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Multiple Model Adaptive Control Using
Dual Youla-Kucera Factorisation

Jan Bendtsen * Klaus Trangbaek *

* Department of Electronic Systems, Automation and Control, Aalborg
University, 9210 Denmark (e-mail: dimon@es.aau.dk).

Abstract: We propose a multi-model adaptive control scheme for uncertain linear plants based
on the concept of model unfalsification. The approach relies on examining the ability of a pre-
computed set of plant-controller candidates and choosing the one that is best able to reproduce
observed in- and output signal samples. The ability to reproduce observations is measured as an
easily computable signal norm. Compared to other related approaches, our procedure is designed
to be able to handle significant measurement noise and closed-loop correlations between output

measurements and control signals.

Keywords: Robust Adaptive Control; Switched Systems; Identification for Robust Control

1. INTRODUCTION

As evidenced by the significant research interest generated
over the last two decades, multi-model adaptive control
(see e.g., Narendra et al. (1995), Narendra and Xiang
(2000) and Kuipers and Ioannou (2010), among many
others) have significant appealing properties in practical
control settings, where some nominal model knowledge
is available, but uncertainties, nonlinearities and time
variations potentially might ruin an otherwise nice linear
time-invariant (LTI) design.

In its simplest form, multi-model adaptive control involves
a supervisor that switches among one of a finite number
of controllers as more is learnt about the plant, until
one of the controllers is finally selected and remains un-
changed. Several research results on multi-model adap-
tive control have been reported in the past. Anderson
et al. (2001) investigates indirect adaptive control of lin-
ear plants and employs the Vinnicombe nu-gap metric
(Vinnicombe (2001)) to determine whether or not it is
safe to switch to a new controller; however, one difficulty
with this approach is that it not trivial to compute the
desired metric online from data. Dehghani et al. (2004)
extends this work to so-called Windsurfer control (Lee
et al. (1993, 1995)); in this concept, the initial control
is by design chosen to be simple, conservative and very
robust to uncertainties and disturbances. Then, as more
and more data becomes available, the fidelity of model
can be increased and the controller can gradually be tuned
more aggressively as a consequence. Windsurfer control is
thus related to multi-model adaptive control, but differs
in the sense that candidate controllers are typically not
computed a priori.

The multi-model adaptive control method recently pre-
sented in Baldi et al. (2011) extends previous work on
adaptive control using model unfalsification-based con-
trol (Safonov and Tsao (1997); Battistelli et al. (2008))
to multi-input-multi-output systems. Roughly speaking,
model unfalsification-based control revolves around the

basic premise that if a model and controller is unable to
reproduce the observed behaviour of an actual closed-loop
system, then the controller and/or plant model must be
an inappropriate representation of the actual system and
should therefore be replaced by a better candidate. Baldi
et al. (2011) uses coprime factorisations of the controllers
and plant models to find so-called virtual reference signals,
by which to test the ability of candidates to reproduce
the observations. The method clearly looks promising for
high signal-to-noise ratios, but it is not quite clear how
it will fare if the input/output data is contaminated with
significant noise and the time in which data sets can be
collected is limited (e.g., due to shaky stability margins).

The contribution of the present paper is to propose a re-
formulation of the method in Baldi et al. (2011) that elim-
inates this potential noise correlation problem in closed
loop by exploiting a key feature of the dual Youla-Kucera
parameterisation Youla et al. (1976); Kucera (1976) and
choose the controller that provides the plant-controller
pair with “smallest” model deviation in the form of an
easily computable signal norm. In this respect, we borrow
from the so-called Hansen scheme (Hansen et al. (1989);
Tay et al. (1989); Anderson (1998); Ansay et al. (1999)).

The outline of the rest of the paper is as follows. Section
2 first provides some background on the Youla-Kucera
factorisation. Then, in Section 3 we first outline the pro-
posed switching strategy, which is based on manipulation
of so-called virtual references, and then describe in details
how this approach can be combined with open-loop-like
identification to provide a novel switching criterion in
Section 4. Next, Section 5 provides an illustrative example,
and finally we conclude with some remarks in Section 6.

