π

Aalborg Universitet

AALBORG UNIVERSITY

Correction to: Packetized Predictive Control of Stochastic Systems over Bit-rate Limited Channels with Packet Loss

Quevedo, Daniel; Østergaard, Jan; Silva, Eduardo; Nesic, Dragan

Published in:
I E E E Transactions on Automatic Control

DOI (link to publication from Publisher):
10.1109/TAC.2013.2241481

Publication date.
2013

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Quevedo, D., Østergaard, J., Silva, E., \& Nesic, D. (2013). Correction to: Packetized Predictive Control of Stochastic Systems over Bit-rate Limited Channels with Packet Loss. I E E E Transactions on Automatic Control, 58(7), 1869-1872 . https://doi.org/10.1109/TAC.2013.2241481

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Correction to "Packetized Predictive Control of Stochastic Systems over Bit-Rate Limited Channels with Packet Loss"

Daniel E. Quevedo, Member, IEEE, Jan Østergaard, Senior Member, IEEE, Eduardo I. Silva, Member, IEEE, and Dragan Nešić, Fellow, IEEE

Abstract

We correct the results in Section V of the above mentioned manuscript.

In [1], we showed that a particular class of networked control system (NCS) with quantization, i.i.d. dropouts and disturbances can be described as a Markov jump linear system of the form

$$
\begin{equation*}
\theta_{k+1}=\bar{A}\left(d_{k}\right) \theta_{k}+\bar{B}\left(d_{k}\right) \nu_{k}, \tag{1}
\end{equation*}
$$

where

$$
\theta_{k} \triangleq\left[\begin{array}{c}
x_{k} \\
b_{k-1}
\end{array}\right] \in \mathbb{R}^{n+N}, \quad \nu_{k} \triangleq\left[\begin{array}{c}
w_{k} \\
n_{k}
\end{array}\right] \in \mathbb{R}^{m+N}
$$

and $\left\{d_{k}\right\}_{k \in \mathbb{N}_{0}}$ is a Bernoulli dropout process, with

$$
\operatorname{Prob}\left(d_{k}=1\right)=p \in(0,1)
$$

Throughout [1] we showed that properties of the NCS can be conveniently stated in terms of the expected system matrices

$$
\begin{aligned}
\mathcal{A}(p) & =\mathbb{E}\left\{\bar{A}\left(d_{k}\right)\right\} \\
\mathcal{B}(p) & =\mathbb{E}\left\{\bar{B}\left(d_{k}\right)\right\}=\left[\begin{array}{ll}
\mathcal{B}_{w} & \mathcal{B}_{n}(p)
\end{array}\right]
\end{aligned}
$$

and the matrix $\widetilde{\mathcal{A}}=\bar{A}(1)-\bar{A}(0)$. Unfortunately, Theorem 4 in Section V-A of [1] is incorrect. For white disturbances $\left\{w_{k}\right\}_{k \in \mathbb{N}_{0}}$, the statement should be as given below. Non-white $\left\{w_{k}\right\}_{k \in \mathbb{N}_{0}}$ can be accommodated by using standard state augmentation techniques; see, e.g., [2].

Theorem 4: Suppose that (1) is MSS and AWSS and that $\left\{w_{k}\right\}_{k \in \mathbb{N}_{0}}$ is white with $\sigma_{w}^{2}=\operatorname{tr} R_{w}(0)$. Define

$$
\begin{align*}
\mathcal{F}(z) & \triangleq(z I-\mathcal{A}(p))^{-1} \\
\mathcal{C}(p) & \triangleq\left(\sigma_{w}^{2} / m\right) \mathcal{B}_{w} \mathcal{B}_{w}^{T}+\left(\sigma_{n}^{2} / N\right)(1-p) \mathcal{E} \in \mathbb{R}^{(n+N) \times(n+N)} \tag{2}
\end{align*}
$$

where (see [1, Sec.2] for definitions)

$$
\mathcal{E} \triangleq \frac{\mathcal{B}_{n}(p) \mathcal{B}_{n}(p)^{T}}{(1-p)^{2}}=\left[\begin{array}{cc}
B_{1} e_{1}^{T}\left(\Psi^{T} \Psi\right)^{-1} e_{1} B_{1}^{T} & B_{1} e_{1}^{T}\left(\Psi^{T} \Psi\right)^{-1} \tag{3}\\
\left(\Psi^{T} \Psi\right)^{-1} e_{1} B_{1}^{T} & \left(\Psi^{T} \Psi\right)^{-1}
\end{array}\right] .
$$

