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Abstract: In this paper some newly published methods for fault detection and isolation
developed for a wind turbine benchmark model are tested, compared and evaluated. These
methods have been presented as a part of an international competition. The tested methods
cover different types of fault detection and isolation methods, which include support vector
machines, observer based methods, and auto generated methods. All of these methods show
interesting potentials for usage in the wind turbine application, but all with different strong and
weak sides in relation to the requirements specified in the proposed benchmark model.
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1. INTRODUCTION

Today wind turbines contribute to a larger and larger part
of the world’s power production. At the same time the size
of the standard turbine increases as well. Turbines in the
megawatt size are expensive, and hence their reliability is
expected to be high to generate as much energy as possible.
The wind turbines are expected to produce with very short
downtime. A way to contribute to ensure this consists
in introducing advanced fault detection, isolation and
accommodation systems on the wind turbines. In the state-
of-the-art industrial wind turbines fault detection schemes
are simple and are often conservative, which the fault
accommodation mechanism is as well. Turbines are turned
off even at simple faults to wait for service. (In addition
to the FDI systems condition monitoring is used at the
rotating parts.) Consequently, there is a need for usage
of advanced fault detection, isolation and accommodation
schemes in order to improve the on-time of the turbine,
even though that might result in production with limited
power for some faults. Some work has been performed
on fault detection, isolation and accommodation on wind
turbines; however these works only cover parts of the
wind turbine, and they do not include comparisons of the
performance of various schemes for detection of faults in
various parts of the wind turbine.

In Wei et al. [2008] a Kalman filter based diagnosis system
to detect faults in the blade root bending moment sensors
was presented. An unknown input observer was designed
for the detection of sensor faults around the wind turbine
drive train in Odgaard et al. [2009a]. In Sloth et al.
[2010] active and passive fault tolerant control schemes
are applied to a wind turbine model. More focus have
been drawn on the electrical conversion system in the
wind turbines. Some relevant examples can be found in
Rothenhagen and Fuchs [2007] and Rothenhagen et al.
[2007]. In the former, an observer based solution for
current sensor fault detection is presented; the latter

presents an observer based solution for voltage sensor fault
detection. In Poure et al. [2007] a fault detection and
reconfiguration solution handling faults in a doubly fed
wind turbine converter is presented.

Comparing various detection and accommodation schemes
on the wind turbine application is beneficial in the process
of finding the best schemes to handle the various faults.
In Odgaard et al. [2009b] a benchmark model for fault
detection and isolation and fault tolerant control of wind
turbines are presented. This benchmark model can be used
as a platform for such a comparison for fault detection and
isolation and fault tolerant control of wind turbines. This
benchmark model describes a realistic generic three blade
horizontal variable speed wind turbine with a full scale
converter coupling. This generic turbine has a rated power
at 4.8 MW. Since this model works on a system level, the
fast control loops of the converters are not considered.

At IFAC World Congress 2011 two invited sessions were
formed with different solutions proposed for the FDI part
of the mentioned benchmark model. In this paper some
of these proposed methods are compared both on test
sequences defined in the benchmark, and in addition on
a number additional test sets for testing robust of the
proposed schemes to operational point of occurrence of the
faults. The compared solutions can be seen in Chen et al.
[2011], Laouti et al. [2011], Ozdemir et al. [2011], Svard
and Nyberg [2011] and Zhang et al. [2011]. A number of
other solutions have also been applied to this benchmark
model, among these are: Ayalew and Pisu [2011], Blesa
et al. [2011], Dong and Verhaegen [2011], Kiasi et al. [2011],
Simani et al. [2011a], Simani et al. [2011b] and Stoican
et al. [2011].

The paper is organized as follows. In Sec. 2 the wind
turbine system and model is introduced. The used test
signals are described in Sec. 3. In Sec. 4 the tested schemes



are described. The schemes are evaluated in Sec 5, and the
conclusion is drawn in Sec. 6.

2. SYSTEM DESCRIPTION

In this paper a generic wind turbine of 4.8 MW, which is
described in Odgaard et al. [2009b] is used. It is a three
bladed variable speed horizontal wind turbine.

2.1 Wind Turbine Model

The used wind turbine model are from, Odgaard et al.
[2009b], and is not described in details in this paper, the
details can be found in the mentioned paper. An overview
of the model can be seen in Fig. 1.

