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Correction to “Packetized Predictive Control of Stochastic
Systems over Bit-Rate Limited Channels with Packet Loss”

Daniel E. Quevedo, Member, IEEE, Jan @stergaard, Senior Member, IEEE,
Eduardo 1. Silva, Member, IEEE, and Dragan Nesié, Fellow, IEEE

Abstract— We correct the results in Section V of the above mentioned
manuscript.

In [1], we showed that a particular class of networked control
system (NCS) with quantization, i.i.d. dropouts and disturbances can
be described as a Markov jump linear system of the form

Ok+1 = A(dr)0k + B(dk)vs, (D

where

o2 | 7F | eRYN, 2 |YR| e RN
br_1 ’ Nk
and {dy }ren, is a Bernoulli dropout process, with

Prob(diy, = 1) =p € (0,1).

Throughout [1] we showed that properties of the NCS can be
conveniently stated in terms of the expected system matrices

A(p) = E{A(dx)}
B(p) = E{B(dx)} = [Bu Ba(p)]
and the matrix A = A(1) — A(0). Unfortunately, Theorem 4 in
Section V-A of [1] is incorrect. For white disturbances {wx }ren,
the statement should be as given below. Non-white {wy }ren, can
be accommodated by using standard state augmentation techniques;
see, e.g., [2].
Theorem 4: Suppose that (1) is MSS and AWSS and that
{wi }ren, is white with 02 = trR,,(0). Define
F(z) 2 (21— A(p)) ™
C(p) 2 (00/m)BuBi, + (07 /N)(1 = p)€ € RUHIIX (),
2
where (see [1, Sec.2] for definitions)
o Bu(p)Bu(p)” _ [Bief (U7 W) e, B Bief (370)"
T a-pr L wwTasl @ty

Then, the spectral density of {0 }ren, is given by
So(e’) = F(e™) (p(1 — ) ARs (0) A" +C(p)) F'(e77), (4)

&

where Rg(0) solves the following linear matrix equation:

Re(0) = A(p)Rs(0)A(p)" + p(1 — p)ARe(0)A" +C(p). (5)
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Proof: See the appendix. |
To further elucidate the situation, we note that (5) is linear and
that its solution can be stated as the linear combination

Ry(0) = (0%,/m)Rg'(0) + (07 /N)R5 (0), (©6)
where Ry’ (0) and Ry (0) satisfy
Ry (0) = A(p) Ry (0)A(p)" +p(1 — p) AR (0) A" + B, B,
R3(0) = A(p) RE (0)A(p)" +p(1 — p) ARG (0)AT + (1 - p)é.
Therefore, the distortion D defined by (52) in [1] is given by
D £ tr(QRo(0)) + A0 el ]Ro(0)[0 er]”,
where Q is given in terms of the Kronecker product
~ A |1 0
@= {0 0} ©Q
Thus, D = oo + (3, with
a = (1/N)tr(QR5(0)) + (A/N)[0 ef]RF(0)[0 ei]"
B = (00/m)tr(QRy (0)) + (Aow/m)[0 el ]RF(0)[0 ei]”.

The above expressions replace Lemma 11 of [1].
To derive a noise-shaping model, (6) can be substituted into into (4)
to provide

So(e’) = F() ((00/m)KuCuy + (o0 /N)Knky ) FT (e77%),
where K., and KC,, are obtained from the factorizations
KuwKL = BuBL + p(1 — p) ARy (0) A"
KnKE = (1—p)(€+pARG(0)AT).

If we define

H(z) £ [I 0] F(z),

then the above provides the noise-shaping model depicted in Fig. 2.
The latter replaces Fig. 2 and Corollary 1 of [1].

Remark 1: We would like to emphasize that Theorem 4 can also
be proven by adapting results in [3]-[5]. However, the noise shaping
interpretation in Fig. 2 does not explicitly need an additional noise
term to quantify second-order dropout effects, as opposed to what is
done in [3]-[5]. O

The upper bound on the coding rate provided by Theorem 5 in
[1] is also no longer correct, since it relied upon Rg(0). The new
Theorem 5 is provided below:

Theorem 5: For any 1 < N € N, the minimum bit-rate R of
satisfies:

R(D) < %log2 (det(I + (N/o2)Re(0))) + %logg (%) b1,
(7
where

Re(0) = [T 0] Ro(0) [T 0]".

Proof: Follows immediately from (73) in [1] by omitting the
last step where R¢(0) was written in terms of R.(0) and (50) was
used. |
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Fig. 2. Noise-Shaping Model of the NCS

Note that, in view of (6), the bound in (7) provides

log, (det(I + [T OJRz(O)[T 0]T))

+ N og, (€)1
2 g2 6 ’

expression, which is positively bounded away from zero and replaces
(58) in [1].

