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Congestion Management in a Smart Grid

via Shadow Prices ⋆

Benjamin Biegel, Palle Andersen, Jakob Stoustrup, Jan Bendtsen ∗

∗ Department of Electronic Systems, Automation and Control, Aalborg
University, Denmark, (e-mail: {bbi, pa, jakob, dimon}@es.aau.dk).

Abstract: We consider a distribution grid interconnecting a number of consumers with flexible
power consumption. Each consumer is under the jurisdiction of exactly one balancing responsible
party (BRP), who buys energy at a day-ahead electricity market on behalf of the consumer.
We illustrate how BRPs can utilize the flexibility of the consumers to minimize the imbalance
between the consumed and the purchased energy thereby avoiding trading balancing energy at
unfavorable prices. Further we show how shadow prices on the distribution lines can be used to
resolve grid congestion without information sharing between the BRPs.

Keywords: Predictive control, Smart power applications, Dual composition control.

1. INTRODUCTION

Due to the increasing focus on renewable energy and the
rising fossil fuel prices, the penetration of renewable energy
is likely to increase in the foreseeable future throughout
the developed world (Department of Energy (2008)). In
Denmark, the wind penetration has increased from close
to zero in the 1980s to around 20 % in 2009 (Danish
Energy Agency (2009)), while the Danish Government
Platform states that the wind penetration should be 50 %
by 2020 (Danish Government (2011)). This increase of
renewable non-dispatchable production causes a balancing
problem between production and demand (Banakar et al.
(2008)) which is typically solved at the production side
(Venkat et al. (2006, 2008); Edlund et al. (2011))

In a smart grid, not only the production side is active;
both producers and consumers participate in the balancing
efforts. The consumer side can contribute by moving loads
in time, e.g. by allowing local devices with large time
constants to store more or less energy at convenient
times, thereby adjusting the momentary consumption,
see e.g. (Hiskens (2006), Moslehi and Kumar (2010) and
Trangbaek et al. (2010)). One obvious method to do so
is by exploiting large thermal time constants in deep
freezers, refrigerators, local heat pumps etc. (Pedersen
et al. (2011)). Consumers with this ability to move load in
time will be referred to as flexible consumers in the sequel.

The control of such flexible consumers in a grid of limited
capacity is described in (Biegel et al. (2012)). That work
treats the problem at an overall level where the energy
market is not taken into consideration: both optimization
and congestion management relies on all information being
centrally available. However, due to the deregulation of
the European power market (The European Parliament
(2003)), the congestion management should be handled
via markets and not by regulations. In this paper we there-
fore take the current electricity market as starting point:
⋆ The work is supported by the Danish government via the DSR-
SPIR program 10-095378.

energy is bought and sold at a day-ahead market while
balancing energy is traded after the hour of operation to
ensure financial balance. We show how balancing responsi-
ble parties (BRPs) can utilize flexible consumers to move
load in time, thereby minimizing imbalance between the
energy purchased at the day-ahead market and the actual
consumption. This allows the BRPs to buy energy at the
day-ahead market in the hours where the energy is cheap,
e.g. in the hours of high renewable energy generation or at
night. It also minimizes the amount of balancing energy
the BRP has to trade at unfavorable prices. We further
show how the distribution grid constraints can be honored
based on the shadow prices at distribution line capacities;
in this way grid congestion can be resolved via a market
and not by regulations.

The outline of the rest of the paper is as follows. First,
in Sec. 2 we describe the congestion management problem
under consideration. Next, in Sec. 3 we design a distributed
receding horizon controller for imbalance reduction using
shadow prices. Section 4 describes how to implement this
structure with the current players in the electrical market,
while Sec. 5 illustrates the methods with a numerical
example. Finally, Sec. 6 sums up the work.

