

Aalborg Universitet

Formal Verification of Continuous Systems

Sloth, Christoffer

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Sloth, C. (2012). Formal Verification of Continuous Systems.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 25, 2020

https://vbn.aau.dk/en/publications/8951ca3b-79aa-461c-b60e-7193e3cf45ad

Christoffer Sloth

Formal Verification of Continuous Systems

Formal Verification of Continuous Systems
PhD dissertation

July 2012

Contents

Contents III

Preface VII

Abstract IX

Synopsis XI

1 Introduction 1
1.1 Motivation . 1
1.2 State-of-the-Art and Background . 3
1.3 Research Hypotheses . 11
1.4 Outline of the Thesis . 12

2 Formal Verification 13
2.1 Specifications . 13
2.2 Model Checking . 14

3 Abstracting Continuous Systems by Timed Automata 17
3.1 Preliminaries . 18
3.2 Abstractions of Dynamical Systems . 24
3.3 Properties of the Abstraction . 31
3.4 Algorithmic Generation of Abstraction 37
3.5 Abstractions for Mechanical Systems 41
3.6 Conclusion . 46

4 Safety Guarantees for Continuous Systems 47
4.1 Safety Verification using Barrier Certificates 47
4.2 Compositional Safety Verification . 49
4.3 Computation of Compositional Barrier Certificates 53
4.4 Existence of Compositional Barrier Certificates 57
4.5 Design of Safe Controllers . 59
4.6 Conclusion . 61

5 Conclusions and Future Work 63
5.1 Summary of Contributions . 63
5.2 Conclusions . 64

III

CONTENTS

5.3 Future Work . 65

References 67

Contributions 75

Paper A: Verification of Continuous Dynamical Systems by Timed Automata 77
1 Introduction . 79
2 Preliminaries . 81
3 Generation of Finite Subdivision . 86
4 Generation of Timed Automaton from Finite Subdivision 91
5 Properties of the Generated Timed Automaton 92
6 Conditions for the Subdivision . 99
7 Subdividing the State Space using Lyapunov Functions 104
8 Examples . 105
9 Conclusion . 109
A Definitions . 109
B Proofs . 110
References . 114

Paper B: Complete Abstractions of Dynamical Systems by Timed Automata 117
1 Introduction . 119
2 Preliminaries . 122
3 Abstractions of Dynamical Systems . 126
4 Subdividing the State Space . 129
5 Generation of Timed Automaton from Finite Subdivision 133
6 Computation of Subdivisioning Functions 138
7 Illustrative Example . 143
8 Conclusion . 145
A Proofs and Definitions . 146
References . 147

Paper C: Abstractions for Mechanical Systems 151
1 Introduction . 153
2 Preliminaries . 154
3 Method . 156
4 Example . 162
5 Conclusion . 164
References . 165

Paper D: Compositional Safety Analysis using Barrier Certificates 167
1 Introduction . 169
2 Safety Verification using Barrier Certificates 170
3 Compositional Barrier Certificates . 171
4 Computation of Barrier Certificates . 175
5 Example . 183

IV

CONTENTS

6 Conclusion . 186
References . 186

Paper E: On the Existence of Compositional Barrier Certificates 189
1 Introduction . 191
2 Barrier Certificates . 192
3 Compositional Barrier Certificates . 193
4 Existence of Compositional Barrier Certificates 195
5 Refined Compositional Analysis . 202
6 Conclusion . 204
References . 204

Paper F: Towards Safe Robotic Surgical Systems 207
1 Introduction . 209
2 Problem Formulation . 210
3 Control Algorithm . 213
4 Simulation Results . 215
5 Conclusion . 215
A Dynamic Heart Model . 216
B Kinematic Model of Robot . 218
C Inverse Kinematics . 220
References . 224

V

Preface and Acknowledgements

This dissertation is submitted in partial fulfillment of the requirements for the degree
Doctor of Philosophy from Department of Computer Science at Aalborg University. The
work was carried out in the period from August 2009 until July 2012 under careful super-
vision of Professor Rafael Wisniewski. The members of the assessment committee were
Professor Antoine Girard, Université Joseph Fourier, France, Professor John Lygeros, Ei-
dgenössische Technische Hochschule Zürich, Switzerland, and Professor Anders P. Ravn,
Aalborg University, Denmark.

First and foremost, I would like to thank my supervisor for excellent supervision
throughout the project. I have never before met a person with such passion and enthusiasm
for his work. His knowledge has been invaluable for this project.

I was a guest at University of Pennsylvania in the Electrical and Systems Engineering
Department from February 2011 till August 2011. I would like to show my gratitude to
Professor George J. Pappas for making this stay possible, and for supervising me during
the stay. I feel that the stay gave some new perspectives on my project, which have greatly
affected the remainder of the project.

I would also like to thank MT-LAB, CISS, and the Distributed and Embedded Systems
Unit for supporting my research.

Furthermore, I would like to thank my colleagues at both the Distributed and Em-
bedded Systems Unit and Section for Automation and Control for creating a friendly
environment.

Finally, I would like to thank my family and friends for supporting me throughout the
past three years.

VII

Abstract

The purpose of this thesis is to develop a method for verifying timed temporal properties
of continuous dynamical systems, and to develop a method for verifying the safety of an
interconnection of continuous systems. The methods must be scalable in the number of
continuous variables and the verification procedures should be algorithmically synthesiz-
able.

Autonomous control plays an important role in many safety-critical systems. This
implies that a malfunction in the control system can have catastrophic consequences, e.g.,
in space applications where a design flaw can result in large economic losses. Further-
more, a malfunction in the control system of a surgical robot may cause death of patients.
The previous examples involve complex systems that are required to operate according to
complex specifications. The systems cannot be formally verified by modern verification
techniques, due to the high complexity of both the dynamical system and the specifica-
tion. Therefore, there is a need for methods capable of verifying complex specifications
of complex systems.

The verification of high dimensional continuous dynamical systems is the key to ver-
ifying general systems. In this thesis, an abstraction approach is taken to the verification
problem. A method is developed for abstracting continuous dynamical systems by timed
automata. This method is based on subdividing the state space into cells by use of sub-
divisioning functions that are decreasing along the vector field. To allow the verification
of timed temporal properties, the continuous systems are abstracted by timed automata;
hence, the Lie derivatives of the functions subdividing the state space are also used to
generate time information for the abstraction. An algorithm for generating the abstrac-
tion for polynomial vector fields is developed based on sum of squares programming. In
addition, a necessary and sufficient condition is provided for identifying the subdivision-
ing functions that allow the generation of complete abstractions. A complete abstraction
makes it possible to verify and falsify timed temporal properties of continuous dynami-
cal systems, whereas a sound abstraction allows the verification of universally quantified
timed temporal properties on positive normal form of continuous dynamical systems.

To allow safety verification of higher dimensional dynamical systems, a composi-
tional safety verification technique is developed. It is shown that dual decomposition can
be applied on the problem of generating barrier certificates, resulting in a compositional
formulation of the safety verification problem. This makes the barrier certificate method
applicable to the verification of high dimensional systems, but at the cost of conservatism
in terms of constraining the barrier functions to be additively separable.

The developed abstraction method enables verification of timed specifications for con-
tinuous dynamical systems, which other methods are not capable of. In addition, the
increased information in the abstraction in terms of time makes the method useful for,

IX

CONTENTS

e.g., improved safety verification. Finally, the compositional safety verification allows
verification of high dimensional systems.

X

Synopsis

Formålet med denne afhandling er, at udvikle en metode til verificering af tidsspecifika-
tioner for kontinuerte dynamiske systemer, og at udvikle en metode til sikkerhedsveri-
fikation af kontinuerte systemer. Metoderne skal være skalerbare i antallet af kontinuerte
variable, og verifikationsproceduren skal kunne udføres af algoritmisk.

Autonom regulering spiller en vigtig rolle i mange sikkerhedskritiske systemer. Dette
indebærer, at en fejl i et reguleringssystem kan forårsage katastrofale konsekvenser, fx
kan en designfejl i en rum mission forårsage et stort økonomisk tab. Ydermere kan en fejl
i reguleringssystemet af en kirurgiskrobot medføre død for en patient. Disse eksempler
er givet af komplekse systemer, der skal operere i overensstemmelse med deres specifika-
tion. Systemerne kan ikke blive formelt verificeret med moderne verificeringsteknikker,
grundet den høje kompleksitet af både system og specifikation. Derfor er der et behov for
verifikationsmetoder, der er i stand til at verificere komplekse specifikationer for kom-
plekse systemer.

Verifikation af kontinuerte dynamiske systemer af høj dimension er nøglen til at verifi-
cere generelle systemer. I denne afhandling genereres abstraktioner for at muliggøre ver-
ifikationen. En metode er udviklet til abstraktion af kontinuerte dynamiske systemer med
tidsautomater. Metoden er baseret på en inddeling af tilstandsrummet ved brug af inddel-
ingsfunktioner, der er aftagende i retning af vektorfeltet. For at muliggøre verifikation af
tidsspecifikationer er de kontinuerte dynamiske systemer abstraherede med tidsautomater.
Hermed benyttes den Lie afledede af inddelingsfunktionerne også til generering af tidsin-
formation i den abstrakte model. En algoritme til generering af abstraktionen er udviklet
til polynomiske vektorfelter ved brug af summe af kvadrerede polynomier. Ydermere er
en tilstrækkelig og nødvendig betingelse for inddelingsfunktionerne fundet, der fortæller
hvilke funktioner, der kan benyttes til generering af fuldstændige abstraktioner. En fuld-
stændig abstraktion muliggør verificering of falsifikation af tids temporale specifikationer
af kontinuerte dynamiske systemer, mens andre abstraktioner kun tillader verificering af
universelt kvantificerede specifikationer.

For at muliggøre sikkerhedsverifikation af højereordenssystemer er en kompositionel
metode udviklet. Det er vist at en dual dekomposition af problemet, der benyttes til ge-
nerering af barriere certifikater, resulterer i en kompositionel formulering af problemet.
Dette gør barriere certifikat metoden anvendelig til verificering af systemer af høj di-
mension, dog er metoden mere konservativ end den oprindelige metode, da klassen af
tilladelige funktioner er mindre.

Den udviklede abstraktionsmetode muliggør verifikation af tidsspecifikationer for
kontinuerte dynamiske systemer, som andre metoder ikke kan håndtere. Ydermere har
metoden vist sig brugbar til verificering af sikkerhedsspecifikationer. Sidst muliggør
metoden verificering af systemer af høj dimension.

XI

1 Introduction

This chapter provides a motivation for studying verification of continuous systems, gives
an overview of related literature, states the research hypothesis, and outlines the remain-
der of the thesis.

1.1 Motivation

Every system is designed to have an intended behavior that fulfills its functional require-
ments, but most often it is not clear if a system actually always exhibits the intended be-
havior. Correct behavior is not crucial for all systems, as long as the systems most often
or almost satisfy the specification. Today’s systems are getting larger and more complex,
have more elaborate requirements, and are expected to satisfy their specification. Further-
more, autonomous control is being integrated in safety-critical systems such as surgical
robots, where an undesired behavior may cause mortality [MHDK11]. Therefore, there
is a need for methods that guarantee the correctness of systems.

Formal verification is concerned with the generation of a proof of correctness for a
system model with respect to an associated specification. The formal verification provides
an answer to the following problem.

Problem 1: Given a system model and a specification of allowed and required behavior. Determine
if the possible behavior of the system complies with the specification.

The verification problem is generally difficult to solve; in fact, it can only be solved
for certain classes of systems and specifications [HKPV98, AHLP00, LPS00].

Formal verification has been successfully treated in the computer science commu-
nity for software verification and program analysis, and more recently there has been
a growing interest in the verification of control systems. This includes the verification
of hybrid systems, cyber-physical systems, systems consisting of interacting agents, and
autonomous systems operating in challenging environments [Alu11]. In particular, for-
mal verification methods have been applied to robotic applications [DGH+11, BBE+07]
and avionics [TMG01]. In this thesis, formal verification is applied to wind turbines, to
show that a wind turbine does not exceed its load bound during an emergency shutdown
procedure, and to design a controller that ensures the safety of a surgical robot, which
compensates for the physiological motions of a patient during heart surgery.

It is only possible to verify a limited class of dynamical systems exactly [AHLP00].
Therefore, most methods for verifying dynamical systems rely on some degree of approx-

1

Introduction

C
om

pl
ex

ity
of

Sp
ec

ifi
ca

tio
n

Complexity of System Model

Verifiable

Not verifiable

Figure 1.1: Graph of a line showing the frontier of system verification. It indicates that
complex specifications can be formally verified for simple systems, and as the complex-
ity of the systems increases, the expressiveness of the specification that can be verified
decreases.

imation. The consequence of approximation is that a verification algorithm may give an
inconclusive answer to Problem 1. For example, a method based on over-approximating
the reachable set of a system can verify safety, but not falsify safety. This issue depends
on both the specification and the considered system model.

The models used in the control of practical systems often have a large number of
continuous variables. Therefore, the applicability of verification methods depends to a
high extend on their scalability properties. This is a general issue that also applies to more
traditional controller design methods. Methods based on linear matrix inequalities (LMIs)
are very popular in the control community, due to their scalability properties, and even
though the class of systems that can be treated with LMIs is restricted. When the LMI-
framework is extended to sum of squares, scalability issues arise and the applicability
decreases.

Recently, a lot of research effort has been put into the development of compositional
methods in an attempt to alleviate the scalability issues. These methods allow the veri-
fication of a system by individual verification of subsystems, via composing the proofs
for the subsystems into a proof for the interconnected system. However, it is difficult to
decompose a continuous system into subsystems without making the subsequent analysis
too conservative, as the interconnection of the subsystems is given by continuous signals.

Figure 1.1 depicts the trend of the tradeoff that is faced in system verification. The
line indicates that it is possible to verify complex specifications of simple system models,
and shows that only simple specifications can be verified for complex systems. Note that
a measure of system complexity of a continuous system should include both dimension
of the system and structure of the vector field.

The desire to move this frontier is the motivation for this work. The overall aim of this
thesis is to move the frontier to allow formal verification of more complex specifications
for more complex system models.

The verification of continuous dynamical systems is important for the verification
of both continuous and hybrid systems, as this is the main source of complexity in the

2

2 State-of-the-Art and Background

verification procedure [GLZN09]. For continuous systems, the verification of simple
properties such as stability may be difficult. Therefore, it is also relevant to extend the
specifications that can be verified for a class of continuous systems.

Some verification methods are tailored to proving only one particular property of
a system. These methods are often more elegant and less complex to solve than general
verification methods. This underpins the important point that a verification method should
be chosen based on the system class and the property that should be verified.

Safety verification of continuous systems is worth its own study, and has received a
lot of attention. A system is safe if it cannot reach an unsafe subset of its state space
from a set of initial states. One of the motivations for studying model predictive control
is the inclusion of state constraints in the formulation [CB99], which can be expressed as
a safety specification.

Although verification problems are interesting, the synthesis of provably correct sys-
tems is even more intriguing. However, the synthesis problem is more difficult than the
verification. Therefore, the literature is more limited on this subject. The primary focus
of this thesis is formal verification. In fact, only Paper F is concerned with synthesis of
safe controllers.

This thesis addresses the following:

• Development of a verification method for continuous systems that allows the veri-
fication of timed temporal logic specifications. The method is based on abstracting
continuous systems by timed automata.

• Development of a method for verifying the safety of high-dimensional continuous
systems. It is based on the generation of barrier certificates and decomposing the
verification problem into coupled subproblems.

• Development of a method for synthesizing safe controllers for continuous systems.
The method is also based on the barrier certificate method.

1.2 State-of-the-Art and Background

The purpose of this section is to introduce work that is similar to the contributions of this
thesis, to show how the developed methods fit into the state-of-the-art. The thesis contains
contributions in relation to abstractions of continuous systems, safety verification by bar-
rier certificates, and design of safe control systems. Therefore, the section is focused on
these topics. This is not a thorough survey, but only a small selection of relevant methods.
At first verification methods are described, and at the end controller design methods are
provided.

Verification Methods

Verification methods for dynamical systems can be classified into direct and indirect
methods. Direct verification methods accomplish the verification directly on the model
of a considered system, whereas indirect methods consider a simplified or abstract model
of the considered system in the verification. The verification method presented in Chap-
ter 3 is an indirect method, as it is based on abstracting the considered system by a timed

3

Introduction

automaton. Throughout the section, the literature is compared to the developed methods,
and the abstraction developed in Chapter 3 is referred to as TA-abstraction.

The abstraction method developed in [TK04, Tiw08, TK02] is in the class of sign
based abstractions described in [Tab09, p. 94].

The principle of the method is to generate an abstraction of a dynamical system by
a finite automaton. The abstraction is generated by subdividing the state space into cells
and letting each cell be abstracted by a location of a finite automaton. The subdivision of
the state space is generated by level sets of multiple functions. A transition is added from
a location to another location, if the two locations abstract neighboring cells in the state
space, and the vector field points out of the boundary of the source cell into the destination
cell. The existence of a transition is determined by calculating the Lie derivative of the
function used to subdivide the state space with respect to the vector field. The abstract
model is a finite automaton; hence, properties of it can be verified. By appropriately
defining the behavior of the abstraction and the dynamical system, it can be shown that a
sign based abstraction simulates the dynamical system, i.e., properties such as safety can
be verified.

The computations involved in the generation of a sign based abstraction are relatively
simple, as the solution to the differential equation is not used. For multi-affine systems
(i.e., the degree of the vector field in any of the variables is less than or equal to one
[KB08]) with a rectangular subdivision of the state space, the computations of the Lie
derivative can be done efficiently [KB06]. However, there is no systematic way of choos-
ing functions for subdividing the state space to generate a sign based abstraction. Instead,
a heuristic is proposed for refining the abstraction, where additional functions are added
to subdivide the state space. Roughly, if a function ϕ : Rn → R is used in the subdivision
of the state space, then the Lie derivative along the vector field f is added to the set of
functions subdividing the state space.

Although a sign based abstraction is sound, the calculated reachable set can be very
inaccurate. This is clear from the following example.

Example 1. Consider a dynamical system, given by
[
ẋ1

ẋ2

]
=

[
1
1

]
. (1.1)

The subdivision of the state space is illustrated in Figure 1.2 by black lines, the vector
field is illustrated by blue arrows, and the set of initial states is shaded gray.

By use of the sign based abstraction, the entire first quadrant is reachable, but actually
only a block diagonal trace (cells within the bold black line in Figure 1.2) is reachable.

The example shows that the sign based abstraction generates a poor abstraction of the
reachable set.

Remark 1: The similarities between the sign based abstraction and the TA-abstraction is that level
sets of multiple functions are used to subdivide the state space, and that the transitions in the ab-
stract model are generated based on the Lie derivative of the function used to subdivide the state
space with respect to the vector field. In fact, the admissible subdivisioning functions in the TA-
abstraction is only a subset of the admissible subdivisioning functions of this abstraction, since the
Lie derivative of the subdivisioning functions with respect to the vector field must be decreasing in
a TA-abstraction (except at critical points).

4

2 State-of-the-Art and Background

0 1 2 3
0

1

2

3

x1

x
2

Figure 1.2: Phase plot of a system with constant derivatives. The system is initialized in
the bottom left cell (gray). If an automaton is generated based on the Lie derivative of
the boundary of cells, we can only conclude that the reachable set is a subset of the first
quadrant.

Finally, we provide conditions for generating a complete abstraction, whereas this method only
provides a heuristics for generating additional subdivisioning functions based on an initial collec-
tion of subdivisioning functions.

Example 1 was the inspiration for [MB08] that extends the sign based abstraction with
time information, by abstracting the dynamical system by a timed automaton instead of an
automaton. The addition of time information improves the accuracy of the approximation
of the reachable set, compared to the sign based abstraction. By using the method in
[MB08], the approximated reachable set of Example 1 is reduced from the entire first
quadrant to the cells within the bold black line in Figure 1.2. Note that these cells are
exactly the cells reached by the dynamical system.

The abstraction method presented in [MB08] is more complicated to generate than the
sign based abstraction, as it requires the calculation of the maximum time for the solution
trajectories to traverse a cell and minimum and maximum times for solutions to traverse
the slices used to generate the abstraction. Therefore, the timed automaton abstracting an
n dimensional dynamical system has 2n+ 1 clocks.

In this abstraction, the partition of the state space is not generated in accordance with
the vector field. Therefore, the improvement of the abstraction is subtle for some dynam-
ical systems. This issue is illustrated in the following example.

Example 2. Consider a dynamical system, given by

[
ẋ1

ẋ2

]
=

[
−0.1 1
−1 −0.1

] [
x1

x2

]
. (1.2)

The subdivision of the state space is illustrated in Figure 1.3 by black lines.
For the subdivision of the state space given in Figure 1.3, the minimum time that a

solution can maintain in any slice (collection of cells along a coordinate axis) is zero time
units. Furthermore, the maximum time for traversing a slice that includes the equilib-

5

Introduction

−1 0 1
−1

0

1

x1

x
2

Figure 1.3: Phase plot for the system shown in (1.2) and a partition of its state space into
9 cells.

rium point is infinite. Therefore, the approximation of the reachable set is poor for this
dynamical system.

Example 2 indicates that the addition of time in the abstraction can improve calcula-
tions of reachable sets, but a closer resemblance between the dynamical system and the
abstraction is needed to describe the reachable set for dynamical systems.

An abstraction method preserving more information about the vector field was de-
veloped in [Bro99]. This method shows how a bisimulation of a hybrid system can be
constructed. The abstraction is obtained based on a partition of the state space that is
generated by tangential and transversal foliations. The method is based on the local ex-
istence of such abstractions, via the flow box theorem; hence, in general, the partition is
not constructive. The method has similarities with reduction techniques for mechanical
systems, which also relies on the identification of first integrals [Gol60].

Remark 2: Reduction methods for mechanical systems are also the outset of Paper C that shows
how the TA-abstraction can be used to abstract mechanical systems, by use of reduction techniques.

The principle of the barrier certificate method presented in [PJP07] is to find a positive
invariant set given as a sublevel set of a function (the level set is called a barrier) that
includes the initial set, but excludes the unsafe set. If such a set can be found, then the
system is safe.

The principle of the barrier certificate method is very simple, as the method is de-
signed to verify only one property: safety. An advantage of the barrier certificate method
is that barrier certificates can be easily computed by utilizing methods similar to search-
ing for a Lyapunov function. The paper [PJP07], provides both a strict barrier certificate
that is possibly nonconvex and difficult to compute, and a weak barrier certificate that is
convex and can be computed. The method is extended in [Pra06] to allow discontinuous
barrier certificates and bounded time analysis, and the dual problem to safety (reachabil-
ity) is addressed in [PR05b]. Additionally, [PR07] shows how the framework can be used
to verify temporal logic properties.

In [PR05a], it is shown that there exists a barrier certificate if and only if the safety

6

2 State-of-the-Art and Background

-5 0 5
-5

0

5

x1

x
2

Figure 1.4: Illustration of the initial set (green box) and unsafe set (red box) together with
some admissible system trajectories (block lines). The red line is the graph of a barrier
certificate that proves the safety of the system.

Safe Unsafe

?

Figure 1.5: Automaton with two states: ”Safe” and ”Unsafe”. The existence of a barrier
certificate determines if the is a transition between the two locations.

property holds, under the assumption of the existence of a decreasing function on the
entire state space. Although a barrier function exists, it may be very complicated and
therefore practically impossible to find. This is exemplified in the following example
from Paper B.

Example 3. Consider the two-dimensional linear system given by

[
ẋ1

ẋ2

]
=

[
−0.1 1
−1 −0.1

] [
x1

x2

]
, (1.3)

with initial set X0 = [−0.05, 0.05]× [4.95, 5.05] and unsafe set Xu = [−0.05, 0.05]×
[0.85, 0.95].

To verify the safety of this system, a very high degree barrier certificate must be
identified. A barrier certificate is illustrated in Figure 1.4 by the red line, which is a level
set or barrier separating the initial set and unsafe set. Note that the barrier certificate is
generated by hand, as an attempt to solve the problem in SOSTOOLS failed [PPSP05].

The barrier certificate method can be seen as a very simple abstraction consisting
of two locations, as depicted in Figure 1.5. One state has the predicate ”Safe” and the
other state has the predicate ”Unsafe”. If one finds a barrier certificate, then there is no
transition between the two locations; hence, the system is safe.

7

Introduction

Remark 3: The barrier certificate is a special instance of the TA-abstraction, and this particular
choice of subdivisioning function would result in an abstraction given by a timed automaton with
two locations, where all solutions stay in the initial location for all times. The TA-abstraction allows
the use of multiple subdivisioning functions; hence, these functions may be of lower degree, at the
cost of the need for several level sets.

To allow the verification of a control system with an infinite state space, it is appropri-
ate to generate finite state abstractions of the control system. In [Tab07] a control system
is abstracted by a symbolic model that is bisimilar to the control system, but is finite. The
abstraction method restricts the number of input symbols to be finite, and to obtain a finite
model, the state space must be partitioned into a finite number of equivalence classes.

In [GP07] the notion of approximate (bi)simulation was introduced for continuous
systems. The method is based on describing continuous systems by metric transition sys-
tems, to get a common framework for treating discrete and continuous systems. Having
a metric on top of the transition system allows the use of approximate relations between
systems. The distance between two systems may be difficult to compute, but it can be
approximated by (bi)simulation functions that are similar to Lyapunov functions. The
approximate bisimulation method is used in [GP06] to verify systems based on simula-
tions. This is possible by associating functions to the system that determines how close
simulated trajectories are if they are initialized within some distance. The generation of
trajectories guaranteeing the verification for hybrid systems is presented in [JFA+07].
The work is extended to the verification of temporal properties of continuous systems in
[FGP06]. Additionally, the method is extended to the controller synthesis problem for
reachability and safety specifications [Gir12].

In [PLS00], the concept of hierarchically consistent control systems is introduced.
This is a formalism for abstracting control systems by other simpler control systems, i.e.,
the abstraction is continuous. An abstraction of a control system must be able to produce
the same output trajectories as the control system it abstracts (i.e. the abstraction is an
over-approximation). However, the input to the two system need not be the same. This
is a major difference between the hierarchical framework and model reduction, as the
hierarchical framework allows the introduction of virtual inputs in the abstraction. The
virtual inputs enable an abstraction to have much lower dimension that the original sys-
tem. Hence, analyzing the abstract system is simpler than analyzing the original system.

There are a lot of direct methods for computing the reachable set of systems. This
means that the reachable set is calculated without any abstraction.

In [TMBO03] verification methods based on reachability calculations are categorized
into over-approximative and convergent approximation methods. All methods described
until this point (including the method proposed in this thesis) are over-approximative
methods. However, the method presented in [MBT05] is a convergent approximation
method. In [MBT05], it is shown that the backwards reachable set from a target set
(described as a sublevel set of a continuous function) is the zero sublevel of the viscosity
solution of a time-dependent Hamilton–Jacobi–Isaacs partial differential equation. The
solution is calculated on a grid of the state space, but the method is computationally
demanding and can only be used for verification of low dimensional systems. The method
has especially been applied to problems in avionics, including [TMG01], since it allows
nonlinear vector fields. Since the method is based on game theoretic principles, it can be
used for synthesizing controllers that guarantee some objective despite the presence of

8

2 State-of-the-Art and Background

disturbances [TLSS00]. A toolbox for finding the viscosity solution of a time-dependent
Hamilton–Jacobi–Isaacs partial differential equation is developed in [MT05].

The principle of a series of methods for directly calculating the reachable set of a
system, is to propagate the set of corner points of an initial set one time step, take the
convex hull of the initial set and the one step successor, and enlarge this set to ensure that
the approximation is an over-approximation. One of the crucial choices of these methods
is the choice of class of sets for representing the reachable set, as it greatly influences
the computation time. In [CK03] the reachability calculation used in the verification tool
CheckMate is presented. The tool can handle switching in systems and is based on convex
polyhedra. Polyhedral sets are also used in the tool PHAVer (Polyhedral Hybrid Automa-
ton Verifyer) for reachability calculations of linear hybrid automata. A similar method
based on zonotopes is presented in [Gir05], which gives improved computational times.
In [Gir05], a particular emphasis is put on reachability calculations for uncertain linear
systems, as the contribution of the uncertainty can be decoupled from the linear dynamics
in the solution of the problem, eliminating the wrapping effect. In [ASB10] a method
based on a combination of zonotopes and polyhedra is presented. Finally, the more recent
tool SpaceEx combines polyhedra and support function to improve the scalability of the
computations [FLGD+11].