2. PRELIMINARIES

We start out by describing the basic notation and the
Youla-Kucera factorisation, which will be used extensively
in the sequel.



2.1 Problem setup and notation

We consider control loops of the form

h =Gl (1

up = K (2)yx (2)
where G(z) is a linear, possibly time-varying, discrete-
time plant mapping input signals u; € R™ to output
signals yr € RP, k € Z; is the sample number and z
is the time shift operator. K(z) is a controller, which
at each sample k£ maps output measurements to control
signals, such that the closed-loop behaviour achieves some
specified performance.

Let S™ denote the linear subspace of £5 consisting of all
real-valued n-dimensional sequences of finite 2-norm. For
any element z = {z;},k =0,1,2,...in S, we will define its
truncation at sample k as % = {xo,z1,...,25,0,0,...}.
The truncated 2-norm of x is then defined as

12 ]l2 =

For notational convenience, we will in general not write
the z- and k-dependencies in the following, as long as
the meaning can be understood from the context. Capital
letters denote systems, while small letters denote signals.
Furthermore, the plant-controller interconnection (1)—(2)
will be written as [G, K].

2.2 Model-controller parameterisation

First off, it is well known that the plant and controller
(1)—(2) can be factorised as

G=NM"'=M"'N (3)
and o

K=uv'=v-lUu (4)
Each pair of factors (N, M), (N, M), (U, V) and (U, V) are
chosen such that they are stable and mutually coprime,
i.e., have no common unstable zeros. The invertible factors

M,M ,V and V must be square, which determines the
input-output dimensions of each factor.

Given a plant and one stabilising controller, it is now pos-
sible to parameterise all stabilising controllers as follows,
see e.g. Anderson (1998):

Lemma 1. Let a plant G = NM~!, with N and M co-
prime and stable, be stabilised by a controller (in positive
feedback loop) K = UV ~! with U and V coprime and
stable. Then the set of all stabilising controllers for G is
given as

K={K(@Q)=(U+MQ)(V+NQ)™}
~{KQ=+eM)T+ein} ()
where () is any stable system of appropriate dimensions.

@ in Lemma 1 is known as a Youla-Kucera parameter.
Figure 1 is a block diagram representation of Eqn. (5).

Not surprisingly, there also exists a dual parameterisation
of all plants stabilised by a given controller:

0 a<l>if/1

Fig. 1. Youla-Kucera parameterisation of all controllers
stabilising the plant G = M~'N.

Lemma 2. Let a plant G = NM™!, with N and M co-
prime and stable, be stabilised by a controller (in positive
feedback loop) K = UV ™! with U and V coprime and
stable. Then the set of all plants stabilised by K is given
as

G={G(S)=(N+SV)(M+SU)""}
- {G(S) - (M+US)—1(N+VS)} (6)
where S is any stable system of appropriate dimensions.

S in Lemma 1 is known as a dual Youla-Kucera parameter.
This situation is depicted in Figure 2.

N »}f—»Ml

Fig. 2. Dual Youla-Kucera parameterisation of all plants
stabilised by the controller K = V~1U.

Now consider the closed-loop interconnection of the plant
and controller in Figures 1 and 2, i.e., setting u and y in
Fig. 1 equal to v and y in Fig. 2. Then we observe that
the following relations must hold:

w=Vu—Uy=VV e+ TUy) - Uy=¢
and

x=My—Nu=MM"(C+ Nu) — Nu=¢
The closed loop [G(0), K(0)] is stable by construction.
Furthermore, we see that since the matrix [4f {] is in-
vertible over RH o, the stability of the interconnection
[G(S), K(Q)] is, in fact, equivalent to the stability of the
simpler loop [S, Q).

3. MULTI-MODEL ADAPTIVE CONTROL SCHEME

The goal of multi-model adaptive control is to handle un-
certainties and disturbances by switching between different
possible controllers that match a given observed input-
output behaviour of the plant in some sense.