Then, the spectral density of $\left\{\theta_{k}\right\}_{k \in \mathbb{N}_{0}}$ is given by

$$
\begin{equation*}
S_{\theta}\left(e^{j \omega}\right)=\mathcal{F}\left(e^{j \omega}\right)\left(p(1-p) \widetilde{\mathcal{A}} R_{\theta}(0) \tilde{\mathcal{A}}^{T}+\mathcal{C}(p)\right) \mathcal{F}^{T}\left(e^{-j \omega}\right) \tag{4}
\end{equation*}
$$

where $R_{\theta}(0)$ solves the following linear matrix equation:

$$
\begin{equation*}
R_{\theta}(0)=\mathcal{A}(p) R_{\theta}(0) \mathcal{A}(p)^{T}+p(1-p) \widetilde{\mathcal{A}} R_{\theta}(0) \widetilde{\mathcal{A}}^{T}+\mathcal{C}(p) \tag{5}
\end{equation*}
$$

[^0]Proof: See the appendix.
To further elucidate the situation, we note that (5) is linear and that its solution can be stated as the linear combination

$$
\begin{equation*}
R_{\theta}(0)=\left(\sigma_{w}^{2} / m\right) R_{\theta}^{w}(0)+\left(\sigma_{n}^{2} / N\right) R_{\theta}^{n}(0), \tag{6}
\end{equation*}
$$

where $R_{\theta}^{w}(0)$ and $R_{\theta}^{n}(0)$ satisfy

$$
\begin{aligned}
R_{\theta}^{w}(0) & =\mathcal{A}(p) R_{\theta}^{w}(0) \mathcal{A}(p)^{T}+p(1-p) \widetilde{\mathcal{A}} R_{\theta}^{w}(0) \widetilde{\mathcal{A}}^{T}+\mathcal{B}_{w} \mathcal{B}_{w}^{T} \\
R_{\theta}^{n}(0) & =\mathcal{A}(p) R_{\theta}^{n}(0) \mathcal{A}(p)^{T}+p(1-p) \widetilde{\mathcal{A}} R_{\theta}^{n}(0) \widetilde{\mathcal{A}}^{T}+(1-p) \mathcal{E}
\end{aligned}
$$

Therefore, the distortion D defined by (52) in [1] is given by

$$
D \triangleq \operatorname{tr}\left(\tilde{Q} R_{\theta}(0)\right)+\lambda\left[\begin{array}{ll}
0 & e_{1}^{T}
\end{array}\right] R_{\theta}(0)\left[\begin{array}{ll}
0 & e_{1}^{T}
\end{array}\right]^{T},
$$

where \tilde{Q} is given in terms of the Kronecker product

$$
\tilde{Q} \triangleq\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \otimes Q
$$

Thus, $D=\alpha \sigma_{n}^{2}+\beta$, with

$$
\begin{aligned}
\alpha & =(1 / N) \operatorname{tr}\left(\tilde{Q} R_{\theta}^{n}(0)\right)+(\lambda / N)\left[\begin{array}{ll}
0 & e_{1}^{T}
\end{array}\right] R_{\theta}^{n}(0)\left[\begin{array}{ll}
0 & e_{1}^{T}
\end{array}\right]^{T} \\
\beta & =\left(\sigma_{w}^{2} / m\right) \operatorname{tr}\left(\tilde{Q} R_{\theta}^{w}(0)\right)+\left(\lambda \sigma_{w}^{2} / m\right)\left[\begin{array}{ll}
0 & e_{1}^{T}
\end{array}\right] R_{\theta}^{w}(0)\left[\begin{array}{ll}
0 & e_{1}^{T}
\end{array}\right]^{T} .
\end{aligned}
$$

