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Correction to “Packetized Predictive Control of Stochastic
Systems over Bit-Rate Limited Channels with Packet Loss”

Daniel E. Quevedo, Member, IEEE, Jan Østergaard, Senior Member, IEEE,
Eduardo I. Silva, Member, IEEE, and Dragan Nešić, Fellow, IEEE

Abstract— We correct the results in Section V of the above mentioned
manuscript.

In [1], we showed that a particular class of networked control
system (NCS) with quantization, i.i.d. dropouts and disturbances can
be described as a Markov jump linear system of the form

θk+1 = Ā(dk)θk + B̄(dk)νk, (1)

where

θk ,

»
xk

bk−1

–
∈ Rn+N , νk ,

»
wk

nk

–
∈ Rm+N

and {dk}k∈N0 is a Bernoulli dropout process, with

Prob(dk = 1) = p ∈ (0, 1).

Throughout [1] we showed that properties of the NCS can be
conveniently stated in terms of the expected system matrices

A(p) = E{Ā(dk)}
B(p) = E{B̄(dk)} =

ˆ
Bw Bn(p)

˜
and the matrix eA = Ā(1) − Ā(0). Unfortunately, Theorem 4 in
Section V-A of [1] is incorrect. For white disturbances {wk}k∈N0 ,
the statement should be as given below. Non-white {wk}k∈N0 can
be accommodated by using standard state augmentation techniques;
see, e.g., [2].

Theorem 4: Suppose that (1) is MSS and AWSS and that
{wk}k∈N0 is white with σ2

w = trRw(0). Define

F(z) ,
`
zI −A(p)

´−1

C(p) , (σ2
w/m)BwBT

w + (σ2
n/N)(1− p)E ∈ R(n+N)×(n+N),

(2)

where (see [1, Sec.2] for definitions)

E ,
Bn(p)Bn(p)T

(1− p)2
=

»
B1e

T
1 (ΨT Ψ)−1e1B

T
1 B1e

T
1 (ΨT Ψ)−1

(ΨT Ψ)−1e1B
T
1 (ΨT Ψ)−1

–
.

(3)
Then, the spectral density of {θk}k∈N0 is given by

Sθ(e
jω) = F(ejω)

`
p(1− p) eARθ(0) eAT + C(p)

´
FT (e−jω), (4)

where Rθ(0) solves the following linear matrix equation:

Rθ(0) = A(p)Rθ(0)A(p)T + p(1− p) eARθ(0) eAT + C(p). (5)
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Proof: See the appendix.
To further elucidate the situation, we note that (5) is linear and

that its solution can be stated as the linear combination

Rθ(0) = (σ2
w/m)Rw

θ (0) + (σ2
n/N)Rn

θ (0), (6)

where Rw
θ (0) and Rn

θ (0) satisfy

Rw
θ (0) = A(p)Rw

θ (0)A(p)T + p(1− p) eARw
θ (0) eAT + BwBT

w

Rn
θ (0) = A(p)Rn

θ (0)A(p)T + p(1− p) eARn
θ (0) eAT + (1− p)E .

Therefore, the distortion D defined by (52) in [1] is given by

D , tr(Q̃Rθ(0)) + λ[0 eT
1 ]Rθ(0)[0 eT

1 ]T ,

where Q̃ is given in terms of the Kronecker product

Q̃ ,

»
1 0
0 0

–
⊗Q.

Thus, D = ασ2
n + β, with

α = (1/N)tr(Q̃Rn
θ (0)) + (λ/N)[0 eT

1 ]Rn
θ (0)[0 eT

1 ]T

β = (σ2
w/m)tr(Q̃Rw

θ (0)) + (λσ2
w/m)[0 eT

1 ]Rw
θ (0)[0 eT

1 ]T .

The above expressions replace Lemma 11 of [1].
To derive a noise-shaping model, (6) can be substituted into into (4)

to provide

Sθ(e
jω) = F(ejω)

`
(σ2

w/m)KwKT
w + (σ2

n/N)KnKT
n

´
FT (e−jω),

where Kw and Kn are obtained from the factorizations

KwKT
w = BwBT

w + p(1− p) eARw
θ (0) eAT

KnKT
n = (1− p)

`
E + p eARn

θ (0) eAT ´
.