2. MODELING

We consider a number of consumers and a number of
BRPs: each consumer has entered an agreement with
exactly one BRP who buys energy at the energy market
on behalf of the consumer. In this work we consider the
future scenario where each BRP is allowed to control
some flexible consumption of the consumers under their
jurisdiction based on a contract between the consumer and
the BRP. This flexible consumption might be a refriger-
ated warehouse allowing BRP to control the refrigerator
temperature within some band or it could be a private
household, allowing the BRP to control the exact charging
pattern of the batteries of an electric vehicle. Each BRP
will benefit from this by utilizing the flexibility to optimize



the energy purchase while the consumer will benefit from
the contract by some payment from the BRP.

The active control of the consumers is likely to cause
congestion on the distribution grid as the BRPs often
will activate the flexible consumption at the same hours
of operation, namely when favorable energy prices occur.
It is therefore necessary for the BRPs to consult the
distribution grid operator (DSO) before activating flexible
consumption, such that congestion is avoided. In the
following we show how this congestion management can
be settled through shadow prices.

In the following we consider a star topology distribution
grid (no loops) consisting of nL distribution lines of limited
capacity. A total of nB BRPs are active in the distribution
grid and BRP number i is responsible for mi consumers.
The setup is illustrated in Fig. 1 and discussed in detail in
the sequel.

In the following modeling of the system, we describe the
dynamics by discrete time equations. We use k to indicate
sample number and use a sample time of 1 hour to ease
the notation.
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Fig. 1. Interconnected consumers under the jurisdiction
of different BRPs sharing the same distribution grid
(dotted lines indicate that only a small part of the
total grid is shown). Note that the consumers are
connected in a star-like topology, i.e., there are no
loops in the grid structure.

2.1 Dynamics and Constraints

The mi consumers under BRP i are characterized by
hourly energy consumptions pi = (pi,1, . . . , pi,mi

) ∈ Rmi

consisting of a controllable part p̃i ∈ Rmi and an uncon-
trollable part pi ∈ Rmi :

pi(k) = pi(k) + p̃i(k) (1)

subject to hourly energy constraints

pmin
i � p̃i(k) � pmax

i (2)

where pmin
i , pmax

i ∈ Rmi are the lower and upper limits,
respectively and where � represents componentwise in-
equality. Note that with this notation, non-dispatchable
producers (such as wind and solar) can be included in the
model as negative consumers.

The stored energy is denoted ei = (ei,1, . . . , ei,mi
) ∈ Rmi ;

this may be energy stored as either heat, cold, energy
in a battery, or similar. It depends on the controllable
consumption

ei(k + 1) = Diei(k) + p̃i(k) (3)

where Di ∈ Rmi×mi is diagonal with diagonal elements
describing the proportional drain loss of each energy
storage. The storages are limited in size as described by

0 � ei(k) � emax
i (4)

where emax
i ∈ Rmi is the capacity limit of the storages

under BRP i.

This setup is presented in Fig. 2 for the consumers under
BRP i: the uncontrollable consumption (load) pi is inde-
pendent on the energy storage while the drainage depends
on the energy level ei.
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Fig. 2. Model of the intelligent consumers under BRP i
(see e.g. Heussen et al. (2011)).

The consumers are powered through the distribution grid,
as illustrated in Fig. 1. Each BRP will contribute to the
loading of the distribution lines. Let ti ∈ RnL

+ denote the
partial flow caused by BRP i to the nL distribution lines.
By flow conservation, i.e. no transmission losses, and by
assuming a star topology, the partial flow caused by the
consumers under BRP i is given by

ti(k) = Ripi(k) (5)

where Ri ∈ RnL×mi is given by

(Ri)mn =

{

1 if consumer n is supplied through link m,
0 otherwise.

A meshed grid topology can be modeled by reformulat-
ing (5), see Biegel et al. (2012).

The total flows f = (f1, . . . , fnL
) ∈ RnL

+ over the distribu-
tion lines are therefore given by

f(k) =

nB
∑

i=1

ti(k) (6)

where fj is the flow through line j. The distribution grid
is protected from overcurrents by electrical fuses; hence,
the distribution line flows are subject to constraints

f(k) � fmax (7)

where fmax ∈ RnL

+ denotes the limits of the fuses.