A collection of methods based on ellipsoids are also developed. These methods are
based the computational methods presented in [KV97], and enables estimation of reach-
able sets using collections of ellipsoids, based on both under-approximation and over-
approximation. The methods applies for varies classes of systems [KV00, KV07], and a
toolbox called Ellipsoidal Toolbox has been developed for the computations [KV06].

Compositional Verification Methods

Compositional verification methods have been developed in an attempt to improve the
scalability of the verification.

The principle of assume-guarantee reasoning presented in [KvdS10] for linear sys-
tems is to consider a system ΣP given as an interconnection of N systems, i.e., ΣP =
ΣP1
|| . . . ||ΣPN

. It is desired to verify if the system satisfies a specification that is also
given as an interconnection of systems ΣQ = ΣQ1

|| . . . ||ΣQN
. The verification is accom-

plished by checking if there exists a simulation relation of ΣP by ΣQ

ΣP1 || . . . ||ΣPN
� ΣQ1

|| . . . ||ΣQN
, (1.4)

where Σ1 � Σ2 denotes that Σ1 is simulated by Σ2. If Σ1 � Σ2 then the output trajecto-
ries of Σ1 is a subset of the output trajectories of Σ2.

The assume-guarantee framework can be used to do compositional reasoning, using
the following property

{
ΣP1
� ΣQ1

ΣP2
� ΣQ2

⇒ ΣP1
||ΣP2

� ΣQ1
||ΣQ2

. (1.5)

This property allows individual verification of subsystems. If each subsystem satisfies its
subspecification, then the interconnected system satisfies the overall specification.

9

Introduction

The following properties are used for assume-guarantee reasoning

{
ΣP1
� ΣQ1

ΣQ1
||ΣP2

� ΣQ1
||ΣQ2

⇒ ΣP1 ||ΣP2 � ΣQ1 ||ΣQ2 (1.6)

{
ΣP1
||ΣQ2

� ΣQ1
||ΣQ2

ΣQ1 ||ΣP2 � ΣQ1 ||ΣQ2

⇒ ΣP1
||ΣP2

� ΣQ1
||ΣQ2

. (1.7)

These properties allow each subsystem to be interconnected with the specification and
then verified. The intuition of the assume-guarantee reasoning is to verify a subsystem,
assuming that the remaining subsystems satisfy their subspecification. Note that assump-
tions about the dynamical systems are necessary to accomplish the assume-guarantee
reasoning.

A method for compositional stability analysis is presented in [TPM09]. In this paper
a framework is proposed for analyzing the stability of a system decomposed into subsys-
tem. In addition to the stability analysis, the region of attraction can be determined in
a compositional manner. The method is based on dual decomposition [DW61]; hence,
the stability problem is decomposed into subproblems, which are coupled via a master
problem with less variables. This implies that subsystems are not completely separated
as in (1.5).

Remark 4: The compositional stability method is similar to the compositional barrier certificate
method presented in Paper D and Chapter 4. In both methods the compositional conditions can be
modified to satisfy (1.5), but this is considered to be too conservative in general. Specifically, this
is accomplished by letting αi = 0, βi = 0, γi = 0 for all i in Corollary 4.

Controller Design Methods

Several of the presented verification methods are extended to allow the design of con-
trollers. These methods are used to guarantee a specification by design; hence, elimi-
nating the need for verification. An issue with the majority of these methods is that the
models have a lot of discrete states, and numerous input symbols; hence, the generation
of a controller is difficult.

The barrier certificate method is extended to the design of safe controllers in [WA07].
The extension is inspired by the extension of Lyapunov functions to control Lyapunov
functions. To simultaneously finding a controller and a barrier certificate is in general
very difficult; however, the paper provides a constructive method for finding a safe state
feedback controller for a given control barrier certificate. This implies that a state feed-
back controller can be found analytically.

Remark 5: This work was the outset for Paper F that provides a refined definition of a control
barrier function, and allows disturbances in the controller design.

The symbolic methods for verifying and comparing systems via (bi)simulation and
approximate (bi)simulation are also extended to the design of controllers in [Tab09, PT09,
JT11]. For this particular method the tool Pessoa is developed [MDT10]. Pessoa allows
generation of correct-by-design controllers for dynamical systems, but due to the abstrac-

10

3 Research Hypotheses

tion method, it is only possible to generate controllers for low dimensional systems with
a few coarsely discretized control signals.

In [LTS99], a game-based approach to satisfying reachability specifications was pro-
posed. This method is similar to verification framework [TMBO03] explained earlier.
This framework can handle expressive classes of vector fields, but only applies to sys-
tems of low dimension. The idea of receding horizon control has also been extended in
[WTM10] for the synthesis of receding horizon temporal logic planning.

In [TP03], it is shown that model checking LTL is decidable for controllable linear
systems, by rewriting it to Brunovsky normal form. Then the discrete system represents
a shift register with values determined by the control input. This system can easily be
controlled to any desired state.

Similar to the use of invariant sets [Bla99], properties of the Lie derivative of the
boundaries of rectangles is used to synthesize controllers in [BH06]. The idea of this
method is to control the possible trajectories of a system, by partitioning the state space
into rectangles and either control all trajectories to exit the each rectangle through a cer-
tain facet of make the rectangle positive invariant. The same idea is used in [KB08] for
a triangulation of the state space to algorithmically generate controllers for linear sys-
tems that satisfies some temporal logic specification. The key idea of these methods is to
control the vector field to be transversal to the facets, through the study of Lie derivatives.

1.3 Research Hypotheses

In the development of the verification methods in this thesis, ideas of the work presented
in the previous sections are used to generate an abstraction that allows the verification
of more expressive properties of continuous dynamical systems, and to develop a method
for the safety verification of more complex (higher dimensional) systems. The philosophy
used throughout the thesis is to only exploit the vector field - not solutions to differential
equations or simulated trajectories. The following research hypotheses are tested in this
work.

Research Hypothesis 1: Subdividing the state space according to the vector field, allows the verifi-
cation of TCTL properties of continuous systems via abstracting the system by a timed automaton.

Research Hypothesis 2: A decomposition of the safety verification problem allows the verification
of higher dimensional systems.

Hypothesis 1 is validated by generating a method that allows the verification of TCTL
properties, showing how the state space should be partitioned in accordance with the
vector field to generate an abstraction that preserves TCTL properties, and by showing
that complete abstractions can be generated by providing examples.

Hypothesis 2 is validated by providing a compositional method for verifying the safety
of continuous systems, and by showing that a system, for which the centralized verifica-
tion method fails to verify, can be verified by the developed compositional method.

11

Introduction

1.4 Outline of the Thesis

The thesis is divided into five chapters and an appendix of six papers, where the first chap-
ter is this introduction. Chapter 2 presents a general introduction to formal verification,
including logics and results on abstractions of system models. This provides some high
level preliminaries for the work in the thesis. Chapter 3 and Chapter 4 present the con-
tent of the attached papers, where Chapter 3 presents the work in abstracting continuous
systems by timed automata from Paper A-C and Chapter 4 presents the work in com-
positional safety verification from Paper D-E and synthesis of safe control systems from
Paper F. These chapters are written to be self-contained and the paper should only be con-
sulted for proofs, examples, or other details. Finally, Chapter 5 summarizes contributions,
comprises conclusions and future work.

12

2 Formal Verification

The purpose of this chapter is to provide a short background on the theory upon the work
in this thesis relies.

Formal verification provides an answer to Problem 1 on page 1 for some definition
of specification and model. A more precise formulation of the problem is provided by
first presenting the logics used in specifications, and subsequently providing the overall
principles of the verification. This gives an understanding of the class of systems that can
be formally verified. Finally, the role of abstractions in the formal verification is outlined.

The difference between formal verification and verification by simulation, is that sim-
ulations usually cannot be utilized for proving that a system complies with its specifi-
cation in every possible situation. However, formal verification provides a proof of cor-
rectness based on rigorous mathematical formulations. It is impossible to do exhaustive
simulation for an infinite-state system. Therefore, verification using simulation is only
possible if the considered system is finite and very simple, or extra measures are done in
selecting the simulated trajectories based on knowledge about the system [FGP06].

2.1 Specifications

In the following, logics used to specify properties of systems are presented. The thesis is
concerned with timed computation tree logic (TCTL), but linear temporal logic (LTL) is
explained first, as this logic is used quite often [BK08, p. 235].

Definition 1 (Syntax of LTL). An LTL formula over the set AP of atomic propositions
is formed according to the following grammar

ψ ::= true | a | ψ1 ∧ ψ2 | ¬ψ | © ψ | ψ1Uψ2,

where a ∈ AP .

In Definition 1, the symbol ∧ means ’and’, ¬ means ’not’, © means ’next’, and
U reads until. Note that eventually (3ψ) and always (2ψ) can be expressed from the
grammar as trueUψ respectively ¬3¬ψ.

The semantics of LTL is given in Figure 2.1 by examples, where a and b are atomic
propositions.

The semantics of LTL can be given as a transition system, but this is not included due
to its limited use in the thesis.

Computation tree logics (CTL) allow existential and universal quantification, and the
extension timed computation tree logic (TCTL) allows the addition of time bounds in the

13

Formal Verification

a

©a
3a

2a

bUa

Figure 2.1: Semantics of LTL formulae [Alu]. Each line shows an execution of a system.
The atomic proposition a is satisfied in the green circles, an atomic proposition b is sat-
isfied in the red circles, and an arbitrary set of atomic propositions is satisfied in the blue
circles.

logic [ACD90]. This makes it possible to express properties such as ”before 5 time units”
instead of ”eventually”. The syntax of TCTL is presented in the following.

Definition 2 (Syntax of TCTL). The formulas ψ of TCTL are inductively defined as
follows

ψ ::= true | a | g | ¬ψ | ψ1 ∧ ψ2 | ∃ψ1UJψ2| ∀ψ1UJψ2

where a ∈ AP , g is the set of atomic clock constraints, and J ⊆ R≥0 is an interval whose
bounds are natural numbers.

Note that the quantifiers of CTL allow one to express that all traces should satisfy a
property (this is implicitly assumed in LTL) or that only some trace should satisfy a prop-
erty. Furthermore, the addition of time in TCTL allows one to specify that ψ2 is satisfied
within t ∈ J ⊆ R≥0 time units until which ψ1 is satisfied, by the formula ψ1UJψ2.
For details in the semantics of TCTL, see [BK08]. A special fraction is considered in
connection with the treatment of sound abstractions. This fragment is called universally
quantified TCTL on positive normal form and is TCTL without existential quantification,
and with negation only of atomic propositions.

Note that the expressiveness of CTL and LTL is incomparable, as both logics can
express properties that the other logic cannot express.

2.2 Model Checking

There exist several methods for doing formal verification; however, only the principle of
model checking is sketched in this chapter. Model checking is applicable for finite-state
models, as it is based on a graph search of the system and specification. Therefore, its
applicability to infinite-state systems depends on the ability to abstract the infinite-state
systems by a finite-state model. In addition, only properties preserved by the abstraction
of the infinite-state systems can be inferred on the original system based on the model
checking of the finite-state abstraction. In the following, the procedure for generating a
finite abstraction of a timed automaton is explained, to give an idea of the abstraction
procedure.

A timed automaton is a hybrid system, where the continuous dynamics is given by
clocks that increase at a constant rate of one, and the clocks can be reset to zero. To verify

14

2 Model Checking

a timed automaton, it is necessary to know how the values that the clocks evolve over
time. This can be obtained from the region graph in Figure 2.2. Note that constraints on
clocks are natural numbers, but clocks are real-valued; hence, the state space is infinite.

0 1 2 3 4 5
0

1

2

3

4

5

c1

c 2

Figure 2.2: Region graph of a timed automaton, with two clocks c1 and c2.

The region graph in Figure 2.2 partitions the values of two clocks c1 and c2. The
partition consists of three different types of elements: corner points, line segments, and
triangles. The clocks are initialized at (0, 0) and propagate from a corner point to a line
segment, where the valuations can continue to propagate along the diagonal or be reset to
zero. If clock c2 is reset to zero, then all values of the clocks will be projected onto a line
segment on the c1-axis. All executions continue like this, since all clock valuations in a
cell of the partition have the exact same abstract successors (both for time propagation and
resets). Finally, by knowing the largest constant in the constraints, a finite region graph
can be obtained, and CTL model checking can be applied on the region graph automaton.
This implies that the abstraction preserves TCTL properties, making it possible to verify
TCTL of timed automata. Tools exist for verifying both LTL and TCTL properties of
timed automata [BDL04, BK08].

Abstractions for Verification

It is not always possible to generate a finite abstraction of a model. In [HKPV98], the
decidable classes of hybrid automata are summarized, and the boundary of decidability is
clarified. Furthermore, it is shown that by adding stopwatches to timed automata reach-
ability is no longer decidable; however, other updates can be used for timed automata
[BDFP00]. CTL and LTL model checking is also possible for o-minimal hybrid systems
that are linear hybrid systems, where the system matrix is nilpotent, diagonalizable, or
have purely imaginary eigenvalues with multiplicity one [AHLP00, LPS00].

(A, ψ) Yes iff A |= ψ

No iff A 6|= ψ
Model Checking

Figure 2.3: Principle of model checking if a system A satisfies a specification ψ.

15

Formal Verification

(Γ, ψ) A |= ψ iff Γ |= ψ

A 6|= ψ iff Γ 6|= ψ
Abstraction 1

(Γ, ψ) If A |= ψ then Γ |= ψ
Abstraction 2

(A, ψ)

(A, ψ)

(Γ, ψ) If A 6|= ψ then Γ 6|= ψ
Abstraction 3

(A, ψ)

Figure 2.4: Three abstractions preserving different properties of the system Γ.

It is seen that the class of models for which a finite abstraction can be algorithmi-
cally generated, and used for model checking is limited. Therefore, one has to resort to
abstractions that only preserve a selected fragment of the logic or abstractions that give
conservative answers to the verification problem. This concept is shown in Figure 2.4,
where three different abstractions are illustrated. Note that A |= ψ (A 6|= ψ) means that
A satisfies (does not satisfy) the formula ψ. The symbol |= is also used when considering
Γ, but the semantics of Γ and A are generated differently.

In Abstraction 1, a model Γ and associated specification ψ is abstracted by an abstract
model A and associated specification ψ. It is seen that the abstraction preserves all prop-
erties of the chosen logic. Even though Abstraction 1 is the desired situation, it is not
realistic for all system models and specifications. Therefore, other abstractions can be
generated that enable the verification of desired properties (Abstraction 2 in Figure 2.4)
or abstractions that enable the falsification of properties (Abstraction 3 in Figure 2.4). Let
ψ express a safety property of system Γ. Abstraction 2 can be used to verify the safety,
but if it fails to verify the safety then the system is not necessarily unsafe. Abstraction 3
can be used to falsify the safety, and if the falsification fails too, then we have an incon-
clusive answer to the verification problem, as the safety property has neither been proved
nor disproved.

From Figure 2.3 and Figure 2.4, it is concluded that by generating an abstraction of
some system by a timed automaton, it is possible to model check all TCTL properties
that the abstraction preserves (similar applies for other logics). This implies that the
abstraction of a continuous system by a timed automaton allows the model checking of
the continuous system, to the extend that the abstraction preserves the properties.

Note that it is important for the applicability of an abstraction method in the latter two
cases of Figure 2.4, to determine how well they approximate the system, as they are only
sufficient conditions. A verification method that always returns false has the property of
the second abstraction in Figure 2.4, but is of no use.

16

3 Abstracting Continuous
Systems by Timed Automata

The purpose of this chapter is to present a method for abstracting continuous systems by
timed automata. This abstraction method joins the sign based abstraction method with the
introduction of time in [MB08], and is based on a subdivision of the state space generated
by invariant sets. The method enables the following problem to be solved.

Problem 2: Given a continuous dynamical system and a TCTL specification over predicates given
by subsets of the state space. Verify if the continuous system satisfies the specification.

Complete abstractions allow the verification and falsification of the problem, but
sound abstractions only allow the verification of universally quantified TCTL specifi-
cations.

The chapter is an extract of the most important results from Paper A-C. Paper A
and Paper B describe the abstraction framework for Morse-Smale vector fields. Paper C
shows how the abstraction method relates to reduction of mechanical systems, and how a
mechanical system can be abstracted by a timed automaton.

The chapter is organized as follows. Section 3.1 provides preliminary definitions
related to dynamical systems and timed automata. In Section 3.2 the procedure for ab-
stracting a dynamical system is presented including the subdivision of the state space
and the generation of the timed automaton. Selected properties of the abstraction such as
soundness and completeness are presented in Section 3.3, followed by algorithms for gen-
erating an abstraction in Section 3.4. In Section 3.5 the abstraction famework is extended
to apply for mechanical systems, where the subdivision of the state space is generated
based on reduction methods. Finally, Section 3.6 comprises conclusions.

Notation

The set {1, . . . , k} is denoted by k. BA is the set of maps A → B. The power set of
A is denoted by 2A. |A| denotes the cardinality of the set A. We consider the Euclidean
space (Rn, 〈, 〉), where 〈, 〉 is the standard scalar product. N = {1, 2, . . . } is the set
of natural numbers, and Z = {. . . ,−1, 0, 1, . . . } is the set of integers. Xr(M) is the
space of Cr vector fields. For a map f : A → B, and a subset C ⊆ A, we define
f(C) ≡ {f(x)| x ∈ C}. Whenever f : X → R is a function and a ∈ R, we write
f−1(a) to shorten the notation of f−1({a}). Let A ⊆ Rn, then cl(A) denotes the closure

17

Abstracting Continuous Systems by Timed Automata

of A. To say that a symmetric matrix M is positive definite (positive semidefinite), we
write M � 0 (M � 0).

3.1 Preliminaries

Dynamical systems and timed automata are detailed in this section. An emphasis is put on
the importance of studying structurally stable vector fields to ensure robustness of the ab-
straction procedure. Furthermore, the notion of a solution trajectory of a timed automaton
is introduced to ease the comparison of a dynamical system and a timed automaton.

Dynamical Systems

We denote a dynamical system by Γ = (X, f), where X ⊆ Rn is the state space, and the
dynamics is described by a system of ordinary differential equations f : X → Rn

ẋ = f(x). (3.1)

The solution of (3.1), from an initial state x0 ∈ X0 ⊆ X at time t ≥ 0 is described
by the flow function φΓ : [0, ε]×X → X , ε > 0 satisfying

dφΓ(t, x0)

dt
= f (φΓ(t, x0)) (3.2)

for all t ∈ [0, ε] and with φΓ(0, x0) = x0. The reachable set is defined as follows.

Definition 3 (Reachable set of Dynamical System). The reachable set of a dynamical
system Γ from a set of initial states X0 ⊆ X on the time interval [t1, t2] is

φΓ([t1, t2], X0). (3.3)

Considered Classes of Systems

We consider only Morse-Smale vector fields in this work, and develop algorithms for
linear and polynomial systems.

A linear system Γ = (X, f) is a system with a linear vector field f , i.e., given by

ẋ = Ax, (3.4)

where A is an n × n non-singular matrix. Matrix A must be non-singular, to ensure
that the system is hyperbolic. If the vector field f is a polynomial map, then the system
Γ = (X, f) is said to be a polynomial system. We only consider polynomials with real-
valued variables, and for n ≥ 1 we denote the polynomial ring R[x1, . . . , xn] by R[x].
In addition, a map f : Rn → Rm is said to be polynomial if its coordinate functions are
polynomials, i.e., fi ∈ R[x] for i = 1, . . . ,m.

The class of systems considered in this work is Morse-Smale systems.

Definition 4 (Morse-Smale System [Wis05]). A smooth vector field X ∈ Xr(M) is
called a Morse-Smale system (or field) provided it satisfies the following conditions:

18

1 Preliminaries

1. X has a finite number of singular points, say β1, . . . , βk, each hyperbolic. A hy-
perbolic singular point is a singular point such that in local coordinates the matrix
of partial derivatives of X has eigenvalues with nonzero real parts.

2. X has a finite number of closed orbits (periodic solutions), say βk+1, . . . , βn, each
hyperbolic.

3. For any p ∈M , α(p) = βi and ω(p) = βj for some i and j.

4. Let Ω(X) be the nonwandering1 points for X , then Ω(X) = {β1, . . . , βN}.

5. The stable and unstable manifolds associated with the βi have transversal intersec-
tion.

Two important restrictions of Morse-Smale systems are exploited in this work. First,
the vector field has a finite number of singular points, each hyperbolic. This property
allows a linear system to be split up into a stable and an unstable subsystem, which can be
analyzed separately. Second, the stable and unstable manifolds associated with a singular
point have transversal intersection. This restriction is necessary to obtain a structurally
stable vector field.

Definition 5 (Structurally Stable Vector Field [JdM80]). A vector field ξ ∈ Xr(M) is
structurally stable if there exists a neighborhood V of ξ in Xr(M) such that every η ∈ V
is topologically equivalent to ξ.

A vector field is structurally stable if its quantitative behavior does not change after
the vector field has been slightly perturbed. To stress the importance of structural stability,
an example from Paper A on page 83 is provided in the following.

Example 4. Consider the linear system with purely complex eigenvalues {−i, i}

ẋ =

[
0 −1
1 0

]
x. (3.5)

Graphs of two trajectories of the system are shown in the left subplot of Figure 3.1. By
slightly perturbing the system (This perturbation is given by a smooth map, see Theo-
rem 2.1 in [Hir76]), the real part of the eigenvalues of the system may become positive
(trajectory in the middle subplot) or negative (trajectory in the right subplot). As a conse-
quence, it is no longer possible to describe the solution trajectories of the middle or right
subplot by a continuous deformation (homeomorphism) of solution trajectories of the left
subplot. Therefore, the system given by (3.5) is not structurally stable.

In relation to numerical simulation of systems that are not structurally stable, even
the smallest rounding error in the representation of the system may significantly alter its
behavior.

Morse-Smale systems are dense in systems of less than or equal to two dimensions,
see Theorem 8 and Theorem 9 in Paper A. In general, there are no methods for checking
if a vector field is Morse-Smale; however, for a system of dimension greater than two, if

1We say that p ∈ M is a wandering point for X if there exists a neighborhood V of p and a number t0
such that φX(t, V) ∩ V = ∅ for |t| > t0.

19

Abstracting Continuous Systems by Timed Automata

−0.5 0 0.5
−0.5

0

0.5
x
2

x1

−0.5 0 0.5
x1

−0.5 0 0.5
x1

Figure 3.1: Trajectories of three dynamical systems.

there is a Lyapunov function then it can be approximated arbitrary closely by a Morse-
Smale vector field [Mey68]. For linear systems, it is necessary and sufficient to check if
all eigenvalues are hyperbolic.

Timed Automata

We use the notation of [AD94] in the definition of a timed automaton, and let Ψ(C) be a
set of diagonal-free clock constraints for a set of clocks C. This set contains all invariants
and guards of the timed automaton, and is described by the following grammar

ψ ::= c ./ k|ψ1 ∧ ψ2, (3.6a)

where

c ∈ C, k ∈ R≥0, and ./ ∈ {≤,<,=,>,≥}. (3.6b)

To make a clear distinction between syntax and semantics, the elements of ./ are bold
to indicate that they are syntactic operations. The semantics of the grammar is presented
after the definition of a timed automaton.

Definition 6 (Timed Automaton). A timed automaton A is a tuple (E,E0, C,Σ, I,∆),
where

• E is a finite set of locations, and E0 ⊆ E is the set of initial locations;

• C is a finite set of clocks;

• Σ is the input alphabet;

• I : E → Ψ(C) assigns invariants to locations;

• ∆ ⊆ E × Ψ(C) × Σ × 2C × E is a finite set of transition relations. A transition
relation is a tuple (e,Ge→e′ , σ, Re→e′ , e′) assigning an edge between two locations,
where e is the source location and e′ is the destination location. Ge→e′ ∈ Ψ(C) is
the set of guards, σ is a symbol in the alphabet Σ, and Re→e′ ⊆ C is a subset of
clocks.

The semantics of a timed automaton is defined in the following.

20

1 Preliminaries

Definition 7 (Clock Valuation). A clock valuation on a set of clocks C is a mapping
v : C → R≥0. The initial valuation v0 is given by v0(c) = 0 for all c ∈ C. For a
valuation v, a scalar d ∈ R≥0, and R ⊆ C, the valuations v + d and v[R] are defined as

(v + d)(c) = v(c) + d, (3.7a)

v[R](c) =

{
0 for c ∈ R,
v(c) otherwise.

(3.7b)

It is seen that (3.7a) is used to progress time and (3.7b) is used to reset the clocks in
the set R to zero.

We denote the set of maps v : C → R≥0 by RC≥0. This notation indicates that we

identify a valuation v withC-tuples of nonnegative reals inR|C|≥0 , where |C| is the number
of elements in C. We impose the Euclidean topology on RC≥0.

Definition 8 (Semantics of Clock Constraint). A clock constraint in Ψ(C) is a set of
clock valuations {v : C → R≥0} given by

Jc ./ kK = {v : C → R≥0| v(c) ./ k} (3.8a)
Jψ1 ∧ ψ2K = Jψ1K ∩ Jψ2K. (3.8b)

For convenience, we denote v ∈ JψK by v |= ψ and denote the transition (e, v, σ, e′, v′)
by (e, v)

σ→ (e′, v′).

Definition 9 (Semantics of Timed Automaton). The semantics of a timed automaton
A = (E,E0, C,Σ, I,∆) is the transition system JAK = (S, S0,Σ∪R≥0, Ts∪Td), where
S is the set of states

S = {(e, v) ∈ E ×RC≥0| v |= I(e)},

S0 ⊆ S is the set of initial states

S0 = {(e, v) ∈ E0 ×RC≥0| v = v0}.

Note that E ×RC≥0 induces subspace topology on S.
Ts ∪ Td is the union of the following sets of transitions

Ts = {(e, v)
σ→ (e′, v′)| ∃(e,Ge→e′ , σ, Re→e′ , e′) ∈ ∆

such that v |= Ge→e′ and v′ = v[Re→e′]},
Td = {(e, v)

d→ (e, v + d)| ∀d′ ∈ [0, d] : v + d′ |= I(e)}.

Hence, the semantics of a timed automaton is a transition system that comprises an in-
finite number of states: product of E and RC≥0 and two types of transitions: the transition
set Ts between discrete states with possibly a reset of clocks belonging to a subsetRe→e′ ,
and the transition set Td that corresponds to time passing within the invariant I(e).

In the following, we define an analog to the solution of a dynamical system for a timed
automaton.

21

Abstracting Continuous Systems by Timed Automata

Definition 10 (Run of Timed Automaton). A run of a timed automaton A is a possibly
infinite sequence of alternations between time steps and discrete steps of the following
form

(e0, v0)
d1−→ (e0, v1)

σ1−→ (e1, v2)
d2−→ . . . , (3.9)

where di ∈ R≥0 and σi ∈ Σ.

By forcing alternation of time and discrete steps in Definition 10, the time step di is
the maximal time step between the discrete steps σi−1 and σi.

To compare solution trajectories of a dynamical system with runs of a timed automa-
ton, we define the continuous behavior of a timed automaton, in terms of a trajectory.

Trajectory of a Timed Automaton

A vital object for studying the behavior of any dynamical system is its trajectory. There-
fore, we define a trajectory of a timed automaton. At the outset, we introduce a concept
of a time domain.

In the following, we denote sets of the form {a, . . . } with a ∈ Z≥0 as {a, . . . ,∞}.
Let k ∈ N ∪ {∞}; a subset Tk ⊂ Z≥0 × R≥0 with disjoint (union) topology will be
called a time domain if there exists an increasing sequence {ti}i∈{0,...,k} in R≥0 ∪ {∞}
such that

Tk =
⋃

i∈{1,...,k}
{i} × Ti,

where

Ti =

{
[ti−1, ti] if ti <∞
[ti−1,∞[if ti =∞.