If we define
H(z) ,

ˆ
I 0

˜
F(z),

then the above provides the noise-shaping model depicted in Fig. 2.
The latter replaces Fig. 2 and Corollary 1 of [1].

Remark 1: We would like to emphasize that Theorem 4 can also
be proven by adapting results in [3]–[5]. However, the noise shaping
interpretation in Fig. 2 does not explicitly need an additional noise
term to quantify second-order dropout effects, as opposed to what is
done in [3]–[5]. �

The upper bound on the coding rate provided by Theorem 5 in
[1] is also no longer correct, since it relied upon Rθ(0). The new
Theorem 5 is provided below:

Theorem 5: For any 1 ≤ N ∈ N, the minimum bit-rate R of ~uk

satisfies:

R(D) ≤ 1

2
log2

`
det(I + (N/σ2

n)Rξ(0))
´

+
N

2
log2

„
πe

6

«
+ 1,

(7)
where

Rξ(0) =
ˆ
Γ 0

˜
Rθ(0)

ˆ
Γ 0

˜T
.

Proof: Follows immediately from (73) in [1] by omitting the
last step where Rξ(0) was written in terms of Rx(0) and (50) was
used.
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Fig. 2. Noise-Shaping Model of the NCS

Note that, in view of (6), the bound in (7) provides

lim
σ2

n→∞
R(D) ≤ 1

2
log2

`
det(I + [Γ 0]Rn

θ (0)[Γ 0]T )
´

+
N

2
log2

„
πe

6

«
+ 1,

expression, which is positively bounded away from zero and replaces
(58) in [1].

Remark 2: By using results in [6, Sec.5], the covariance matrix
Rθ(0) can be expressed explicitly in terms of Kronecker products
and matrix inversions. Specifically, let

G , A(p)⊗A(p)T + p(1− p) eA⊗ eAT

and let c ∈ R(n+N)2 be the vectorized version of the matrix C(p)
given in (2). Then, the vectorized version of Rθ(0) is simply given
by r = (I − G)−1c. Using this approach, it is straight-forward to
numerically evaluate the rate and distortion in (7). �

We finalize this note by revisiting the NCS considered in Section V-
C of [1]. Fig. 3 illustrates the rate and distortion trade-off for different
horizon lengths and a fixed packet loss probability p = 0.0085. It
may be noticed that the distortion can be reduced by using a longer
horizon length in addition to increasing the bit-rate. Fig. 4 shows that
when the packet-loss probability increases, it is necessary to use a
larger horizon length to guarantee stability and thereby reduce the
distortion.
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Fig. 3. Bound on D(R) obtained from (7) for a fixed p = 0.0085 and
different horizon lengths N = 1, 2, 3. The distortion is here expressed in the
log-domain.
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Fig. 4. Bound on D(R) obtained from (7) for different packet loss
probabilities and different horizon lengths.

APPENDIX

PROOF OF THEOREM 4

Since {νk}k∈N0 is white and thus E{θkνT
k } = 0, the system

recursion (1) provides

E{θk+1θ
T
k+1} = E{Ā(dk)θkθT

k Ā(dk)T }+E{B̄(dk)νkνT
k B̄(dk)T }.

Therefore, by conditioning on dk and using the law of total expec-
tation, we obtain:

E{θk+1θ
T
k+1} = pE{Ā(dk)θkθT

k Ā(dk)T | dk = 1}
+ (1− p)E{Ā(dk)θkθT

k Ā(dk)T | dk = 0}
+ pE{B̄(dk)νkνT

k B̄(dk)T | dk = 1}
+ (1− p)E{B̄(dk)νkνT

k B̄(dk)T | dk = 0}
= pĀ(1)E{θkθT

k }Ā(1)T + (1− p)Ā(0)E{θkθT
k }Ā(0)T

+ pB̄(1)Rν(0)B̄(1)T + (1− p)B̄(0)Rν(0)B̄(0)T ,

where we have used the fact that {dk}k∈N0 is Bernoulli and νk and
θk are independent of dk. Direct algebraic manipulations allow us to
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rewrite the above as

E{θk+1θ
T
k+1} = A(p)E{θkθT

k }A(p)T

+ p(1− p) eAE{θkθT
k } eAT + C(p).

