
 

  

 

Aalborg Universitet

Monitoring of anticoagulant therapy applying a dynamic statistical model

Nielsen, Peter Brønnum; Lundbye-Christensen, Søren; Larsen, Torben Bjerregaard;
Kristensen, Søren Risom; Hejlesen, Ole
Published in:
Computer Methods and Programs in Biomedicine

DOI (link to publication from Publisher):
10.1016/j.cmpb.2012.11.005

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Nielsen, P. B., Lundbye-Christensen, S., Larsen, T. B., Kristensen, S. R., & Hejlesen, O. (2013). Monitoring of
anticoagulant therapy applying a dynamic statistical model. Computer Methods and Programs in Biomedicine,
110(3), 380-388. https://doi.org/10.1016/j.cmpb.2012.11.005

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 25, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60514303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.cmpb.2012.11.005
https://vbn.aau.dk/en/publications/1e99e541-e66c-4012-967f-d81c7b539fcf
https://doi.org/10.1016/j.cmpb.2012.11.005


c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 380–388

j o ur na l ho me  pag e: www.int l .e lsev ierhea l th .com/ journa ls /cmpb

Monitoring  of  anticoagulant  therapy  applying  a dynamic
statistical model

Peter Brønnum Nielsena,∗, Søren Lundbye-Christensena, Torben Bjerregaard Larsena,
Søren  Risom Kristensenb, Ole Kristian Hejlesenc

a Department of Cardiology, Aalborg AF Study Group, Cardiovascular Research Centre, Aalborg Hospital, Srd. Skovvej 15, Denmark
b Department of Clinical Biochemistry, Cardiovascular Research Centre, Aalborg Hospital, Srd. Skovvej 15, Denmark
c Medical Informatics Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, D1-210, Denmark

a  r  t  i  c  l  e  i  n  f  o

Article history:

Received 10 February 2012

Received in revised form

14  October 2012

Accepted 19 November 2012

Keywords:

a  b  s  t  r  a  c  t

Patients with an increased risk of thrombosis may require treatment with vitamin K-

antagonists such as warfarin. Treatment with warfarin has been reported difficult mainly

due to high inter- and intraindividual variability in response to the drug [1]. Using pre-

dictive models that can predict International Normalised Ratio (INR) values enables for a

higher degree of individualised warfarin dosing regime. This paper reports the outcome

of  the development of a dynamic prediction model. It takes warfarin intake and INR val-

ues  as inputs, and uses an individual sensitivity parameter to model response to warfarin
Anticoagulation treatment

State-space model

Warfarin

International Normalised Ratio

intake. The model is set on state-space form and uses Kalman filtering technique to opti-

mise  individual parameters. Retrospective test of the model proved robustness to choices of

initial parameters, and feasible prediction results of both INR values and suggested warfarin

dosage, which may prove beneficial for both patients and healthcare takers.

tight control, the time in therapeutic range has in large stud-
ies been reported to be below 70% and dependent on the INR
Statistical model

1.  Introduction

Several patients at risk of thrombosis will need some kind of
anticoagulation therapy. Oral anticoagulation therapy (OAT)
with coumarins (vitamin K-antagonists) is prescribed both
for prophylaxis and therapy to a large group of patients
at increased risk of thrombosis or thromboembolism, e.g.
patients with atrial fibrillation, heart valve replacement, deep
venous thrombosis, and pulmonary embolism [2]. The most
serious adverse effect of OAT is bleeding. The treatment
attempts to balance between avoiding haemorrhages due to
over-treatment and recurrence of thrombotic events due to

insufficient OAT. The treatment is usually assessed by measur-
ing the International Normalised Ratio (INR) value. This ratio
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represents a patient’s coagulation time (prothrombin time)
compared to a normal individual.