The objective of the control system in the wind turbine
is to follow the power reference; in case the wind speed is
too low for the wind turbine to reach the power reference,
the wind turbine controller will try to optimize the power
production. This power control should keep the mechani-
cal vibrations at an acceptable level. A system overview
can be seen in Fig. 1. This figure shows the relations
between: Blade & Pitch System, Drive Train, Generator
& Converter, and Controller. The variables between these
subsystems are defined as: vw is the wind speed acting on
the turbine blades, τw, is the torque from the wind acting
on the turbine blades, τr, is the rotor torque, ωr is the ro-
tational speed of the rotor, τg, is the generator torque, ωg,
is the rotational speed of the generator, βr, is the reference
to the pitch position, βm, is the measured pitch position,
τw,m, is an estimated wind torque based on a wind speed
measurement, ωr,m, is the measured rotational speed of
the rotor, ωg,m, is the measured rotational speed of the
generator, τg,m is the measured generator torque, τg,r, is
the torque reference to the generator, Pr, is the power
reference to the wind turbine, and Pg is power produced by
the generator. The wind turbine controller provides three
pitch references, and all three pitch positions are measured
as well with two sensors to ensure physical redundancy of
the pitch position measurements. The generator and rotor
speeds are also measured with two sensors each for the
same reason. These variables are defined as: βr1, βr2, βr3

for the pitch reference to Blade 1, 2 and 3. β1,m1, β1,m2, are
the two pitch measurements for Blade 1, β2,m1, β2,m2, are
the two pitch measurements for Blade 2, and β3,m1, β3,m2

are the two pitch measurement for Blade 3. The two rotor
speed measurements are defined as ωr,m1, ωr,m2; the two
generator speed measurements are defined as ωg,m1, ωg,m2.

More details on the model can be found in Odgaard et al.
[2009b].

3. TEST SIGNALS DEFINITION

In the test signal definition described in Odgaard et al.
[2009b] the defined faults are present at a predefined time.
In this paper 6 additional test signals sets are defined by
time shifting the occurrence of the defined faults, which
test the robustness of the fault detection and isolation
algorithms towards different operational points of the
faults. In this test bench model setup a predefined wind
speed sequence is used. This wind sequence consists of real
measured wind data from a wind park and can be seen in
Fig. 2.
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Controller

vw
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βr βm, vw,m ωr,m τg,m,ωg,m,Pg τg,r
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Fig. 1. This figure shows an overview of the benchmark
model. It consists of four parts: Blade and Pitch
Systems, Drive Train, Generator & Converter and
Controller. The variables in the figure are defined as:
vw denotes the wind speed, τr is the rotor torque, ωr is
the rotational velocity of the rotor, τg is the generator
torque, ωg denotes the rotational velocity of the
generator, βr is the pitch angle reference, βm denotes
pitch position measurement, vw,m is the measured
wind speed, ωr,m denotes the measured rotational
velocity of the rotor, τg,m denotes the measured
generator torque, ωg,m is the measured rotational
velocity of the generator, Pg is the generated power,
τg,r is the generator torque reference and Pr denotes
the power reference to the wind turbine.
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Fig. 2. Illustration of the wind speed sequence used in the
benchmark model. It can be seen that the wind speed
covers the range from 5 m/s to 20 m/s, with a few
spikes at 25 m/s, which is good coverage of normal
operational of a wind turbine.

In the listing of the possible faults, a subset is chosen for
the benchmark test sequence.

The test includes 5 sensors faults, 3 actuator faults and 1
system fault. In the initial test set (Test Set 1) faults are
presented in the same order as in Table 1. The time shift
for the different test sets can be seen below.

• Test Set 2: +100s for all faults
• Test Set 3: -100s for all faults
• Test Set 4: -200s for all faults
• Test Set 5: -300s for all faults
• Test Set 6: -400s for all faults
• Test Set 7: -500s for all faults



Table 1. Faults considered in the benchmark
model.