Note that Ti = [ti−1, ti] for all i if k = ∞. We say that the time domain is infinite if
k = ∞ or tk = ∞. The sequence {ti}i∈{0,...,k} corresponding to a time domain will be
called a switching sequence.

We define two projections π1 : E × RC≥0 → E and π2 : E × RC≥0 → RC≥0 by
π1(e, v) = e and π2(e, v) = v.

Definition 11 (Trajectory). A trajectory of the timed automatonA is a pair (Tk, γ) where
k ∈ N ∪ {∞} is fixed, and

• Tk ⊂ Z≥0 ×R≥0 is a time domain with corresponding sequence {ti}i∈{0,...,k},
• γ : Tk → S and recall that S is the (topological) space of joint continuous and

discrete states; see Definition 9. The map γ satisfies:

1. For each i ∈ {1, . . . , k − 1}, there exists σ ∈ Σ such that

γ(i, ti)
σ−→ γ(i+ 1, ti) ∈ Ts.

2. Let 0 be a vector of zeros and 1 be a vector of ones in R|C|, and recall that
we identify a valuation v ∈ RC≥0 with C-tuples of nonnegative reals in R|C|≥0 .
For each i ∈ {1, . . . , k}

π2(γ(i, ti−1 + d)) = π2(γ(i, ti−1)) + d1 ∀d ∈
{

[0, ti − ti−1] if ti <∞
[0, ∞[if ti =∞

22

1 Preliminaries

where π2(γ(i, ti−1 + d)) ∈ JI(π1(γ(i, ti)))K and π2(γ(1, t0)) = 0. (Item 2
ensures that the time derivative of the valuation of each clock is one, between
the discrete transitions.)

Note that γ is continuous by construction. Recall the definition of v0 from Definition 7.
A trajectory at (e, v0) (with v0 |= I(e)) is a trajectory (Tk, γ) with γ(1, t0) = (e, v0).

Figure 3.2 shows the graph of a trajectory of a timed automaton with two clocks from
Example 15 in Paper B. The dashed red lines and the blue lines illustrate valuations of the
two clocks.

t
t4

t3

p

q

t2
t1

q

π2(γ(i, t))

p

t0
1

2

3

4

i

Figure 3.2: Trajectory of a timed automaton.

We define a discrete counterpart of the flow map.

Definition 12 (Flow Map of Timed Automaton). The flow map of a timed automaton A
is a multivalued map

φA : R≥0 × S0 → 2S ,

defined by (e′, v′) ∈ φA(t; e, v0) if and only if there exists a trajectory (Tk, γ) at (e, v0)
such that t = tk − t0 and (e′, v′) = γ(k, tk).

It will be instrumental to define a discrete flow map ΦA : R≥0 × E0 → 2E , which
forgets the valuation of the clocks

ΦA(t, e) = π1 ◦ φA(t; e, v0). (3.10)

In other words, ΦA is defined by: e′ ∈ ΦA(t, e) if and only if there exists a run (3.9)
of JAK initialized in (e, v0) that reaches the location e′ at time t =

∑
i di.

The reachable set of a timed automaton is defined as follows.

Definition 13 (Reachable set of Timed Automaton). The reachable locations of a timed
automaton A from a set of initial locations E0 ⊆ E on the time interval [t1, t2] is defined
as

ΦA([t1, t2], E0) ≡
⋃

(t,e)∈[t1,t2]×E0

ΦA(t, e). (3.11)

23

Abstracting Continuous Systems by Timed Automata

3.2 Abstractions of Dynamical Systems

The definition of a trajectory of a timed automaton enables a comparison between solu-
tion trajectories of dynamical systems and runs of timed automata. The comparison is
accomplished in this section, by defining a so-called abstraction function, which asso-
ciates subsets of the state space to locations of a timed automaton. Via the use of the
abstraction function, we define sound and complete abstractions. Then a proposed subdi-
vision of the state space is presented, based on the use of positively invariant sets. Finally,
we show how a timed automaton can be generated from the subdivision of the state space.

We develop a concept of an abstraction of the dynamical system Γ. It consists of a
finite number of sets E ≡ {eλ| λ ∈ Λ ⊆ N}, called cells. The cells cover the state space
X

X =
⋃

λ∈Λ

eλ.

To the subdivision E, we associate an abstraction function, which to each point in the
state space associates the cells that this point belongs to.

Definition 14 (Abstraction Function). Let E ≡ {eλ| λ ∈ Λ ⊆ N} be a finite subdivision
of the state space X ⊆ Rn. An abstraction function for E is the multivalued function
αE : X → 2E defined by

αE(x) ≡ {e ∈ E| x ∈ e}. (3.12)

For a given dynamical system Γ, we want to simultaneously devise a subdivision E
of the state space X and create a timed automaton A with locations E such that

1. the abstraction is sound on an interval [t1, t2]:

αE ◦ φΓ(t,X0) ⊆ ΦA(t, αE(X0)), for all t ∈ [t1, t2]

2. the abstraction is complete on an interval [t1, t2]:

αE ◦ φΓ(t,X0) = ΦA(t, αE(X0)) for all t ∈ [t1, t2].

If a sound abstractionA is safe then Γ is also safe, as the abstraction reaches all locations
reached by Γ = (X, f). Soundness is close to the notion of simulation; however, by
soundness we relate different categories of models. Figure 3.3 illustrates the reachable
set of a dynamical system, along with reachable sets of a sound abstraction (left) and a
complete abstraction (right).

Remark 6: Note that the reachable abstract states of the timed automaton and the dynamical system
are compared for every t in the previous definition.

In the verification of a system using an abstraction technique, it is paramount to know
which properties we can infer about the system via a verification of the abstraction, as
explained in Chapter 2. This is clarified in the following for sound and complete abstrac-
tions.

24

2 Abstractions of Dynamical Systems

X0 X0

Figure 3.3: Reachable set of a dynamical system (shaded area), and reachable sets of
automata (cells within bold lines). In the left figure, the reachable set of the automaton
includes more cells than the ones reached by the dynamical system, i.e., the abstraction is
sound. In the right figure, the reachable set of the automaton includes only the cells that
are reached by the dynamical system, i.e., the abstraction is complete.

Proposition 1: Let the timed automaton A be a sound abstraction of the dynamical system Γ and
let ψ be a universally quantified TCTL formulae in positive normal form. Then A |= ψ implies
that Γ |= ψ.

Proof. The proof shows that the language of Γ is included in the language of A. Then
by Chapter 7 in [BK08], A |= ψ implies that Γ |= ψ, where ψ is a universally quantified
TCTL formula in positive normal form.

Let the language of Γ be

LΓ ≡
⋃

x0∈X0

(τ, σ), (3.13)

where τ = τ1, τ2, . . . is an increasing sequence with τi ∈ R≥0 and σ = σ0σ1 . . . is an
infinite word over 2E with σi = αE ◦ φΓ(τi, x0). The language of A is defined from σ
and τ as

(τ, σ) ∈ LA
if there exists a trajectory γ of A such that

σi =
⋃

k∈Z≥0

π2 ◦ γ(k, τi).

Then LΓ ⊆ LA, as αE ◦ φΓ(t,X0) ⊆ ΦA(t, αE(X0)) for each t. Recall that φA and
subsequently ΦA are generated from the trajectory γ as shown in Definition 12.

Proposition 2: Let the timed automaton A be a complete abstraction of the dynamical system Γ.
Then A and Γ satisfy the same TCTL formulae.

Subdividing the State Space

This subsection presents the method used for subdividing the state space by functions, but
not how the functions should be chosen to obtain. This is explained in Section 3.3 and

25

Abstracting Continuous Systems by Timed Automata

Section 3.4 provides algorithms for their generation. The subdivision of the state space is
generated by intersecting sublevel sets of functions, and has two components: slices and
cells. A slice is a sublevel set of one subdivisioning function, whereas a cell is a connected
component of the intersection of sublevel sets of more subdivisioning functions.

The definition of a subdivision is motivated by the definition of a complex in algebraic
topology [Bre93].

Definition 15 (Subdivision). Let Λ be an index set, andK = {Pi}i∈Λ be a family of sub-
sets in a Euclidean space E. We let |K| = ∪i∈ΛPi with the subspace topology inherited
from E. We call K a subdivision of a subset Y of E, if

1. int(P) 6= ∅, for all P ∈ K,

2. P ∩ P ′ belongs to the boundary of P and P
′

for all P, P
′ ∈ K,

3. each point of |K| has a neighborhood intersecting only finitely many elements of
K,

4. |K| = Y .

We define a slice as the set-difference of positively invariant sets.

Definition 16 (Slice). A nonempty set S is a slice if there exist two open sets A1 and A2

such that

1. A1 is a proper subset of A2,

2. A1 and A2 are positively invariant, and

3. S = cl(A2\A1).

Since A1 and A2 are positively invariant sets, a trajectory initialized in S can prop-
agate to A1, but no solution initialized in A1 can propagate to S. This implies that, via
these invariants, we can study the possible trajectories of a dynamical system. We will
adopt the convention that ∅ is a positively invariant set of any dynamical systems.

To devise a subdivision of a state space, we need to define collections of slices, called
slice-families.

Definition 17 (Slice-Family). Let k ∈ N and

A0 ⊂ A1 ⊂ · · · ⊂ Ak

be a collection of positive invariant sets of a dynamical system Γ = (X, f) with X ⊆ Ak
and A0 = ∅. We say that the collection

S ≡ {Si = cl(Ai\Ai−1)| i ∈ k}

is a slice-family generated by the sets {Ai| i ∈ k} or just a slice-family.

We associate a function to each slice-family S to provide a simple way of describing
the boundary of a slice. Such a function is called a subdivisioning function.

26

2 Abstractions of Dynamical Systems

Definition 18 (Subdivisioning Function). Let Γ = (X, f) be a dynamical system, let
Cr(f) denote the set of critical points of f , and let S be a slice-family generated by
the sets {Ai| i ∈ k}. A continuous function ϕ : Rn → R smooth on Rn\Cr(f) is a
subdivisioning function for S if there is a sequence

a0 < . . . < ak, ai ∈ R ∪ {−∞,∞},

where whenever ai ∈ R, it is a regular value of ϕ such that

cl(Ai) = ϕ−1([ai−1, ai]). (3.14)

Remark that by regular level set theorem, for ai ∈ R, the boundary ϕ−1(ai) of Ai is
a smooth embedded submanifold of Rn of co-dimension 1 [Tu08].

We will create cells that cover the entire state space, by intersecting slices. To ensure
robustness of the subdivision, it is important that the slices intersect transversally. The
robustness of a transversal intersection is readily seen from the definition of transversal
intersection [Hir76].

Definition 19 (Transversal Intersection). Suppose that N1 and N2 are embedded sub-
manifolds of M . We say that N1 intersects N2 transversally if, whenever p ∈ N1 ∩N2,
we have Tp(N1) + Tp(N2) = Tp(M). (The sum is not direct, just the set of sums of
vectors, one from each of the two subspaces of the tangent space Tp(M).)

The definition states that N1 and N2 are transversal if the tangent vectors to N1 and
N2 span the entire space at each point of intersection. Hence, this transversality condition
can be tested algorithmically.

−0.5 0 0.5

−0.5

0

0.5

x1

x
2 p

N1N2

Tp(N1)

Tp(N2)

−0.5 0 0.5
x1

p

N1N2

Tp(N1)
Tp(N2)

Figure 3.4: The left subplot shows an intersection that is not transversal; whereas, the
right subplot shows a transversal intersection of two level sets.

The left subplot of Figure 3.4 illustrates level sets of two subdivisioning functions
(hence two embedded submanifolds of R2). They intersect at the point p, and their tan-
gents (black lines) generate a one dimensional subspace. This implies that their tangent
vectors only span one dimension at p, i.e., Tp(N1) + Tp(N2) 6= Tp(M). Therefore, this
intersection is not transversal. Note that there exists an arbitrary small perturbation such
that the intersection of the two level sets will be empty (this perturbation is given by a
smooth map; see Theorem 2.1 in [Hir76]). Therefore, this subdivision is not robust.

27

Abstracting Continuous Systems by Timed Automata

In the right subplot of Figure 3.4, two level sets intersecting at point p are illustrated.
Their tangent vectors (black lines) spanR2, i.e., the level sets intersect transversally. Note
that two manifolds that do not intersect are also transversal.

We define transversal intersection of slices as follows.

Definition 20 (Transversal Intersection of Slices). We say that the slices S1 and S2 inter-
sect each other transversally and write

S1 t S2 = S1 ∩ S2 (3.15)

if their boundaries, bd(S1) and bd(S2), intersect each other transversally.

Cells are generated via intersecting slices.

Definition 21 (Extended Cell). Let S = {Si| i ∈ k} be a collection of k slice-families
and let

G(S) ≡ {1, . . . , |S1|} × · · · × {1, . . . , |Sk|} ⊂ Nk.
Denote the jth slice in Si by Sij and let g ∈ G(S). Then

eex,g ≡ tki=1 S
i
gi , (3.16)

where gi is the ith component of the vector g. Any nonempty set eex,g is called an extended
cell of S.

The cells in (3.16) are called extended cells, since the transversal intersection of slices
may form multiple disjoint sets in the state space. It is desired to have cells, which are
connected.

Definition 22 (Cell). Let S = {Si|i ∈ k} be a collection of k slice-families. A cell e(g,h)

of S is a connected component of an extended cell of S
⋃

h

e(g,h) = eex,g, where (3.17a)

e(g,h) ∩ e(g,h′) = ∅ ∀h 6= h′. (3.17b)

There exist algorithms for determining the number of connected components of semi-
algebraic sets given by polynomials, and providing semi-algebraic descriptions of the
connected components. The number of connected components is given by the 0th Betti
number [Bre93]. An algorithm is presented in [BPR98] that takes as input a family of
polynomials {P1, . . . , Ps} ⊂ R[x1, . . . , xk] whose degrees are at most d, and outputs a
semi-algebraic description of each connected component. The complexity of that algo-
rithm is bounded by sk+1dO(k3), whereO denotes the big-O notation [Sip06, p. 252]. For
more details on the algorithm, see chapter 15 in [BPR06].

A finite subdivision based on the transversal intersection of slices is defined in the
following.

Definition 23 (Finite Subdivision). Let S = {Si| i ∈ k} be a collection of slice-families.
We define a finite subdivision E(S) by

e ∈ E(S) (3.18)

if and only if e is a cell of S.

28

2 Abstractions of Dynamical Systems

Occasionally, we also use finite subdivisions of extended cells Eex(S) defined by

e ∈ Eex(S) (3.19)

if and only if e is an extended cell of S.
We propose to use only functions that are decreasing along trajectories of the dy-

namical system Γ as subdivisioning functions, similar to Lyapunov functions, to obtain
robustness of the subdivision. Indeed, the robustness is ensured as the vector field is
transversal to the boundaries of the cells. This implies that there exists an arbitrary small
perturbation of the vector field, such that it is still transversal to the boundary of the cells.
The following definition is inspired by [Mey68].

Definition 24 (Decreasing Subdivisioning Function). LetX be an open connected subset
of Rn. Suppose f : X → Rn is continuous, and recall that Cr(f) denotes the set of
critical points of f . Then a real non-degenerate differentiable function ϕ : X → R is said
to be a subdivisioning function for f if

p is a critical point of f ⇔ p is a critical point of ϕ

Lfϕ(x) ≡
n∑

j=1

∂ϕ

∂xj
(x)f j(x) (3.20a)

Lfϕ(x) < 0 ∀x ∈ X\Cr(f) (3.20b)

and there exists α > 0 and an open neighborhood of each critical point p ∈ Cr(f), where

||Lfϕ(x)|| ≥ α||x− p||2. (3.21)

We only require the vector field to be transversal to the level curves of a function ϕ,
i.e., Lfϕ(x) = 〈∇ϕ(x), f(x)〉 < 0 for all x ∈ X\Cr(f) and require nothing about the
sign of ϕ.

Note that a subdivisioning function from Definition 24 does not exist for systems with
closed orbits. If a system has a closed orbit, it is necessary to subdivide the state space
using forms rather than functions. This can be accomplished as shown in the following,
where 0 ∼ 2π means that 0 is identified with 2π, i.e., it is the same point.

ϕ1 : [0, 2π]/0∼2π → (0, 2π)→ (0, 2π) ⊂ R : θ → θ (3.22a)
ϕ2 : [−π, π]/(−π)∼π → (−π, π)→ (0, 2π) ⊂ R : θ → θ + π (3.22b)

Together ϕ1 and ϕ2 cover the entire sphere S1, but one point is removed from both ϕ1 and
ϕ2. This allows the abstraction of systems with closed orbits. The concept is illustrated
in Figure 3.5.

In this thesis, we have only considered functions; hence, we cannot abstract systems
with closed orbits.

In the next section, we present a procedure for generating a timed automaton from
a subdivision, and show how the subdivisioning functions should be chosen to generate
sound and complete abstractions.

29

Abstracting Continuous Systems by Timed Automata

0
0 2π

π
−π π

Figure 3.5: Illustration of ϕ1 and ϕ2.

Generation of Timed Automaton from Finite Subdivision

To generate an abstraction, we use an abstraction procedure similar to the procedure pre-
sented in [MB08]; nevertheless, we exclude the clock and constraints related to the time
of traversing a cell. However, these can be added to improve accuracy. The reason why
these clocks are removed is that they destroy the compositional structure of the timed
automaton and requires computation of more guards and invariants.

A timed automaton A is generated from a finite subdivision E(S) as follows.

Definition 25 (Generation of Timed Automaton). Given a finite collection of slice-families
S = {Si| i ∈ k}, and T = {(tigi , t

i
gi) ∈ R2

≥0| i ∈ k, gi ∈ {1, . . . , |Si|}}. The timed
automaton A(S, T) = (E,E0, C,Σ, I,∆) is defined by

• Locations: The locations of A are given by

E = E(S). (3.23)

This means that a location e(g,h) is identified with the cell e(g,h) = α−1
E(S)({e(g,h)})

of the subdivision E(S), see Definition 14.

• Clocks: The set of clocks is C = {ci| i ∈ k}.

• Alphabet: The alphabet is Σ = {σi| i ∈ k}.

• Invariants: In each location e(g,h), we impose an invariant

I(e(g,h)) =

k∧

i=1

ci ≤ t
i
gi . (3.24)

• Transition relations: If a pair of locations e(g,h) and e(g′,h′) satisfy the following
two conditions

1. e(g,h) and e(g′,h′) are adjacent; that is e(g,h) ∩ e(g′,h′) 6= ∅, and

2. g′i ≤ gi for all i ∈ k.

30

3 Properties of the Abstraction

Then there is a transition relation

δ(g,h)→(g′,h′) = (e(g,h), G(g,h)→(g′,h′), σ
i, R(g,h)→(g′,h′), e(g′,h′)),

where

G(g,h)→(g′,h′) =

k∧

i=1

{
ci ≥ tigi if gi − g′i = 1

ci ≥ 0 otherwise.
(3.25a)

Note that gi − g′i = 1 whenever a transition labeled σi is taken.

Let i ∈ k. We define R(g,h)→(g′,h′) by

ci ∈ R(g,h)→(g′,h′) (3.25b)

iff gi − g′i = 1.

From the definition, it is seen that if the ith face is the common facet of the cells e(g,h)

and e(g′,h′), then a transition is possible if the valuation of clock ci is greater than tigi . If
the particular cells are not adjacent then no guard conditions are imposed.

If the set S is a singleton, i.e., S = {S1} then by slightly abusing the notation,
we write A

(
S1, (t, t)

)
instead of A

(
{S1}, {(t, t)}

)
. A timed automaton Aex(S, T) has

locations given by

E = Eex(S), (3.26)

where a location eex,g ∈ Eex(S) is associated with the extended cell eex,g generated by
the slice-family S; hence, eex,g = α−1

Eex(S)({eex,g}).

3.3 Properties of the Abstraction

The purpose of this section is to present selected properties of the abstraction. First, it
is shown that the abstraction framework is compositional; second, it is shown when ab-
stractions based on cells and extended cells are bisimilar. Then, conditions for generating
sound and complete abstractions are provided. This is the main contribution and the most
important property for determining the quality of the abstraction. Finally, results on re-
finement are presented.

The purpose of the abstraction is to verify a logic statement over predicates defined
by regions of the state space; however, as the locations of the abstraction correspond
to cells of the subdivision of the state space, level sets must be chosen such that the
regions defined by predicates in temporal logic are subsets of a union of cells of the
subdivision. Finally, the actual verification is conducted on the over-approximation of the
regions involved in the temporal logic statement. This is illustrated in Figure 3.6, where
the cell e1 over-approximates the set X0, and the verification is conducted as if X0 was
e1.

Compositionality of the Abstraction

Under certain conditions it is possible to generate the timed automaton as a parallel com-
position of multiple timed automata [BK08, p. 48].

31

Abstracting Continuous Systems by Timed Automata

x1

x2
e1

X0

Figure 3.6: A set X0 over-approximated by a cell e1. The verification is accomplished
using e1, not X0.

Definition 26 (Parallel Composition of Timed Automata). The parallel composition of
two timed automata, Ai = (Ei, E0,i, Ci,Σi, Ii,∆i) for i = 1, 2 with transition relations
(ei, Gi,ei→e′i , σ

i, Ri,ei→e′i , e
′
i), is denoted by A = A1||A2 and is a timed automaton

(E,E0, C,Σ, I,∆), where

• E = E1 × E2;

• E0 = E0,1 × E0,2;

• C = C1 ∪ C2;

• Σ = Σ1 ∪ Σ2;

• I : E → Ψ(C), where I(e1, e2) = I1(e1) ∧ I2(e2);

• ∆ ⊆ E × Ψ(C) × Σ × 2C × E is a finite set of transition relations, where
(e,Ge→e′ , σ, Re→e′ , e′) is defined by the following

1. If σ ∈ Σ1 ∩ Σ2 then e = (e1, e2), Ge→e′ = G1,e1→e′1 ∧G2,e2→e′2 , Re→e′ =
R1,e1→e′1 ∪R2,e2→e′2 , and e′ = (e′1, e

′
2).

2. If σ ∈ Σ1 and σ 6∈ Σ2 then e = (e1, e2), Ge→e′ = G1,e1→e′1 , Re→e′ =
R1,e1→e′1 , and e′ = (e′1, e2).

3. If σ 6∈ Σ1 and σ ∈ Σ2 then e = (e1, e2), Ge→e′ = G2,e2→e′2 , Re→e′ =
R2,e2→e′2 , and e′ = (e1, e

′
2).

Proposition 3: Let Aex(S) be a timed automaton and let the slices of S be generated such that for
each pair (Sigi , S

j
gj), with i, j ∈ k, gi ∈ {1, . . . , |Si|}, gj ∈ {1, . . . , |Sj |}, we have

Sigi t S
j
gj 6= ∅ ∀i 6= j. (3.27)

Then,Aex(S) is isomorphic to the parallel composition of k timed automata each generated by one
slice-family Si having an alphabet Σi = {σi}.

Remark 7: A parallel composition of timed automataAi(Si) for i ∈ k is similar to the intersection
of slices in the slice-families Si. Therefore, the intersection of slices should be nonempty to let the
locations of the timed automatonAex(S) be such a parallel composition, as stated in Proposition 3.

The property that Aex(S) is isomorphic to the parallel composition of k timed au-
tomata is very important for computations, since it allows parallel verification of the

32

3 Properties of the Abstraction

k timed automata each with only one clock. Furthermore, it makes it possible to se-
quentially add slice-families to the abstraction, to replace, and to refine slice-families to
improve the accuracy of the abstraction.

The parallel composition of timed automata allows the sequential verification of the
abstraction. We show this in terms of safety in the following.

Definition 27 (Safety). Given a timed automatonA(S) and a set of unsafe locationsEUS.
The timed automaton A(S) is said to be safe if

ΦA(S)([0,∞), E0) ∩ EUS = ∅. (3.28)

Proposition 4: Let Aex(S) = A1(S1)|| . . . ||Ak(Sk) be a timed automaton and let the timed au-
tomaton A1(S1)|| . . . ||Aj(Sj) be safe, for some j ∈ k. Then, Aex(S) is also safe.

The compositional properties of the abstraction are exploited to verify a high dimen-
sional system in Paper A on page 108.

Cells and Extended Cells

Under certain conditions, the timed automatonAex(S) is bisimilar to the timed automaton
A(S), bisimilarity is defined in Definition 75 on page 110. In the next proposition we say
when the timed automata A(S) and Aex(S) are related by bisimulation.

Proposition 5: Let S = {Si| i ∈ k} be a collection of slice-families, and ϕi be a subdivisioning
function for Si. A timed automaton Aex(S) generated by extended cells is bisimilar to a timed
automaton A(S) generated by cells if for each cell e(g,h) and each i ∈ k

e(g,h)

⋂
(ϕi)−1(aigi−1) 6= ∅ ∀h or (3.29a)

e(g,h)

⋂
(ϕi)−1(aigi−1) = ∅ ∀h. (3.29b)

If (3.29) holds, then all cells in each extended cell have the same symbols on their out-
going transitions; hence,A(S) andAex(S) are bisimilar. The following example clarifies
this proposition.

Example 5. To illustrate the use of Proposition 5 three different subdivisions of a two-
dimensional state space are shown in Figure 3.7.

In the subdivisions shown in the left and right side of Figure 3.7, the conditions shown
in (3.29) are satisfied for all g and h. In the subdivision shown in the middle side of
Figure 3.7, the constraints shown in (3.29) are not satisfied for e.g. g = (2, 2, 2) (shaded
region), as (ϕ3)−1(a3

1) (inner black line) does not intersect all cells in eex,(2,2,2).

Soundness and Completeness

To ensure that the properties of an abstraction is not only valid for a particular choice of
level sets, we impose the condition for any choice of regular values in the subdivision.
To generate a timed automaton, it is required to devise a subdivision of the state space,
and find a set of invariant and guard conditions. Therefore, we provide conditions under

33

Abstracting Continuous Systems by Timed Automata

−1 0 1

−1

0

1

x
2

x1
−1 0 1

x1

(ϕ3)−1(a31)

−1 0 1
x1

Figure 3.7: Illustration of three different subdivisions of a two-dimensional state space.
The left and right subdivisions satisfy Proposition 5. The middle subdivision does not
satisfy Proposition 5, as, e.g., the extended cell shaded with gray consists of cells, which
have a different number of neighboring cells.

which an abstraction is sound or complete. Recall the definition of a sound and complete
abstraction in Section 3.2.

It is chosen to present a sufficient condition for soundness, based on the decay rate
(γs in Proposition 6) of a system, as numerous methods exist for calculating decay rates.
The proposition is not found in the attached papers, but a similar condition is given in
[SW11] for linear systems.

Proposition 6 (Sufficient Condition for Soundness): A timed automaton A(S, T) is a sound ab-
straction of the system Γ = (X, f), if its invariants and guards satisfy

tSi
gi
≤ − log

(
aigi−1

aigi

)
1

γi
(3.30a)

tSi
gi
≥ − log

(
aigi−1

aigi

)
1

γi
, (3.30b)

where

γi = arg inf
γ
|Lfϕi(x)| ≤ γ|ϕi(x)| ∀x ∈ Sigi (3.31)

γi = arg sup
γ
|Lfϕi(x)| ≥ γ|ϕi(x)| ∀x ∈ Sigi . (3.32)

Proposition 6 states that an abstraction is sound if all guards (given by tSi
gi

) enable a
transition out of a cell before any solution trajectory of the dynamical system can traverse
the cell, and if all invariants (given by tSi

gi
) enable a run to stay in a cell longer than any

solution trajectory of the dynamical system uses to traverse the cell.
The values of guards of tSi

gi
and tSi

gi
can be algorithmically generated. This is shown

for linear systems in Corollary 3 on page 37.