Maintaining patients within the desired therapeutic win-
dow of INR values, which is between 2.0 and 3.0 for most
patients, represents a challenge due to at least three factors:
(1) a target INR value restricted by a relatively narrow thera-
peutic range, (2) an inter-individual variation of the effect of
oral vitamin K antagonists, and (3) changes in dietary intake
of vitamin K [3,4]. In other words, efficacy and safety of OAT
are dependent on the maintenance of the INR within a narrow
range recommended by current practice guidelines [5]. Despite
range [6,7]. The fact that no simple relationship exists between
a vitamin K-antagonist (VKA) dose and the therapeutic effect

erved.

dx.doi.org/10.1016/j.cmpb.2012.11.005
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ight be an explanatory factor for relatively low adherence to
NR in the therapeutic range. The pharmacological character-
stics of anticoagulant agents are in general well documented,
hile the management of warfarin is still a complex task. War-

arin is difficult to dose correctly. This is mainly due to inter-
nd intraindividual variability between patients’ response to
he required maintenance dose [1].

OAT is predominantly monitored by laboratory determina-
ion of INR using plasma obtained by venipuncture. Another

ethod is patient self-management (PSM), in which the
atients analyse a drop of blood using a portable coagulome-
er (INR-monitor) and subsequently determine their dose of
AT independently. At present, PSM has shown good clinical

esults in selected patients, and these patients will typically
easure INR once a week [8]. Some patients assigned to PSM

re using decision aiding electronic tools, or an online decision
upport system that will provide an on-screen dosage advice.
uch tools have been described and refined in the literature
uring the past 30 years [9,10]. Common for these systems are
n attempt of interpretation of prothrombin time (often pro-
ided as INR), to provide an advice on optimal VKA dose, and
or some systems to give an estimate of when next measure-

ent/test is needed. Their applications are mainly utilised in
nitiation of warfarin therapy or in the warfarin maintenance
hase (or both). Other areas of possible use of such systems
ould be as guidance in achieving a new INR target in a post-
perative situation.

In general, model based approaches in a broad field of
edical treatment and monitoring has been described. Har-

is suggested a class of auto regressive (AR) models for within
ndividual variation in blood constituents [11,12]. Similar mod-
ls have been used for monitoring tumour markers in small
ell lung cancer and breast cancer [13–15]. State space mod-
lling techniques have been applied in monitoring of medical
arameters that develops over time, one of the first exam-
les being the monitoring of renal transplants by Smith and
est who used a multi process Kalman filter for change point

etection [16]. Alternatively Cusum techniques have been sug-
ested for detecting changes in the behaviour of biomarker
eries [17]. A general auto regressive predictive model for
lucose levels in diabetic patients has been applied, which
rovided sufficiently accurate estimates of glucose levels [18].

An attempt using a state-space model to provide warfarin
ose advices has been proposed by Pannocchia and Brambilla

19]. This approach handles the initial state and noise estima-
ion from patient data, and the algorithm attempts to keep the
NR value close to the target INR or within the desired thera-
eutic range. They build a model based on a critically damped
econd order system, which requires 3 or 4 INR measurements
o adopt the model to obtain patient specific parameters; these
re not updated afterwards. Their work aims to improve anti-
oagulation treatment for patients by achieving a more  stable
AT and ultimately reduce the number of adverse events
aused from poor OAT management.

The purpose of this paper is to use quality data in the devel-
pment of a dynamic predictive model based on a state-space

odelling approach, which may guide patients in OAT. The

lgorithm will provide an individual sensitivity parameter to
ccount for inter- and intraindividual responses to warfarin.
his parameter can change over time to correct for i.e. age,
 o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 380–388 381

concurrent diseases, or new co-medication, hence providing
a patient’s current warfarin sensitivity. This may prove piv-
otal in clinical situations for long-term OAT patients and for
healthcare takers.

2.  Materials  and  methods

2.1.  Initial  data  analysis

A retrospective statistical evaluation of variability in INR val-
ues was performed. This initial data mining has the purpose
of revealing relations between INR values and past actions
affecting INR values. The current value, INRt, is predicted from
past values, INRt−1, INRt−2, INRt−3, INRt−4 as well as past war-
farin intakes, dt−1, dt−2, dt−3, dt−4, in a multivariable regression
model. From this model we  inferred the following (data not
shown, readers are referred to [20]);

1. An AR(1) model suffices to describe the variation in INR.
The autoregressive coefficients do not vary significantly
between patients.

2. The dependence of warfarin is sufficiently described by two
lags. The warfarin sensitivities proved significant between-
patient variations.

3. The standard deviation varies in the population. A his-
togram of the individual precisions (reciprocal variances)
indicated a unimodal right skewed distribution.

4. Residuals from this regression model were mutually uncor-
related and showed no deviations from normality.

2.2.  Model  development

The model from the described initial data analysis will be
applied for INR value predictions. The model and algorithms
have been implemented in Matlab scripts (MathWorks Inc.,
MA). Let yp,t for t = 1, . . .,  np and p = 1, . . .,  P be the INR mea-
surement at day t for the pth patient. Indexing for patient is
suppressed in the following for notational convenience. We
define the observation by the relation

yt = T + �t + �t,

where the deviation from target INR, T, is denoted �t and �t is
observational noise. The latent variables driving the process
are dose, Dt, sensitivity, At, and deviations from target, �t. The
latent random variables are organised in a three dimensional
vector:

�t =

⎡
⎢⎣

Dt

At

�t

⎤
⎥⎦ .

The relation between the observation and the latent vari-
ables can be formulated in the observation equation as

yt = T + F��t + �t, (1)
where
F =

⎡
⎣ 0

0

1

⎤
⎦ .

dx.doi.org/10.1016/j.cmpb.2012.11.005
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In state space form the evolution over time is formulated
recursively in the system equation;

�t = G(�t−1) + wt, (2)

where wt is a three dimensional error term and the evolution
function, G(·), is described in the following.

The time evolution of the individually recommended dose,
Dt, is modelled in state space form as

Dt = GD(�t−1) + wD,t = Dt−1 + wD,t, (3)

where the standard deviation of the noise term on D reflects
the expected magnitude of day-to-day changes in dosage.
Hereby we allow for a small drift in dosage over time.

The sensitivity, At vary between patients but not over time,
hence

At = GA(�t−1) = At−1. (4)

The warfarin effect on INR at day t is influenced by intake
of warfarin at day t − 1 and day t − 2. In the model formula-
tion warfarin affects INRt through a between-day-profile of
intake, (dt−1 + �dt−2), where � is common to all patients. The
non-trivial structure of the regression model from the initial
data is expressed in the time evolution of the last coordinate

�t = G�(�t−1) + w�t = At−1((dt−1 + �dt−2)

− (1 + �)Dt−1) + ��t−1 + w�,t. (5)

The transformation G(·) is non-linear in � due to the mixed
term, At−1Dt−1. The term ��t−1 (assuming |�| < 1) and the noise
term w�,t model the AR(1) structure revealed in the initial data
analysis.

The error term, wt = (wD,t, 0, w�,t)
�, is assumed to be mul-

tivariate normally distributed with zero mean and a variance
specific to the patient. This noise term will be expressed con-
ditional on the individual precision, �, by letting

wt|�∼N(0; �−1W),  (6)

with the scaled variance matrix

W =

⎡
⎢⎣

WD 0 0

0 0 0

0 0 1

⎤
⎥⎦ . (7)

where WD is the ratio between the evolution noise of Dt and �t.
According to the initial data analysis, an AR(1) model suffices

to describe the variation in INR, hence the observational noise,
�t, is absent.

The distribution of precisions over the population is chosen
to be a gamma distribution. The gamma  distribution is a right
 b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 380–388

skewed distribution in accordance with the between patient
distribution of precisions.

�∼Ga

(
n0

2
,

k0

2

)
. (8)

The parameters n0 and k0 quantify the variation between
patients in precisions.

The dynamic process is commenced by specifying the dis-
tribution of �0

�0|�∼N(m0; �−1C0), (9)

where m0 describes the population average dose, sensitiv-
ity, and deviation from target, and where C0 quantifies the
corresponding variance over the population. The matrix C0

is defined such that C0 · (k0/n0) is the variance matrix of
the population distribution of dose, sensitivity, and devia-
tion from target INR. If the warfarin intake is optimal, i.e.
(dt−1 + �dt−2) = (1 + �)Dt−1, the process of (5) is a stationary AR(1)
process provided that C0,33 = 1/(1 − �2).

The parameters � and � describe the dynamics of the
INR-warfarin interaction, whereas m0, C0, n0 and k0 describe
the distribution between patients. This model is a conjugate
normal-gamma state-space model apart from the fact that the
time evolution of �t is non-linear in �. By using the inverse
gamma distribution for describing the between patient dis-
tribution, we can exploit the conjugate form when using the
model for prediction. A detailed exposition of normal/gamma
state space models is found in [21].

2.3.  Model  predictions

The non-linearity of the time evolution may be handled by
application of the extended Kalman filter [22] for model pre-
dictions. Established population coefficients will be utilised
as initiation values and gradually be adopted into individual
parameters. Hence each population parameter will gradually
develop into patient specific parameters and each patient will
be his or hers own reference. The distribution of �t and yt given
prior observations, Dt−1 = {y1, . . . , yt−1}, and � will be approx-
imated by a normal distribution specified by the actual mean
and variance of the non-linear combination of the elements
of �t−1. The process is initiated with the distribution of � and
�0|�, see (8) and (9). Pseudo code for the Kalman filter is shown
in Fig. 1.

Assume at time t − 1 the distribution of the latent process
follows:

(�t−1|Dt−1, �)∼N(mt−1; �−1Ct−1),

(�|Dt−1)∼Ga

(
nt−1

2
,

kt−1

2

)
. (10)
The conditional mean of �t given � and Dt−1 is

at = G(mt−1) + h, (11)

dx.doi.org/10.1016/j.cmpb.2012.11.005
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Fig. 1 – Pseudo code describing the extended Kalman filter
for model predictions in four steps. The model is initialised
(1) with population parameters; for each day the
conditional mean and conditional variance is calculated (2);
this allows for prediction of an INR value (3); if an INR
measurement is available (4), the Kalman filter will use this
information to update the (initial) population coefficients
w

w

h

v
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w
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W
w
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o
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(

ith (adopted) patient specific values.

here the non-linearity of G(·) is adjusted for by addition of h

 =

⎡
⎣ 0

0

−(1  + �)Ct−1,12kt−1/nt−1

⎤
⎦ .

Details are given in Appendix A. Similarly the conditional
ariance can be shown to be

t = GtCt−1G�
t + W + H, (12)

here Gt is the gradient of G(·) evaluated in mt−1,

t =

⎡
⎣ 1 0 0

0 1 0

−(1 + �)mt−1,2 dt−1 + �dt−2 − (1 + �)mt−1,1 �

⎤
⎦ ,

 is the scaled variance matrix, see (7), and H is a 3 × 3 matrix
ith Hij = 0 except for

33 = (1 + �)2
(

Ct−1,11Ct−1,22 + C2
t−1,12

) kt−1

nt−1
.

The non-linearity adjustment, H, is found by regarding sec-
nd moments of products of bivariate normals, see Appendix

 for further details. The conditional distribution (prior for �t)

s approximated with a normal distribution;

�t|Dt−1, �)∼N(at; �−1Rt)
 o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 380–388 383

and the predictive distribution of the INR  measurement to
come is

(yt|Dt−1, �)∼N(ft; �−1Qt) (13)

with ft = at,3 + T = F�at + T, and Qt = Rt,33 = F�RtF. Note that
marginalising out � in (13) by the distribution (10) yields a
T-distribution for yt|Dt−1. Updating the distribution of �t for
the new observation is done by conditioning on yt in the joint
conditional distribution of (�t, yt) given Dt−1;

(�t|Dt, �)∼N(mt; �−1Ct),

where

mt = at + FRt(yt − ft)
Qt

(14)

and

Ct = Rt − FRt(FRt)
�

Qt
(15)

The distribution of the precision, �, is updated by
nt = nt−1 + 1 and kt = kt−1 + (yt − ft)2/Qt. Note that nt = n0 + N,
where N  is the number of available INR measurements at time
t, and kt measures the cumulated squared, normalised pre-
diction error. In case of missing INR values or if long-term
predictions are required, the distribution of �t is not updated
as in (14) and (15), but rather mt = at and Ct = Rt. The preci-
sion parameters are left unchanged, nt = nt−1 and kt = kt−1. The
recursive characteristic of the algorithm is hereby maintained.

2.4.  Parameter  optimisation

The parameters used in the predictive model can be divided
into population parameters and dynamic parameters. As the
model predictions require initial values for population param-
eters, moment estimates on n0, and k0 are obtained by using
a leave-one-out approach for each patient. Clinical expert
knowledge on the correlation structure between dose and sen-
sitivity towards changes in warfarin was used for quantifying
m0 and C0. This is based on population distribution of war-
farin intake and expected change in INR when steady state
dosage is changed, with e.g. one tablet per week. The values
for dosage are m0 = (2.45, 0.51, 0) and C0,11 = 0.77, C0,22 = 0.05,
and the correlation between initial dose and sensitivity is set
to −0.7. Similarly WD = 0.082 corresponding to a accumulated
change in weekly dose of a magnitude of one tablet per week.
Further, the dynamic parameters � and � are estimated by a
log-likelihood optimisation, where values for both parameters
are iteratively adjusted. The likelihood function is given as the
product of the predictive T-distribution densities obtained by
marginalising out � from the predictive distribution, see (10)
and (13). Hence the likelihood function is
l(�, �) ∝
∏

p

∏
t

(
1 +

e2
pt

nt−1

)−(nt−1+1)/2

. (16)

dx.doi.org/10.1016/j.cmpb.2012.11.005
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Fig. 2 – Three dimensional representation of the likelihood function for optimising � and �. Brighter areas corresponds to
 (16) 
higher values of the function. To ensure numerical stability,

where the prediction error normalised by individual standard
deviation, ept, is defined as

ept = ypt − fpt√
Qpt(kp,t−1)/(nt−1)

where p is patient index and t is the observation number. A
graphical representation of the likelihood function for � and �

is given in Fig. 2.
By maximising the log-likelihood function for � and � we

derive the following optimal values � = 0.52 and � = 0.87.

3.  Results

Thirty patients accepted to be contacted, six declined to par-
ticipate. Out of the 24 patients going into the study, 18 patients
completed the data collection protocol (Table 1), equivalent to
a 25% dropout rate.

A root mean square error (RMS) was selected to evaluate
the performance of the model, where

√

RMSp = 1

np

∑
t

(yp,t − fp,t)
2.

Table 1 – Outline of 18 patients receiving warfarin
therapy.

Characteristics Mean ± SDw, SDb
or number (%)

Age 56 ± 15
Female 8 (44%)
Days in study 27 ± 1.78
INR value 2.5 ± 0.36, 0.36
Warfarin intake (tablets/day) 2.41 ± 0.43, 0.92

Abbreviations:  SDw and SDb (standard deviation of within and
between individual variation).
has been up-scaled with a factor 1.5 for each data point.

The RMS  error is a non-weighted error that do not account
for expected individual variance. The average RMS  error across
patients was 0.5.

The model was used to produce predictions of INR values
for all 18 patients; an example for four patients is given in
Fig. 3.

An autocorrelation analysis on residual error is performed
to assess if the predictions produced by the model are mutu-
ally independent. The autocorrelation plot of residual error
from lag 0 to 25 is provided in Fig. 4.

The autocorrelation supports the adequacy of the model.
Predictions on simulated sequences of OAT data will be carried
out to evaluate the model behaviour when limited INR mea-
surements are available, this allows for inspection of model
performance on “normal” OAT data, where the INR value is not
measured every day. Fig. 5 depicts this scenario where the data
is “mirrored”, hence doubling the amount of warfarin data and
INR data. However, only every fifth INR measurement will be
available to the model.

The dashed horizontal lines represent the confidence lim-
its of INR predictions; longer period with no INR measurement
increases the uncertainty of the INR prediction.

4.  Discussion

This paper reports the outcome of the development of a pre-
dictive model on state-space form. The model is able to predict
INR values, but also provide a theoretically correct dose of war-
farin to maintain a patient on a preset target INR. The same
data is used in estimation and in testing, which is a method
drawback. It has been circumvented by splitting the data set
accordingly in moment estimates by using a leave-one-out
approach. It is not known if the used data is representative
for OAT patients. These patients have recently received train-

ing in patient self-management, and are expected to have an
interest in achieving a stable OAT. Further, by measuring the
INR value once a day, they can adjust for variation more  often
than patients in usual treatment.

dx.doi.org/10.1016/j.cmpb.2012.11.005
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Fig. 3 – Retrospectively model based INR predictions (solid line marked with squares) on patient data, and measured INR
values for the patient (marked with circles). The bars represents warfarin intake and the green dashed line is the theoretical
correct intake of warfarin to stay on target INR; both lines are downscaled by 0.5 for visual purposes. The horizontal dashed
l

w
d
t
i
l
w
t
o

F

F
i

ine is the patient specific target INR value.