(8)

In a similar way, one can derive that

E
˘
θk+`+1θ

T
k

¯
= E

˘
(Ā(dk+`)θk+` + B̄(dk+`)νk+`)θ

T
k

¯
= E

˘
Ā(dk+`)θk+`θ

T
k

¯
+ E

˘
B̄(dk+`)νk+`θ

T
k

¯
= A(p)E

˘
θk+`θ

T
k

¯
+ B(p)E

˘
νk+`θ

T
k

¯
= A(p)E

˘
θk+`θ

T
k

¯
, ∀` ∈ N0,

(9)

since {νk}k∈N0 is white and θk and θk+` are independent of dk+` for
non-negative values of `. Equation (9) gives the explicit expression

E
˘
θk+`θ

T
k

¯
= A(p)`E

˘
θkθT

k

¯
, ∀` ∈ N0. (10)

Since the system is AWSS, we have limk→∞ E{θk+1θ
T
k+1} =

Rθ(0), the stationary covariance matrix of {θk}k∈N0 . By (8) and
results in [7], [8], the latter is given by the solution to (5).

On the other hand, in steady state, (10) gives that the covariance
function

Rθ(`) = A(p)`Rθ(0), ∀` ∈ N0. (11)

Consequently, the positive real part of the spectrum of {θk}k∈N0 is
given by

S+
θ (z) =

1

2
Rθ(0) +

∞X
`=1

Rθ(`)z
−`

=
`
(1/2)I +A(p)

`
zI −A(p)

´−1´
Rθ(0),

where we have used the fact that, by assumption, (1) is MSS and
AWSS, thus A(p) is Schur (see Lemma 4 in [1]) and the geometric

series ∞X
n=0

`
A(p)z−1´n

=
`
I −A(p)z−1´−1

.

Since {θk}k∈N0 is AWSS, its spectrum satisfies [9]

Sθ(z) = S+
θ (z) +

`
S+

θ (z−1)
´T

= Rθ(0) +A(p)
`
zI −A(p)

´−1
Rθ(0)

+ Rθ(0)
`
z−1I −A(p)

´−TA(p)T .

Therefore, we have`
zI −A(p)

´
Sθ(z)

`
z−1I −A(p)

´T

=
`
zI −A(p)

´
Rθ(0)

`
z−1I −A(p)

´T

+
`
zI −A(p)

´
A(p)

`
zI −A(p)

´−1
Rθ(0)

`
z−1I −A(p)

´T

+
`
zI −A(p)

´
Rθ(0)

`
z−1I −A(p)

´−TA(p)T `
z−1I −A(p)

´T

=
`
zI −A(p)

´
Rθ(0)

`
z−1I −A(p)

´T

+A(p)Rθ(0)
`
z−1I −A(p)

´T
+

`
zI −A(p)

´
Rθ(0)A(p)T ,

since (zI −A(p))A(p)(zI −A(p))−1 = A(p). Thus,

F−1(z)Sθ(z)F−T (z−1)

=
`
zRθ(0)−A(p)Rθ(0)

´`
z−1I −A(p)

´T
+ z−1A(p)Rθ(0)

−A(p)Rθ(0)A(p)T + zRθ(0)A(p)T −A(p)Rθ(0)A(p)T

= Rθ(0)− z−1A(p)Rθ(0)− zRθ(0)A(p)T

+A(p)Rθ(0)A(p)T + z−1A(p)Rθ(0)−A(p)Rθ(0)A(p)T

+ zRθ(0)A(p)T −A(p)Rθ(0)A(p)T

= Rθ(0)−A(p)Rθ(0)A(p)T ,

and (5) establishes (4). �


