
Top,i, where pi(t) = pref,i, before ωi(t) reaches the lower
bound ωmin. We obtain

Top,i =
ωiJi

τg,i − Biωi

ln

�

ωmin − ai

bi

�

(7)

Employing the dispatch strategy (5) to obtain (7) can obvi-
ously only be suboptimal, compared to solving the general
problem in (4). However, as the task is merely to provide
a robust lower bound on the overproduction period, this
approach is more suitable, as we shall illustrate shortly.
We have further remarks concerning this in Section 6.

Equation (7) represents a mapping between the possible
overproduction period, and the number of turbines in the
farm. We will illustrate this with an example shortly.

Parametric Uncertainty

As seen from (7), both Bi and Ji enters explicitly in the
expression for Top,i. When analyzing the gradient of (7)
with respect to these model parameters, it is clear that

∂Top,i(Ji, Bi)

∂Ji
> 0, ∀Ji, Bi > 0,

and it can further be shown that
∂Top,i(Ji, Bi)

∂Bi

> 0, ∀Ji, Bi > 0.

This implies that over all possible parametrizations of Bi

and Ji, the smallest possible value for Top,i is obtained for
Bi = Bmin and Ji = Jmin. This entails, that even when
the specific parameter values for the parameters across
our farm model are unknown, a lower bound on the over
production period can still be obtained, by analyzing a
single vertice of our uncertainty set, when given as ranges
on model parameters.

We can illustrate the implications of this, by the following
simple example.

Example

We consider a farm consisting of n identical turbines,
meaning that

J1 = · · · = Jn = J, B1 = · · · = Bn = B,

which entails that all turbines have the same available
power, pavl,i = pavl, i = 1, . . . , n. The power demand
during the overproduction period is given by

pdem =

�

n +
1

2

�

pavl,

corresponding to γ = 1/(2n) in (2). This demand corre-
sponds to the farm overall should produce the available
power for all turbines, plus half that of one additional
turbine. We define the available power as

pavl = τgω,

where τ g = τw − Bω . The available power, and thereby
the demand, depends on the turbine parameters

From the dispatch strategy (5), the production from each
turbine during overproduction is

pref,i =

�

1 +
1

2n

�

pavl, i = 1, . . . , n. (8)

The overproduction with respect to the available power for
each individual turbine, is thereby inversely proportional
to the number of turbines in the farm.



Using (7), Fig. 4 illustrates the mapping between n and
Top, for n = 1, . . . , 1000. The figure presents four curves,
corresponding to all four combinations of a maximum and
minimum value of B and J . This corresponds to examining
the four vertices of a parametric uncertainty region, where
we do not know the specific value of B and J , but only
their ranges, i.e.

B ∈ B = [Bmin; Bmax], J ∈ J = [Jmin; Jmax]. (9)

In Fig. 4, we have used B = [1; 4] kg · m2/s, and J =
[80; 120] kg ·m2. We have further used ω = 4π rad/s, τw =
201 Nm and ωmin = 0.7ω rad/s.
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Fig. 4. The overproduction period, as a function of farm size.

All turbines have the same inertia and friction, with the four

combinations: {Bmin; Jmin}(Solid, Plain), {Bmax; Jmin}(Solid,

Dots), {Bmin;Jmax}(Solid, Asterisk), {Bmax; Jmax}(Dashed).

Fig. 4 reveals several interesting results. First, the gain
in Top, obtained by increasing the number of turbines n,
decreases as the farm size increases. This happens even
though the overproduction performed by each individual
turbine decreases, as evident by (8). This is on account of
the negative exponential growth in (6).

Secondly, the specific value of the model parameters have
significant impact on the overproduction period. However,
as argued above, the lowest value of Top is obtained for
Bi = Bmin and Ji = Jmin, i = 1, . . . , n, for all n.

4.2 Robust Employment

The vertice analysis described above, gives a lower bound
on the overproduction time. We now arrange a robust
control strategy, capable of obtaining this lower bound,
without knowing the parameters of the individual tur-
bines. That is we only know B and J as given by (9).
Further, we assume to know the available power for the
farm, albeit not necessarily for the individual turbines. The
demand is expressed similar to earlier, by (2).

Our approach can be expressed by the following list, which
we elaborate below,

1. Assume that all turbine parameters are equal, and
Bi = Bmin and Ji = Jmin, ∀ i.

2. Estimate available power for all turbines.
3. Find optimal control input to the estimated farm

model.
4. Apply control signal, obtain measurements.
5. Reestimate parameters for all turbine models.
6. Continue from 2.

The first step in the list above is to assume that all
turbines in the farm, are located in the same corner of
the uncertainty set. This gives us a point of origin, which
we can update during runtime.

The available power is estimated as

pestavl,i = τg,iωi, (10)

where τ g,i can be calculated as

τg,i = τw − Best
i ωi, (11)

Best
i being the estimated friction coefficient, and ωi is the

desired stationary rotational velocity of the rotor. Best
i is

initially estimated as Bmin, as given by Step 1. Afterwards,
it is estimated based on measurements as described below.

Given our current estimate of the model parameters Best
i

and Jest
i , we want to find the optimal control input for

our turbines to follow their references closest possible. The
references are arranged using the dispatch strategy (5),
using the estimated available powers.

We solve the optimization in a discretized fashion, em-
ploying a model predictive strategy (Maciejowski (2000)),
for a horizon of H steps. At discrete time k, we solve the
problem

minimize
τg,i,τb,i

H−1
�

j=0

n
�

i=1

�

λ(pref,i(k + j) − pi(k + j))2

+τg,i(k + j)2 + τb,i(k + j)2
�

subject to ωi(k + 1) = φest
i (k)ωi(k)+

ψest
i

(k)(-τg,i(k) − τb,i(k) + τw)
pi(k) = ωiτg,i(k) + τg,iωi(k) − ωiτg,i
ωi(k) > ωmin

τg,i(k) > 0,

(12)

for i = 1, . . . , n and j = 0, . . . , H − 1, where λ ∈ R+

is a trade-off parameter, and φest
i (k) and ψest

i (k) are the
discretized, current estimate of the coefficients in the
dynamic equations:

φest
i = 1 −

Best
i

Jest
i

Ts, ψest
i =

1

Jest
i

Ts.

Here we have used zero-order-hold for discretization, with
a sample time of Ts.

The cost function employed above minimizes both the
deviation from the reference, and the use of the two
actuators.

We use a receding horizon strategy, and only apply the
first sample of τb,i(k) and τg,i(k). From this we obtain a
measurement of ωi(k + 1). We can use this to reestimate
the model parameters via the least squares problem

minimize
x

�F (k)x(k) − g(k)�2

subject to φest
i (k) ∈ Φ

ψest
i (k) ∈ Ψ,

(13)

with variable x(k) = [ψest
i (k) φest

i (k)], and

F (k) =









ωi(k) τg,i(k) + τb,i(k) − τw
ωi(k − 1) τg,i(k − 1) + τb,i(k − 1) − τw

.

..
.
..

ωi(1) τg,i(1) + τb,i(1) − τw









,

g(k) =









ωi(k + 1)
ωi(k)

...
ωi(2)









.

Above, Ψ and Φ represents the uncertainty bounds on the
discretized system matrices,

Φ =

��

1 −
Bmax

Jmin
Ts

�

;

�

1 −
Bmin

Jmax
Ts

��

, Ψ =

�

Ts

Jmax
;

Ts

Jmin

�



After updating the model, we can again solve (12), ap-
ply first control sample, obtain measurement, reestimate
model etc.

It should be noted, that during runtime, we alter the opti-
mization horizon H . In normal operation where pref,i(k) =
pavl,i(k), we use a quite large value for H . However, in an
overproduction situation, where pref,i(k) > pavl,i(k), we
set H = 1, i.e., we effectively remove the prediction, in
our optimization. If we had continued with a long horizon,
our optimization algorithm would have completely omitted
to track the increased demand, in order to avoid the
underproduction period illustrated in Fig. 1. Our interest
is instead to track the overproduction for as long a period
as possible.

The following section presents a numerical example on
both obtaining the lower bound, as well as arranging the
robust employment.

5. NUMERICAL EXAMPLE

Consider a farm of n = 10 turbines, whose parameter
values are distributed uniformly between a lower and
upper value. We do not know their specific parameter
values, however we do know their ranges:

Bi ∈ [1; 4], Ji ∈ [80; 120], i = 1, . . . , n.

We initially want to find a lower bound on the overproduc-
tion period, and afterwards use our adaptive optimization
scheme to obtain it.

5.1 Overproduction Bound

As explained in Section 4.1, the worst case over production
period, for a demand in the form (2) is obtained by
assuming

Bi = Bmin, Ji = Jmin, i = 1, . . . , n.

Employing (7), we can depict the lower bound on the
overproduction for our farm, as a function of γ. This is
presented in Fig. 5
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Fig. 5. The lower bound, overproduction period as a function of

overproduction.

5.2 Adaptive Optimization

We implement our adaptive optimization for a case where
we know the available power of the farm, albeit not of the
individual turbines. Denote this available power for the
farm, Pavl. The power demand for the farm is given by

pdem(k) =











Pavl, k < kc

Pavl +
1

2n
Pavl, kc ≤ k < kc + Top

Pavl, k ≥ kc + Top

meaning that γ = 1/(2n) = 0.05. From Fig. 5, this gives a
lower bound of Top = 11 s on the overproduction period,

which we should be able to obtain. We therefore apply
a power demand, with an 11 s overproduction period,
and expect that this can be obeyed. We initiate the
overproduction at time kc = 50. After the overproduction
period, we want all turbines to recover to their initial
conditions, entailing a period of under production.

Following the procedure in Section 4.2, we obtain the
results presented in Fig. 6 through Fig. 10. In this example
we have used ω = 4π rad/s, τw = 201 Nm and ωmin =
0.7ω rad/s, similar to the example in Section 4.1.

As each turbine model only contains two parameters, the
model estimation process in Section 4.2 could in principle
obtain a perfect model estimation after only two samples.
To make the situation more realistic, we add noise to all
measurements of the rotational velocity, such that at time
k, we obtain

ωi(k + 1) = φest
i

ωi(k) + ψest
i

�

-τg,i(k) − τb,i(k) + τw
�

+ νi(k),

where νi(k) is zero-mean, normally distributed, random
noise, with std. dev. σ. In the following we have chosen σ
to be 1 % of the allowed range for ω(k).

In Fig. 6, the production from each turbine, as well
as their references are shown, where the references are
calculated by the dispatch strategy (5). Similarly, the
demand tracking for the entire farm, is presented in Fig. 7
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Fig. 6. The reference to each turbine (Dashed), and the actual

production (Solid).
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We see that the demand tracking is quite accurate in the
overproduction period, despite the addition of noise. This
suggests that the noise does not effect the model estima-
tion, but rather effects the expected outcome throughout
the horizon. Remember that in the overproduction period,
we reduce the optimization horizon to H = 1, and by this,
it appears that a small horizon limits the effect of the noise.

The rotational velocity is plotted in Fig. 8. As it appears,
after the 11 s overproduction period, only 1 turbine is close
to the lower limit ωmin = 8.78 rad/s. All the remaining
turbines could in principle have continued to overproduce,



which illustrates that the result from Section 5.1 is indeed
only a lower bound.
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Fig. 8. The obtained rotational velocity of the turbines in the farm

(Solid) and lower limit (Dashed). Only one turbine has depleted

its energy storage after the overproduction period.

The applied torques are presented in Fig. 9. We see that
there is an initial process of finding a steady operating
point, which is on account of estimating the correct model.
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Fig. 9. The torque applied to each turbine in the farm.

In Fig. 10, we have plotted both the on-line, linear estima-
tion of the produced power, as well as the true nonlinear
production. We see that on account of continuously up-
dating the operating point, the two are practically indis-
tinguishable.
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Fig. 10. Comparison between the linear approximation of the tur-

bine power (Solid), and the actual produced power (Dashed).

6. CONCLUSION AND FURTHER WORK

In this work, we have presented an optimization-based
strategy for employing the energy stored in the rotor
of a wind turbine, for grid stabilization, as a period of
overproduction. We have illustrated how the time an over-
production can be achieved, can be related to the size of a
wind farm, and further how the maximum overproduction
period can be found by solving a sequence of convex
feasibility problems. Further we have demonstrated how
a robust utilization of the stored energy can be arranged,
when subjected to parametric uncertainties.

Throughout the design of the robust employment on the
stored energy in the turbine rotors, we have employed

the dispatching strategy presented in (5). Even though
numerical results suggests it, we have at no point argued
the optimality of this strategy, entailing that we have
not argued that the lower bound we find for Top, is the
best lower bound. Instead we have illustrated how one
might come about parametric uncertainties, in a way that
ensures a worst case performance. Further work should be
dedicated to either certifying optimality of the approach
employed here, or arguing the optimality of a different
strategy.

In the examples we have presented in this work, there is
a drop in power production, immediately following the
overproduction. This drop is quite significant compared
to the original production level, and could cause further
stability problems for the grid. The idea is here that
if the overproduction period could be maintained for a
sufficiently large period of time, there would be room
for ramping up one or more thermal plants to cover the
underproduction period. The benefit would be that wind
turbines could be the primary reserve for handling grid
instability, and thermal plants would then only be used
secondarily, for covering the underproduction period. This
would be an improvement to the current situation, where
all reserves are maintained by thermal plants. This does
however require some knowledge related to a guaranteed
period of overproduction, which substantiates the rele-
vance of this work.

This work have assumed constant and equal wind fields
for all turbines, which will not be the case in practical
situations. We have made this assumptions in order to
better illustrate our approach and results. A remedy for
this approach would be to include more accurate estimates
of the wind fields in Equations (3), (4), and (12). We shall
leave this for future work.
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