Proposition 7: Given a dynamical system Γ = (X, f), a collection of subdivisioning functions
{ϕi| i ∈ k}, a collection of regular values {aigi | i ∈ k, gi ∈ {1, . . . , |Si|}} generating S, and

34

3 Properties of the Abstraction

T = {(tigi , t
i
gi)| i ∈ k, gi ∈ {1, . . . , |Si|}}. The timed automaton A(S, T) is a complete

abstraction of Γ if and only if for any i ∈ k

1. for any g ∈ G(S) (see the definition of G(S) in Definition 21), such that gi ≥ 2 there exists
a time tigi such that for all x0 ∈ (ϕi)−1(aigi)

φΓ(tigi , x0) ∈ (ϕi)−1(aigi−1) (3.33)

and

2. tSi
gi

= tSi
gi

= tigi .

Proof. See Appendix A of Paper B.

Proposition 7 states that it takes the same time for all solutions to propagate between
two level sets in of a complete abstraction. This time must be used for both invariant and
guard conditions.

Proposition 7 does not provide a straightforward method for computing a complete
abstraction, as the condition is not numerically tractable. Therefore, we rephrase (3.33)
as a relation between the level sets of the subdivisioning function and its Lie derivative.
This is given in the following theorem.

Theorem 1: Let Γ = (X, f) be a dynamical system. There exists a complete abstraction of Γ if
and only if there exists a collection of subdivisioning functions {ϕi| i ∈ k}, such that for any ϕ
and any regular value a ∈ R there exists b ∈ R such that

{x ∈ Rn| ϕ(x)− a = 0} ⊆ {x ∈ Rn| Lfϕ(x)− b = 0}. (3.34)

Proof. See Paper B on page 135.

Corollary 1: From (7.26) in the proof of Theorem 1, the time tSi
gi

= tSi
gi

= tigi in Proposition 7

can be calculated for a slice Sigi = (ϕi)−1([a, b]) by simulating a trajectory from any point x0 ∈
(ϕi)−1(b) and determining the time tigi , when φΓ(tigi , x0) ∈ (ϕi)−1(a).

We identify a necessary and sufficient relation between two polynomials ϕ,ψ ∈ R[x]
satisfying (3.34).

In this work, we are only interested in using irreducible polynomials to subdivide
the state space, as they have a closed and connected variety [Has07, p. 90]. By using
irreducible polynomials, the generated slices are connected components, as desired.

Definition 28 (Irreducible Polynomial [Has07]). A polynomial p ∈ R[x] is called irre-
ducible if it is nonconstant and there exist no two nonconstant polynomials p1, p2 ∈ R[x]
such that

p = p1p2. (3.35)

Theorem 2: Let ϕ,ψ ∈ R[x]. For any regular value a ∈ R, there exists b ∈ R such that

{x ∈ Rn| ϕ(x)− a = 0} ⊆ {x ∈ Rn| ψ(x)− b = 0}, (3.36)

where ϕ− a is irreducible if and only if

ψ = c0 + c1ϕ+ c2ϕ
2 + c3ϕ

3 + · · · . (3.37)

35

Abstracting Continuous Systems by Timed Automata

Proof. See Paper B, page 137.

Essentially, (3.37) states that ψ must be a polynomial in ϕ to ensure that any level set
of ϕ is a subset of some level set of ψ.

Based on Theorem 2, we rephrase Theorem 1 as follows.

Theorem 3: Let Γ = (X, f) be a dynamical system. There exists a complete abstraction of Γ if
and only if there exists a collection of subdivisioning functions {ϕi| i ∈ k}, such that

Lfϕ
i = c0 + c1ϕ

i + c2(ϕi)2 + c3(ϕi)3 + · · · . (3.38)

This is a very important result that characterizes optimal subdivisioning functions.
Theorem 3 is utilized to generate both sound and complete abstractions, by generating

partitioning functions that are as close as possible to satisfying (3.38). This gives the best
abstraction, although it is not necessarily complete.

Refinement of Abstraction

To ensure that an abstraction can approximate the reachable set of Γ with any desired
accuracy, it should be refinable according to the following definitions.

Definition 29 (Refinement of subdivision). Let the subdivisionE(S) be generated by the
slice-families S = {Si| i ∈ k}. Then the subdivision E(S̃) is a refinement of E(S) if
and only if for any e ∈ E(S) there is a cell ẽ ∈ E(S̃) such that

ẽ ⊆ e. (3.39)

Definition 30 (Refinable Abstraction). An abstraction A(S) of a system Γ is said to be
refinable if for all ε > 0 there exists an abstraction A(S̃), where E(S̃) is a refinement of
E(S), such that for all ẽ ∈ E(S̃)

ẽ ⊆ B(ε), (3.40)

where B(ε) is a ball with radius ε.

Note that the ball B(ε) need not be centered at 0. The least ε that satisfies (3.40) for
all ẽ ∈ E(S̃) is called the radius of the subdivision. We see that combining the notion of
complete abstraction and refinable abstraction yields the following corollary.

Corollary 2: If the system Γ is abstracted by a complete and refinable abstraction A(S), then for
all ε > 0 there exists a subdivision E(S̃) such that for all t ∈ [t1, t2]

α−1
K

(
ΦA(S̃)(t, E0)

)
⊆ φΓ(t,X0) +B(ε). (3.41)

The smallest ε such that (3.41) is satisfied is called the accuracy of the abstraction.
Corollary 2 states that a complete and refinable abstraction can approximate the reachable
states of a system Γ arbitrarily close. In conclusion, to get any desired radius of the
subdivision, all cells of its subdivision E(S) should converge towards points. In the next
proposition, we answer the question of minimal number of slice-families necessary to
construct a refinable abstraction.

36

4 Algorithmic Generation of Abstraction

Proposition 8 (Necessary Condition for Refinable Abstraction): If A(S) is a refinable abstraction
of a system Γ, then S is a collection of n slice-families.

Proof. See Paper A on page B.

Note that this is necessary to be able to shrink a cell to a point.

3.4 Algorithmic Generation of Abstraction

Algorithms are developed for abstracting linear systems using linear matrix inequalities
(LMIs), and sum of squares (SOS) conditions for finding the best subdivisioning functions
for polynomial systems. Most of these conditions are alike. Therefore, we only show
LMIs for generating invariant conditions for linear systems.

Invariant conditions can be generated from Corollary 3. Note that a more general
condition can be set up, but this condition is presented to clarify presentation.

Corollary 3: Suppose Γ = (X, f) is a stable linear system, {ϕi|i ∈ k} is a family of quadratic
Lyapunov functions, where ϕi = xTP ix is associated with Si, Si is generated using the regular
values {aij |j = 1, . . . , |Si|}, and P i � 0. Let Lfϕi = −xTQix, and define γi as the solution to
the following optimization problem

maximize γi (3.42a)

subject to γiP i −Qi � 0, γi > 0. (3.42b)

Then for any location e(g,h) ∈ E, the invariant is

I(e(g,h)) =

k∧
i=1

ci ≤ tSi
gi
, where (3.43a)

tSi
gi
≥ − log

(
aigi−1

aigi

)
1

γi
. (3.43b)

In Corollary 3, it is seen that the same decay rate γi is used for all invariants involving
clock ci. This makes the computations of the abstraction especially simple. A geometric
interpretation of the optimization problem is shown in Figure 3.8. The minimum value of
Lfϕ can be determined by finding the smallest value a, where (Lfϕ)−1(a) intersects a
boundary of a slice.

To generate complete abstractions, we cannot search for a polynomial ϕ satisfying
the relation shown in (3.38) using linear or sum of squares optimization problems, as the
coefficients of the polynomials would appear in different powers. Therefore, we assume
that Lfϕ is an affine function of ϕ.

Proposition 9: Given a dynamical system Γ = (X, f), c0, c1, c0, c1 ∈ R, and a subdivisioning
function ϕ such that

c0 + c1ϕ(x) ≤ Lfϕ(x) ≤ c0 + c1ϕ(x) ∀x. (3.44)

37

Abstracting Continuous Systems by Timed Automata

−5 0 5

−5

0

5
x
2

x1

S

(Lfϕ)
−1(ajγ)

−5 0 5

−5

0

5

x
2

x1

S

(Lfϕ)
−1(aj−1γ)

Figure 3.8: Illustration of a slice S = ϕ−1([aj−1, aj]) (red) and the level sets
(Lfϕ)−1(aj−1γ) and (Lfϕ)−1(ajγ) (green and dashed) intersecting the slice S.

Let CrV(ϕ) be the set of critical values of ϕ. Then for any pair of regular values a1 < a2, where
CrV(ϕ) ∩ [a1, a2] = ∅, and any x0 ∈ ϕ−1(a2) there exists t > 0 that satisfies

sign(c1a2 + c0)t ≤ sign(c1a2 + c0)
1

c1
log

(
c0
c1

)
log

(
a2

a1

)
, and (3.45a)

sign(c1a2 + c0)t ≥ sign(c1a2 + c0)
1

c1
log

(
c0
c1

)
log

(
a2

a1

)
(3.45b)

such that

φΓ(t, x0) ∈ ϕ−1(a1). (3.46)

Proof. See Paper B on page 139.

Note that Lfϕ(x) is required to be negative for any x ∈ X\Cr(f). Therefore, (c1a1+
c0) and (c1a1 + c0) should also be negative; hence, (3.45a) gives a lower bound on t and
(3.45b) gives an upper bound on t. Furthermore, it is seen from (3.45) that for c0 = c0
and c1 = c1, the abstraction generated by ϕ is complete. Otherwise, we minimize the
time interval given by (3.45), to obtain the most accurate sound abstraction. This is
accomplished by minimizing the upper bound and maximizing the lower bound on Lfϕ
given in (3.44). The procedure for this is provided next.

First, we make the polynomials ϕ,Lfϕ homogeneous, to eliminate the constants c0
and c0.

Definition 31 ([Mar08]). A homogeneous polynomial (or form) is a polynomial where
all monomials have the same total degree d.

We can transform a polynomial into a homogeneous polynomial as follows.

Lemma 1 ([Mar08]). Let f be any polynomial in R[x] of degree less than or equal to d.
Then

f̄(x0, . . . , xn) = xd0f(
x1

x0
, . . . ,

xn
x0

) (3.47)

is a homogeneous polynomial of degree d.

It is very important to choose the degree d correctly, when generating the homoge-
neous polynomial, to ensure the following property.

38

4 Algorithmic Generation of Abstraction

Lemma 2. Let f and f̄ be related by (3.47). If d is even, then f(x) ≥ 0 for all x ∈ Rn if
and only if f̄(x) ≥ 0 for all x ∈ Rn+1.

Proposition 10: Let ϕ,Lfϕ ∈ R[x] and c0, c1 ∈ R. Then

Lfϕ(x) ≤ c0 + c1ϕ(x) ∀x ∈ Rn (3.48)

if and only if

Lfϕ(y) ≤ 1 + c1ϕ̄(y) ∀y ∈ Rn+1, (3.49)

where ϕ̄, Lfϕ ∈ R[x0, . . . , xn] are homogeneous polynomials of ϕ,Lfϕ.

Proof. See Paper B on page 140.

From Proposition 10, we see that by considering homogeneous polynomials, only one
decision variable is needed to obtain each bound of (3.44).

We use sum of squares (SOS) optimization problems to compute polynomial subdivi-
sioning functions for polynomial systems. The following explanation of sum of squares
polynomials is based on [Par03, BCR98].

Definition 32. A polynomial p ∈ R[x] is called sum of squares if

p =

k∑

i=1

p2
i (3.50)

for some polynomials pi ∈ R[x] with i = 1, . . . , k.

The set of sum of squares polynomials is a subset of nonnegative polynomials [Par03],
which can be treated using semidefinite programming, as described below. We denote the
set of sum of squares polynomials in n variables by Σn.

The existence of a sum of squares decomposition of a polynomial p ∈ R[x] of degree
d can be expressed as a semidefinite programming feasibility problem. Therefore, the
formulation of a problem as sum of squares makes the problem computationally tractable;
however, the number of decision variables in the program is

N =

(
n+ 2d

2d

)
. (3.51)

In the search of sum of squares polynomials, it is exploited that the existence of an SOS
decomposition of a polynomial p is equivalent to the existence of a matrix Q = QT � 0
such that

p = ZTQZ, (3.52)

where Z is a vector of monomials of degree less than or equal to half the degree of p.

39

Abstracting Continuous Systems by Timed Automata

Let k, l ∈ Z>0, let αi,j ∈ R[x] for (i, j) ∈ k× l, and wj ∈ R. An SOS programming
problem is

minimize
(c1,...,cl)∈Rl

l∑

j=1

wjcj subject to

αi,0 +

l∑

j=1

αi,jcj ∈ Σn∀i = 1, . . . , k.

(3.53)

It is seen that an SOS programming problem is a minimization of a linear cost subject to
SOS feasibility constraints.

The main issue with sum of squares polynomials is that a polynomial may be nonneg-
ative, even though it cannot be represented as a sum of squares [BCR98].

We find the subdivisioning function that gives the best abstraction, via a sum of
squares optimization problem. Note that this is very similar to the problem of finding
the maximum decay rate of a system, which can be formulated as a generalized eigen-
value problem. This problem can be solved using the bisection method.

In the considered problem, we do not assume the system to be stable nor unstable;
hence, we cannot assume any sign of the decay rate. However, to avoid complicating
the optimization problems, we assume that the decay rate is positive (in the optimization
problem γ > 0), but if γ < 0 all maximizations should just be replaced with minimiza-
tions and vice versa.

Proposition 11: Suppose Γ = (X, f) is a polynomial system, then the subdivisioning function ϕ,
minimizing the upper bound of (3.49) is given by the following optimization problem

max γ subject to

1 + γϕ− Lfϕ ∈ Σn

−Lfϕ ∈ Σn

γ > 0

(3.54)

and the subdivisioning function ϕ, maximizing the lower bound of (3.49) is given by the following
optimization problem

min γ subject to

−1− γϕ+ Lfϕ ∈ Σn

−Lfϕ ∈ Σn

γ > 0.

(3.55)

These optimization problems can be solved using the bisection method [BG93]. Note
that the previous optimization problems can be solved in tools such as SOSTOOLS
[PPSP05]. This is a tool that transforms sum of squares optimization problems into
semidefinite programs (SDPs), which can be directly solved using, e.g., SeDuMi. Solving
SDPs is polynomial time [GM12]; hence, the sum of squares optimization problem can
be solved in polynomial time, with the number of decision variables given by (3.51).

In Paper B on page 142 we also pose the optimization problem using LMIs, which
can be used for linear systems with quadratic subdivisioning functions.

40

5 Abstractions for Mechanical Systems

This finalizes the description of the abstraction method. In the next section, the
method is adapted to abstract mechanical systems.

3.5 Abstractions for Mechanical Systems

In this section an abstraction method is presented for abstracting mechanical systems. To
allow abstraction of mechanical systems, the requirements for the subdivisioning func-
tions are relaxed, and reduction techniques for mechanical systems are used to generate
the subdivisioning functions.

Definition 33 (Transversal Subdivision). Let X be an open connected subset of Rn.
Suppose f : X → Rn is continuous and let Cr(f) be the set of critical points of f
(equilibria). Let Φ = {ϕi : X → R| i ∈ k} be a set of real differentiable functions,
and let A = {Ai| i ∈ k} be a collection of sets of regular values. The finite subdivision
E(Φ,A) is said to be transversal (we call it a transversal subdivision) if for each cell
e ∈ E(Φ,A) there is a subdivisioning function ϕi ∈ Φ such that

Lfϕi(x) 6= 0 ∀x ∈ e\Cr(f) (3.56a)

and for all i ∈ k

Lfϕi(x) = 0 ∀x ∈ Cr(f). (3.56b)

It is seen from (3.56a) that at least one subdivisioning function has to have nonzero
gradient in each cell (3.56a); hence, the vector field should be transversal to the level
sets of at least one subdivisioning function. This is important in the generation of time
information for the abstraction.

The abstraction is accomplished in the following steps

(A) Discard all dissipation of the system and subdivision the state space of the conser-
vative system using tangential and transversal manifolds.

(B) Add dissipation and select level sets to obtain a transversal subdivision.

(C) Generate a timed automaton abstracting the system.

We show in Proposition 13 that a transversal subdivision generated by n subdivisioning
functions can be realized for integrable systems using the presented procedure.

First, we consider a conservative mechanical system, as this enables the identification
of cyclic coordinates and first integrals (constants of motion). The constants of motion
are functions with level sets being tangential manifolds; hence, they are used as subdivi-
sioning functions. Following this identification, the model is reduced using Routh reduc-
tion [Gol60], and the reduced space is subdivided using transversal manifolds, which are
generated via action-angle coordinates. Finally, we add dissipation to the system. This
implies that the system trajectories no longer are confined to a certain constant of motion.
Instead, the system trajectories traverse the manifolds according to dynamics described
by the dissipation. This subdivision is shown to be transversal.

41

Abstracting Continuous Systems by Timed Automata

Discretizing Conservative Mechanical System

The aim of this subsection is to provide guidance for finding 2n mutually transversal sub-
divisioning functions for a conservative mechanical system with n degrees of freedom. It
is required to find 2n mutually transversal subdivisioning functions, i.e., functions whose
gradients are linearly independent at each point (except of critical points), to obtain arbi-
trary accuracy of the abstraction. The method consists of the following steps

1. Identify cyclic coordinates from the Lagrangian.

2. Find tangential manifolds via Noether’s theorem.

3. Reduce the system using Routh reduction.

4. Find transversal manifolds for the reduced system using action-angle coordinates.

We assume that the mechanical system with n degrees of freedom is described by n
Euler-Lagrange equations of motion in generalized coordinates.

Identification of Cyclic Coordinates

Recall that a coordinate qi is said to be cyclic if the Lagrangian of a system does not
depend on it.

From the Lagrangian of a system, it is seen that ∂L/∂qi = 0 if qi is cyclic; hence,
the generalized momentum ∂L/∂q̇i is constant. This means that cyclic coordinates iden-
tify symmetries of the system, where a symmetry is a transformation that generates a
displacement under which the system is invariant, e.g., a translation along a cyclic coor-
dinate. Therefore, each cyclic coordinate should be subdivided independently of the other
coordinates, i.e., if qi is a cyclic coordinate then

ϕ : (q, q̇) 7→ qi (3.57)

should be used as subdivisioning function. The cyclic coordinate should be discarded in
the remainder of the subdivisioning procedure.

Identification of Tangential Manifolds

We are interested in constructing the tangential manifolds without the use of solutions
of the differential equations. This motivates the identification of tangential manifolds,
via the Euler-Lagrange equations. The presented method may not identify 2n − 1 con-
stants of motion; however, the tangential manifolds are identified globally. The number
of constants of motion that one can find for a given system is not a priori known.

Following [Arn89, p. 207], the function H is a first integral of the Hamiltonian phase
flow with Hamiltonian function H . This implies that we can always find one constant
of motion: the Hamiltonian. The Hamiltonian function should be used as a tangential
subdivisioning function

ϕ(q, q̇) = H(q, q̇). (3.58)

An integrable system has, per definition, n linear independent tangential manifolds.
These are also called functionally independent constants of motion. The Poisson bracket

42

5 Abstractions for Mechanical Systems

is used in the definition of an integrable system. Recall that given two smooth real-valued
functions A and B defined on the phase space of a Hamiltonian system, the canonical
Poisson bracket of A and B is defined by

{A,B} =

N∑

i=1

(
∂A

∂qi
∂B

∂pi
− ∂B

∂qi
∂A

∂pi

)
, (3.59)

where (qi, pi) are conjugate pairs of canonical coordinates [Mar92].

Definition 34 (Integrable System). A Hamiltonian systems in a 2n-dimensional sym-
plectic manifold is said to be integrable (in the Arnold-Liouville sense) if there exist n
functionally independent constants of motion that are in involution, meaning that they
pairwise satisfy

{Fi, Fj} = 0 ∀i, j. (3.60)

Constants of motion can be found, by using the symmetries of the system, given by
the cyclic coordinates, according to the following theorem [Arn89, p. 88].

Theorem 4 (Noether’s Theorem): Let M be a smooth manifold, L : TM → R a smooth function
on its tangent bundle TM . If the system (M,L) admits the one-parameter group of diffeomor-
phisms hs : M → M , s ∈ R, then the lagrangian system of equations corresponding to L has a
first integral I : TM → R. In local coordinates q on M the integral I is written in the form

I(q, q̇) =
∂L

∂q̇

dhs(q)

ds
s=0. (3.61)

From the theorem, it is seen that we can find one constant of motion per cyclic co-
ordinate, as the generalized momentum ∂L/∂q̇i is constant if qi is cyclic; hence, the
generalized momentum should be used as a tangential subdivisioning function

ϕ(q, q̇) =
∂L

∂q̇i
. (3.62)

In relation to Theorem 4, let M = Rn and let the first coordinate be a cyclic coordinate,
then hs : (q1, . . . , qn) 7→ (q1 + s, . . . , qn) is a one-parameter group. Note that symmetry
under translation corresponds to momentum conservation, symmetry under rotation to
angular momentum conservation, symmetry in time to energy conservation [But05].

Reduction of the System

The remaining subdivision should be conducted on a reduced state space, given by the
following theorem, which can be used to restrict the dynamics of a system to a lower
dimensional surface using constants of motion, [LCV10].

Theorem 5 (Routh Reduction): Let L : R2n → R be the Lagrangian for a system with n degrees
of freedom. Assume that q1 is a cyclic coordinate and that locally ∂2L/∂q̇1∂q̇1 6= 0 so that q̇1

can be expressed as q̇1 = %(q2, . . . , qn, q̇2, . . . , q̇n). Consider the Routhian Rµ : R2(n−1) → R

defined as the function Rµ = L − q̇1µ, where all instances of q̇1 are substituted by the function

43

Abstracting Continuous Systems by Timed Automata

% and momentum p1 = µ. The Routhian is now interpreted as the Lagrangian for a system with
(n− 1) degrees of freedom (q2, . . . , qn).

Any solution (q1(t), . . . , qn(t)) of the Euler-Lagrange equations of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n (3.63)

with momentum p1 = µ, projects onto a solution (q2(t), . . . , qn(t)) of the Euler-Lagrange equa-
tions

d

dt

∂Rµ

∂q̇k
− ∂Rµ

∂qk
= 0, k = 2, . . . , n. (3.64)

Conversely, any solution of the Euler-Lagrange equations for Rµ can be lifted to a solution of the
Euler-Lagrange equations for L with momentum p1 = µ.

Using Theorem 5, we can obtain Euler-Lagrange equations of reduced dimension,
which should be used in the generation of the transversal manifolds.

The idea of Routh reduction is to use the constants of motion as coordinates in the
system description. This enables the system to be analyzed using fewer coordinates, as
the system has no dynamics in the coordinates given by the constants of motion. The
concept is shown in Figure 3.9.

{A,B} =

N∑

i=1

(
∂A

∂qi
∂B

∂pi
− ∂B

∂qi
∂A

∂pi

)
(8)

where (qi, pi) are conjugate pairs of canonical coordinates.

Definition 7. (Integrable System). A Hamiltonian systems
in a 2n-dimensional symplectic manifold is said to be
integrable (in the Arnold-Liouville sense) if there exist n
functionally independent constants of motion that are in
involution, meaning that they pairwise satisfy

{Fi, Fj} = 0 ∀i, j. (9)

Constants of motion can be found, by using the symmetries
of the system, given by the cyclic coordinates, according
to the following theorem (Arnold, 1989, p. 88).

Theorem 1. (Noether’s Theorem). Let M be a smooth
manifold, L : TM → R a smooth function on its tan-
gent bundle TM . If the system (M,L) admits the one-
parameter group of diffeomorphisms hs : M →M , s ∈ R,
then the lagrangian system of equations corresponding to
L has a first integral I : TM → R. In local coordinates q
on M the integral I is written in the form

I(q, q̇) =
∂L

∂q̇

dhs(q)

ds
s=0. (10)

From the theorem, it is seen that we can find one con-
stant of motion per cyclic coordinate, as the generalized
momentum ∂L/∂q̇i is constant if qi is cyclic; hence, the
generalized momentum should be used as a tangential
partitioning function

ϕ(q, q̇) =
∂L

∂q̇i
. (11)

In relation to Theorem 1, let M = Rn and let the first
coordinate be a cyclic coordinate, then hs : (q1, . . . , qn) 7→
(q1 + s, . . . , qn) is a one-parameter group. Note that sym-
metry under translation corresponds to momentum con-
servation, symmetry under rotation to angular momentum
conservation, symmetry in time to energy conservation
Butterfield (2005).

Reduction of the System The remaining partition should
only be conducted on a reduced state space, given by
the following theorem, which can be used to restrict the
dynamics of a system to a lower dimensional surface using
constants of motion.

Theorem 2. (Routh Reduction Langerock et al. (2010)).
Let L : R2n → R be the Lagrangian for a system with n
degrees of freedom. Assume that q1 is a cyclic coordinate
and that ∂2L/∂q̇1∂q̇1 6= 0 so that q̇1 can be expressed
as q̇1 = %(q2, . . . , qn, q̇2, . . . , q̇n). Consider the Routhian
Rµ : R2(n−1) → R defined as the function Rµ = L − q̇1µ,
where all instances of q̇1 are replaced by %. The Routhian
is now interpreted as the Lagrangian for a system with
(n− 1) degrees of freedom (q2, . . . , qn).

Any solution (q1(t), . . . , qn(t)) of the Euler-Lagrange equa-
tions of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n (12)

with momentum p1 = µ, projects onto a solution
(q2(t), . . . , qn(t)) of the Euler-Lagrange equations

d

dt

∂Rµ

∂q̇k
− ∂Rµ

∂qk
= 0, k = 2, . . . , n. (13)

0

2

4

6−5
0

5

−3

−2

−1

0

1

2

3

θ̇

θ

ẋ
c

Fig. 3. Simulation results of the inverted pendulum. The
two surfaces are level sets of the constants of motion.
The black line is the simulated trajectory.

Conversely, any solution of the Euler-Lagrange equations
for Rµ can be lifted to a solution of the Euler-Lagrange
equations for L with momentum p1 = µ.

Using Theorem 2, we can obtain Euler-Lagrange equations
of reduced dimension, which should be used in the gener-
ation of the transversal manifolds.

The idea of Routh reduction is to use the constants of
motion as coordinates in the system description. This
enables the system to be analyzed using fewer coordinates,
as the system has no dynamics in the coordinates given by
the constants of motion. This concept can be seen from
Fig. 3.

The figure illustrates two constants of motion and a
solution trajectory (black line) that is located at their
intersection; hence, the solution can be described using
only one coordinate (apart from the constants of motion).

Identification of Transversal Manifolds We have not
found general method for finding transversal manifolds;
however, for integrable systems, we can find transversal
manifolds via the use of action-angle coordinates.

Theorem 3. (Jose and Saletan (1998)). Consider a com-
pletely integrable Hamiltonian system with constants of
motion C1(q, p) = H(q, p), C1(q, p), . . . , Cn(q, p) which are
in involution. The hypersurfaces given by sets of constants
c = {ci|i ∈ n}

S(c) = {(q, p) ∈ T ∗Q|Ci(q, p) = ci, i = 1, . . . , n} (14)

are invariant under the flow of the Hamiltonian system. If
S(c) is compact and connected, then S(c) can be mapped
in a diffeomorphic way on a n-torus Tn = S1 × · · · × S1.
Each circle can be described by an angle coordinate θi(t)
with dynamics

dθi
dt

= Ωi(c), i = 1, . . . , n. (15)

From the theorem we see that for integrable systems we
can find a coordinate system, where n coordinates are
given by constants of motion and n coordinates which
are independent of each other and are given by trivial
dynamics. For each action-angle θi, a transversal partition
function

ϕi(q, p) = θi (16)

Figure 3.9: The two surfaces are level sets of the constants of motion. The black line is
the simulated trajectory.

The figure illustrates two constants of motion and a solution trajectory (black line)
that is located at their intersection; hence, the solution can be described using only one
coordinate (apart from the constants of motion).

Identification of Transversal Manifolds

We have not found general method for finding transversal manifolds; however, for inte-
grable systems, we can find transversal manifolds via the use of action-angle coordinates.