2.2 Objectives

The BRPs buy energy at a day-ahead spot market for each
hour of the following day. We denote the energy bought
by BRP i at the day-ahead spot market qspot,i ∈ R: this
means that BRP i has bought the energy qspot,i(k) for the
time interval from hour k to k + 1.



During operation, the consumers under BRP i will con-
sume the energy they need leading to a total hourly energy
consumption 1T pi(k) for the consumers under BRP i,
where 1 is a vector of all ones. If this energy consump-
tion does not match the energy bought at the day-ahead
market, the BRP must settle the economic imbalance
between the bought and consumed energy. This balancing
energy is by definition traded with the transmission system
operator (TSO): if the BRP has bought more energy than
is consumed, he has per definition sold the excess energy to
the TSO and vice versa. We denote the balancing energy
qbal,i and use the sign convention

qbal,i(k) = 1T pi(k)− qspot,i(k) (8)

meaning that the regulating energy qbal,i is positive when
BRP i buys energy from the TSO and negative when the
BRP sells energy to the TSO.

Trading balancing energy with the TSO is often disadvan-
tageous for a BRP due to the prices on balancing energy.
One strategy for the BRPs is therefore to minimize qbal
thereby avoiding trading balancing energy. This minimiza-
tion of qbal is currently done by estimating the future
energy consumption and buying accordingly at the day-
ahead spot market. Introducing flexible consumers, how-
ever, allows the BRPs to actively minimize the balancing
energy during the hour of operation by utilizing the flexible
consumers accordingly.

3. CONTROLLER SYNTHESIS

In this section, a controller is designed to utilize the flexible
consumers under each BRP such that the imbalance is
minimized. It is natural to design a receding horizon
controller, as this allows us handle the constraints of the
flexible consumers and to incorporate predictions of the
future energy consumption (Maciejowski (2002)) which are
available due to the very competitive nature of the energy
market. We assume that good predictions existK−1 hours
into the future, and use this as a basis for the controller
design in the following.

We assume that the strategy of each BRP is to minimize
the balancing energy. Based on this, we describe the
objective function of BRP i as a convex function of the
balancing energy which we denote ℓi(qbal,i(k)) : R → R+.

3.1 Compact Representation

To ease the notation when deriving the controller, we stack
the variables introduced in the previous section: upper
case variables denote the stacked version of the lower case
variables, e.g. for Pi(k) we have

Pi(k) =
(

pTi (k), . . . , pTi (k +K − 1)
)T

∈ RnBK

and similarly for Ei, P̃i, P i, Ti, F, F
max, Qbal,i and Qspot,i.

Using this notation, we can describe the dynamics of
the consumers under the jurisdiction of BRP i for time
k, . . . , k +K − 1 as follows.

Ei(k + 1) = ΩiEi(k) + P̃i(k)

Qbal,i(k) = Υi(P i(k) + P̃i(k)) −Qspot,i(k)

Ti(k) = Ψi(P i(k) + P̃i(k))

(9)

where

Ωi = diag (Di, . . . , Di) ∈ RmiK×miK

Υi = diag
(

1T , . . . ,1T
)

∈ RK×miK

Ψi = diag (Ri, . . . , Ri) ∈ RnLK×miK

where diag(X,Y, . . . ) denotes a block diagonal matrix
with diagonal blocks X,Y, . . . . We express the energy
capacity constraint and rate constraints as

Ei = {x ∈ RmiK |0 � x � Emax
i }

Pi = {x ∈ RmiK |Pmin
i � x � Pmax

i }.

Further, we describe the distribution line constraints as

F (k) =

nB
∑

i=1

Ti(k) � Fmax. (10)

We stack the variables

η(k) = (η1(k)
T , . . . , ηnB

(k)T , FT )T ∈ Rv

ηi(k) = (P̃T
i (k), ET

i (k + 1), QT
bal,i(k), T

T
i (k))T ∈ Rvi

where vi = K(2mi + nL), v = nL +
∑nB

i=1 vi such that ηi
describes the variables local to BRP i while η describes all
variables. Based on this, we represent the cost of BRP i as

Φi(ηi(k)) =

k+K−1
∑

κ=k

ℓi(qbal,i(κ))

and the total cost as

Φ(η(k)) =

nB
∑

i=1

Φi(ηi(k)).