The above expressions replace Lemma 11 of [1].
To derive a noise-shaping model, (6) can be substituted into into (4) to provide

$$
S_{\theta}\left(e^{j \omega}\right)=\mathcal{F}\left(e^{j \omega}\right)\left(\left(\sigma_{w}^{2} / m\right) \mathcal{K}_{w} \mathcal{K}_{w}^{T}+\left(\sigma_{n}^{2} / N\right) \mathcal{K}_{n} \mathcal{K}_{n}^{T}\right) \mathcal{F}^{T}\left(e^{-j \omega}\right)
$$

where \mathcal{K}_{w} and \mathcal{K}_{n} are obtained from the factorizations

$$
\begin{aligned}
\mathcal{K}_{w} \mathcal{K}_{w}^{T} & =\mathcal{B}_{w} \mathcal{B}_{w}^{T}+p(1-p) \widetilde{\mathcal{A}} R_{\theta}^{w}(0) \widetilde{\mathcal{A}}^{T} \\
\mathcal{K}_{n} \mathcal{K}_{n}^{T} & =(1-p)\left(\mathcal{E}+p \widetilde{\mathcal{A}} R_{\theta}^{n}(0) \widetilde{\mathcal{A}}^{T}\right) .
\end{aligned}
$$

If we define

$$
\mathcal{H}(z) \triangleq\left[\begin{array}{ll}
I & 0
\end{array}\right] \mathcal{F}(z),
$$

then the above provides the noise-shaping model depicted in Fig. 2. The latter replaces Fig. 2 and Corollary 1 of [1].

Remark 1: We would like to emphasize that Theorem 4 can also be proven by adapting results in [3]-[5]. However, the noise shaping interpretation in Fig. 2 does not explicitly need an additional noise term to quantify second-order dropout effects, as opposed to what is done in [3]-[5].
The upper bound on the coding rate provided by Theorem 5 in [1] is also no longer correct, since it relied upon $R_{\theta}(0)$. The new Theorem 5 is provided below:
Theorem 5: For any $1 \leq N \in \mathbb{N}$, the minimum bit-rate R of \vec{u}_{k} satisfies:

$$
\begin{equation*}
R(D) \leq \frac{1}{2} \log _{2}\left(\operatorname{det}\left(I+\left(N / \sigma_{n}^{2}\right) R_{\xi}(0)\right)\right)+\frac{N}{2} \log _{2}\left(\frac{\pi e}{6}\right)+1 \tag{7}
\end{equation*}
$$

where

$$
R_{\xi}(0)=\left[\begin{array}{ll}
\Gamma & 0
\end{array}\right] R_{\theta}(0)\left[\begin{array}{ll}
\Gamma & 0
\end{array}\right]^{T} .
$$

Proof: Follows immediately from (73) in [1] by omitting the last step where $R_{\xi}(0)$ was written in terms of $R_{x}(0)$ and (50) was used.

Fig. 2. Noise-Shaping Model of the NCS

Note that, in view of (6), the bound in (7) provides

$$
\begin{aligned}
\lim _{\sigma_{n}^{2} \rightarrow \infty} R(D) \leq & \frac{1}{2} \log _{2}\left(\operatorname{det}\left(I+\left[\begin{array}{ll}
\Gamma & 0
\end{array}\right] R_{\theta}^{n}(0)\left[\begin{array}{ll}
\Gamma & 0
\end{array}\right]^{T}\right)\right) \\
& +\frac{N}{2} \log _{2}\left(\frac{\pi e}{6}\right)+1
\end{aligned}
$$

expression, which is positively bounded away from zero and replaces (58) in [1].

Remark 2: By using results in [6, Sec.5], the covariance matrix $R_{\theta}(0)$ can be expressed explicitly in terms of Kronecker products and matrix inversions. Specifically, let

$$
G \triangleq \mathcal{A}(p) \otimes \mathcal{A}(p)^{T}+p(1-p) \widetilde{\mathcal{A}} \otimes \widetilde{\mathcal{A}}^{T}
$$

and let $c \in \mathbb{R}^{(n+N)^{2}}$ be the vectorized version of the matrix $\mathcal{C}(p)$ given in (2). Then, the vectorized version of $R_{\theta}(0)$ is simply given by $r=(I-G)^{-1} c$. Using this approach, it is straight-forward to numerically evaluate the rate and distortion in (7).

We finalize this note by revisiting the NCS considered in Section VC of [1]. Fig. 3 illustrates the rate and distortion trade-off for different horizon lengths and a fixed packet loss probability $p=0.0085$. It may be noticed that the distortion can be reduced by using a longer horizon length in addition to increasing the bit-rate. Fig. 4 shows that when the packet-loss probability increases, it is necessary to use a larger horizon length to guarantee stability and thereby reduce the distortion.