44

5 Abstractions for Mechanical Systems

Theorem 6 ([JS98]): Consider a completely integrable Hamiltonian system with constants of mo-
tion C1(q, p) = H(q, p), C1(q, p), . . . , Cn(q, p) which are in involution. The hypersurfaces given
by sets of constants c = {ci| i ∈ n}

S(c) = {(q, p) ∈ T ∗Q| Ci(q, p) = ci, i = 1, . . . , n} (3.65)

are invariant under the flow of the Hamiltonian system. If S(c) is compact and connected, then
S(c) can be mapped in a diffeomorphic way on a n-torus Tn = S1 × · · · × S1. Each circle can be
described by an angle coordinate θi(t) with dynamics

dθi
dt

= Ωi(c), i = 1, . . . , n. (3.66)

From the theorem we see that for integrable systems one can find a coordinate sys-
tem, where n coordinates are given by constants of motion and n coordinates which are
independent of each other and are given by trivial dynamics. For each action-angle θi, a
transversal subdivision function

ϕi(q, p) = θi (3.67)

should be used in the subdivisioning of the state space. For details in the synthesis of the
coordinate transformation, see [JS98].

Note that the proposed method does not provide 2n linear independent subdivisioning
functions for all systems; however, for integrable systems they can be found via Theo-
rem 6. Therefore, the proposed subdivision can be applied to partly subdivide a state
space, and then the remaining part of the state space can be subdivided using, e.g., hyper-
cubes as used in most other abstraction procedures.

Obtaining Transversal Subdivision

The final step of the subdivisioning procedure is to check if the subdivision is transversal.
We show that a transversal subdivision can always be found for integrable systems.

Proposition 12: Let the system (M,L) be defined as shown in Theorem 4 with first integral in
local coordinates (U, ς)

I(q, q̇) =
∂L

∂q̇

dhs(q)

ds
. (3.68)

Then by adding external forces Q to the system, the time derivative of I becomes

d

dt
I(q, q̇) = Q

dhs(q)

ds
. (3.69)

Proof. See Paper C on page 161.

Proposition 13: Let (M,L) be an integrable system, and let k = 2n; thus, k = {1, . . . , 2n}. Then
there exists a collection of nonempty sets of regular values A = {Ai|i ∈ k} for the subdivisioning
functions Φ = {ϕi(q, q̇)| i ∈ k} (see Theorem 6), such that the generated subdivision E = (Φ,A)
is transversal.

Proof. See Paper C on page 162

45

Abstracting Continuous Systems by Timed Automata

This implies that we can obtain a transversal subdivision for mechanical systems per
construction.

3.6 Conclusion

An abstraction method for verifying TCTL specifications for Morse-Smale systems is
presented in this chapter. It is shown that verification of TCTL specifications is possible
using complete abstractions, and that universally quantified TCTL specifications can be
verified by sound abstractions. We provide optimization problems for generating the
subdivision of the state space used in the abstraction procedure. However, a complete
solution to the generation of the subdivision is not provided.

Finally, we have provided an initial attempt to abstract mechanical systems using a
similar abstraction method. This method is however not fully developed yet.

46

4 Safety Guarantees for
Continuous Systems

The purpose of this chapter is to present a compositional method for verifying the safety of
continuous systems, and a method for designing controllers that ensures safety of control
systems. Both methods are based on the barrier certificate method.

The chapter is an extract of the results from Paper D-F. The compositional verification
method is set up in Paper D and refined in Paper E. Paper F presents a new definition of
control barrier function and provides an associated controller design method. This chapter
gives answers to the following problems.

Problem 3: Given a dynamical system decomposed into k subsystems, a set of initial states X0,
and a set of unsafe states Xu. Determine if there exists a trajectory initialized in X0 that reaches
Xu.

Problem 4: Given a control system, a set of initial states X0, and a set of unsafe states Xu. Design
a control law such that no trajectories initialized in X0 can reach Xu.

The chapter is organized as follows. Section 4.1 presents conditions for verifying
safety using barrier certificates. The conditions are rephrased in a compositional manner
in Section 4.2, algorithms for finding the barrier certificates are presented in Section 4.3,
and Section 4.4 elaborates on the restrictions of the compositional method. Finally, a
method for designing safe controllers is presented in Section 4.5, followed by conclusions
in Section 4.6.

Notation

Let k ∈ N. Given x = (x1, . . . , xk) ∈ Rn1 × · · · × Rnk , with xi ∈ Rni , we define
x̂i ≡ (x1, . . . , xi−1, xi+1, . . . , xk). Similarly, given a sequence of maps (h1, . . . , hk),
we define ĥi ≡ (h1, . . . , hi−1, hi+1, . . . , hk).

4.1 Safety Verification using Barrier Certificates

This section presents the barrier certificate method that can be used for verifying the
safety of a dynamical system.

47

Safety Guarantees for Continuous Systems

We consider a continuous system given as a system of ordinary differential equations

ẋ = f(x, d), (4.1)

where x ∈ Rn is the state and d ∈ D ⊆ Rr is the disturbance input.
For some measurable and essentially bounded disturbance function d̄ : R≥0 → D,

i.e., d̄ ∈ L∞(R≥0, D), we denote the solution of the Cauchy problem (4.1) with initial
state x0 on an interval [0, T] by φd̄x0

, i.e.,

dφd̄x0
(t)

dt
= f

(
φd̄x0

(t), d̄(t)
)

(4.2)

for almost all t ∈ [0, T] and φd̄x0
(0) = x0. We denote the set of solutions from all initial

conditions x0 in X0 by φd̄X0
.

We consider a dynamical system given by Γ = (f,X,X0, Xu, D), where f : Rn+r →
Rn is continuous, X ⊆ Rn, X0 ⊆ X , Xu ⊆ X , and D ⊆ Rr. In the safety verification,
we only consider trajectories initialized in X0 that are contained in the set X . We verify
if there exists a trajectory that can reach an unsafe set Xu. The safety of a system Γ is
defined as follows.

Definition 35 (Safety). Let Γ = (f,X,X0, Xu, D) be a dynamical system. A trajectory
φd̄X0

: [0, T]→ Rn with disturbance d̄ is unsafe if there exists a time t ∈ [0, T], such that
φd̄X0

([0, t]) ∩Xu 6= ∅ and φd̄X0
([0, t]) ⊆ X .

We say that the system Γ is safe if there are no unsafe trajectories.

For a function f : Rn → R, Z(f) denotes the set

Z(f) ≡ {x ∈ Rn|f(x) = 0}. (4.3)

The Lie derivative of a differentiable function B : Rn → R along f : Rn+r → Rn is
denoted by

LfB(x, d) ≡ ∂B

∂x
(x)f(x, d). (4.4)

The safety of a system Γ can be verified using the following condition.

Proposition 14 (Strict barrier certificate [PJP07]): Let Γ = (f,X,X0, Xu, D) be given. If there
exists a differentiable function B : X → R satisfying

B(x) ≤ 0 ∀x ∈ X0, (4.5a)

B(x) > 0 ∀x ∈ Xu, and (4.5b)

LfB(x, d) < 0 ∀(x, d) ∈ Z(B)×D. (4.5c)

Then the system Γ is safe.

Proposition 14 states that a trajectory initialized within the zero sublevel set of a func-
tionB, cannot cross the zero level setZ(B), ifB is decreasing (along system trajectories)
on the zero level set. This setup is illustrated in Figure 4.1.

48

2 Compositional Safety Verification

B(x) ≤ 0
B(x) > 0

X

X0

Xu

Z(B)

Figure 4.1: Illustration of a setX , which contains the initial setX0 and the unsafe setXu.
The dashed line illustrates the zero level set of B.

The set of barrier certificates satisfying Proposition 14 is nonconvex, due to (4.5c).
However, the following more conservative condition has a convex set of feasible barrier
certificates. The convexity property becomes apparent in the computation of the barrier
certificates.

Proposition 15 (Weak barrier certificate [PJP07, PJ04]): Let Γ = (f,X,X0, Xu, D) be given. If
there exists a differentiable function B : X → R satisfying

B(x) ≤ 0 ∀x ∈ X0, (4.6a)

B(x) > 0 ∀x ∈ Xu, and (4.6b)

LfB(x, d) ≤ 0 ∀(x, d) ∈ X ×D. (4.6c)

Then the system Γ is safe.

Proposition 15 states that a trajectory of a system initialized in a state within the
zero sublevel set of a nonincreasing function (along system trajectories), cannot reach the
complement of the zero sublevel set.

The difference between Proposition 14 and Proposition 15 is that (4.6c), in contrast
to (4.5c), must hold for all states and all disturbances. Additionally, (4.5c) is a strict
inequality constraint weathers (4.6c) is weak.

The subtle differences between Proposition 14 and Proposition 15 make a big differ-
ence for the computation of the barrier certificateB. Therefore, we only provide methods
for computing barrier certificates using Proposition 15 in the rest of the chapter. Consult
Paper D for details about computing barrier certificates using Proposition 14.

4.2 Compositional Safety Verification

The purpose of developing a compositional safety verification method is to improve the
scalability of the safety verification. This is needed when polynomial systems are consid-
ered. A centralized method failed to verify the example provided in Paper D; however,
safety verification was possible using the compositional method presented in this chapter.

The safety verification problem is posed as a compositional problem, by assuming
that a dynamical system is given as an interconnection of subsystems. We discard all
disturbances until Section 4.5, as they have no influence on the compositional properties

49

Safety Guarantees for Continuous Systems

of the system; however, disturbances are included in Paper D. First, an interconnected
system is defined.

Definition 36. Let Γ = (f,X,X0, Xu) be a dynamical system with

ẋ = f(x), (4.7)

where x ∈ Rn is the state.
Let k ∈ N and x = (x1, . . . , xk). For i = 1, . . . , k, let xi ∈ Rni , let gi : Rn−ni →

Rmi and hi : Rni → Rqi be continuous maps, and let q ≡∑i qi. LetX = X1×· · ·×Xk,
X0 = X0,1 × · · · × X0,k, and Xu = Xu,1 × · · · × Xu,k. We say that the system Γ =
({fi}, {Xi}, {X0,i}, {Xu,i}) with

Σi :

{
ẋi = fi(xi, gi(x̂i)),

yi = hi(xi)
(4.8)

for i = 1, . . . , k is an interconnected system of f(x) if

f(x) =

f1(x1, g1(x̂1))
...

fi(xi, gi(x̂i))
...

fk(xk, gk(x̂k))

(4.9)

for all x ∈ X and there exist maps ei : Rq−qi → Rmi such that

gi = ei ◦ ĥi. (4.10)

An interconnected system is given by a collection of subsystems Σi with intercon-
nection inputs gi(x̂i) and outputs hi(xi) (Recall that x̂i ≡ (x1, . . . , xi−1, xi+1, . . . , xk)).
The interconnection of the subsystems is given by ei.

To clarify the compositional setup, we initially consider a system from [TPM09] con-
sisting of three interconnected subsystems, given by (4.8). The interconnection of the
three subsystems is shown in Figure 4.2.

Let each subsystem have state xi ∈ Xi ⊆ Rni and output yi ∈ Rqi given by the
map hi : Rni → Rqi . Note that the interconnection of the three subsystems is defined by
ei : Rq−qi → Rmi that projects the possible inputs on the actual inputs of subsystem i.
From Figure 4.2, it is seen that

e1 :(y1
2 , y

2
2 , y3) 7→ (y1

2 , y3), (4.11a)
e2 :(y1, y3) 7→ y1, (4.11b)

e3 :(y1, y
1
2 , y

2
2) 7→ y2

2 . (4.11c)

Note that the map gi gives the inputs to subsystem i and that the map hi gives the outputs
of subsystem i.

The interconnected system induces a graph structure, without self-loops and with only
one edge from one vertex to another. The graph can be described by an adjacency matrix

50

2 Compositional Safety Verification

Σ1 Σ2

Σ3

y1

y1
2

y2
2y3

Figure 4.2: Interconnection of three subsystems Σ1,Σ2,Σ3.

E ∈ Rk ×Rk, where E(i, j) = 1 if there is an edge between subsystem i and j, with the
head at subsystem i and the tail at subsystem j. Note that the ith row of E can be derived
from ei. For the graph in Figure 4.2 the adjacency matrix is

E =

0 1 1
1 0 0
0 1 0

 . (4.12)

In the following, we present three lemmas leading to the compositional safety veri-
fication shown in Corollary 4. The lemmas show how the inequality constraints on the
barrier function and its derivative in Proposition 15 can be decomposed into separate
constraints for each subsystem in addition to coupling constraints.

The following lemma shows how (4.6a) and (4.6b) can be decomposed.

Lemma 3. Let k ∈ N. For i = 1, . . . , k, let ni ∈ N, fi : Rni → R be a continuous
function, and Xi ⊆ Rni be compact. There exist constants ci ∈ R such that

fi(xi)− ci ≤ 0 ∀xi ∈ Xi and (4.13a)
∑

i

ci ≤ 0 (4.13b)

if and only if
∑

i

fi(xi) ≤ 0 ∀xi ∈ Xi. (4.14)

Proof. See Paper E on page 196.

Lemma 3 shows that an inequality (4.14) in n variables is equivalent to k inequalities
in ni variables and an inequality constraint involving only constants. This equivalence is
obtained by choosing ci as the supremum of fi(xi).

We put the following assumption on the output maps of the subsystems, to allow a
reduction in the number of coupling variables in the decomposition of (4.6c).

51

Safety Guarantees for Continuous Systems

Assumption 1: Let Dhi be the differential of hi. For i = 1, . . . , k

Dhi(xi) (4.15)

has constant rank.

The assumption guarantees that an output cannot occasionally ”disappear”.
The following lemma gives the reduction of coupling variables and relies on a coor-

dinate transformation, which can be generated due to Assumption 1.

Lemma 4. Let γ : Rn → R be a continuous function and let h : Rn → Rq be a smooth
map such that Dh has constant rank k. Then there is a smooth map h̄ : Rn → Rn−k

such that Dh̄ has constant rank n − k, and a continuous function γ̃ : Rq+(n−k) → R

such that

γ(x) = γ̃(h(x), h̄(x)) ∀x ∈ Rn. (4.16)

Proof. See Paper E on page 197.

Lemma 4 allows the coupling constraint associated with (4.6c) in the following lemma,
to be a function of only inputs and outputs of a subsystem.

Lemma 5. Let k ∈ N. For i ∈ {1, . . . , k}, let

• mi, ni, qi ∈ N and define q ≡∑i qi,

• Vi ⊆ Rni+(n−ni) be compact,

• fi : Rni+mi → Rni and gi : Rn−ni → Rmi be continuous maps,

• ϕi : Rni → R be a continuous function,

• hi : Rni → Rqi be a smooth map such that Dhi has constant rank ri.

There exist continuous functions γi : Rqi+mi → R such that for all (xi, x̂i) ∈ Vi ⊆
Rni ×Rn−ni

ϕi(xi)fi(xi, gi(x̂i)) ≤ γi(hi(xi), gi(x̂i)), and (4.17a)
∑

i

γi(hi(xi), gi(x̂i)) ≤ 0 (4.17b)

if and only if
∑

i

ϕi(xi)fi(xi, gi(x̂i)) ≤ 0 ∀(xi, x̂i) ∈ Vi. (4.18)

Proof. See Paper E on page 198.

Notice the importance of γi only being a function of the inputs and outputs of sub-
system i, in oppose to being a function of its entire state vector. This implies that the
dimension of the coupling is drastically reduced if the number of interconnection vari-
ables is small compared to the number of states. Furthermore, it is important to note that

52

3 Computation of Compositional Barrier Certificates

γi is continuous, as it enables γi to be approximated arbitrarily close by polynomials on a
compact set [Sto48]. This is favorable, as polynomial inequality and equality constraints
can be solved algorithmically by use of sum of squares programming [Par03].

In the following, we provide the compositional safety condition by rewriting Propo-
sition 15 using Lemma 3 and Lemma 5.

Corollary 4: Let k ∈ N and let Γ = ({fi}, {Xi}, {X0,i}, {Xu,i}) be a family of interconnected
systems, with fi, gi, and hi defined in Lemma 4. If there exist differentiable functions Bi : Xi →
R, constants αi, βi ∈ R, and continuous functions γi : Rqi+mi → R for i = 1, . . . , k such that

Bi(xi) + αi ≤ 0 ∀xi ∈ X0,i, (4.19a)

Bi(xi)− βi > 0 ∀xi ∈ Xu,i, (4.19b)

LfiBi(xi, gi(x̂i)) ≤ γi(hi(xi), gi(x̂i)) ∀(xi, x̂i) ∈ Xi × X̂i, (4.19c)

and ∑
i

αi ≥ 0,
∑
i

βi ≥ 0,
∑
i

γi(hi(xi), gi(x̂i)) ≤ 0 ∀(xi, x̂i) ∈ Xi × X̂i. (4.19d)

Then the system Γ is safe.

It is seen that verification problem is decomposed into individual constraints for the
subsystems given by (4.19a)-(4.19c) and coupling constraints given by (4.19d). In the
next section, we show how to compute the compositional barrier certificates of Corol-
lary 4.

4.3 Computation of Compositional Barrier Certificates

In this section, we show how to compute barrier certificates from the conditions set up in
Corollary 4.

Remark 8: Any desired computational method can be applied to find the barrier certificates, and
different methods can be applied on different subproblems for the compositional condition in Corol-
lary 4. This is beneficial if some subsystems are linear and others are polynomial.

To demonstrate the computation of barrier certificates, we show how to compute the
barrier certificates using sum of squares programming. Details on the computation of
barrier certificates using linear programming are found in Paper D.

In this section, vector fields are assumed to be polynomial to allow their computation
in a tool such as MATLAB. Furthermore, we parameterize the barrier certificates as poly-
nomials, and require the invariant, initial, and unsafe sets to be semialgebraic. Initially,
we set up some notation about polynomials.

Definition 37 (Polynomial [Par03]). A polynomial p in n variables x1, . . . , xn is a finite
linear combination of monomials

p(x) =
∑

α

cαx
α =

∑

α

cαx
α1
1 · . . . · xαn

n , (4.20)

where cα ∈ R and the sum is over a finite number of n-tuples α = [α1, . . . , αn] with
αi ≥ 0.

53

Safety Guarantees for Continuous Systems

The total degree of a monomial xα is α1 + · · ·+αn. Additionally, the total degree of
a polynomial is equal to the highest degree of its component monomials. The degree of a
polynomial p is denoted by deg(p).

We only consider polynomials with real valued variables, and denote the polynomial
ring in n variables R[x1, . . . , xn] by R[x]. Recall that a map f : Rn → Rm is said to be
polynomial if its coordinate functions are polynomials, i.e., fi ∈ R[x] for i = 1, . . . ,m;
hence, f ∈ Rm[x].

Sum of squares polynomials are used in the generation of safety certificates and are
explained in the following, based on [Par03].

Definition 38. A polynomial p ∈ R[x] is called sum of squares (SOS) if

p =

k∑

i=1

p2
i (4.21)

for some polynomials pi ∈ R[x] with i = 1, . . . , k.

The set of sum of squares polynomials is a subset of nonnegative polynomials [Par03],
which can be treated using semidefinite programming, as described below. We denote the
set of sum of squares polynomials in n variables by Σn.

The existence of a sum of squares decomposition of a polynomial p ∈ R[x], with
d = deg(p), can be expressed as a semidefinite programming feasibility problem. There-
fore, the formulation of a problem as sum of squares makes the problem computationally
tractable; however, the number of decision variables in the program is

N =

(
n+ 2d

2d

)
=

(n+ 2d)!

2d!n!
. (4.22)

In the search for sum of squares polynomials, it is exploited that the existence of a SOS
decomposition of a polynomial p is equivalent to the existence of a positive semidefinite
matrix Q = QT � 0 such that

p = ZTQZ, (4.23)

where Z is a vector of monomials of degree less than or equal to half the degree of p.
Let k, l ∈ N, let αi,j ∈ R[x] for (i, j) ∈ {1, . . . , l} × {1, . . . , k}, and wj ∈ R. An

SOS programming problem is

minimize
(c1,...,ck)∈Rk

k∑

j=1

wjcj subject to (4.24a)

αi,0 +

k∑

j=1

αi,jcj ∈ Σn∀i = 1, . . . , l. (4.24b)

It is seen that an SOS programming problem is a minimization of a linear cost, subject to
SOS feasibility constraints.

The interconnected system can be formulated as one system, but this would increase
the number of decision variables involved in the safety verification, compared to the pro-
posed compositional approach. This is an important issue when working with SOS opti-
mization, and is apparent from (4.22).

54

3 Computation of Compositional Barrier Certificates

To compute barrier certificates using sum of squares programming, we describe the
invariant, initial, and unsafe sets as semialgebraic sets, i.e., they are given by polynomial
inequalities. To ease the notation, we denote the interconnection input gi(x̂i) by ui, and
the output h(xi) by yi.

Let gXi
: Rni → RkXi , gX0,i

: Rni → R
kX0,i , and gXu,i : Rni → R

kXu,i , and gUi
:

Rmi → RkUi for some kXi , kX0,i , kXu,i , kUi ∈ N be given as vectors of polynomials.
Then

Xi ≡ {xi ∈ Rni |gXi
(xi) ≥ 0}, (4.25a)

X0,i ≡ {xi ∈ Rni |gX0,i
(xi) ≥ 0}, (4.25b)

Xu,i ≡ {xi ∈ Rni |gXu,i(xi) ≥ 0}, (4.25c)
Ui ≡ {ui ∈ Rmi |gUi

(ui) ≥ 0}, (4.25d)

where the inequalities in (4.25) are satisfied entry-wise.
In the computation of barrier certificates, the following generalization of the S-procedure

is used [BGFB94].

Lemma 6. Let V be a subset of X ⊆ Rn. Let f ∈ R[x] and g ∈ Rk[x]. Suppose
g(x) ≥ 0 (element-wise) for any x ∈ V . If

1. λ ∈ Σkn and

2. f − λTg ∈ Σn.

Then f(x) ≥ 0 for all x ∈ V .

Corollary 4 is written in terms of SOS by the use of (4.25) and Lemma 6.

Corollary 5: Let k ∈ N, the polynomials g∗ shown in (4.25), and the dynamical system Γ =
({fi}, {Xi}, {X0,i}, {Xu,i}) be given, and let ε1 > 0. If there exist B ∈ R[xi], αi ∈ R, βi ∈ R,

γi ∈ R[y
i
, ui], λX0,i ∈ Σ

kX0,i
ni , λXu,i ∈ Σ

kXu,i
ni , λXi ∈ Σ

kXi
ni+mi+qi

, and λUi ∈ Σ
kUi
ni+mi+qi

such
that

−Bi − λT
X0,i

gX0,i − αi ∈ Σni , (4.26a)

Bi − ε1 − λT
Xu,igXu,i − βi ∈ Σni , and (4.26b)

− LfiBi + γi − λT
Xi
gXi − λ

T
Ui
gUi ∈ Σni+mi

(4.26c)

and ∑
i

αi ≥ 0,
∑
i

βi ≥ 0, and −
∑
i

γi ∈ Σni+mi . (4.26d)

Then the system Γ is safe.

Corollary 5 can be solved directly; however, it is clear from (4.26d) that the subprob-
lems are not yet decomposed. The subproblems are decomposed using dual decomposi-
tion [BXMM08] in the following.

55

Safety Guarantees for Continuous Systems

It is observed that γi should have a particular structure to ease computations. There-
fore, γi is chosen as

γi =

[
Z(yi)
Z(ui)

]T

Pi

[
Z(yi)
Z(ui)

]
, (4.27)

where Z(yi) and Z(ui) are vectors of monomials in yi respectively ui, and Pi is a diag-
onal matrix. For convenience, we let γ̄i be a vector containing the diagonal elements of
Pi.

Let λ ≡ (λ1, λ2, λ3). The dual function is

ϕ(λ) =
∑

i

ϕi(λ), (4.28)

where

ϕi(λ) ≡ inf
αi,βi,γ̄i

−λ1αi − λ2βi + λT
3 γ̄i (4.29)

subject to

−Bi − λT
X0,i

gX0,i
− αi ∈ Σni

, (4.30a)

Bi − ε1 − λT
Xu,i

gXu,i − βi ∈ Σni
, and (4.30b)

− LfiBi + γi − λT
Ui
gUi
∈ Σni+mi

. (4.30c)

Remark that λ3 is a vector. The dual problem becomes

sup
λ≥0

∑

i

ϕi(λ). (4.31)

In the following, we explain how the subgradient algorithm can be used to solve the
previous optimization problem [SKR85]. Let α∗i (λ) be the optimal value of αi for a given
λ. Then the gradients of ϕ1(λ), . . . , ϕk(λ) are

gi(λ) =
[
α∗i (λ) β∗i (λ) γ∗i (λ)

]
. (4.32)

Let f : Rn → R be a convex function, and let x, y ∈ Rn. Then any vector g ∈ Rn that
satisfies

f(y) ≥ f(x) + gT(y − x) (4.33)

is called a subgradient at x. From (4.32) and (4.33), we get for all µ ≡ (µ1, µ2, µ3) and
i = 1, . . . , k

ϕi(µ) ≥ ϕi(λ) + gi(µ− λ). (4.34)

The function to be maximized is ϕ(λ) =
∑
i ϕi(λ), which has a gradient g(λ(k)) =∑

i gi(λ
(k)). The vector of multipliers is updated according to

λ(k+1) = λ(k) −∆kg
T
(
λ(k)

)
, (4.35)

56

4 Existence of Compositional Barrier Certificates

with

∆k =
a

b+ k
, (4.36)

where a > 0 and b ≥ 0. A diminishing step size ∆k is chosen to guarantee that the
algorithm converges to the optimal value, see [Pol77].

It is seen that if
∑
i αi ≥ 0 is violated, then λ(k+1)

1 > λ
(k)
1 , as the first element of

g(λ(k)) is negative. This puts a larger penalty on the violation of the constraint through
the dual variable λ1.

4.4 Existence of Compositional Barrier Certificates

In this section, we show that Proposition 15 and Corollary 4 are equivalent, if the barrier
function is assumed to be additively separable. This equivalence important to identify, to
determine when it is reasonable to use the compositional method.

Definition 39. Let k ∈ N and i = 1, . . . , k. We say that a function ϕ : Rn → R

is additively separable in x = (x1, . . . , xk) if there exist functions ϕi : πi(R
n) → R,

where πi is a projection that takes (x1, . . . , xk) to xi such that

ϕ(x) =
∑

i

ϕi(xi) ∀x ∈ Rn, (4.37)

where xi ∈ Rni and n =
∑
i ni.

We can now state when Proposition 15 and Corollary 4 are equivalent. Recall that
x̂i ≡ (x1, . . . , xi−1, xi+1, . . . , xk). Similarly, given a sequence of maps (h1, . . . , hk),
we define ĥi ≡ (h1, . . . , hi−1, hi+1, . . . , hk).

Theorem 7: Let k ∈ N, and let

ẋ1

...
ẋi
...
ẋk

 =

f1(x1, g1(x̂1))
...

fi(xi, gi(x̂i))
...

fk(xk, gk(x̂k))

 (4.38)

be an interconnected system of f(x).
There exists an additively separable continuous function B : Rn → R such that

B(x) ≤ 0 ∀x ∈ X0, (4.39a)

B(x) > 0 ∀x ∈ Xu, and (4.39b)

LfB(x) ≤ 0 ∀x ∈ X (4.39c)

if and only if for i = 1, . . . , k there exist continuous functions ϕi : Rni → R and γi : Rqi+mi →
R and constants αi, βi ∈ R such that

Bi(xi) + αi ≤ 0 ∀x ∈ X0,i, (4.40a)

Bi(xi)− βi > 0 ∀x ∈ Xu,i, (4.40b)

LfiBi(xi, gi(x̂i)) ≤ γi(hi(xi), gi(x̂i)) ∀x ∈ X (4.40c)

57

Safety Guarantees for Continuous Systems

and ∑
i

αi ≥ 0, (4.40d)∑
i

βi ≥ 0, and (4.40e)∑
i

γi(hi(xi), gi(x̂i)) ≤ 0 ∀x ∈ X. (4.40f)

Proof. See Paper E on page 201.