The absence of observational noise in the model is some-
hat unusual, but is supported by the evidence from the initial
ata analysis and the ACF plot. Despite this, we  investigated
his component in a similar analysis. A measurement noise
s easily adopted in the Kalman filter, and hence a maximum
ikelihood estimation of the observational noise, based on (16),
as made. However, it was not possible to separate the evolu-

ion noise, w , from the short term observation noise on basis
t

f the data at hand.
The examples of utilising the model on patient data, seen in

ig. 3, shows how the model is able to predict the trend of INR

ig. 4 – The autocorrelation plot from lag 1–25 on residual error p
ndicates approximate 95% confidence limits.
values, most noticeably at the end of the prediction period.
Fig. 3d shows a patient with a target INR at 3. This target is
used in the calculation of the theoretical correct dose. This
is illustrated as this dose (dashed line) is above actual war-
farin intake almost during the entire period. This corresponds
well to the fact that this patients INR value is below target INR
during most of the prediction period.

Inspection of the confidence limits on INR predictions

in Fig. 5 demonstrates the importance of providing INR
measurements to the model. A closer inspection of Fig. 5b
demonstrates that at the beginning of the simulated period,

roduced from model predictions. The shaded area

dx.doi.org/10.1016/j.cmpb.2012.11.005
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Fig. 5 – Model based INR predictions for two different patients on simulated patient data. INR predictions are solid line
marked with squares and measured INR values (marked with circles). Bars represents warfarin intake downscaled by 0.5
and green dashed line is the theoretical correct dosage. The horizontal dashed lines are upper and lower confidence limits
for INR predictions.

Fig. 6 – Schematic representation of INR predictions (upper) and the resulting theoretical correct dose (middle) to stay on INR
target and the sensitivity towards changes in warfarin intake (bottom). All predictions are shown with confidence limits as
dashed lines. For reference, population values for theoretical correct dose and warfarin sensitivity are included, and the
patient data used are those provided in Fig. 3b.

dx.doi.org/10.1016/j.cmpb.2012.11.005
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he model is initialised with no INR measurements, result-
ng in large uncertainties of the first prediction, i.e. an INR
rediction within 1–8. This is caused by the warfarin intake,
hich is significantly higher than the population average.

very fifth day the model is provided with a new INR mea-
urement, hence updating m,  C, n and k. An update reduces
he uncertainty of the prediction and can be seen by more
arrow confidence limits each day after an update. To further
laborate on the behaviour of the model a graphical repre-
entation of patient sensitivity (data from Fig. 5b) is provided
long with INR predictions (all measurements included) as
ell as predictions of the theoretical correct dose, see Fig. 6.

Fig. 6 shows how the model becomes more  individualised
s the confidence limits on INR predictions, prediction of the
heoretical correct dose, and warfarin sensitivity are narrow-
ng. The model is able to obtain a feasible warfarin sensitivity,

hich can be deduced by the following: according to data in
his study the average population intake is 2.45 tablets per day.
his patient, however, has a substantial higher warfarin intake

avg. 3.95 tablets per day) and has a faster rate of metabolism
f warfarin. Due to an initial high prediction error of INR at day
ne, the model is immediately able to discover the (negative)
orrelation between this high warfarin intake and relatively
ow impact on INR, leaving a choice to lower this patients
arfarin sensitivity.

The model has potential to be used in different clinical
ettings. Patients with specific types of atrial fibrillation can
n some cases benefit from direct current (DC) conversion.
his type of patients is often treated with OAT. DC conver-
ion requires an INR value at a certain level for the procedure
o be safe. The developed model could be used in such a set-
ing, where the new specific target INR is provided, and the

odel will predict the theoretical correct dose of warfarin to
chieve that level of INR value. Anticoagulated patients who
re planned for a surgical procedure requires an INR value
elow a certain level, e.g. 1.5, before surgery is safe. INR should
n the other hand not drop too far below this value because
f the subsequent risk of thrombosis. Again, the developed
odel could be utilised to attain this strict requirement of INR