REFERENCES

[1] D. E. Quevedo, J. Østergaard, and D. Nešić, "Packetized predictive control of stochastic systems over bit-rate limited channels with packet loss," IEEE Trans. Automat. Contr., vol. 56, no. 12, pp. 2854-2868, Dec. 2011.
[2] B. D. O. Anderson and J. Moore, Optimal Filtering. Englewood Cliffs, NJ: Prentice Hall, 1979.
[3] Q. Ling and M. D. Lemmon, "Power spectral analysis of networked control systems with data dropouts," IEEE Trans. Automat. Contr., vol. 49, no. 6, pp. 955-960, June 2004.
[4] N. Elia, "Remote stabilization over fading channels," Syst. \& Contr. Lett., pp. 237-249, 2005.
[5] E. I. Silva and S. A. Pulgar, "Control of LTI plants over erasure channels," Automatica, vol. 47, pp. 1729-1736, 2011.
[6] P. Lancaster, "Explicit solutions of linear matrix equations," SIAM Review, vol. 12, no. 4, pp. 544-566, Oct. 1970.
[7] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-Time Markov Jump Linear Systems. London, U.K.: Springer-Verlag, 2005.
[8] W. L. De Koning, "Infinite horizon optimal control of linear discrete time systems with stochastic parameters," Automatica, vol. 18, no. 4, pp. 443453, 1982.
[9] T. Söderström, Discrete-Time Stochastic Systems. Prentice Hall, 1994.

Fig. 3. Bound on $D(R)$ obtained from (7) for a fixed $p=0.0085$ and different horizon lengths $N=1,2,3$. The distortion is here expressed in the log-domain.

Fig. 4. Bound on $D(R)$ obtained from (7) for different packet loss probabilities and different horizon lengths.

APPENDIX
 Proof of Theorem 4

Since $\left\{\nu_{k}\right\}_{k \in \mathbb{N}_{0}}$ is white and thus $\mathbb{E}\left\{\theta_{k} \nu_{k}^{T}\right\}=0$, the system recursion (1) provides

$$
\mathbb{E}\left\{\theta_{k+1} \theta_{k+1}^{T}\right\}=\mathbb{E}\left\{\bar{A}\left(d_{k}\right) \theta_{k} \theta_{k}^{T} \bar{A}\left(d_{k}\right)^{T}\right\}+\mathbb{E}\left\{\bar{B}\left(d_{k}\right) \nu_{k} \nu_{k}^{T} \bar{B}\left(d_{k}\right)^{T}\right\} .
$$

Therefore, by conditioning on d_{k} and using the law of total expectation, we obtain:

$$
\begin{aligned}
& \mathbb{E}\left\{\theta_{k+1} \theta_{k+1}^{T}\right\}=p \mathbb{E}\left\{\bar{A}\left(d_{k}\right) \theta_{k} \theta_{k}^{T} \bar{A}\left(d_{k}\right)^{T} \mid d_{k}=1\right\} \\
& \quad+(1-p) \mathbb{E}\left\{\bar{A}\left(d_{k}\right) \theta_{k} \theta_{k}^{T} \bar{A}\left(d_{k}\right)^{T} \mid d_{k}=0\right\} \\
& \quad+p \mathbb{E}\left\{\bar{B}\left(d_{k}\right) \nu_{k} \nu_{k}^{T} \bar{B}\left(d_{k}\right)^{T} \mid d_{k}=1\right\} \\
& \quad+(1-p) \mathbb{E}\left\{\bar{B}\left(d_{k}\right) \nu_{k} \nu_{k}^{T} \bar{B}\left(d_{k}\right)^{T} \mid d_{k}=0\right\} \\
& =p \bar{A}(1) \mathbb{E}\left\{\theta_{k} \theta_{k}^{T}\right\} \bar{A}(1)^{T}+(1-p) \bar{A}(0) \mathbb{E}\left\{\theta_{k} \theta_{k}^{T}\right\} \bar{A}(0)^{T} \\
& \quad+p \bar{B}(1) R_{\nu}(0) \bar{B}(1)^{T}+(1-p) \bar{B}(0) R_{\nu}(0) \bar{B}(0)^{T}
\end{aligned}
$$

where we have used the fact that $\left\{d_{k}\right\}_{k \in \mathbb{N}_{0}}$ is Bernoulli and ν_{k} and θ_{k} are independent of d_{k}. Direct algebraic manipulations allow us to
rewrite the above as

$$
\begin{align*}
\mathbb{E}\left\{\theta_{k+1} \theta_{k+1}^{T}\right\}= & \mathcal{A}(p) \mathbb{E}\left\{\theta_{k} \theta_{k}^{T}\right\} \mathcal{A}(p)^{T} \\
& +p(1-p) \widetilde{\mathcal{A}} \mathbb{E}\left\{\theta_{k} \theta_{k}^{T}\right\} \widetilde{\mathcal{A}}^{T}+\mathcal{C}(p) \tag{8}
\end{align*}
$$

In a similar way, one can derive that

$$
\begin{align*}
\mathbb{E}\left\{\theta_{k+\ell+1} \theta_{k}^{T}\right\} & =\mathbb{E}\left\{\left(\bar{A}\left(d_{k+\ell}\right) \theta_{k+\ell}+\bar{B}\left(d_{k+\ell}\right) \nu_{k+\ell}\right) \theta_{k}^{T}\right\} \\
& =\mathbb{E}\left\{\bar{A}\left(d_{k+\ell}\right) \theta_{k+\ell} \theta_{k}^{T}\right\}+\mathbb{E}\left\{\bar{B}\left(d_{k+\ell}\right) \nu_{k+\ell} \theta_{k}^{T}\right\} \tag{9}\\
& =\mathcal{A}(p) \mathbb{E}\left\{\theta_{k+\ell} \theta_{k}^{T}\right\}+\mathcal{B}(p) \mathbb{E}\left\{\nu_{k+\ell} \theta_{k}^{T}\right\} \\
& =\mathcal{A}(p) \mathbb{E}\left\{\theta_{k+\ell} \theta_{k}^{T}\right\}, \quad \forall \ell \in \mathbb{N}_{0}
\end{align*}
$$

since $\left\{\nu_{k}\right\}_{k \in \mathbb{N}_{0}}$ is white and θ_{k} and $\theta_{k+\ell}$ are independent of $d_{k+\ell}$ for non-negative values of ℓ. Equation (9) gives the explicit expression

$$
\begin{equation*}
\mathbb{E}\left\{\theta_{k+\ell} \theta_{k}^{T}\right\}=\mathcal{A}(p)^{\ell} \mathbb{E}\left\{\theta_{k} \theta_{k}^{T}\right\}, \quad \forall \ell \in \mathbb{N}_{0} \tag{10}
\end{equation*}
$$

Since the system is AWSS, we have $\lim _{k \rightarrow \infty} \mathbb{E}\left\{\theta_{k+1} \theta_{k+1}^{T}\right\}=$ $R_{\theta}(0)$, the stationary covariance matrix of $\left\{\theta_{k}\right\}_{k \in \mathbb{N}_{0}}$. By (8) and results in [7], [8], the latter is given by the solution to (5).

On the other hand, in steady state, (10) gives that the covariance function

$$
\begin{equation*}
R_{\theta}(\ell)=\mathcal{A}(p)^{\ell} R_{\theta}(0), \quad \forall \ell \in \mathbb{N}_{0} \tag{11}
\end{equation*}
$$

Consequently, the positive real part of the spectrum of $\left\{\theta_{k}\right\}_{k \in \mathbb{N}_{0}}$ is given by

$$
\begin{aligned}
S_{\theta}^{+}(z) & =\frac{1}{2} R_{\theta}(0)+\sum_{\ell=1}^{\infty} R_{\theta}(\ell) z^{-\ell} \\
& =\left((1 / 2) I+\mathcal{A}(p)(z I-\mathcal{A}(p))^{-1}\right) R_{\theta}(0)
\end{aligned}
$$

where we have used the fact that, by assumption, (1) is MSS and AWSS, thus $\mathcal{A}(p)$ is Schur (see Lemma 4 in [1]) and the geometric
series

$$
\sum_{n=0}^{\infty}\left(\mathcal{A}(p) z^{-1}\right)^{n}=\left(I-\mathcal{A}(p) z^{-1}\right)^{-1}
$$

Since $\left\{\theta_{k}\right\}_{k \in \mathbb{N}_{0}}$ is AWSS, its spectrum satisfies [9]

$$
\begin{aligned}
S_{\theta}(z)= & S_{\theta}^{+}(z)+\left(S_{\theta}^{+}\left(z^{-1}\right)\right)^{T} \\
= & R_{\theta}(0)+\mathcal{A}(p)(z I-\mathcal{A}(p))^{-1} R_{\theta}(0) \\
& \quad+R_{\theta}(0)\left(z^{-1} I-\mathcal{A}(p)\right)^{-T} \mathcal{A}(p)^{T}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& (z I-\mathcal{A}(p)) S_{\theta}(z)\left(z^{-1} I-\mathcal{A}(p)\right)^{T} \\
& =(z I-\mathcal{A}(p)) R_{\theta}(0)\left(z^{-1} I-\mathcal{A}(p)\right)^{T} \\
& +(z I-\mathcal{A}(p)) \mathcal{A}(p)(z I-\mathcal{A}(p))^{-1} R_{\theta}(0)\left(z^{-1} I-\mathcal{A}(p)\right)^{T} \\
& +(z I-\mathcal{A}(p)) R_{\theta}(0)\left(z^{-1} I-\mathcal{A}(p)\right)^{-T} \mathcal{A}(p)^{T}\left(z^{-1} I-\mathcal{A}(p)\right)^{T} \\
& =(z I-\mathcal{A}(p)) R_{\theta}(0)\left(z^{-1} I-\mathcal{A}(p)\right)^{T} \\
& +\mathcal{A}(p) R_{\theta}(0)\left(z^{-1} I-\mathcal{A}(p)\right)^{T}+(z I-\mathcal{A}(p)) R_{\theta}(0) \mathcal{A}(p)^{T}, \\
& \text { since }(z I-\mathcal{A}(p)) \mathcal{A}(p)(z I-\mathcal{A}(p))^{-1}=\mathcal{A}(p) \text {. Thus, } \\
& \mathcal{F}^{-1}(z) S_{\theta}(z) \mathcal{F}^{-T}\left(z^{-1}\right) \\
& =\left(z R_{\theta}(0)-\mathcal{A}(p) R_{\theta}(0)\right)\left(z^{-1} I-\mathcal{A}(p)\right)^{T}+z^{-1} \mathcal{A}(p) R_{\theta}(0) \\
& -\mathcal{A}(p) R_{\theta}(0) \mathcal{A}(p)^{T}+z R_{\theta}(0) \mathcal{A}(p)^{T}-\mathcal{A}(p) R_{\theta}(0) \mathcal{A}(p)^{T} \\
& =R_{\theta}(0)-z^{-1} \mathcal{A}(p) R_{\theta}(0)-z R_{\theta}(0) \mathcal{A}(p)^{T} \\
& +\mathcal{A}(p) R_{\theta}(0) \mathcal{A}(p)^{T}+z^{-1} \mathcal{A}(p) R_{\theta}(0)-\mathcal{A}(p) R_{\theta}(0) \mathcal{A}(p)^{T} \\
& +z R_{\theta}(0) \mathcal{A}(p)^{T}-\mathcal{A}(p) R_{\theta}(0) \mathcal{A}(p)^{T} \\
& =R_{\theta}(0)-\mathcal{A}(p) R_{\theta}(0) \mathcal{A}(p)^{T},
\end{aligned}
$$

and (5) establishes (4).

[^0]: Daniel Quevedo is with the School of Electrical Engineering \& Computer Science, The University of Newcastle, Callaghan, NSW 2308, Australia; email: dquevedo@ieee.org. Jan Østergaard is with the Department of Electronic Systems, Aalborg University, Denmark; e-mail: janoe@ieee.org. Eduardo Silva is with the Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile; e-mail: eduardo.silva@usm.cl. Dragan Nešić is with the Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton, VIC 3010, Australia; Email: dnesic@unimelb.edu.au. This research was partially supported under Australian Research Council's Discovery Projects funding scheme (project number DP0988601) and the Danish Research Council for Technology and Production Sciences, grant no. 274-07-0383. E.I. Silva acknowledges the support received from CONICYT through grants Anillo ACT53 and Fondecyt 1110646.