Remark that to generate the additively separable barrier functions, one should only
use the sum of bases in xi for i ∈ {1, . . . , k}.

Refined Compositional Analysis

To alleviate potential issues with the compositional method, we propose another compo-
sitional condition for safety, which at the cost of more coupling variables successfully
handles a greater class of systems. The idea is to let each Bi depend on both xi and
gi(x̂i).

To simplify the notation of the problem, we define the set of neighbors for subsystem
i, as the set of subsystems, which has an output that is an input to subsystem i. The set
of neighbors is defined from the adjacency matrix E, see (4.12), describing the intercon-
nection of the subsystems. We say that the neighbors of subsystem i have the following
indices

Ni = {j ∈ {1, . . . , k}|E(i, j) = 1}. (4.41)

Define N̄i ≡ Ni ∪ {i}. The complement of N̄i is given as

N̄ c
i = {1, . . . , k}\N̄i. (4.42)

Let z = (z1, . . . , zk) and A ⊆ {1, . . . , k}, then we define ẑA ≡ {zi|i ∈ {1, . . . , k}\A}
and zA ≡

∑
i∈A zi.

Now, we can state the refined safety condition as follows.

Proposition 16: Let k ∈ N, and let

ẋ1

...
ẋi
...
ẋk

 =

f1(x1, g1(x̂1))
...

fi(xi, gi(x̂i))
...

fk(xk, gk(x̂k))

 (4.43)

be an interconnected system of f(x).
There exists a continuous function ϕ : Rn → R given by

B(x) =
∑
i

Bi(xi, gi(x̂i)) ∀x ∈ Rn (4.44)

58

5 Design of Safe Controllers

such that

B(x) ≤ 0 ∀x ∈ X0, (4.45a)

B(x) > 0 ∀x ∈ Xu, and (4.45b)

LfB(x) ≤ 0 ∀x ∈ X (4.45c)

if and only if for i ∈ {1, . . . , k} there exist continuous functions γi : R
qN̄i

+mNi → R, αi :
Rqi+mi → R, and βi : Rqi+mi → R such that

Bi(xi, gi(x̂i)) + αi(hi(xi), gi(x̂i)) ≤ 0 ∀x ∈ X0, (4.46a)

Bi(xi, gi(x̂i))− βi(hi(xi), gi(x̂i)) > 0 ∀x ∈ Xu, (4.46b)∑
j∈N̄i

∂Bi
∂xj

(xi, gi(x̂i))fj(xj , gj(x̂j)) ≤ γi(x̂N c
i
, ĝN c

i
(x̂N c

i
)) ∀x ∈ X (4.46c)

and ∑
i

αi(hi(xi), gi(x̂i)) ≥ 0 ∀x ∈ X,∑
i

βi(hi(xi), gi(x̂i)) ≥ 0 ∀x ∈ X,∑
i

γi(x̂N c
i
, ĝN c

i
(x̂N c

i
)) ≤ 0 ∀x ∈ X.

(4.46d)

Proof. See Paper E on page 203.

The seemingly subtle change of Bi has a great impact on the number of coupling
variables involved in the generation of the barrier certificate. Therefore, one should only
include gi(x̂i) in Bi if it is really necessary. Remark that a subset of functions Bi may be
dependent of gi(x̂i), while others may only depend on xi.

This finalized the presentation of the compositional verification method. The next
section presents a controller design method based on barrier certificates.

4.5 Design of Safe Controllers

The purpose of this section is to present the developed methodology for designing safe
controllers. The content of this section originates from Paper F.

We consider a system of ordinary differential equations that are affine in control and
disturbance

ẋ = f(x) + g(x)u+ h(x)d, (4.47)

where x ∈ Rn is the state, u ∈ Rm is the control input, and d ∈ D ⊆ Rr is the
disturbance input. A control system given by Γ = (f, g, h,X,X0, Xu, D), where f :
Rn → Rn, g : Rn → Rn×m, and h : Rn → Rn×r are continuous, X ⊆ Rn, X0 ⊆ X ,
Xu ⊆ X , and D ⊆ Rr is convex. The system is controlled via the continuous map
k : Rn → Rm defining the closed-loop behavior

fcl : x 7→ f(x) + g(x)k(x). (4.48)

59

Safety Guarantees for Continuous Systems

The closed-loop system is denoted by Γcl = (fcl, h,X,X0, Xu, D). For a measurable and
essentially bounded disturbance function d̄ : R≥0 → D, we denote the solution of the
Cauchy problem for the closed-loop system with x(0) = x0 on an interval [0, T] by φd̄x0

,
i.e.,

dφd̄x0
(t)

dt
= fcl

(
φd̄x0

(t)
)

+ h
(
φd̄x0

(t)
)
d̄(t) (4.49)

for almost all t ∈ [0, T]. We denote the set of solutions from all initial conditions x0 in
X0 by φd̄X0

.
The safety of a system Γcl = (fcl, h,X,X0, Xu, D) is defined as shown in Defini-

tion 35.
The method addresses the following problem.

Problem 5: Given a system Γ = (f, g, h,X,X0, Xu, D), design a control law k : Rn → Rm

such that the system Γcl = (fcl, h,X,X0, Xu, D), where fcl is given by (4.48), is safe.

This problem is treated via the use of barrier certificates and is inspired by [WA07].
However, we redefine the control barrier function used in the controller design and allow
unknown but bounded disturbances.

In the definition of a control barrier function, we denote the complement of X by Xc,
and use the notion of contingent cone [Aub91]. Let K be a nonempty subset of a space
X and let x belong to K. The contingent cone to K at x is the set

TK(x) =

{
v ∈ X| lim

h→0+
inf

dK(x+ hv)

h
= 0

}
, (4.50)

where dK(y) denotes the distance of y to K, defined by

dK = inf
z∈K
||y − z||. (4.51)

A control barrier function is defined as

Definition 40. Given a control system Γ. A continuously differentiable function B :
X → R satisfying

X0 ⊂ B−1((−∞, 0]) ⊂ Xc
u , and (4.52a)

there exists u ∈ Rm such that for any d ∈ D and x ∈ B−1(0)

f(x) + g(x)u+ h(x)d ∈ TB−1((−∞,0])(x) (4.52b)

is called a control barrier function.

Given a control barrier function, a control law must be found that ensures the safety
of the system. A selection of such a control law is provided in the following, inspired by
[Son89, WA07]. We denote the Lie derivative of B along f by LfB.

60

6 Conclusion

Proposition 17: Let Γ be a control system, let B be an associated proper control barrier function,
and let LgB(x) 6= 0 for x ∈ B−1(0). There exists a pair of real numbers (γ1, γ2) with 0 < γ1 <
γ2 such that the control

k = −ξ(||b||)
a+ α+

√
(a+ α)2 + κ2bTb

bTb
b, (4.53)

where a ≡ LfB, bT ≡ LgB, cT ≡ LhB, κ > 0,

α(x) ≡ sup
d∈D

cT(x)d, (4.54)

and ξ : R→ [0, 1] defined by

ω(z) ≡

{
0 if z ≤ 0

exp(−1/z) if z > 0
(4.55)

ξ(z) ≡ ξ(γ1,γ2)(z) ≡
ω(z − γ1)

ω(z − γ1) + ω(γ2 − z)
, (4.56)

is continuous and ensures safety for the closed-loop system Γcl.

Proposition 17 provides a state feedback controller that ensures safety of Γcl. The
controller includes a bump function ξ that allows the controller to apply a zero control
close to a desired reference, where the controller cannot guarantee that the system state
gets closer to the reference.

The method is applied to control a model of a robot that should compensate for the
movement of a heart in robotic heart surgery in Paper F.

4.6 Conclusion

In this chapter, a method for verifying a dynamical system decomposed into subsystems
was presented. The method allows the verification of higher dimensional systems and is
equivalent to the centralized method, when only additively separable functions are con-
sidered.

A controller design method that enforces the safety of a dynamical system was also
presented. This method synthesizes state feedback controllers based on the barrier cer-
tificate method.

61

5 Conclusions and Future Work

This chapter presents conclusions of the project. First, a summary of the contributions
is provided, then conclusions are given, and finally suggestions for future research are
presented.

5.1 Summary of Contributions

The contribution of this thesis is twofold: A method for verifying TCTL properties of
continuous systems, and barrier certificate methods for ensuring safety of continuous
systems.

The main contribution of Paper A-C is a methodology for abstracting continuous sys-
tems by timed automata. The abstraction method joins the sign based abstraction method
with the introduction of time in [MB08], and most importantly, the method uses a subdi-
vision of the state space generated by positively invariant sets. This allows the verification
of TCTL properties of a continuous system via the verification of a complete abstraction
given by a timed automaton. Additionally, sound abstractions allow the verification of
universally quantified TCTL properties on positive normal form of continuous systems.

The key to the method is the definition of a slice via positively invariant sets that is
the basic component of the subdivision. The cells of the subdivision are generated by the
transversal intersection of a family of slices. This induces some favorable compositional
properties of the abstraction. Additionally, robustness of the partition is ensured by only
considering transversal intersection of sets generated by sublevel sets of functions with
strictly negative Lie derivative along the vector field.

A necessary and sufficient condition is provided for subdivisioning functions that gen-
erate complete abstractions. This condition shows that the directional derivative of the
subdivisioning function along the vector field must be a function of the subdivisioning
function itself. This condition is paramount for generating abstractions, as it identifies
optimal subdivisioning functions.

Finally, the abstraction method is modified to abstract mechanical systems, by using
a slightly more liberal definition of subdivisioning function, defined based on a family of
functions instead of a single function.

The main contribution of Paper D and Paper E is a compositional method for verify-
ing the safety of continuous systems using barrier certificates. The method enables the
verification of high dimensional systems, and is demonstrated on a shutdown procedure
of a wind turbine. The compositional method is shown to be equivalent with the central-
ized method, when considering only additively separable barrier certificates. This gives

63

Conclusions and Future Work

an indication of the applicability of the compositional method. If the method cannot be
applied to a considered system, then refined conditions are provided that improves the
applicability of the method at the cost of increased computational complexity.

Finally, Paper F presents a method for designing safe controllers for continuous sys-
tems, based to the barrier certificate method. The paper provides a new definition of a
control barrier function that relates to the strict barrier certificates. Furthermore, it in-
cludes a constructive state feedback controller design method for systems with bounded
disturbances. The method is applied to design a safe controller for motion compensation
in beating-heart surgery.

5.2 Conclusions

At the outset of the thesis, the aim of the work was to allow formal verification of more
complex specifications for more complex system models, in an attempt to move the fron-
tier shown in Figure 1.1.

By designing a method for verifying TCTL properties of continuous systems, the
verification of expressive specifications of continuous systems is possible. However, the
verification relies on a subdivision of the state space that is very difficult to generate.
Finding subdivisioning functions for generating sound abstractions is similar to finding a
Lyapunov function for a system, and is simple for linear systems. Finding subdivisioning
functions for generating complete abstractions is even more difficult. Therefore, it is most
realistic to consider only sound abstractions, but optimize the partitioning functions, such
that the over-approximation of the reachable set becomes as small as possible. This is
possible using the proposed algorithms.

The abstraction method should be used to verify systems that are not possible to verify
by simpler verification methods. Such examples are provided in Section 1.2, from which
it is seen that relatively simple problems are difficult to verify.

The compositional barrier certificate method allows the safety verification of increas-
ingly complex systems, more specifically, higher dimensional systems. The composi-
tional method is favorable for systems that can be decomposed into lightly coupled sub-
systems. However, if this is not possible then the compositional method may fail to verify
the safety of the system, as it can only find barrier functions in the space of additively
separable functions. It is possible to consider more general barrier certificates, but this in-
creases the computational complexity of the method considerably. Although the class of
barrier functions may look restrictive, the applicability of the method was demonstrated
in a wind turbine example.

The simplicity of the barrier certificate method also allowed the development of a
controller design method. Since the conditions for barrier certificates are similar to Lya-
punov stability conditions, the computational methods for stability are easily transferred
to safety. The controller design method does not depend on numerical tools for the gen-
eration of the controller; hence, dimensionality of the system is in principle not an issue.
However, the controller design method is based on state feedback, where output feedback
is preferred.

64

3 Future Work

5.3 Future Work

In this section, some suggested future work is presented. The proposals are both concrete
problems to be solved and broader issues.

The work on abstracting continuous systems by timed automata lacks a software im-
plementation. Therefore, such an implementation is relevant future work that would ease
the application of the method to case studies. An implementation could also enable a com-
parison with other related verification methods to reveal for which problems the method
is advantageous to use.

The generation of time information for abstractions is paramount for obtaining an
accurate abstraction; however, this topic is not treated in depth. Therefore, existing results
on calculating decay rates should be used in the abstraction procedure for the generation
of sound abstractions.

It is desirable to generate complete abstractions; hence, an answer to the following
problem is needed.

Problem 6: Identify the class of vector fields for which there exists a complete abstraction.

In relation to the generation of complete abstractions, the algorithm for generating
subdivisioning functions assumes an affine relation between the subdivisioning function
and its derivative along the vector field. This assumption should be relaxed to search
for subdivisioning functions satisfying the sufficient and necessary condition provided in
Theorem 3.

Finally, the abstraction method should be modified to allow the use of forms instead
of functions to subdivide the state space.

To do a compositional safety verification of a dynamical system, it is crucial to do the
subdivision into subsystems correctly. Therefore, an answer to the following problem is
needed.

Problem 7: Given a system Γ = (f,X,X0, Xu) and a positive number i ∈ N. Find the optimal
(with respect to safety verification) decomposition of Γ into i subsystems.

In the safety verification of the shutdown procedure of a wind turbine presented in
Paper E, it was actually desired to obtain the largest set of initial states for which the
system was safe, i.e., an answer to the following problem.

Problem 8: Given a system Γ = (f,X,Xu). Find largest set of initial states X0 such that the
system Γ = (f,X,X0, Xu) is safe.

In relation to the design of safe controllers, much work is needed. The proposed
method is based on state feedback, but output feedback is often required (especially for
the surgical application considered in Paper F). Therefore, results from controller design
and the generation of control Lyapunov functions should be adopted for the design of safe
controllers.

65

References

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-
tems. In Proceedings of the Fifth Annual IEEE Symposium on Logic in
Computer Science, pages 414–425, June 1990. doi:10.1109/LICS.
1990.113766.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoret-
ical Computer Science, 126(2):183–235, April 1994. doi:10.1016/
0304-3975(94)90010-8.

[AHLP00] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete abstrac-
tions of hybrid systems. Proceedings of the IEEE, 88(7):971–984, July
2000. doi:10.1109/5.871304.

[Alu] Rajeev Alur. Principles of embedded computation. Technical report, Uni-
versity of Pennsylvania.

[Alu11] Rajeev Alur. Formal verification of hybrid systems. In Proceedings of the
ninth ACM international conference on Embedded software, pages 273–
278, New York, NY, USA, 2011. ACM. doi:10.1145/2038642.
2038685.

[Arn89] V.I. Arnold. Mathematical Methods of Classical Mechanics. Springer-
Verlag, 2. edition, 1989.

[ASB10] Matthias Althoff, Olaf Stursberg, and Martin Buss. Computing reach-
able sets of hybrid systems using a combination of zonotopes and poly-
topes. Nonlinear Analysis: Hybrid Systems, 4(2):233–249, 2010. doi:
10.1016/j.nahs.2009.03.009.

[Aub91] Jean-Pierre Aubin. Viability Theory. Birkhäuser, 1991.

[BBE+07] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G.J. Pappas.
Symbolic planning and control of robot motion. IEEE Robotics Automa-
tion Magazine, 14(1):61–70, March 2007. doi:10.1109/MRA.2007.
339624.

[BCR98] Jacek Bochnak, Michel Coste, and Marie-Francoise Roy. Real Algebraic
Geometry. Springer, 1998.

67

http://dx.doi.org/10.1109/LICS.1990.113766
http://dx.doi.org/10.1109/LICS.1990.113766
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1109/5.871304
http://dx.doi.org/10.1145/2038642.2038685
http://dx.doi.org/10.1145/2038642.2038685
http://dx.doi.org/10.1016/j.nahs.2009.03.009
http://dx.doi.org/10.1016/j.nahs.2009.03.009
http://dx.doi.org/10.1109/MRA.2007.339624
http://dx.doi.org/10.1109/MRA.2007.339624

REFERENCES

[BDFP00] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit.
Are timed automata updatable? In E. Emerson and Aravinda Sistla, editors,
Computer Aided Verification, volume 1855 of Lecture Notes in Computer
Science, pages 464–479. Springer Berlin / Heidelberg, 2000. doi:10.
1007/10722167_35.

[BDL04] G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In Inter-
national School on Formal Methods for the Design of Real-Time Systems,
volume 3185, pages 200–237, 2004.

[BG93] Stephen Boyd and Laurent El Ghaoui. Method of centers for minimizing
generalized eigenvalues. Linear Algebra and its Applications, 188-189:63–
111, 1993. doi:10.1016/0024-3795(93)90465-Z.

[BGFB94] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix In-
equalities in System and Control Theory, volume 15 of SIAM studies in ap-
plied mathematics. SIAM, 1994. doi:10.1137/1.9781611970777.

[BH06] Calin Belta and Luc C.G.J.M. Habets. Controlling a class of nonlinear sys-
tems on rectangles. IEEE Transactions on Automatic Control, 51(11):1749–
1759, November 2006. doi:10.1109/TAC.2006.884957.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008.

[Bla99] F. Blanchini. Set invariance in control. Automatica, 35(11):1747–1767,
1999. doi:10.1016/S0005-1098(99)00113-2.

[BPR98] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Complexity of
computing semi-algebraic descriptions of the connected components of a
semi-algebraic set. In Proceedings of the 1998 international symposium
on Symbolic and algebraic computation, pages 25–29. ACM, 1998. doi:
10.1145/281508.281533.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms
in Real Algebraic Geometry, volume 10 of Algorithms and Computa-
tion in Mathematics. Springer, 2nd edition, 2006. doi:10.1007/
3-540-33099-2.

[Bre93] Glen E. Bredon. Topology and Geometry. Springer, 1993.

[Bro99] Mireille Broucke. A geometric approach to bisimulation and verification
of hybrid systems. In Hybrid Systems: Computation and Control, volume
1569 of Lecture Notes in Computer Science, pages 61–75. Springer Berlin /
Heidelberg, 1999. doi:10.1007/3-540-48983-5_9.

[But05] Jeremy Butterfield. On symmetry and conserved quantities in classical me-
chanics. arXiv:physics/0507192v1, 2005.

[BXMM08] Stephen Boyd, Lin Xiao, Almir Mutapcic, and Jacob Mattingley. Notes on
decomposition methods, 2008.

68

http://dx.doi.org/10.1007/10722167_35
http://dx.doi.org/10.1007/10722167_35
http://dx.doi.org/10.1016/0024-3795(93)90465-Z
http://dx.doi.org/10.1137/1.9781611970777
http://dx.doi.org/10.1109/TAC.2006.884957
http://dx.doi.org/10.1016/S0005-1098(99)00113-2
http://dx.doi.org/10.1145/281508.281533
http://dx.doi.org/10.1145/281508.281533
http://dx.doi.org/10.1007/3-540-33099-2
http://dx.doi.org/10.1007/3-540-33099-2
http://dx.doi.org/10.1007/3-540-48983-5_9

REFERENCES

[CB99] E. F. Camacho and C. Bordons. Model Predictive Control. Springer, 1999.

[CK03] A. Chutinan and B.H. Krogh. Computational techniques for hybrid sys-
tem verification. IEEE Transactions on Automatic Control, 48(1):64–75,
January 2003. doi:10.1109/TAC.2002.806655.

[DGH+11] Jerry Ding, Jeremy H. Gillula, Haomiao Huang, Michael P. Vitus, Wei
Zhang, and Claire J. Tomlin. Hybrid systems in robotics. IEEE Robotics
& Automation Magazine, 18(3):33–43, September 2011. doi:10.1109/
MRA.2011.942113.

[DW61] George B. Dantzig and Philip Wolfe. The decomposition algorithm for
linear programs. Econometrica, 29(4):767–778, 1961. Available from:
http://www.jstor.org/stable/1911818.

[FGP06] Georgios Fainekos, Antoine Girard, and George J. Pappas. Temporal logic
verification using simulation. In Eugene Asarin and Patricia Bouyer, editors,
Formal Modeling and Analysis of Timed Systems, volume 4202 of Lecture
Notes in Computer Science, pages 171–186. Springer Berlin / Heidelberg,
2006. doi:10.1007/11867340_13.

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. SpaceEx: Scalable verification of hybrid sys-
tems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification, volume 6806 of Lecture Notes in Computer Science,
pages 379–395. Springer Berlin / Heidelberg, 2011. doi:10.1007/
978-3-642-22110-1_30.

[Gir05] Antoine Girard. Reachability of uncertain linear systems using zonotopes.
In Hybrid Systems: Computation and Control, volume 3414 of Lecture
Notes in Computer Science, pages 291–305. Springer Berlin / Heidelberg,
2005. doi:10.1007/978-3-540-31954-2_19.

[Gir12] Antoine Girard. Controller synthesis for safety and reachability via approx-
imate bisimulation. Automatica, 48(5):947–953, 2012. doi:10.1016/
j.automatica.2012.02.037.

[GLZN09] Hervé Guéguen, Marie-Anne Lefebvre, Janan Zaytoon, and Othman Nasri.
Safety verification and reachability analysis for hybrid systems. Annual Re-
views in Control, 33(1):25–36, 2009. doi:10.1016/j.arcontrol.
2009.03.002.

[GM12] Bernd Gärtner and Jiri Matousek. Approximation Algorithms and
Semidefinite Programming. Springer, 2012. doi:10.1007/
978-3-642-22015-9.

[Gol60] Herbert Goldstein. Classical Mechanics. Addison-Wesley, 1960.

69

http://dx.doi.org/10.1109/TAC.2002.806655
http://dx.doi.org/10.1109/MRA.2011.942113
http://dx.doi.org/10.1109/MRA.2011.942113
http://www.jstor.org/stable/1911818
http://dx.doi.org/10.1007/11867340_13
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-540-31954-2_19
http://dx.doi.org/10.1016/j.automatica.2012.02.037
http://dx.doi.org/10.1016/j.automatica.2012.02.037
http://dx.doi.org/10.1016/j.arcontrol.2009.03.002
http://dx.doi.org/10.1016/j.arcontrol.2009.03.002
http://dx.doi.org/10.1007/978-3-642-22015-9
http://dx.doi.org/10.1007/978-3-642-22015-9

REFERENCES

[GP06] Antoine Girard and George Pappas. Verification using simulation. In Hy-
brid Systems: Computation and Control, volume 3927 of Lecture Notes
in Computer Science, pages 272–286. Springer Berlin / Heidelberg, 2006.
doi:10.1007/11730637_22.

[GP07] Antoine Girard and George J. Pappas. Approximation metrics for dis-
crete and continuous systems. IEEE Transactions on Automatic Control,
52(5):782–798, 2007. doi:10.1109/TAC.2007.895849.

[Has07] Brendan Hassett. Algebraic Geometry. Cambridge University Press, 2007.

[Hir76] Morris W. Hirsch. Differential Topology. Springer, Heidelberg, 1976.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and Sys-
tem Sciences, 57(1):94–124, 1998. doi:10.1006/jcss.1998.1581.

[JdM80] Jacob Palis Junior and Welington de Melo. Geometric Theory of Dynamical
Systems: An Introduction. Springer, 1980.

[JFA+07] A. Julius, Georgios Fainekos, Madhukar Anand, Insup Lee, and George
Pappas. Robust test generation and coverage for hybrid systems. In
Alberto Bemporad, Antonio Bicchi, and Giorgio Buttazzo, editors, Hy-
brid Systems: Computation and Control, volume 4416 of Lecture Notes
in Computer Science, pages 329–342. Springer Berlin / Heidelberg, 2007.
doi:10.1007/978-3-540-71493-4_27.

[JS98] Jorge V. Jose and Eugene J. Saletan. Classical Dynamics: A Contemporary
Approach. Cambridge University Press, 1998.

[JT11] Manuel Mazo Jr. and Paulo Tabuada. Symbolic approximate time-optimal
control. Systems & Control Letters, 60(4):256–263, 2011. doi:DOI:
10.1016/j.sysconle.2011.02.002.

[KB06] Marius Kloetzer and Calin Belta. Reachability analysis of multi-affine
systems. In João Hespanha and Ashish Tiwari, editors, Hybrid Systems:
Computation and Control, volume 3927 of Lecture Notes in Computer Sci-
ence, pages 348–362. Springer Berlin / Heidelberg, 2006. doi:10.1007/
11730637_27.

[KB08] M. Kloetzer and C. Belta. A fully automated framework for control of lin-
ear systems from temporal logic specifications. IEEE Transactions on Au-
tomatic Control, 53(1):287–297, February 2008. doi:10.1109/TAC.
2007.914952.

[KV97] A. B. Kurzhanski and I. Vályi. Ellipsoidal Calculus for Estimation and
Control. Birkhäuser Boston, 1997.

[KV00] Alexander Kurzhanski and Pravin Varaiya. Ellipsoidal techniques for reach-
ability analysis. In Hybrid Systems: Computation and Control, volume
1790 of Lecture Notes in Computer Science, pages 202–214. Springer
Berlin / Heidelberg, 2000. doi:10.1007/3-540-46430-1_19.

70

http://dx.doi.org/10.1007/11730637_22
http://dx.doi.org/10.1109/TAC.2007.895849
http://dx.doi.org/10.1006/jcss.1998.1581
http://dx.doi.org/10.1007/978-3-540-71493-4_27
http://dx.doi.org/DOI: 10.1016/j.sysconle.2011.02.002
http://dx.doi.org/DOI: 10.1016/j.sysconle.2011.02.002
http://dx.doi.org/10.1007/11730637_27
http://dx.doi.org/10.1007/11730637_27
http://dx.doi.org/10.1109/TAC.2007.914952
http://dx.doi.org/10.1109/TAC.2007.914952
http://dx.doi.org/10.1007/3-540-46430-1_19

REFERENCES

[KV06] Alex A. Kurzhanskiy and Pravin Varaiya. Ellipsoidal toolbox (ET). In
Proceedings of the 45th IEEE Conference on Decision and Control, pages
1498–1503, December 2006. doi:10.1109/CDC.2006.377036.

[KV07] A.A. Kurzhanskiy and P. Varaiya. Ellipsoidal techniques for reachabil-
ity analysis of discrete-time linear systems. IEEE Transactions on Auto-
matic Control, 52(1):26–38, January 2007. doi:10.1109/TAC.2006.
887900.

[KvdS10] Florian Kerber and Arjan van der Schaft. Compositional analysis for linear
systems. Systems & Control Letters, 59(10):645–653, 2010. doi:10.
1016/j.sysconle.2010.08.002.

[LCV10] B. Langerock, F. Cantrijn, and J. Vankerschaver. Routhian reduction for
quasi-invariant Lagrangians. Journal of Mathematical Physics, 51(2), 2010.
doi:10.1063/1.3277181.

[LPS00] Gerardo Lafferriere, George J. Pappas, and Shankar Sastry. O-minimal hy-
brid systems. Mathematics of Control, Signals, and Systems, 13(1):1–21,
2000. doi:10.1007/PL00009858.

[LTS99] John Lygeros, Claire Tomlin, and Shankar Sastry. Controllers for reacha-
bility specifications for hybrid systems. Automatica, 35(3):349–370, 1999.
doi:10.1016/S0005-1098(98)00193-9.

[Mar92] Jerrold E. Marsden. Lectures on Mechanics. Cambridge University Press,
1992.

[Mar08] Murray Marshall. Positive Polynomials and Sums of Squares, volume 146.
American Mathematical Society, 2008.

[MB08] Oded Maler and Grégory Batt. Approximating continuous systems by timed
automata. In Formal Methods in Systems Biology, volume 5054 of Lec-
ture Notes in Computer Science, pages 77–89. Springer Berlin / Heidelberg,
2008. doi:10.1007/978-3-540-68413-8_6.

[MBT05] I.M. Mitchell, A.M. Bayen, and C.J. Tomlin. A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games. IEEE
Transactions on Automatic Control, 50(7):947–957, 2005. doi:10.
1109/TAC.2005.851439.