3.2 Centralized Controller

Using the compact representation presented above, we can
design a receding horizon controller. At time k we look
K − 1 steps ahead and solve the optimization problem

minimize Φ(η(k))

subject to Ei(k) ∈ Ei, P̃i(k) ∈ Pi

F (k) � Fmax
(11)

for i = 1, . . . , nB where the optimization variables are η(k).

The solution P̃ ⋆
i (k) is the planned action for the following

K steps. In a receding horizon manner, we apply the first of
the planned actions p̃⋆i (k) and then redo the optimization
at next time step.

Problem (11) is a convex optimization problem and thus
readily solvable (Boyd and Vandenberghe (2004)). But this
centralized controller has a huge disadvantage: all data
must be centralized to solve the problem. In practice this
means that each BRP would have to provide their cost
functions, the states of all their flexible consumers, their
consumption predictions, etc., to the central unit solving
the problem. Due to the competitive nature of the energy
market such information sharing is highly unlikely and we
therefore decompose the optimization.

3.3 Distributed Controller

In the following we show how we can distribute the con-
troller problem (11) to avoid sharing of local information
among the BRPs. The centralized problem is coupled by
the distribution line capacity constraints F (k) � Fmax. As
these are affine constraints, the problem is separable by
dual decomposition (see, e.g., Boyd et al. (2008), Samar
et al. (2008)). By introducing Lagrange multipliers for



the coupling inequality constraints we obtain the partial
Lagrangian of problem (11)

L(η(k),Λ(k)) = Φ(η(k)) + ΛT (k)(F (k) − Fmax)

where Λ(k) ∈ RnLK
+ is the Lagrange multiplier, or shadow

price, associated with the inequality F (k) � Fmax (see,
e.g., Boyd and Vandenberghe (2004), Kelly et al. (1998)).
The dual function is given by

g (Λ(k)) = inf
η(k)

(

Φ(η(k)) + ΛT (k)(F (k)− Fmax)
)

.

A subgradient of the negative dual is given by

S(k) ∈ ∂(−g)(Λ(k))

where ∂(−g)(Λ(k)) is the subdifferential of −g at Λ(k) and

where S(k) = F (k) − Fmax ∈ RnLK with F (k) being the
solution to the optimization problem

minimize Φ(η(k)) + ΛT (k)F (k)

subject to Ei(k) ∈ Ei, P̃i(k) ∈ Pi
(12)

for i = 1, . . . nB (Boyd et al. (2008)) where the optimiza-
tion variables are η(k). This optimization is completely
separable between the nB BRPs, and can therefore be
solved distributedly. For BRP i the optimization problem
becomes

minimize Φi(ηi(k)) + ΛT (k)Ti(k)

subject to Ei(k) ∈ Ei, P̃i(k) ∈ Pi
(13)

where the optimization variables are ηi(k). Solving prob-
lem (13) for i = 1, . . . , nB gives flows T i(k) that can be
used to find a subgradient

S(k) =

nB
∑

i=1

T i(k)− Fmax. (14)

3.4 Subgradient Algorithm

The centralized problem (11) is solved distributedly by the
following algorithm where we use the subgradient method.

(1) Initialize dual variable Λ(k) := Λ0(k) � 0, e.g. using
Λ0(k) = 0 or Λ0(k) = Λ(k − 1).

(2) loop
• Optimize flows using the dual variable Λ(k) by
locally solving problem (13).

• Determine capacity margins S(k) based on the
solutions T i(k) to the subproblems using (14).

• Update dual variables Λ(k) := (Λ(k) + αkS(k))+.
(3) Terminate by providing flows limits Tmax

i (k) to each
BRP base on the final solutions T i(k).

(4) Increase k by one and go to step 1.

In the algorithm, αk ∈ R+ denotes the step size and can
be chosen any standard way, e.g. square summable but not
summable

∞
∑

k=1

α2
k ≤ ∞,

∞
∑

k=1

αk = ∞

such that convergence is guaranteed (Boyd et al. (2008)).

To ensure feasibility when the loop (step 2) is terminated,
maximum partial flow limits Tmax

i are provided to the

BRPs (step 3) based on the final solutions T i(k):

Tmax
i (k) = AT i(k)

where A ∈ RnLK×nLK is diagonal with entries Ajj =

Fmax
j /

(
∑nB

i=1 T i

)

j
. This assures feasibility using back-

tracking. Each BRP must then ensure that their partial
flow honor Ti(k) � Tmax

i (k).

Loads Consumers BRPs DSO

State, prediction

State, prediction Initial prices

Price iterations

Clearing
Activation

Activation

Fig. 3. Interaction between consumers, BRPs and the DSO
resolving congestion in a distributed manner.

It is important to notice that the problem of finding dual
variables is a simple summation and therefore is scalable
even to a large number of BRPs.

4. MARKET IMPLEMENTATION

In this section, we describe how the distributed algorithm
can be understood in an electrical market setting.

4.1 Interplay between BRPs and DSO

The interacting players are the BRPs, who utilize the
distribution grid, and the distribution system operator
(DSO), who is responsible for safe grid. At hour k, each
distribution line is initially associated with non-negative
prices Λ0(k). Based on these prices and based on state
information aggregated from the loads of the consumers,
each BRP locally optimizes their own portfolio, see Fig. 3.
The BRPs then inform the DSO of their partial flows T i(k)
under the initial prices.

By summing all the partial flows, the DSO determines if
the distribution grid is overloaded or underloaded; for an
overloaded line the price is increased, for an underloaded
line the price is decreased, according to the presented al-
gorithm (illustrated by the price iteration double-arrow in
Fig. 3). The prices will eventually converge to the shadow
prices of the centralized problem (11): the distribution line
prices will equal the marginal prices that a BRP is willing
to pay for an additional unit flow in each distribution line
and the BRPs will reach the global optimum (within the
horizon) without information sharing.

When the duality gap is sufficiently small, or after a fixed
number of iterations, the DSO stops the iterations by
sending final partial flow constraints Tmax

i to BRP i and
by publishing the final distribution line prices Λ∗(k). The
BRPs can now activate the flexible consumption as desired
under the constraint Ti � Tmax

i , see Fig. (3).

4.2 Settlement

The BRPs pay tariffs to the DSO for utilizing the distribu-
tion grid. Let ttariffi ∈ RnL denote the capacity of each line
in the distribution grid, which BRP i has paid for through
the tariffs, e.g. based on yearly tariff averages. Further, let
∑nB

i=1 t
tariff
i = fmax, such that the total capacity is divided

among the BRPs. Based on this, the additional cost ci(k)
of BRP i at time k is given by

ci(k) = λ∗T (k)
(

tmax
i (k)− ttariffi

)

(15)

where λ∗(k) are the final distribution line prices at time
k.
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Fig. 4. Three interconnected consumers sharing the same
distribution grid.

The interpretation of the suggested settlement is straight-
forward: if ci(k) > 0, BRP i has utilized the distribution
grid more than paid for via tariffs in an hour of congestion
and will have to pay the amount ci(k). If ci(k) < 0, BRP
i used less capacity than paid for through tariffs in an
hour of congestion to the advantage of other BRPs and
will be paid the amount −ci(k). Finally, if ci(k) = 0,
there is no congestion on the grid or BRP i has used
the exact grid capacity paid for through tariffs. Note that
∑nB

i=1 ci(k) = 0, meaning that this settlement is internally
between the BRPs; the DSO will only earn money through
the tariffs, not the shadow prices.

5. NUMERICAL EXAMPLES

In this section we first illustrate how the BRPs can benefit
from utilizing the flexible consumers and secondly how grid
congestion can be alleviated via shadow prices. We keep
the examples at a conceptual level with a low number of
consumers to make examples easy to follow.