Fault
No

Fault Symbols Type

1a) Sensor
Faults

∆β1,m1, ∆β1,m2, ∆β2,m1,
∆β2,m2, ∆β3,m1, ∆β3,m2

Fixed
Values

1b) Sensor
Faults

∆β1,m1, ∆β1,m2, ∆β2,m1,
∆β2,m2, ∆β3,m1, ∆β3,m2

Gain
Factor

2a) Sensor
Faults

∆ωr,m1, ∆ωr,m2 Fixed
Value

2b) Sensor
Faults

∆ωr,m1, ∆ωr,m2 Gain
Factor

3a) Sensor
Faults

∆ωg,m1, ∆ωg,m2 Fixed
Value

3b) Sensor
Faults

∆ωg,m1, ∆ωg,m2 Gain
Factor

4a) Actuator
Fault

∆τg Changed
Dy-
namics

4b) Actuator
Fault

∆τg Offset

5a) Actuator
Fault

∆β1, ∆β2, ∆β3 (Hydraulics) Changed
Dy-
namics

5b) Actuator
Fault

∆β1, ∆β2, ∆β3 (Air in oil) Changed
Dy-
namics

6) System
Fault

∆ωr, ∆ωg Changed
Dy-
namics

It should be noticed that the proposed schemes are not
designed on the basis of Test Series 2 to 7.

In the following Test Set 1 is defined and the different
measurement signals are plotted as well.

• Fault 1: fault type 1a) a fixed value on β1,m1 equal to
5◦ in the time period from 2000 s to 2100 s.

• Fault 2: fault type 1b) a gain factor on β2,m2 equal
to 1.2 in the time period from 2300 s to 2400 s.

• Fault 3: fault type 1a) a fixed value on β3,m1 equal to
10◦ in the time period from 2600 s to 2700 s.

• Fault 4: fault type 2a) a fixed value on ωr,m1 equal to
1.4 rad/s in the time period from 1500 s to 1600 s.

• Fault 5: fault type 2b) and 3b) gain factors on ωr,m2

and ωg,m1 respectively equal to 1.1 and 0.9 in the time
period from 1000 s to 1100 s.

• Fault 6: fault type 5a) change in the dynamics due to
hydraulic pressure drop of the pitch actuator 2, the
fault is assumed to be abrupt and it is present in the
time period from 2900 s to 3000 s.

• Fault 7: fault type 5b) change in the dynamics due
to increased air content in the oil on pitch actuator
3. The fault is slowly introduced during 30 s with a
constant rate; afterwards the fault is active during 40
s, and again decreasing during 30 s. The fault begins
at 3500 s and ends at 3600 s.

• Fault 8: fault type 4b) an offset on τg of the value 100
Nm, the fault is active from 3800 s to 3900 s.

• Fault 9: fault type 6) and change in the friction in the
drive train active from 4100 s to 4300 s.

These faults must be detected and handled according to
the requirements given in Odgaard et al. [2009b]. In order
to validate the false positive rate of the detection scheme,
a set of data simulated on an advanced model of the wind

turbine is provided for a fault free run on the same wind
speed sequence.

The benchmark model package contains a wind speed
sequence, a Simulink model with a parameter file. The
package can be obtained at Odgaard [2010].

4. DESCRIPTION OF FDI SOLUTIONS

In this section, five solutions to the Wind Turbine Bench-
mark model is shortly introduced.

4.1 Gaussian Kernel Support Vector Machine solution
(GKSV)

This solution is using a Support Vector Machine based on
a Gaussian kernel is presented in Laouti et al. [2011], in
which more details of the scheme can be found. In this
design a vector x of features is defined for each fault
which contains relevant signals obtained directly from
measurements, filtered measurements or combinations of
these. The number of features used is in the interval from
2 to 4 depending of the fault type.

These vectors are subsequently projected onto the kernel of
the Support Vector Machine, which results in a residual for
all the defined faults. Different kernels have been tested for
the different faults but it was found that Gaussian kernel
with different variance values can be used for all faults.

Data with and without faults were used for learning the
model for FDI of the specific faults, based on this the
vectors, kernel (structure and parameters) were found.

4.2 Estimation Based solution (EB)

The general outline of this scheme is that a fault detection
estimator is designed to determine the presence of a fault,
and an additional bank of N isolation estimators are
designed to isolate the faults, where N is the number of
faults considered. As described in Zhang et al. [2011],
it is a preliminary and simplified implementation of the
general method given in Zhang et al. [2008] and Zhang
et al. [2002]. Specifically, the method in Zhang et al. [2011]
is designed based on a linear system model and without
the use of an adaptive threshold. The estimators used
for fault detection and isolation are designed based on
the provided models including model parameters. Each
isolation estimators is designed based on a particular fault
scenario under consideration.