[MDT10] Manuel Mazo, Anna Davitian, and Paulo Tabuada. Pessoa: A tool for em-
bedded controller synthesis. In Computer Aided Verification, volume 6174
of Lecture Notes in Computer Science, pages 566–569. Springer Berlin /
Heidelberg, 2010. doi:10.1007/978-3-642-14295-6_49.

[Mey68] K. R. Meyer. Energy functions for Morse Smale systems. American Journal
of Mathematics, 90(4):1031–1040, 1968. doi:10.2307/2373287.

71

http://dx.doi.org/10.1109/CDC.2006.377036
http://dx.doi.org/10.1109/TAC.2006.887900
http://dx.doi.org/10.1109/TAC.2006.887900
http://dx.doi.org/10.1016/j.sysconle.2010.08.002
http://dx.doi.org/10.1016/j.sysconle.2010.08.002
http://dx.doi.org/10.1063/1.3277181
http://dx.doi.org/10.1007/PL00009858
http://dx.doi.org/10.1016/S0005-1098(98)00193-9
http://dx.doi.org/10.1007/978-3-540-68413-8_6
http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1007/978-3-642-14295-6_49
http://dx.doi.org/10.2307/2373287

REFERENCES

[MHDK11] G. P. Moustris, S. C. Hiridis, K. M. Deliparaschos, and K. M. Konstan-
tinidis. Evolution of autonomous and semi-autonomous robotic surgical
systems: a review of the literature. The International Journal of Medi-
cal Robotics and Computer Assisted Surgery, 7(4):375–392, 2011. doi:
10.1002/rcs.408.

[MT05] Ian Mitchell and Jeremy Templeton. A toolbox of hamilton-jacobi solvers
for analysis of nondeterministic continuous and hybrid systems. In Hy-
brid Systems: Computation and Control, volume 3414 of Lecture Notes
in Computer Science, pages 480–494. Springer Berlin / Heidelberg, 2005.
doi:10.1007/978-3-540-31954-2_31.

[Par03] Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic
problems. Mathematical Programming, 96(2):293–320, 2003. doi:10.
1007/s10107-003-0387-5.

[PJ04] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems us-
ing barrier certificates. In Hybrid Systems: Computation and Control, vol-
ume 2993 of Lecture Notes in Computer Science, pages 271–274. Springer
Berlin / Heidelberg, 2004. doi:10.1007/978-3-540-24743-2\
_32.

[PJP07] S. Prajna, A. Jadbabaie, and George J. Pappas. A framework for worst-case
and stochastic safety verification using barrier certificates. IEEE Trans-
actions on Automatic Control, 52(8):1415–1428, August 2007. doi:
10.1109/TAC.2007.902736.

[PLS00] G.J. Pappas, G. Lafferriere, and S. Sastry. Hierarchically consistent control
systems. IEEE Transactions on Automatic Control, 45(6):1144–1160, jun
2000. doi:10.1109/9.863598.

[Pol77] B. T. Polyak. Subgradient methods: A survey of Soviet research. In Pro-
ceedings of a IIASA Workshop, volume 3 of Nonsmooth Optimization, pages
5–29, 1977.

[PPSP05] Stephen Prajna, Antonis Papachristodoulou, Peter Seiler, and Pablo A.
Parrilo. SOSTOOLS and its control applications. In Positive Polyno-
mials in Control, volume 312 of Lecture Notes in Control and Informa-
tion Sciences, pages 273–292. Springer Berlin / Heidelberg, 2005. doi:
10.1007/10997703_14.

[PR05a] Stephen Prajna and Anders Rantzer. On the necessity of barrier certificates.
In Proceedings of the 16th IFAC World Congress, pages 526–531, 2005.
doi:10.3182/20050703-6-CZ-1902.00743.

[PR05b] Stephen Prajna and Anders Rantzer. Primal–dual tests for safety and
reachability. In Manfred Morari and Lothar Thiele, editors, Hybrid Sys-
tems: Computation and Control, volume 3414 of Lecture Notes in Com-
puter Science, pages 542–556. Springer Berlin / Heidelberg, 2005. doi:
10.1007/978-3-540-31954-2_35.

72

http://dx.doi.org/10.1002/rcs.408
http://dx.doi.org/10.1002/rcs.408
http://dx.doi.org/10.1007/978-3-540-31954-2_31
http://dx.doi.org/10.1007/s10107-003-0387-5
http://dx.doi.org/10.1007/s10107-003-0387-5
http://dx.doi.org/10.1007/978-3-540-24743-2_32
http://dx.doi.org/10.1007/978-3-540-24743-2_32
http://dx.doi.org/10.1109/TAC.2007.902736
http://dx.doi.org/10.1109/TAC.2007.902736
http://dx.doi.org/10.1109/9.863598
http://dx.doi.org/10.1007/10997703_14
http://dx.doi.org/10.1007/10997703_14
http://dx.doi.org/10.3182/20050703-6-CZ-1902.00743
http://dx.doi.org/10.1007/978-3-540-31954-2_35
http://dx.doi.org/10.1007/978-3-540-31954-2_35

REFERENCES

[PR07] Stephen Prajna and Anders Rantzer. Convex programs for temporal ver-
ification of nonlinear dynamical systems. SIAM Journal on Control and
Optimization, 46(3):999—-1021, 2007. doi:10.1137/050645178.

[Pra06] Stephen Prajna. Barrier certificates for nonlinear model validation. Auto-
matica, 42(1):117–126, 2006. doi:10.1016/j.automatica.2005.
08.007.

[PT09] G. Pola and P. Tabuada. Symbolic models for nonlinear control systems:
Alternating approximate bisimulations. SIAM Journal on Control and Op-
timization, 48(2):719–733, 2009. doi:10.1137/070698580.

[Sip06] Michael Sipser. Introduction to the Theory of Computation. Thomson
Course Technology, 2nd edition, 2006.

[SKR85] N. Z. Shor, Krzysztof C. Kiwiel, and Andrzej Ruszcayǹski. Minimization
methods for non-differentiable functions. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985.

[Son89] Eduardo D. Sontag. A ’universal’ construction of Artstein’s theorem on
nonlinear stabilization. Systems & Control Letters, 13(2):117–123, 1989.
doi:10.1016/0167-6911(89)90028-5.

[Sto48] M. H. Stone. The generalized Weierstrass approximation theorem. Mathe-
matics Magazine, 21(4):167–184, 1948. doi:10.2307/3029750.

[SW11] Christoffer Sloth and Rafael Wisniewski. Algorithmic approach to abstract-
ing linear systems by timed automata. In Proceedings of the 18th IFAC
World Congress, pages 4546–4551, Milano, Italy, August 2011. doi:
10.3182/20110828-6-IT-1002.02568.

[Tab07] Paulo Tabuada. Symbolic models for control systems. Acta Informatica,
43:477–500, 2007. doi:10.1007/s00236-006-0036-6.

[Tab09] Paulo Tabuada. Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer, 2009. doi:10.1007/978-1-4419-0224-5.

[Tiw08] Ashish Tiwari. Abstractions for hybrid systems. Formal Methods in System
Design, 32(1):57––83, 2008. doi:10.1007/s10703-007-0044-3.

[TK02] Ashish Tiwari and Gaurav Khanna. Series of abstractions for hybrid au-
tomata. In Hybrid Systems: Computation and Control, volume 2289 of
Lecture Notes in Computer Science, pages 425–438. Springer Berlin / Hei-
delberg, 2002. doi:10.1007/3-540-45873-5_36.

[TK04] Ashish Tiwari and Gaurav Khanna. Nonlinear systems: Approximat-
ing reach sets. In Rajeev Alur and George Pappas, editors, Hybrid Sys-
tems: Computation and Control, volume 2993 of Lecture Notes in Com-
puter Science, pages 171–174. Springer Berlin / Heidelberg, 2004. doi:
10.1007/978-3-540-24743-2_40.

73

http://dx.doi.org/10.1137/050645178
http://dx.doi.org/10.1016/j.automatica.2005.08.007
http://dx.doi.org/10.1016/j.automatica.2005.08.007
http://dx.doi.org/10.1137/070698580
http://dx.doi.org/10.1016/0167-6911(89)90028-5
http://dx.doi.org/10.2307/3029750
http://dx.doi.org/10.3182/20110828-6-IT-1002.02568
http://dx.doi.org/10.3182/20110828-6-IT-1002.02568
http://dx.doi.org/10.1007/s00236-006-0036-6
http://dx.doi.org/10.1007/978-1-4419-0224-5
http://dx.doi.org/10.1007/s10703-007-0044-3
http://dx.doi.org/10.1007/3-540-45873-5_36
http://dx.doi.org/10.1007/978-3-540-24743-2_40
http://dx.doi.org/10.1007/978-3-540-24743-2_40

REFERENCES

[TLSS00] C.J. Tomlin, J. Lygeros, and S. Shankar Sastry. A game theoretic ap-
proach to controller design for hybrid systems. Proceedings of the IEEE,
88(7):949–970, July 2000. doi:10.1109/5.871303.

[TMBO03] C.J. Tomlin, I. Mitchell, A.M. Bayen, and M. Oishi. Computational tech-
niques for the verification of hybrid systems. Proceedings of the IEEE,
91(7):986–1001, July 2003. doi:10.1109/JPROC.2003.814621.

[TMG01] C. Tomlin, I. Mitchell, and R. Ghosh. Safety verification of conflict resolu-
tion manoeuvres. IEEE Transactions on Intelligent Transportation Systems,
2(2):110–120, jun 2001. doi:10.1109/6979.928722.

[TP03] Paulo Tabuada and George J. Pappas. Model checking LTL over control-
lable linear systems is decidable. In Hybrid Systems: Computation and Con-
trol, volume 2623 of Lecture Notes in Computer Science, pages 498–513.
Springer Berlin / Heidelberg, 2003. doi:10.1007/3-540-36580-X\
_36.

[TPM09] U. Topcu, A.K. Packard, and R.M. Murray. Compositional stability analysis
based on dual decomposition. In Proceedings of the 48th IEEE Conference
on Decision and Control, pages 1175–1180, December 2009. doi:10.
1109/CDC.2009.5400309.

[Tu08] Loring W. Tu. An Introduction to Manifolds. Springer, 2008. doi:10.
1007/978-1-4419-7400-6.

[WA07] Peter Wieland and Frank Allgöwer. Constructive safety using con-
trol barrier functions. In Proceedings of the 7th IFAC Symposium on
Nonlinear Control Systems, pages 462–467, 2007. doi:10.3182/
20070822-3-ZA-2920.00076.

[Wis05] Rafael Wisniewski. Flow Lines under Perturbations within Section Cones.
PhD thesis, Department of Mathematical Sciences, Aalborg University,
2005.

[WTM10] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding
horizon control for temporal logic specifications. In Proceedings of the
13th ACM international conference on Hybrid systems: computation and
control, HSCC ’10, pages 101–110, New York, NY, USA, 2010. ACM.
doi:10.1145/1755952.1755968.

74

http://dx.doi.org/10.1109/5.871303
http://dx.doi.org/10.1109/JPROC.2003.814621
http://dx.doi.org/10.1109/6979.928722
http://dx.doi.org/10.1007/3-540-36580-X_36
http://dx.doi.org/10.1007/3-540-36580-X_36
http://dx.doi.org/10.1109/CDC.2009.5400309
http://dx.doi.org/10.1109/CDC.2009.5400309
http://dx.doi.org/10.1007/978-1-4419-7400-6
http://dx.doi.org/10.1007/978-1-4419-7400-6
http://dx.doi.org/10.3182/20070822-3-ZA-2920.00076
http://dx.doi.org/10.3182/20070822-3-ZA-2920.00076
http://dx.doi.org/10.1145/1755952.1755968

Contributions

Paper A: Verification of Continuous Dynamical Systems by Timed Automata 77

Paper B: Complete Abstractions of Dynamical Systems by Timed Automata 117

Paper C: Abstractions for Mechanical Systems 151

Paper D: Compositional Safety Analysis using Barrier Certificates 167

Paper E: On the Existence of Compositional Barrier Certificates 189

Paper F: Towards Safe Robotic Surgical Systems 207

Paper A

Verification of Continuous Dynamical Systems by Timed Automata

Christoffer Sloth and Rafael Wisniewski

This paper was published in:
Formal Methods in System Design, 39(1): 47—82, August 2011

Copyright c©Springer Science+Business Media, LLC 2011
The layout has been revised

1 Introduction

Abstract

This paper presents a method for abstracting continuous dynamical systems by
timed automata. The abstraction is based on subdividing the state space of a dynami-
cal system using positive invariant sets, which form cells that represent locations of a
timed automaton. The abstraction is intended to enable formal verification of tempo-
ral properties of dynamical systems without simulating any system trajectory, which
is currently not possible. Therefore, conditions for obtaining sound, complete, and
refinable abstractions are set up.

The novelty of the method is the subdivision of the state space, which is generated
utilizing sub-level sets of Lyapunov functions, as they are positive invariant sets. It is
shown that this subdivision generates sound and complete abstractions. Furthermore,
the complete abstractions can be composed of multiple timed automata, allowing
parallelization of the verification process. The proposed abstraction is applied to two
examples, which illustrate how sound and complete abstractions are generated and
the type of specification we can check. Finally, an example shows how the composi-
tionality of the abstraction can be used to analyze a high-dimensional system.

1 Introduction

The verification of properties such as safety is important for any system. Such verifi-
cation involves reachability calculations or approximations. The reachable sets of con-
tinuous and hybrid systems are in general incomputable [1]. Therefore, much research
effort has been spent on the approximation of especially reachable sets for continuous
systems [2]. Yet, reachability is decidable for systems such as automata and timed au-
tomata; consequently, there exists a rich set of tools aimed at verifying properties of such
systems. Therefore, abstracting dynamical systems by discrete systems would enable the
verification of dynamical systems using the tools for discrete systems.

There are basically two methods for verifying continuous and hybrid systems. The
first is to over-approximate the reachable states by convex sets as in [3, 4, 5]. The sec-
ond method is to abstract the original system by a system of reduced complexity. Both
methods rely on reach set computations, which according to [2] limits the capabilities of
automatic analysis, due to their complexity. An abstraction method for continuous sys-
tems is presented in [6], and an abstraction method for hybrid systems is presented in [7].
The models used in these methods are called symbolic models if equivalence classes of
states are used instead of individual states [8]; for more insight in symbolic dynamics see
[9]. To reduce the computational effort, the verification process is often accomplished
by first choosing a coarse subdivision and then refining it until the system can be veri-
fied. One such algorithm is proposed in [10], where piecewise affine systems with real
eigenvalues are considered.

The goal of this paper is to abstract continuous systems by timed automata, since
efficient tools such as UPPAAL can verify this type of models [11]. The verification
of temporal requirements with a bounded time horizon is well known and studied in
computer science, via checking if some model satisfies, e.g., a Timed Computation Tree
Logic (TCTL) specification [12], but not in control theory. In control theory almost all
requirements are related to convergence, i.e., system properties when time goes to infinity.
This implies that the formal verification of temporal requirements of dynamical systems
would replace the need for simulations to verify the transient behavior of the systems.

79

Paper A

Hence, the proposed method has relevance for even the most simple dynamical system
models.

The concept of the abstraction is inspired by [6], where slices are introduced to im-
prove the accuracy of abstractions of continuous systems. In short, the aim of [6] is to
abstract autonomous continuous systems by timed automata via subdividing their state
spaces into cubes along the coordinate axis as shown in Figure 6.1. As a result, each cube
is associated with a discrete location of the timed automaton. Slices are used in addition
to the cells in the generation of the abstraction, to increase the precision of the abstrac-
tion. A slice is a collection of cells, as illustrated in Figure 6.1 by the collection of shaded
cells.

x1

x
2

Figure 6.1: The figure illustrates a vector field of a dynamical system (blue arrows) and
a subdivision of its state space into cubes (black squares). The shaded cubes represent a
slice.

Previous abstraction techniques are based on over-approximations, where the upper
bound on the error in general is unknown. This implies that the quality of the abstraction
is unknown and that falsification of safety is not possible unless refinements or under-
approximations are considered. However, this is not considered in this paper.

In this paper, which is an extension of [13], continuous systems are abstracted by
timed automata by considering both cells and slices for generating the abstractions. A
new subdivision is proposed, where the functions used for the subdivisioning are chosen
in accordance with the vector field of the dynamical system. By this, we mean that the
vector field cannot be tangent to a boundary of a cell. This requirement is not satisfied
in the subdivision illustrated in Figure 6.1, as some of the blue arrows (illustration of
the vector field) are tangent to the boundaries of cells. This approach is different from
most previous work on abstractions of continuous systems; however, this may reduce
the size of the symbolic models, which is currently the focus of other research [14].
Additionally, model checking can be done in a compositional manner using the proposed
method, due to the use of slices. This may reduce the computational complexity for
high-dimensional systems. Our objective is to show that by subdividing the state space in
accordance with the vector field of the dynamical system, it is possible to prove safety of
Morse-Smale systems using the proposed abstraction and additionally to falsify safety for
linear systems. Remark that falsification of safety properties may also be possible by, e.g.,
refining the abstraction or doing analysis based on under-approximations. Furthermore,
for linear systems, it is possible to calculate an a priori upper bound of the size of the
over-approximation of the reachable set and reduce this upper bound to an arbitrary small

80

2 Preliminaries

value, by refining the subdivision. Hence, we can obtain an abstraction with arbitrary
precision of the reachable set. In conclusion, the following problem is formulated.

Problem 9: Given an autonomous dynamical system, find a subdivision of its state space, which
allows over-approximation with arbitrary accuracy of its reachable set by a timed automaton.

To ease the flow of the article, some definitions and the proofs of the presented propo-
sitions are located in appendix.

This paper is organized as follows. Section 2 contains preliminary definitions utilized
throughout the paper. Then the general idea of the abstraction is explained in Section 3
and Section 4. First, we determine how a subdivision of a state space can be generated
by positive invariant sets, and then we show how a timed automaton is generated from
this subdivision. In Section 5, properties of the generated timed automaton are derived.
In Section 6, conditions for the subdivision are deduced, and LMI conditions for their
satisfaction are provided. Afterwards, a method for synthesizing such a subdivision is
proposed in Section 7. Examples are provided in Section 8; and Section 9 comprises
conclusions.

Notation

The set {1, . . . , k} is denoted k. BA is the set of maps A → B. The power set of A is
denoted 2A. Given a vector a ∈ Rn, a(j) denotes the jth coordinate of a. Given a set
A, the cardinality of the set is denoted |A|. We consider the Euclidean space (Rn, 〈, 〉),
where 〈, 〉 is the scalar product. Whenever f : X → R is a function and a ∈ R, we write
f−1(a) to shorten the notation of f−1({a}). Xr(M) is the space of Cr vector fields.

2 Preliminaries

The purpose of this section is to provide definitions related to dynamical systems and
timed automata. Especially, we give a detailed description of the considered class of
dynamical systems.

Dynamical Systems

This subsection provides a definition of an autonomous dynamical system and its solu-
tion. This is followed by definitions of reachable set and Lyapunov function used for the
subdivision. Finally, explanations of the considered class of systems are provided.

Definition 41 (Autonomous Dynamical System). An autonomous dynamical system Γ =
(X, f), with state space X ⊆ Rn and f : X → Rn a continuous map, has dynamics
described by ordinary differential equations

ẋ = f(x). (6.1)

Let φΓ : [0, ε]×X0 → X , ε > 0 be the flow map satisfying

dφΓ(t, x0)

dt
= f (φΓ(t, x0)) (6.2)

81

Paper A

for all t ∈ [0, ε] and φΓ(0, x0) = x0. In other words, φΓ(t, x0) is the solution of (6.1),
from an initial state x0 ∈ X0 ⊆ X for t ∈ [0, ε].

It is assumed that (6.1) has a solution for each x0 ∈ X0 and for all time t ∈ R, and
that this solution is unique. Hence, the function f is continuous, locally Lipschitz, and
has linear growth [15].

The reachable set of a dynamical system is defined in the following.

Definition 42 (Reachable set of Dynamical System). The reachable states of a system Γ
from a set of initial states X0 ⊆ X on the time interval [t1, t2] is defined as

Reach[t1,t2](Γ, X0) = {x ∈ X| ∃t ∈ [t1, t2], ∃x0 ∈ X0, such that x = φΓ(t, x0)}.
(6.3)

We define Lyapunov function in the following, as these are used in the subdivisioning
[16].

Definition 43 (Lyapunov Function). Let X be an open connected subset ofRn. Suppose
f : X → Rn is continuous and let Cr(f) be the set of critical points of f . Then a
real non-degenerate (see [17, p. 1]) differentiable function ϕ : X → R is said to be a
Lyapunov function for f if

p is a critical point of f ⇔ p is a critical point of ϕ

Lfϕ(x) ≡
n∑

j=1

∂ϕ

∂xj
(x)f j(x) (6.4a)

Lfϕ(x) = 0 ∀x ∈ Cr(f) (6.4b)
Lfϕ(x) < 0 ∀x ∈ X\Cr(f) (6.4c)

and there exists α > 0 and an open neighborhood of each critical point p ∈ Cr(f), where

||Lfϕ(x)|| ≥ α||x− p||2. (6.5)

Notice that we only require the vector field to be transversal to the level curves of a
Lyapunov function ϕ, i.e., Lfϕ(x) = 〈∇ϕ(x), f(x)〉 < 0 for all x ∈ X\Cr(f), and does
not use Lyapunov functions in the usual sense, where the existence of a Lyapunov function
implies stability, but uses a more general notion from [16]. Assume that a Lyapunov
function ϕ is positive definite, then its sub-level sets generate positive invariant sets.

Definition 44 (Positive Invariant Set). Given a system Γ = (X, f), a set X ⊆ X is said
to be positively invariant if for all x0 ∈ X and for all t ≥ 0

φΓ(t, x0) ∈ X . (6.6)

Considered Class of Systems

In this subsection we describe the considered class of systems and motivate why this class
of systems is sufficient for this work.

The most general class of systems considered in this work is Morse-Smale systems,
defined formally in Definition 72. However, some of the results only apply for linear
systems. A linear system Γ = (X, f) is a system with linear f , i.e.,

ẋ = Ax (6.7)

82

2 Preliminaries

where A is an n× n non-singular matrix.
To explain Morse-Smale systems we first explain topological equivalence of systems

and structural stability of systems.
Two systems (or vector fields) are topological equivalent, see Definition 73, if there

exists a correspondence between their solution trajectories, given by a continuous defor-
mation (homeomorphism, i.e., a continuous bijection with continuous inverse). Hence,
the exists a homeomorphism h such that the solution of a vector field η from some ini-
tial state can be described by a solution of a topologically equivalent vector field ξ as
h ◦ φξ(R, x0) = φη(R, h(x0)).

Next, we define structural stability of a vector field, which is an important property of
Morse-Smale systems.

Definition 45 (Structurally Stable Vector Field [18]). A vector field ξ ∈ Xr(M) is struc-
turally stable if there exists a neighborhood V of ξ in Xr(M) such that every η ∈ V is
topologically equivalent to ξ.

A vector field is structurally stable if its quantitative behavior does not change after
the vector field has been slightly perturbed. In the following, we provide some intuition
in structurally stable systems, by showing an example of a system that is not structurally
stable.

Consider the linear system with purely complex eigenvalues {−i, i}, i.e., the real parts
of the eigenvalues are zero

ẋ =

[
0 −1
1 0

]
x. (6.8)

Two trajectories of the system are drawn in the left subplot of Figure 6.2. If we slightly
perturb the system (This perturbation is given by a smooth map, see Theorem 2.1 in [19]),
the eigenvalues of the system may become positive (trajectory in the middle subplot) or
negative (trajectory in the right subplot). As a consequence, it is no longer possible to
describe the solution trajectories of the middle or right subplot by a continuous deforma-
tion (homeomorphism) of solution trajectories of the left subplot. Therefore, the system
shown in (6.8) is not structurally stable.

−0.5 0 0.5
−0.5

0

0.5

x
2

x1

−0.5 0 0.5
x1

−0.5 0 0.5
x1

Figure 6.2: Trajectories of three dynamical systems.

In relation to numerical simulation of systems that are not structurally stable, even
the smallest rounding error in the representation of the system may significantly alter its
behavior.

83

Paper A

Two important restrictions of Morse-Smale systems are exploited in this paper. First,
the vector field has a finite number of singular points, each hyperbolic. A hyperbolic sin-
gular point is a singular point such that in local coordinates the matrix of partial deriva-
tives of the vector field has eigenvalues with nonzero real parts (the eigenvalues of (6.8)
are not hyperbolic). This property allows the system to be split up into a stable and an
unstable subsystem, which can be analyzed separately. Second, the stable and unstable
manifolds associated with a singular point have transversal intersection. This restriction
is necessary to obtain a structurally stable vector field.

Remark 9: To the best of authors’ knowledge, there exists no method to check if a system is Morse-
Smale. However, if the system is second order and one finds a Lyapunov function, it is Morse-
Smale. For a system of dimension greater than two, if there is a Lyapunov function then it can
be approximated arbitrary closely by a Morse-Smale vector field [16]. For linear systems, it is
necessary and sufficient to check if all eigenvalues are hyperbolic.

To summarize, it is chosen to only consider Morse-Smale systems in this paper, as
they are structurally stable, and there exists an open set of Lyapunov functions for all
Morse-Smale systems, which is important for the subdivisioning.

In the following, we reason about the size of the class of Morse-Smale systems (or
vector fields).

Morse-Smale systems are dense in systems of less than or equal to two dimensions
according to the following two theorems.

Theorem 8 ([20]): In order that the vector field ξ be structurally stable on the compact 2-dimensional
manifold M it is necessary and sufficient that the vector field is Morse-Smale.

Theorem 9 ([20]): The set of all structurally stable systems is open and dense in the space of all
systems defined on a 2-dimensional manifold M .

From Theorem 8 we conclude that Morse-Smale systems are robust in the sense that
its behavior does not change dramatically after being perturbed slightly, as it is struc-
turally stable (explained next). This also implies that the subdivisioning will be insensitive
to small perturbations. This is a desirable property, as small perturbations always exist for
physical systems. From Theorem 9 we conclude that for two dimensions all dynamical
systems can be approximated by the Morse-Smale system with arbitrary accuracy.

We are of course interested in studying systems having dimension greater than two;
however, note that we want to verify control systems. Control systems are almost always
designed using some Lyapunov-based method, i.e., there exists a Lyapunov function for
the considered system, which implies that it is Morse-Smale. Therefore, we conclude that
it is reasonable to only study Morse-Smale systems in this analysis.

Timed Automata

We abstract dynamical systems by timed automata. Therefore, a definition of a timed
automaton is provided in the following Alur et al. [21]. Before defining it, a set of
diagonal-free clock constraints Ψ(C) for the set C of clocks is defined. Ψ(C) contains
all invariants and guards of the timed automaton; consequently, it is described by the

84

2 Preliminaries

following grammar

ψ ::= c ./ k|ψ1 ∧ ψ2, (6.9a)

where

c ∈ C, k ∈ R≥0, and ./∈ {≤,<,=,>,≥}. (6.9b)

Note that the clock constraint k should usually be a rational number, but in this paper, no
effort is done to convert the clock constraints into rational numbers. However, any real
number can be approximated by a rational number with an arbitrary small error ε > 0.

Definition 46 (Timed Automaton). A timed automaton A is a tuple (E,E0, C,Σ, I,∆),
where

• E is a finite set of locations, and E0 ⊆ E is the set of initial locations.

• C is a finite set of clocks.

• Σ is the input alphabet.

• I : E → Ψ(C) assigns invariants to locations, where Ψ(C) is the set of all clock
constraints in (6.9).

• ∆ ⊆ E × Ψ(C) × Σ × 2C × E is a finite set of transition relations. A transition
relation is a tuple (e,Ge→e′ , σ, Re→e′ , e′) that assigns an edge between two loca-
tions, where e is the source location, e′ is the destination location, Ge→e′ ∈ Ψ(C)
is the guard set, σ is a symbol in the alphabet Σ, and Re→e′ ⊆ C is a subset of
clocks.