3.1 Controller switching

To make this more precise, we now extend the class of
control loops under consideration slightly as follows:

yr = Goug (7)
U = K(fkyk (8)

where Gy is a linear plant similar to (1), but affected
by some disturbance, uncertainty or time variation repre-
sented by some unknown, possibly time varying parameter
0.

Let K = {Ko, Ki,...,Kn} denote a set of a priori-
designed linear controllers. Each candidate controller K; €
K is designed for a particular value of 6, say, 6;, pro-
viding specified stability and performance for [Gy,, K;].
o, € N ={0,1,..., N} is a switching sequence that deter-
mines which of the controllers is active at sample k. The
switching sequence is generated by some sort of supervisor,
whose task it is to pick the “best suited” controller in
some appropriate sense. This essentially means finding a
set of switching rules that achieve good performance in the
presence of uncertainties and noise.

To this end, at each sample step k, the supervisor evaluates
a family of test functionals J; : S™ x SP — Ry,i € N,
where J; = J;(a*, y*) loosely speaking quantifies how well
the 7’th potential plant-controller pair [Gy,, K;] suits the
data up to the current sample.

In particular, one first chooses o9 € N. At every k the
supervisor then computes the least index ¢ € A such
that J;, < J;,i € N, whereupon the subsequent switching
index o1 is given by

. _Jor ifJs, < Ji, +h
R+l Ty otherwise

9)
where h > 0 is a hysteresis constant.

Assuming the above switching strategy is employed to
switch controllers in the plant-controller interconnection
(7)—(8), the so-called Hysteresis Switching Logic lemma
Morse et al. (1992) then states that as far as Gy is
constant, {0y} admits a limit and there exist ¢ such
that J; is bounded, then, for any initial condition and
reference sequence, switching will cease in finite time. That
is, the supervisor will eventually settle upon a stabilising
controller in the set IC, if such a controller exists.

3.2 Introduction of virtual reference

This idea is now combined with the concept of model falsi-
fication, in which a candidate model is tested against plant
measurements and rejected in case it fails to reproduce
the observations. Here, instead of attempting to reproduce
output values as a function of inputs, we look at the input-
output data produced by the plant and controller currently
in the loop, and select the plant-controller pair [Gy,, K;]
that best matches the observed behaviour.

Assume now that an external reference sequence r € SP is
introduced as shown in Figure 3. Let
Ki(y*, ™) }

o
= {[Gai,m@k,f’@) (10)

h

e

r

Fig. 3. Introduction of reference in control loop with
K=V-U

denote the collection of in- and output samples (be-
havioural data) that would have been generated up to
sample k if the ¢’th controller had been in closed loop with

the plant Gp,, while
—k
_k u
= | 11
¥ ij} (11)

denotes the collection of actual observations of in- and
output samples up to sample k. An obvious choice of plant-
controller pair would then be the one that minimizes the
difference between ¢; and v, i.e., letting J; in (9) be given
by

Ji(u", g*) = max [|[)f — @] (12)
r#0

Unfortunately, even if we were able to apply some specific
r, simply applying the same reference sequence to all plant-
controller pairs would not allow us to determine whether
or not different 7’s would have been able to generate the
observed behaviours for other plant-controller pairs. To
avoid this problem, we introduce a wirtual reference for
each candidate plant-controller pair as known from model
unfalsification Battistelli et al. (2008), and use that for
evaluating J;. Let V!, U and r in Figure 3 be replaced
by Vi_l, U; and the virtual reference 7;, respectively. Then
we compute

for all i € N, replace 7* by 7#* in (10), use the resulting
¥¥ to evaluate (12) for each plant-controller pair, and pick

the controller corresponding to the pair that best matches
the observed behaviour.

3.3 Noisy data

As shown in Baldi et al. (2011), the above approach works
well as long as the measurements are largely uncorrupted
by noise. However, it is a commonly known problem
in closed-loop identification that noise may be fed back
through a controller operating in closed loop with the plant
and make the input correlated with the output samples.