4.3 Up-Down Counter solution (UDC)

In this solution up-down counters are used for decision of
fault detection and isolation based on residuals for each of
the faults. These residuals are obtained using both physical
and analytical redundancy. The details of the solutions can
be found in Ozdemir et al. [2011].

The fault detection and isolation residuals are based on
residuals obtained by physical redundancy, parity equa-
tions, Kalman filters and low pass filters.

The used up-down counters differ from straightforward
thresh holding in two ways. First, the decision to declare



a fault involves discrete-time dynamics and is not simply
a function of the current value of the residual. Second, up-
count and down-count parameters introduce a penalty on
the residual exceeding threshold.

4.4 Combined Observer and Kalman Filter solution (COK)

Details on this solution can be found in Chen et al. [2011].
This solution uses a diagnostic observer based residual
generator for residual generation for the faults in the
Drive Train, in which the wind speed also is considered
as a disturbance. This diagnostic observer is designed to
decouple the disturbance and simultaneously achieve the
optimal residual generation in the statistical sense. For
the other two subsystems, a Kalman filter based approach
has been applied. The second part of the FD system is
the residual evaluation. Based on the statistical properties
of the residual signals, generalized likelihood ratio test
and cumulative variance index are applied. For the fault
isolation purpose, a bank of residual generators based on
dual sensor redundancy is designed. Based on this, the
sensor faults and system faults are isolated by a decision
table. Since in the pitch subsystem, the sensor faults
will directly influence the system through the feedback,
which violates the fault isolation method, a compensation
strategy of this influence in the FDI system is proposed.

4.5 General Fault Model solution (GFM)

This is an automatic generated solution for FDI; the
details can be seen in Svard and Nyberg [2011]. The
design method is composed of three main steps. In the
first step, a large set of potential residual generators are
generated. In the second step, the residual generators
most suitable to be included in the final FDI-system are
selected and then constructed by use of the algorithms
presented in Svard and Nyberg [2010]. The selection is
done by means of a greedy selection algorithm. In the
third and final step, diagnostic tests for the selected set of
residual generators are designed. The diagnostic tests are
based on a comparison between the estimated probability
distributions of residuals, evaluated with current and no-
fault data.

5. EVALUATION OF SOLUTIONS

In this section the five solutions presented in Sec. 4 are
compared on simulations with all 7 Test Series. The mean,
minimum and maximum values of Td, FD and MD for
the different methods are computed for all faults are
computed. This means that these variables are computed
for a given fault taking all simulations in all Test Series
into account.

The following notation is used. T d denotes the mean value
of the detection time, Td,min denotes the minimum value
of the detection time, Td,max denotes the maximum value

of the detection time, FD denotes the mean value of the
number of false positive detections, FD,min denotes the
minimum value of the number of false positive detections,
FD,max denotes the maximum value of the number of false

positive detections,T d denotes the mean percent of missed
detection in a Test Series, Td,min denotes the minimum

percent of missed detections in a Test Series, Mdmax

denotes the maximum percent of missed detections in a
Test Series. The results of the evaluation are shown in
Table 2 for Fault #1-4 and in Table 3 for Fault #5-8, and
if a given fault is detected in all simulations the missed
detection values are not included in the able. None of
the proposed schemes were designed for the detection and
isolation of Fault # 9, so these are not included in the
Table.

Some general points can be seen from these tests. All
schemes only detect Fault # 8 in Test Series 1, (which
they are designed for). The reason for this is the ratio
between the offset and the torque reference is relatively
large at the time of the fault, compared with the other time
locations of the fault. All of the schemes have problems
detecting and isolating Fault # 2 for the higher Test Series
numbers. This fault is a gain factor on one of the pitch
sensors and the mentioned Test Series include a low level of
pitch values since the wind speed is low. Actually an active
fault tolerant scheme would be better for these faults as
proposed in Sloth et al. [2010].

Some more method specific observations are made based
on the evaluations in the following.

GKSV only detects and isolates the sensor faults Fault 1-
5. Faults # 1,3 and 4 are detected within the requirements
in all Test Series without any false positive detections.
For those faults this scheme is independent on the time
location of the faults and thereby the point of operation
at which the faults occurs. This scheme seems to robust
towards change operational points of the wind turbine, and
also only shown to work on sensor faults.