evel. To further enhance the use of the model in such clinical
ituations, the warfarin sensitivity parameter may prove use-
ul. During longer periods of time (than data available in this
tudy), the model will be able to depict an individual patient’s
esponse to warfarin changes by the sensitivity parameter. By
sing the model to predict INR values, physicians will have

 tool that can predict when an adjustment is needed to be
ble to achieve a certain INR level. Further studies on clinical
ata can show whether the model can predict variations in
osage and INR in a variety of patients and with different mea-
urement intervals. Positive results from such studies could be
mplemented in clinical practice to guide OAT patients in their
reatment.

In its current form the model has proven to perform well in
erms of predicting INR values one day into the future. Further
evelopment of the model should involve investigations on
odel performance on normal OAT data, with a maximum
f one INR measurement a week, and hence require longer
rediction period. The next step will be a test on prospective
linical data to test if the model could facilitate a better clinical
utcome in patients treated with vitamin K antagonists.
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Appendix  A.  Adjustment  for  non-linearity

The formulae for non-linearity adjustments in (11) and (12) in
the Kalman filter are explained in this Appendix A.

Consider a multivariate random vector X = (X1, X2,
X3)� ∼ N(� ; 	). Let a random variable be defined as
U = g(X) = X1X2 + X3.

Then,

EU  = g(�) + h (A.1)

where h = 	12 and

VU = G	G� + H (A.2)

where H = 	11	22 + 	2
12 and G = (�2, �1, 1) is the gradient of g

evaluated in �.

Proof. Using that 	12 = C(X1, X2) = EX1X2 − EX1EX2 =
EX1X2 + �1�2, (A.1) follows immediately. In order to obtain
the variance, we need to evaluate EX2

1X2
2 and EX1X2X3. From

Isserlis’ theorem [23], see also [24], we have for a zero-mean
multivariate normal variable Y = (Y1, Y2, Y3, Y4)� that

EY1Y2Y3 = 0

and

EY1Y2Y3Y4 = EY1Y2 EY3Y4 + EY1Y3 EY2Y4 + EY1Y4 EY2Y3.

If Y1 = Y3 and Y2 = Y4 it follows directly that

EY2
1Y2

2 = 2C(Y1, Y2)2 + VY1 VY2.

Letting Y1 = X1 − �1, Y2 = X2 − �2,and Y3 = X3 − �3, we  have

EX2
1X2

2 = �2
1�2

2 + 	11	22 + 2	2
12 + �2

1	22 + �2
2	11 + 4�1�2	12

and

EX1X2X3 = �1�2�3 + �1	23 + �2	13 + �3	12.
Recognising that

G	G� = �2
1	22 + �2

2	11 + 	33 + 2�1	23 + 2�2	13 + 2�1�2	12

dx.doi.org/10.1016/j.cmpb.2012.11.005
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we  get

VU = G	G� + 	11	22 + 	2
12

whereby (A.2) is proven. �

In the Kalman filter setting we  have

�t|Dt−1, �∼N(mt−1, �−1Ct−1).

Letting X1 = At−1, X2 = ((dt−1 + �dt−2) − (1 + �)Dt−1) + ��t,
and X3 = ��t−1, (A.1) yields

a�,t = E(�t|Dt−1, �) = G�(mt−1) + C(At−1, (dt−1 + �dt−2)

− (1 + �)Dt−1|Dt−1, �) = G�(mt−1) − �−1(1 + �)Ct−1,12,

where now G is defined in (2). Similarly, from (A.2), we get the
adjustment for non-linearity in V(�t|Dt−1, �) = �−1Rt,33 to be

	11	22 + 	2
12 = �−2(1 + �)2(Ct−1,11Ct−1,22 + C2

t−1,12).

In order to maintain conditional distributions given data
points Ds and individual precision � on the form N(� ; �−1	) we
replace �−1 with the reciprocal of the conditional mean of �.
Hence,

h = −(1 + �)Ct−1,12
kt−1

nt−1

and the adjustment of the variance �−1H = 	11	22 + 	2
12,

whereby

H = (1 + �)2(Ct−1,11Ct−1,22 + C2
t−1,12)

kt−1

nt−1
.
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