To illustrate this, consider the situation in Figure 4.
Here, the output measurements are contaminated by the
additive noise signal v,. From the block diagram,

U= f/i_l (7‘ + ﬁz(yy + Ggiu)) = (‘Z‘—UiGgi)71 (r + Uiuy)

which results in (13) becoming unbiased by v, in the
best case where the “correct” ¢ has been selected. For
the other plant-controller pairs, however, Gy ; # M j_le,
which means that the noise is not canceled out, causing a
mismatch between the true and virtual references.
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Fig. 4. Plant-controller candidate loop affected by output
noise

4. DUAL YOULA-KUCERA SWITCHING

In order to avoid the potential bias problems pointed out
in the previous section, we propose an alternative strategy
that makes use of the open-loop-like features of the dual
Youla-Kucera parameterisation discussed in Section 2.2.

Let y be affected by noise as in Figure 4, i.e., y = Gg,u+v,,
and let G, be parameterised as in Figure 2; then, we have
the expressions

G = Siw; (14)
w; = Viu — Ul(y —1y) (15)
Mi(y — vy) — Nju=; (16)

for the 7’th candidate loop. Now, let us define the signals
w; = Viu—U;y and Q:, = Miy—Niu and relocate the output
noise from the measurement output to the output of the
dual Youla-Kucera parameter, as shown in Figure 5.
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Fig. 5. Candidate closed loop [Go,, K;] with virtual refer-
ence 1.

Using (14)—(16), we can compute the relocated noise as

vei =G + My, — Si(w; + Uivy)
=G — Sit;
= M,y — Nou — S;(Viu — Uyy)
= + My, — Si(w; + Uv,)
= (]\;[i - Siﬁi)uy

i.e., v¢; is independent of ;. Furthermore, from the block
diagram it is immediately seen that

and §; = S;w; + Ve¢,ie

At this point we make an additional observation: If the
candidate matches exactly with the true plant-controller
loop, i.e. [Gy, K;] = [Gy,, K;], then we would have S; =0
and hence (; = v¢; for any w; given u and y.

As a consequence, we may in principle reject any plant-
controller pair that yields an estimate of (; that exceeds
the standard deviation of v¢ ;. Alternatively, in the absence
of that information, we may simply choose the plant-
controller pair that yields the smallest signal norm of (;

The latter can be summed up in the following straightfor-
ward procedure:

Procedure 1. Let Gy be an uncertain plant parameterised
by 6. Assume a set of stabilising controllers I has been de-
signed for appropriate values of 8, say, 6; for i € N'. Choose
oo € N as the index of the controller corresponding to the
‘nominal’ plant, i.e., 8 = 6y = 0. Fix A > 0.

For every k greater than the plant order:

(1) Apply controller K,
(2) Obtain measurements @* and g*
(3) For every i € N compute

{f = Myg* — N;a*
Ji =ICE 13
(4) Find i, = argmin;epr J;
(5) Evaluate whether or not to switch controller:
- {Uk if Jp, < Ji, +h
i« otherwise

(6) Wait for next sample

In practice, ¢; = Sw; + v¢; will contain both model errors
and noise. An underlying assumption is that the noise
component will be approximately the same for all the
models, and that the difference in signal norms will reflect
the different distances of the models to the real plant.

Note also that if stability is of prime concern, one could
also consider identifying the S; parameters from w; and ¢;
and pick the plant-controller pair that yields the greatest
stability margin.

5. ILLUSTRATIVE EXAMPLE

We consider the uncertain scalar system

Tpr1 = Agxy + Bug, yp = Cxp + ng, (17)
0
with B = |0|, C =[1 0 0] and
1
0.5 0.6 0.3
Ag=| 04  06+030 0 (18)
—-0.2+0.10 0 0.9+ 0.10

where 6 € [0;1] is an unknown parameter, and n white
Gaussian noise with variance p?. For each of the five points
91 = O, 92 = 0.25, 93 = 0.5, (94 = 0.75 and 95 = 1, we
design an LQR controller K;:

Tept1 = (Ag, + LiC+ BE;)xc ) — Liyk, up = Fizep (19)



where

—0.782 —0.816 —0.853
Li=|-0.551|,Ly = |—0.596|,L3 = |—0.648| ,
—0.195 —0.264 —0.343
—0.893 —0.94
Ly=|-0.703|,Ls = |—0.735
—0.443 —0.625
and
F, =[-0.506 —0.954 —1.1]
F,=[-0.717 —1.3 —1.17]
F3;=[-0.988 —1.79 —1.25]
Fy=[-1.32 -2.44 —1.34]

Fs=[-1.71 —3.28 —1.44].
The factorisation of a controller-model pair is found as

Ag + LiC|-B L;

e TE T
A C 0 I

(20)

Figs. 6 and 7 illustrate the performance of the switching
scheme. The true reference is chosen as a series of random
steps in the interval [—1; 1], and the noise and unknownpa-
rameter are arbitrarily chosen as p? = 1072 and 6 = 0.75.
h is chosen by hand to h = 0.25.

In- and output measurements
T T T

~10 . . . . . . .
0 50 100 150 200 250 300 350 400
Sample no.

Fig. 6. Reference ry, output y; and input ug

The top trace of Figure 7 shows the switching sequence.
The first controller is arbitrarily selected as g = 1. Data is
collected for a few samples, before the switching scheme is
activated; about 5 samples later, the test functional J; has
increased enough to satisfy J; < Jy+ h, and the controller
switches to the gains Fy; and L4. As seen in Figure 6, this
controller quickly drives the output back to the reference
value. The bottom trace of Figure 7 shows the development
of the five test functionals.

Next, a number of simulation tests are now performed.
For each series, for 40 values of the real 6, 50 simulations
are performed, 10 for each controller. Every simulation
consists of 400 samples where a reference signal, r, formed
by filtering white noise with variance 0.01 through U; is
added between the factors, i.e. u = V;(r + U,y). For every
simulation, the method in Baldi et al. (2011) and the
method in Section 4 are applied to determine the best
of the five controllers.

Switching signal
T T T

. . . . . . .
0 50 100 150 200 250 300 350 400
Sample no.

Fig. 7. Switching sequence o} and test functionals
J’L(ﬂk7gk)

In the first series, p> = 0, i.e. there is no noise, and the
two schemes pick the same controller all the time for any
particular value of 6. Figure 8 shows the resulting choices.
We will consider this as the optimal choice.
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25F
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0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 8. Controller selection with no noise.

Now the noise is increased to p? = 1076. For each value
of 0, by treating the controller selection as values between
1 and 5, we can take mean and deviation of the 40 tests.
Ideally the mean should be the same as in the previous
series and the deviation should be zero.

Figure 9 shows the means plus/minus one standard de-
viation. The method in Baldi et al. (2011) is shown by
the dashed lines, the method in Section 4 the solid lines.
The dots show the optimal selection. Both methods still
perform very well.

However, when the noise level is increased to p? = 10~*
as shown in Figure 10, then the method in Baldi et al.
(2011) not only gets a significant variance of the selection,
it also shows a strong bias towards the controllers with
lower numbers. The method presented here also shows
some deviations, but on average the correct controller is
selected.

6. DISCUSSION

In this paper, we proposed a novel scheme for adaptive con-
trol of linear systems subject to significant uncertainties
and/or time variations. The approach relies on examining
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Fig. 10. Controller selection with strong noise.

the ability of a pre-computed set of plant-controller candi-
dates and choosing the one that is best able to reproduce
observed in- and output signal samples. The ability to re-
produce observations is measured as an easily computable
signal norm. Compared to other related approaches, our
procedure is designed to be able to handle significant mea-
surement noise and closed-loop correlations between out-
put measurements and control signals. However, it must
be pointed out that simulation studies indicate that as
far as the signal-noise is high or the closed-loop operation
permits long data sequences to be obtained, our approach
does not appear to provide significantly better results than
the method presented in Baldi et al. (2011).

Like most adaptive control algorithms, the method sug-
gested here is initially formulated under the assumption
that the plant is time-invariant. However, there is an
underlying requirement that the adaptive controller has
the capability to track time variations in the plant, which
are generally relatively slow compared to the input-output
dynamics. To do so, it may be advantageous to introduce
exponential forgetting in the evaluation of J;.
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