EB in general detects and isolates the faults fast for the
original Test Series and slower as the fault time locations
moves away from the Test Series 1. It also results in a high
number of false positive detections for some faults.

UDC detects and isolates almost all faults in all Test
Series and for most of the faults relatively fast, but with
some false positive detections. This scheme is thereby
relatively robust towards the operational point at which
the faults occur.

COK detects and isolates most of the faults in all Test
Series, however, slowly and for most of the faults slower
than required, also a few false positive detections are
present for most faults.

GFM detects and isolates all faults, (except Fault #
8), in all Test Series slowly and with some false positive
detections. In general this scheme performs relatively
better than the others as the faults are shifted longer and
longer away from their time locations in Test Series 1. This
scheme thereby seems to be robust towards to the point
of operation at which the faults occurs.

6. CONCLUSION

This paper present some results of tests of scheme designed
for and applied to the Wind Turbine FDI benchmark
model, in addition to the original test sequences from
the benchmark model, seven additional Test Series with
different time locations of the faults, which corresponds to
different operating points at which the faults occurs are



included to test robustness of the proposed and tested
schemes. Five different FDI schemes designed for the
benchmark model are evaluated on all these seven Test
Series.
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Table 2. Results of the evaluation Fault 1-4

Fault
#

GKSV EB UDC COK GFM

1 T d =
0.02[s],
Td,min =
0.02[s],
Td,max =
0.02[s],
FD = 0,
FD,min =
0,
FD,max =
0

T d =
0.02[s],
Td,min =
0.01[s],
Td,max =
0.02[s],
FD = 0,
FD,min =
0,
FD,max =
0,
MDD =
3%,
MDmin =
0%,
Mdmax =
20%

T d =
0.03[s],
Td,min =
0.02[s],
Td,max =
0.03[s],
FD = 0,
FD,min =
0,
FD,max =
0

T d =
10.32[s],
Td,min =
10.23[s],
Td,max =
10.33[s],
FD =
0.89,
FD,min =
0,
FD,max =
1

T d =
0.04[s],
Td,min =
0.03[s],
Td,max =
0.04[s],
FD = 0,
FD,min =
0,
FD,max =
0

2 T d =
47.24[s],
Td,min =
3.23[s],
Td,max =
95.09[s],
FD = 0,
FD,min =
0,
FD,max =
0,
MDD =
56%,
MDmin =
0%,
Mdmax =
100%

T d =
44.65[s],
Td,min =
0.63[s],
Td,max =
95.82[s],
FD =
22,
FD,min =
16,
FD,max =
28,
MDD =
56%,
MDmin =
0%,
Mdmax =
100%

T d =
69.12[s],
Td,min =
7.60[s],
Td,max =
95.72[s],
FD = 0,
FD,min =
0,
FD,max =
0,
MDD =
67%,
MDmin =
0%,
Mdmax =
100%

T d =
19.24[s],
Td,min =
3.43[s],
Td,max =
49.93[s],
FD =
0.97,
FD,min =
0,
FD,max =
5

T d =
13.70[s],
Td,min =
0.38[s],
Td,max =
25.32[s],
FD =
3.08,
FD,min =
1,
FD,max =
18

3 T d =
0.02[s],
Td,min =
0.02[s],
Td,max =
0.02[s],
FD = 0,
FD,min =
0,
FD,max =
0

T d =
0.54[s],
Td,min =
0.51[s],
Td,max =
0.76[s],
FD = 4,
FD,min =
1,
FD,max =
11,
MDD =
3%,
MDmin =
0%,
Mdmax =
20%

T d =
0.04[s],
Td,min =
0.03[s],
Td,max =
0.10[s],
FD = 0,
FD,min =
0,
FD,max =
0,
MDD =
3%,
MDmin =
0%,
Mdmax =
20%

T d =
10.35[s],
Td,min =
1.54[s],
Td,max =
10.61[s],
FD =
1.42,
FD,min =
1,
FD,max =
4

T d =
0.05[s],
Td,min =
0.03[s],
Td,max =
0.06[s],
FD =
1.61,
FD,min =
1,
FD,max =
5

4 T d =
0.11[s],
Td,min =
0.09[s],
Td,max =
0.18[s],
FD = 0,
FD,min =
0,
FD,max =
0

T d =
0.33[s],
Td,min =
0.27[s],
Td,max =
0.44[s],
FD = 0,
FD,min =
0,
FD,max =
0

T d =
0.02[s],
Td,min =
0.02[s],
Td,max =
0.02[s],
FD = 1,
FD,min =
1,
FD,max =
8

T d =
17.67[s],
Td,min =
0.03[s],
Td,max =
0.46[s],
FD =
2.31,
FD,min =
0,
FD,max =
5

T d =
0.10[s],
Td,min =
0.03[s],
Td,max =
0.34[s],
FD =
3.36,
FD,min =
1,
FD,max =
18

Table 3. Results of the evaluation Fault 5-8

Fault
#

GKSV EB UDC COK GFM

5 T d =
25.90[s],
Td,min =
1.24[s],
Td,max =
87.49[s],
FD = 0,
FD,min =
0,
FD,max =
0,
MDD =
3%,
MDmin =
0%,
Mdmax =
20%

T d =
0.01[s],
Td,min =
0.01[s],
Td,max =
0.01[s],
FD =
117,
FD,min =
95,
FD,max =
142

T d =
2.96[s],
Td,min =
0.38[s],
Td,max =
21.08[s],
FD =
0.75,
FD,min =
0,
FD,max =
3

T d =
31.32[s],
Td,min =
1.54[s],
Td,max =
91.13[s],
FD =
0.26,
FD,min =
0,
FD,max =
2,
MDD =
14%,
MDmin =
0%,
Mdmax =
40%

T d =
9.49[s],
Td,min =
0.56[s],
Td,max =
17.18[s],
FD =
2.42,
FD,min =
1,
FD,max =
18

6 MDD =
100%,
MDmin =
100%,
Mdmax =
100%

T d =
11.31[s],
Td,min =
0.06[s],
Td,max =
55.27[s],
FD = 2,
FD,min =
0,
FD,max =
20

T d =
11.81[s],
Td,min =
0.53[s],
Td,max =
55.72[s],
FD =
22,
FD,min =
15,
FD,max =
25

T d =
23.80[s],
Td,min =
0.33[s],
Td,max =
64.95[s],
FD =
0.03,
FD,min =
0,
FD,max =
3

T d =
15.52[s],
Td,min =
0.02[s],
Td,max =
61.13[s],
FD =
3.67,
FD,min =
1,
FD,max =
37

7 MDD =
100%,
MDmin =
100%,
Mdmax =
100%

T d =
26.07[s],
Td,min =
3.33[s],
Td,max =
52.66[s],
FD =
.36,
FD,min =
1,
FD,max =
5

T d =
12.93[s],
Td,min =
2.86[s],
Td,max =
51.08[s],
FD = 2,
FD,min =
1,
FD,max =
4

T d =
34.00[s],
Td,min =
17.22[s],
Td,max =
52.93[s],
FD = 0,
FD,min =
0,
FD,max =
0

T d =
31.70[s],
Td,min =
0.61[s],
Td,max =
180.70[s],
FD =
1.25,
FD,min =
1,
FD,max =
5

8 T d =
0.01[s],
Td,min =
0.01[s],
Td,max =
0.01[s],
FD = 0,
FD,min =
0,
FD,max =
0,
MDD =
97%,
MDmin =
0%,
Mdmax =
100%

T d =
0.01[s],
Td,min =
0.01[s],
Td,max =
0.01[s],
FD = 0,
FD,min =
0,
FD,max =
0,
MDD =
97%,
MDmin =
0%,
Mdmax =
100%

T d =
0.02[s],
Td,min =
0.02[s],
Td,max =
0.02[s],
FD = 0,
FD,min =
0,
FD,max =
0,
MDD =
97%,
MDmin =
0%,
Mdmax =
100%

T d =
0.00[s],
Td,min =
0.00[s],
Td,max =
0.00[s],
FD = 0,
FD,min =
0,
FD,max =
0,
MDD =
97%,
MDmin =
0%,
Mdmax =
100%

T d =
7.92[s],
Td,min =
7.92[s],
Td,max =
7.92[s],
FD = 0,
FD,min =
0,
FD,max =
0,
MDD =
97%,
MDmin =
0%,
Mdmax =
100%