5.1 Utilization of Flexible Consumers

We consider a simple case with a single BRP with three
consumers C1, C2, C3 under its jurisdiction, see Fig. 4.
The characteristics of the consumers and the grid are

pmax
1 = −pmin

1 = (0, 30, 30)T , fmax
1 = (200, 90)T

emax
1 = (0, 200, 200)T , D1 = diag(0, 0.80, 0.99)

while the cost function is chosen to be

ℓ1(qbal,1(k)) = ‖qbal,1(k)‖
2
2.

The characteristics show that C1 is not controllable while
C2, C3 are controllable with identical capacity and rate
limits, but with higher storage quality in C3 than C2. The
line capacity constraints lead to congestion on distribution
line 2, but no congestion on line 1.

The top of Fig. 5 shows the predicted consumptions of
C1, C2 and C3; the total area thus corresponds to p1(k).
The red dashed line illustrates the energy bought at the
day-ahead spot market qspot,1(k). As is seen from the
plot, not enough energy is bought in the hours of high
consumption, while excess energy is bought in the hours
of low consumption. This could represent a BRP buying
cheap energy at night thereby being able to buy less energy
in the expensive peak hours.

The lower plot of Fig. 5 shows how the controller uses the
flexible consumption of C2 and C3 to alter the consump-
tion pattern by solving problem (11). The corresponding
utilization of the storages e1 is illustrated in the top plot
of Fig. 6 where the solid green line shows the storage
utilization of C3 and the blue dashed line shows that of
C2. The figure shows that the flexible consumers fill their
energy reserves in the first hours, where excess energy is
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(blue, dashed) and C3 (green, solid). Bottom: Power
flow in distribution line 2. The capacity constraints
are shown in both plots (black, dotted).

bought at the day-ahead market, and empty their storages
in the hours of missing energy. This utilization of the
flexible consumers causes congestion on distribution line
2, which is illustrated in the lower plot of Fig. 6. Due to
the congestion, the flexible consumers cannot both be fully
utilized: as seen from the top plot, only the good storage
of C3 is fully utilized reaching both the capacity limit and
the rate limit, while the storage capacity C2 is only slightly
utilized. Finally we note that the storage of C2 discharges
as soon as energy is needed (around k = 7), while the
storage of C3 does not discharge until later, again due to
the fact that storage 3 is of higher quality than storage 2.

5.2 Distribution Grid Prices

We consider the case where C1 and C2 is under the
jurisdiction of BRP 1 while C3 is under the jurisdiction
of BRP 2. Conflicting objectives cause congestion on the
shared distribution line 2, see Fig. 7. Both BRP 1 and 2
desire to increase the controllable consumption in the first
hours, and decrease the consumption in the later hours,
as in the previous example. If no action is taken, this will
violate the capacity constraint f2 ≤ fmax

2 .
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Fig. 7. Three consumers under the jurisdiction of two
different BRPs sharing the same distribution grid.

To remedy the problem without information sharing,
shadow prices are introduced by following the suggested
algorithm. The DSO starts by publishing the initial prices
Λ(1) = 0 where after the two BRPs report back to the
DSO how they then plan to utilize the distribution grid,
by respectively sending T1(1) and T2(1), to the DSO. The
DSO discovers that congestion will occur with the initial
prices and therefore updates the prices Λ(1) := Λ(1) +
αS(1). The top plot of Fig. 8 shows the price adjustments,
converging to the shadow prices Λ⋆(k), optimally resolving
the congestion (within the given horizon).
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Further, we observe the convergence of the optimization by
looking at the primal and dual objective at each iteration.
This is illustrated in the lower plot of Fig. 8. The solid red
line shows the primal objective when using feasible flows
while the blue dashed line is the dual objective and the
black dotted line is the optimal value within the control
horizon.

6. CONCLUSION

In this paper, a receding horizon control approach was
proposed for the control of flexible consumers under the
jurisdiction of a BRP allowing the net consumption to be
moved in time. We further showed how different BRPs
sharing the same distribution grid could obtain the global
optimum via the shadow prices at the distribution grid ca-
pacities thereby avoiding sharing local information. Finally
we suggested how this approach could be implemented
in an energy market by an appropriate communication
pattern between the BRPs and the DSO.
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