Remark 2: By using results in [6, Sec.5], the covariance matrix
Ry (0) can be expressed explicitly in terms of Kronecker products
and matrix inversions. Specifically, let

QK\J
|
8
DN =

G2 Alp) @ Alp)" +p(1 —p)A® A"

and let ¢ € R’ be the vectorized version of the matrix C (p)
given in (2). Then, the vectorized version of Rg(0) is simply given
by 7 = (I — G)~'c. Using this approach, it is straight-forward to
numerically evaluate the rate and distortion in (7). O

We finalize this note by revisiting the NCS considered in Section V-
C of [1]. Fig. 3 illustrates the rate and distortion trade-off for different
horizon lengths and a fixed packet loss probability p = 0.0085. It
may be noticed that the distortion can be reduced by using a longer
horizon length in addition to increasing the bit-rate. Fig. 4 shows that
when the packet-loss probability increases, it is necessary to use a

larger horizon length to guarantee stability and thereby reduce the
distortion.
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Bound on D(R) i
different horizon lengths N = 1,2, 3. The distortion is here expressed in the

obtained from (7) for a fixed p = 0.0085 and

log-domain.
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Fig. 4. Bound on D(R) obtained from (7) for different packet loss

probabilities and different horizon lengths.

APPENDIX
PROOF OF THEOREM 4

Since {vi}ren, is white and thus E{0xv]} = 0, the system
recursion (1) provides

E{Ok110i 41} = E{A(dr)010k A(di)" } +E{B(dr)vivi B(di)"}.

Therefore, by conditioning on dj and using the law of total expec-
tation, we obtain:
E{O1+10k11} = PE{A(dr)0r0x A(di)" | di = 1}
+ (1 — p)E{A(dr)0x0r A(dr)" | di = 0}
+ pE{B(dy)vvi B(dy)" |dp =1}
+ (1 = p)E{B(dr)vivi B(di)" | dr = 0}
= pA(DE{00; }A(1)" + (1 — p) A(0)E{0r0 }A(0)"
+pB)R,(0)B()" + (1= p)BO)R,(0)B(0)",

where we have used the fact that {dx }xen, is Bernoulli and v, and
0 are independent of dj. Direct algebraic manipulations allow us to



rewrite the above as series

E{0i+10k41} = AP)E{0:0% JA(p)" i = (T-A@:="") "

T Ty 5T ®)
+p(1 — p)AE{0x0;, }A" + C(p). . .
In a similar way, one can derive that Since {0k }ren, is AWSS, its spectrum satisfies [9]
_ ot +,—1\T
E{Okre+10% + = E{(A(drs0)0k+e + B(dise)vise)0r } So(z) = S5 (2) + (S (271)) -
= IE{A dios0)Or400% } +E{ B(dpre)vire0i } ) = Ry(0) + A(p) (lzI — A(p))7T Re(OT)
(P)E{ 014007 } + B(p)E{vy4.067 } + Ro(0)(27 T — A(p)) " Alp)” -
E{nggk }7 V¢ € No, Therefore, we have
since {I/k}keNo is white and 6, and 6y, are independent of dj., for (ZI - A(P))S (2 )( - A(P))T
non-negative values of ¢. Equation (9) gives the explicit expression - ( 2 — A(p )) 0(0 )( -7 Alp ))T
E{0k4c0r } = A(p ]E{Ok(?k }, VleN,. (10) + (21 — A(p))A(p) (21 — A(p)) ™~ "Ro(0) (z7'1 - A(p))T
Since the system is AWSS, we have limj_oo E{0k+10{ ,} = + (2I — A(p))Ro(0) (2~ '1 — A(p))~ A(p)T(z_II - A(p))T
Ry (0), the stationary covariance matrix of {0 }ren,. By (8) and _ (zI A(p)) Ro(0) (271[ Alp ))
results in [7], [8], the latter is given by the solution to (5). 1 T
On the other hand, in steady state, (10) gives that the covariance )(Z I=A )) (ZI - A(p))Rg(O)A(p) )
function since (z[ A(p))A( )(zI — A(p))~" = A(p). Thus,
Ro(£) = A(p)‘Re(0), VI € No. (11)

F N 2)S()F (27
= (2Re(0) — A(p)Ro(0)) (z "1 — A(p))" + 2z~ " A(p) Re (0)

— A(p)Ro(0)A(p)™ + zR(0)A(p)” — A(p)Ro(0).A(p)”

54 (2) :Re +ZR9 = Ro(0) — 2~ " A(p)Ra(0) — 2Rs(0)A(p)”
+ A(p)Ro(0)A(p)” + 2~ A(p) Ro(0) — A(p) Ro(0).A(p)”

+ 2Re(0)A(p)" — A(p) R (0)A(p)"
= Rq(0) — A(p)Ro(0)A(p)",
and (5) establishes (4).

Consequently, the positive real part of the spectrum of {6y }ren, is
given by

-1
= ((1/2)1+A(p)(z1 —A(p) ) Re(0),

where we have used the fact that, by assumption, (1) is MSS and

AWSS, thus A(p) is Schur (see Lemma 4 in [1]) and the geometric