The semantics of a timed automaton is defined in the following, adopting the notion
of [22].

Definition 47 (Clock Valuation). A clock valuation on a set of clocks C is a mapping
v : C → R≥0. The initial valuation v0 is given by v0(c) = 0 for all c ∈ C. For a
valuation v, d ∈ R≥0, and R ⊆ C, the valuations v + d and v[R] are defined as

(v + d)(c) = v(c) + d, (6.10a)

v[R](c) =

{
0 for c ∈ R,
v(c) otherwise.

(6.10b)

Definition 48 (Semantics of Clock Constraint). A clock constraint in Ψ(C) is a set of
clock valuations {v : C → R≥0} given by

Jc ./ kK = {v : C → R≥0|v(c) ./ k} (6.11a)
Jψ1 ∧ ψ2K = Jψ1K ∩ Jψ2K. (6.11b)

For convenience we denote v ∈ JψK by v |= ψ.

85

Paper A

Definition 49 (Semantics of Timed Automaton). The semantics of a timed automaton
A = (E,E0, C,Σ, I,∆) is the transition system JAK = (S, S0,Σ ∪R≥0, Ts ∪ Td) given
by

S = {(e, v) ∈ E ×RC≥0| v |= I(e)}
S0 = {(e, v) ∈ E0 ×RC≥0| v = v0}
Ts = {(e, v)

σ→ (e′, v′)| ∃(e,Ge→e′ , σ, Re→e′ , e′) ∈ ∆ : v |= Ge→e′ , v′ = v[Re→e′]}
Td = {(e, v)

d→ (e, v + d)| ∀d′ ∈ [0, d] : v + d′ |= I(e)}.

Analog to the solution of (6.1), shown in (6.2), is a run of a timed automaton, which
is defined in the following.

Definition 50 (Run of Timed Automaton). A run of a timed automaton A is a possibly
infinite sequence of alternations between time steps and discrete steps on the following
form

(e0, v0)
d1−→ (e0, v1)

σ1−→ (e1, v2)
d2−→ . . . (6.12)

where di ∈ R≥0 and σi ∈ Σ. The multifunction describing runs of a timed automaton
φA : R≥0 × E0 → 2E , defined by e ∈ φA(t, e0) if and only if there exists a path in JAK
initialized in (e0, v0) that reaches the location e at time t =

∑
i di.

We use the notation of the run of a timed automaton, to define its reachable locations.

Definition 51 (Reachable Set of Timed Automaton). The reachable set of a timed au-
tomaton A with initial locations E0 on the time interval [t1, t2] is defined by

Reach[t1,t2](A, E0) = {e ∈ E| ∃t ∈ [t1, t2],∃e0 ∈ E0, such that e ∈ φA(t, e0)}.
(6.13)

This concludes the preliminary definitions. The next section explains how the state
space of a dynamical system should be subdivided.

3 Generation of Finite Subdivision

The main idea of this work is to design an abstraction procedure, which exploits the
knowledge of the flow of the dynamical system. Therefore, it is proposed to subdivide the
state space into a finite number of cells by intersecting slices defined as the set-difference
of positive and negative invariant sets. This ensures a unidirectional flow through the
boundaries of the cells, see Definition 44. Another approach to subdividing the state
space of a hybrid system by a family of functions is developed in [23]. In this work, the
state space is subdivided by a family of immersed submanifolds, so called leafs of the
foliation. Each leave is of codimension 1, and it is transversal to the studied vector field.
Such a foliation can be generated as an inverse image of a regular value under a function.
Consequently, a collection of foliations defines a subdivision. A regular point of a map
f is a point where the differential of f is surjective. A point v, in the image of f , is
a regular value if its pre-image contains regular points only (i.e. no critical points), see
Definition 74.

86

3 Generation of Finite Subdivision

In most previously proposed methods for abstracting dynamical systems, the subdivi-
sion of the state space is done without considering the dynamics of the system. In contrast
to this, the proposed method is mainly concerned with the subdivision of the state space
according to the system dynamics.

Definition 52 (Slice). A nonempty set S is a slice if there exist two open sets A1 and A2

such that

1. A1 and A2 are positively or negatively invariant,

2. A1 is a proper subset of A2, and

3. S = cl(A2\A1).

The slices are defined to be set-differences of positive or negative invariant sets to
ensure that the vector field is transversal, see Definition 55, to the boundaries of the
slices. Figure 6.3 illustrates a slice and the two positive invariant sets, A1 and A2, which
generate it. This construction of slices ensures a nonzero minimum time for staying in
each slice unless it contains an equilibrium point. We know from the definition of the
Lyapunov function that there are no limit cycles in the set A2\A1. If there was a limit
cycle and a and b were two points on it, then the system would first reach a, then b and
a again. However, as the Lyapunov function is strictly decreasing it would imply that
ϕ(a) > ϕ(b) > ϕ(a), which cannot be true.

−1 0 1

−1

−0.5

0

0.5

1

x
2

x1

A1

−1 0 1
x1

A2

−1 0 1
x1

S

Figure 6.3: Illustration of a phase plot of a dynamical system (blue arrows), two positive
invariant sets, A1 and A2 (gray disks), and a slice S = cl(A2\A1) to the right.

To devise a subdivision of a state space, we need to define finite collections of slices.
These collections are called slice-families.

Definition 53 (Slice-Family). A slice-family S is a finite collection of slices generated by
the positive or negative invariant open setsA1 ⊂ A2 ⊂ · · · ⊂ Ak covering the entire state
space of the system Γ = (X, f). Thereby, S1 = cl(A1), S2 = cl(A2\A1), . . . , Sk =
cl(Ak\Ak−1), and X ⊆ Ak.
For convenience |S| is defined to be the number of slices in the slice-family S.

We say that the slice-family S is generated by the sets {Ai|i ∈ k}. We address the
existence and generation of these sets in Section 7.

A function is associated to each slice-family S to provide an easy way of describing
the boundary of a slice. Such a function is called a subdivisioning function.

87

Paper A

Definition 54 (Subdivisioning Function). Let S be a slice-family, then a continuous func-
tion ϕ : Rn → R smooth onRn\Cr(f) is a subdivisioning function associated to S if for
any positive or negative invariant set Ai generating S there exist ai, a′i ∈ R ∪ {−∞,∞}
such that

ϕ−1([ai, a
′
i]) = cl(Ai) (6.14)

and ai, a′i are regular values of ϕ, see Definition 74. By regular level set theorem, the
boundary ϕ−1(ai) of Ai is an embedded smooth submanifold of Rn [24]. We index the
regular values such that ai < aj if and only if i < j.

The proposed method heavily relies on transversal intersections; therefore, a formal
definition of transversal intersection is provided in the following. After the definition, it
is geometrically interpreted to clarify.

Definition 55 (Transversal Intersection [19]). Suppose that N1 and N2 are embedded
submanifolds ofM . We say thatN1 intersectsN2 transversally if, whenever p ∈ N1∩N2,
we have Tp(N1) + Tp(N2) = Tp(M). (The sum is not direct, just the set of sums of
vectors, one from each of the two subspaces of the tangent space Tp(M).)

In the left subplot of Figure 6.4, level sets of two subdivisioning functions (hence two
embedded submanifolds of R2) are illustrated. They intersect in the point p; however,
their tangents (black lines) are identical. This implies that their tangent vectors only span
one dimension at p, i.e., Tp(N1) + Tp(N2) 6= Tp(M). Therefore, this intersection is
not transversal. Note that with an arbitrary small perturbation, the intersection of the two
level sets will be empty, as shown in the middle subplot (This perturbation is given by a
smooth map, see Theorem 2.1 in [19]).

In the right subplot Figure 6.4, two level sets intersecting at point p are illustrated.
Their tangent vectors (black lines) span R2, i.e., the level sets intersect transversally.
Note that two manifolds that do not intersect are also transversal.

−0.5 0 0.5

−0.5

0

0.5

x1

x
2 p

N1N2

Tp(N1)

Tp(N2)

−0.5 0 0.5
x1

−0.5 0 0.5
x1

p

N1N2

Tp(N1)
Tp(N2)

Figure 6.4: Illustration of two manifolds N1 (red) and N2 (green). In the left subplot N1

and N2 intersect; however, not transversally. In the middle subplot N1 and N2 do not
intersect, but are transversal. In the right subplot N1 and N2 intersect transversally.

It is desired to obtain cells from the slices, and this is done by intersecting slices.

Definition 56 (Transversal Intersection of Slices). We say that the slices S1 and S2 inter-
sect each other transversally and write

S1 t S2 = S1 ∩ S2 (6.15)

88

3 Generation of Finite Subdivision

if their boundaries, bd(S1) and bd(S2), intersect each other transversally.

Remark 10: A subdivision is robust, if any two slices intersect each other transversally, since they
still intersect each other transversally after an arbitrary small perturbation. Hence, robustness is the
reason for considering only transversal intersections in the proposed subdivision.

Definition 57 (Extended Cell). Let S = {Si|i ∈ k} be a collection of k slice-families
and let G(S) ≡ {1, . . . , |S1|} × · · · × {1, . . . , |Sk|}.
Denote the jth slice in Si by Sij and let g ∈ G(S). Then

eex,g = tki=1 S
i
gi (6.16)

where gi is the ith element of the vector g. Any nonempty set eex,g is called an extended
cell.

The set G(S), defined above, is used in the remainder of the paper.
The cells in (6.16) are denoted by extended cells, since the transversal intersection of

slices may form multiple disjoint sets in the state space. This is illustrated in Figure 6.5,
where a two-dimensional state space is subdivided utilizing two slice-families (red and
green).

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

x
2

x1

Figure 6.5: Phase plot (blue arrows) of a two-dimensional system and a subdivision gen-
erated utilizing two slice-families (red and green lines). The gray shaded area illustrates
one extended cell, which consists of 4 connected components.

The next example clarifies the indexing of the extended cells shown in Definition 57.

Example 6 (Indexing Extended Cells). Given three slice-families {Si|i ∈ {1, 2, 3}}, an
extended cell is indexed according to the ordering of the slices defining it, as shown below

eex,(9,5,27) = S1
9 t S2

5 t S3
27. (6.17)

The vector g from Definition 57 equals (9, 5, 27) in this example, since eex,(9,5,27) is
generated from slice number 9 in S1, slice number 5 in S2, and slice number 27 in S3.

It is desired to have cells, which are connected. Therefore, the following is defined.

89

Paper A

Definition 58 (Cell). A cell is a connected component of an extended cell
⋃

h

e(g,h) = eex,g, (6.18a)

where

e(g,h) ∩ e(g,h′) = ∅ ∀h 6= h′. (6.18b)

We say that the slices S1
g1
, . . . , Skgk generate the cell e(g,h).

Figure 6.6 illustrates a two-dimensional state space subdivided by two slice-families
and provides a geometric interpretation of the definitions related to the subdivisioning of
a state space. The symbols of cells and level-sets of subdivisioning functions from the
previous definitions are added to clarify their meaning. Note that subscript of aij refers
to the number in the slice families, whereas the superscript is the number of slice family,
i.e., aij is the jth regular value associated with subdivisioning function ϕi.

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

x
2

x1

e((2,2),1)

e((2,2),2)e((2,2),3)

e((2,2),4)
e((1,2),1)

e((1,2),2)

e((2,1),1) e((2,1),2)e((1,1),1)

(ϕ1)−1(a12)

(ϕ1)−1(a11)

(ϕ2)−1(a21)

(ϕ2)−1(a22)

Figure 6.6: Phase plot (blue arrows) of a two-dimensional state space. The state space
is subdivided utilizing two slice-families, generated by the subdivisioning functions ϕ1

(red) and ϕ2 (green). Each cell of the subdivision is numbered according to Definition 57
and Definition 58.

A finite subdivision based on the transversal intersection of slices is defined in the
following.

Definition 59 (Finite Subdivision). Let S be a collection of slice-families, S = {Si|i ∈
k}. We define a finite subdivision E(S) by

e ∈ E(S) (6.19)

if and only if e is a connected component of an extended cell.

Based on the definitions provided in this section, a procedure for obtaining a timed
automaton from a finite subdivision of a state space is presented in the next section.

90

4 Generation of Timed Automaton from Finite Subdivision

4 Generation of Timed Automaton from Finite Subdivision

The purpose of this section is to explain how a timed automaton A is generated from a
finite subdivision E(S) of the state space of a system Γ. For this, we use the abstraction
procedure presented in [6]; nevertheless, we exclude the clock and constraints related to
the time of traversing a cell. However, these can be added to improve accuracy. The
reason why these clocks are removed is that they destroy the compositional structure of
the timed automaton and requires computation of more guards and invariants.

First, we define an abstraction function associating each cell of the subdivision E(S)
to a location of a timed automaton.

Definition 60 (Abstraction Function). Let E(S) = {ei|i ∈ m} for some m ∈ N be a
finite subdivision of the state space X ∈ Rn and E(S) = {ei|i ∈ m} be the locations
of a timed automaton. Then an abstraction function for (X,E(S)) is a multifunction
αE : X → 2E(S) defined by

αE(x) = {ei ∈ E(S) | x ∈ ei}. (6.20)

We use this abstraction function and generate a timed automaton according to the
following procedure.

Procedure 1 (Generation of a Timed Automaton): Let S = {Si|i ∈ k} be a finite collection of
slice-families. Then the timed automaton A = (E,E0, C,Σ, I,∆) generated by the subdivision
E(S) is defined by

• Locations: The locations of A are given by

E = E(S). (6.21)

This means that a location e(g,h) is associated with the cell e(g,h) = α−1
K (e(g,h)) of the

subdivision E(S), see Definition 60.

• Clocks: The number of clocks equals the number of slice-families, i.e., C = {ci|i ∈ k}.
• Invariants: In each location e(g,h), there are up to k invariants. We impose an invariant,

whenever there is an upper bound for the time of staying in a slice generating the cell e(g,h)

I(e(g,h)) =

k∧
i=1

ci ≤ tSi
gi
, (6.22)

where tSi
gi
∈ R≥0 is an upper bound on the time for staying in Sigi .

• Input Alphabet: The input alphabet Σ consists of k symbols {σi|i ∈ k}. Note that σi is
associated with transitions between two slices in the slice-family Si.

• Transition relations: If a pair of locations e(g,h) and e(g′,h′), associated with the cells
e(g,h) and e(g′,h′), satisfy the following two conditions

1. e(g,h) and e(g′,h′) are adjacent, that is e(g,h) ∩ e(g′,h′) 6= ∅, and

2. g′i ≤ gi for all i ∈ k.

Then there is a transition relation

δ(g,h)→(g′,h′) = (e(g,h), G(g,h)→(g′,h′), σ, R(g,h)→(g′,h′), e(g′,h′)), (6.23a)

91

Paper A

where

G(g,h)→(g′,h′) =

k∧
i=1

{
ci ≥ tSi

gi
if gi − g′i = 1

ci ≥ 0 otherwise
(6.23b)

and tSi
gi
∈ R≥0 is a lower bound on the time for staying in Sigi . Note that gi − g′i = 1

whenever a transition labeled σi is taken. If gi − g′i = 0, we stay in the slice from the ith

slice-family generating cell e(g,h); hence, no active guards are on ci.
Note that there is only constraints on the i clock if gi − g′i = 1, since otherwise we do not
exit a slice from the ith slice-family.
Let i ∈ k. We define R(g,h)→(g′,h′) by

ci ∈ R(g,h)→(g′,h′) (6.23c)

iff gi − g′i = 1.

The calculation of tSi
gi

and tSi
gi

can be accomplished in multiple ways, yielding different properties
of the abstraction. This is explained in details in Section 6, where conditions for generating sound
and complete abstractions are provided.

For convenience the following notion is introduced.

Definition 61. Let S be a finite collection of slice-families S = {Si|i ∈ k}. Then A (S)
is the timed automaton generated by S according to Procedure 1.

Definition 62. A timed automaton Aex(S) has locations given by

E = Eex(S), (6.24)

where a location eex,g ∈ Eex(S) is associated with the extended cell eex,g generated by
the slice-family S; hence, eex,g = α−1

Kex
(eex,g).

5 Properties of the Generated Timed Automaton

A timed automaton generated from the presented procedure possesses some salient prop-
erties, due to the way state spaces are subdivided. Some of these properties are presented
in this section. The section consists of four subsections, each explaining one of the prop-
erties.

Determinism of Abstractions

The considered systems have unique maximal solutions, see Definition 41. Therefore, we
also determine when a subdivision generates a deterministic timed automaton.

Proposition 18 (Deterministic Timed Automaton): The timed automatonA (S) is deterministic, if
and only if for each cell e(g,h) ∈ K(S) and for all i ∈ k the set

e(g,h)

⋂
(ϕi)−1(aigi−1) (6.25)

is connected.

92

5 Properties of the Generated Timed Automaton

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

x
2

σ2 σ1 σ2

σ2

σ1 σ1

e((2,2),1)

e((1,2),1)

e((2,1),2)e((2,1),1) e((1,1),1)

x1

e((2,2),1)

(ϕ2)−1(a2
1)

e((1,2),1)

e((2,1),1) e((1,1),1) e((2,1),2)

Figure 6.7: Subdivision of a two-dimensional state space using two slice-families S1 (red)
and S2 (green), and an illustration of the resulting nondeterministic timed automaton (for
simplicity only the names of the locations and symbols on the transitions are shown in the
figure). The set e((2,2),1)

⋂
(ϕ2)−1(a2

1) is illustrated with a bold green line, to emphasize
that Proposition 18 is not satisfied, as the set (6.25) is not connected.

We show how to check if an abstraction is deterministic in Proposition 20; however,
first we present an example to clarify Proposition 18.

Example 7. Consider the subdivision of a two-dimensional state space shown in Fig-
ure 6.7 generated using two slice-families S1 (red) and S2 (green). A timed automaton
generated from the subdivision is shown in the bottom of the figure, excluding time infor-
mation.

From the figure it is seen that the symbol σ2 determines two transitions in the timed
automaton from e((2,2),1): A transition to e((2,1),1) and a transition to e((2,1),2). The
reason for this is that two cells are reachable from e((2,2),1) by crossing (ϕ2)−1(a2

1), as
e((2,2),1)

⋂
(ϕ2)−1(a2

1) (bold green line) consists of two connected components. This
implies that Proposition 18 is not satisfied; hence, a timed automaton generated by this
subdivision is nondeterministic.

For linear systems, it is possible to check if Proposition 18 is satisfied when quadratic

93

Paper A

Lyapunov functions are used as subdivisioning functions. This is explained in the follow-
ing, using a proposition from [25] that determine when two quadratic forms intersect.

Proposition 19 ([25]): Suppose P 1 = (P 1)T > 0, P 2 = (P 2)T > 0, and let ϕ1(x) = xTP 1x and
ϕ2(x) = xTP 2x. Define γ to be the solution to the following optimization problem

minimize γ (6.26a)

subject to P 2 − γP 1 ≤ 0, γ > 0 (6.26b)

and define γ to be the solution to the following optimization problem

maximize γ (6.27a)

subject to P 1γ − P 2 ≤ 0, γ > 0. (6.27b)

Then the level set (ϕ2)−1(a2) generated for a regular value a2 intersects (ϕ1)−1(a1) if and only
if a2 ∈ [a1γ, a1γ], and (ϕ2)−1(a2) intersects (ϕ1)−1(a1) transversally if and only if a2 ∈
(a1γ, a1γ).

This is illustrated in Figure 6.8, where the level sets (ϕ1)−1(a1), (ϕ2)−1(a1γ), and
(ϕ2)−1(a1γ) are drawn.

−5 0 5
−6

−4

−2

0

2

4

6

x
2

x1

(ϕ1)−1(a1)

(ϕ2)−1(a1γ)

(ϕ2)−1(a1γ)

Figure 6.8: Illustration of a level set (ϕ1)−1(a1) (red) and the level sets (ϕ2)−1(a1γ),
and (ϕ2)−1(a1γ) (green) intersecting (ϕ1)−1(a1).

From Figure 6.7 it is seen that the timed automaton becomes nondeterministic, when a
level set only intersects some, but not all level sets from the other slice families. Using this
fact, the following proposition follows directly from Proposition 19, and is left without
proof.

Proposition 20: LetA(S) be an abstraction of a linear system Γ = (X, f). Let S = {Si|i ∈ k} be
a collection of slice-families. Associate to each slice-family Si a quadratic subdivisioning function
ϕi(x) = xTP ix, and let Si be generated using the regular values {aik|k ∈ {1, . . . , |Si|}}. For all
i, j ∈ k, define γij to be the solution to the following optimization problem

minimize γij (6.28a)

subject to P j − γijP i ≤ 0, γij > 0 (6.28b)

94

5 Properties of the Generated Timed Automaton

and define γij to be the solution to the following optimization problem

maximize γij (6.29a)

subject to P iγij − P j ≤ 0, γij > 0. (6.29b)

ThenA(S) is deterministic if and only if for all i 6= j ∈ k and for all aj ∈ {ajk|k ∈ {1, . . . , |S
j |}}

aj ∈ (aiγij , aiγij) ∀ai ∈ {aik|k ∈ {1, . . . , |Si|}} or (6.30a)

aj /∈ (aiγij , aiγij) ∀ai ∈ {aik|k ∈ {1, . . . , |Si|}}. (6.30b)

Remark that the optimization problems used in Proposition 20 can be solved using
standard tools for solving linear optimization problems.

Compositionality of Abstractions

Under certain conditions it is possible to generate the timed automaton as a parallel com-
position of multiple timed automata.

Definition 63 (Parallel Composition of Timed Automata). The parallel composition of
two timed automata, Ai = (Ei, E0,i, Ci,Σi, Ii,∆i) for i = 1, 2 with transition rela-
tions (ei, Gi,ei→e′i , σ

i, Ri,ei→e′i , e
′
i), is denoted A = A1||A2 and is a timed automaton

(E,E0, C,Σ, I,∆), where:

• E = E1 × E2.

• E0 = E0,1 × E0,2.

• C = C1 ∪ C2.

• Σ = Σ1 ∪ Σ2.

• I : E → Ψ(C), where I(e1, e2) = I1(e1) ∧ I2(e2).

• ∆ ⊆ E × Ψ(C) × Σ × 2C × E is a finite set of transition relations, where
(e,Ge→e′ , σ, Re→e′ , e′) is defined by the following

1. If σ ∈ Σ1 ∩ Σ2 then e = (e1, e2), Ge→e′ = G1,e1→e′1 ∧G2,e2→e′2 , Re→e′ =
R1,e1→e′1 ∪R2,e2→e′2 , and e′ = (e′1, e

′
2).

2. If σ ∈ Σ1 and σ 6∈ Σ2 then e = (e1, e2), Ge→e′ = G1,e1→e′1 , Re→e′ =
R1,e1→e′1 , and e′ = (e′1, e2).

3. If σ 6∈ Σ1 and σ ∈ Σ2 then e = (e1, e2), Ge→e′ = G2,e2→e′2 , Re→e′ =
R2,e2→e′2 , and e′ = (e1, e

′
2).

Proposition 21: LetAex(S) be a timed automaton and let the slices of S be generated such that for
each pair (Sigi , S

j
gj), with i, j ∈ k, gi ∈ {1, . . . , |Si|}, gj ∈ {1, . . . , |Sj |}, we have

Sigi t S
j
gj 6= ∅ ∀i 6= j. (6.31)

Then,Aex(S) is isomorphic to the parallel composition of k timed automata each generated by one
slice-family Si having an alphabet Σi = {σi}.

95

Paper A

Note that case 1 in Definition 63, where σ ∈ Σi ∩ Σj is never satisfied in this work,
as Σi ∩ Σj = ∅ for all i 6= j.

Remark 11: A parallel composition of timed automata Ai(Si) for i ∈ k is similar to the inter-
section of slices in the slice-families Si. Therefore, the intersection of slices should be nonempty
to let the locations of the timed automaton Aex(S) be such a parallel composition, as stated in
Proposition 21.

The satisfaction of Proposition 21 can be checked using the following proposition.

Proposition 22: LetA(S) be an abstraction of a linear system Γ = (X, f). Let S = {Si|i ∈ k} be
a collection of slice-families. Associate to each slice-family Si a quadratic subdivisioning function
ϕi(x) = xTP ix, and let Si be generated using the regular values {aik|k ∈ {1, . . . , |Si|}}. For all
i, j ∈ k, define γij to be the solution to the following optimization problem

minimize γij (6.32a)

subject to P j − γijP i ≤ 0, γij > 0 (6.32b)

and define γij to be the solution to the following optimization problem

maximize γij (6.33a)

subject to P iγij − P j ≤ 0, γij > 0. (6.33b)

Then Proposition 21 is satisfied if and only if for all i 6= j ∈ k and for all aj ∈ {ajk|k ∈
{1, . . . , |Sj |}}

aj ∈ (aiγij , aiγij) ∀ai ∈ {aik|k ∈ {1, . . . , |Si|}}. (6.34a)

The property that Aex(S) is isomorphic to the parallel composition of k timed au-
tomata is very important for computations, since it allows parallel verification of the
k timed automata each with only one clock. Furthermore, it makes it possible to se-
quentially add slice-families to the abstraction, to replace, and to refine slice-families to
improve the accuracy of the abstraction.

The parallel composition of timed automata also allows the sequential verification of
the abstraction. We show this in terms of safety in the following.

Definition 64 (Safety). Given a timed automatonA(S) and a set of unsafe locationsEUS.
The timed automaton A(S) is said to be safe if

Reach[0,∞)(A(S), E0) ∩ EUS = ∅. (6.35)

Proposition 23: Let Aex(S) = A1(S1)|| . . . ||Ak(Sk) be a timed automaton and let the timed
automaton A1(S1)|| . . . ||Aj(Sj) be safe, for some j ∈ k. Then, Aex(S) is also safe.

This proposition is quite intuitive, when considering how the timed automaton is gen-
erated from positive invariant sets as shown in the following example.

Example 8. Consider a timed automaton Aex(S) generated by two slice-families ab-
stracting a two-dimensional system as shown in Figure 6.9 (left subplot). Its initial states
are illustrated as gray areas and the unsafe states are illustrated as black areas.

96

5 Properties of the Generated Timed Automaton

−1 0 1

−1

0

1
x
2

x1
−1 0 1

x1
−1 0 1

x1

Figure 6.9: Illustration of subdivision associated withAex(S) (left subplot),A(S1) (mid-
dle subplot), and A(S2) (right subplot). The gray areas illustrate initial states and the
black are illustrates unsafe states.

We compose Aex(S) into A(S1) (middle subplot) and A(S2) (right subplot). We
observe that A(S2) is safe; hence, Aex(S) is also safe, which is seen in the left subplot.

Bisimilarity of Abstractions Generated from Cells and Extended Cells

Under certain conditions, the timed automatonAex(S) is bisimilar to the timed automaton
A(S), bisimilarity is defined in Definition 75. In the next proposition we say that the
timed automata A(S) and Aex(S) are related by bisimulation.

Proposition 24: Let S = {Si|i ∈ k} be a collection of slice-families, and ϕi be a subdivisioning
function for Si. A timed automaton Aex(S) generated by extended cells is bisimilar to a timed
automaton A(S) generated by cells if for each cell e(g,h) and each i ∈ k

e(g,h)

⋂
(ϕi)−1(aigi−1) 6= ∅ ∀h or (6.36a)

e(g,h)

⋂
(ϕi)−1(aigi−1) = ∅ ∀h. (6.36b)

If (6.36) holds, then all cells in each extended cell have the same symbols on their out-
going transitions; hence,A(S) andAex(S) are bisimilar. The following example clarifies
this proposition.

Example 9. To illustrate the use of Proposition 24 three different subdivisions of a two-
dimensional state space are shown in Figure 6.10.

In the subdivisions shown in the left and right side of Figure 6.10, the conditions
shown in (6.36) are satisfied for all g and h. In the subdivision shown in the middle side
of Figure 6.10, the constraints shown in (6.36) are not satisfied for e.g. g = (2, 2, 2)
(shaded region), as (ϕ3)−1(a3

1) (inner black line) does not intersect all cells in eex,(2,2,2).

Convergence Check via Partial Order

We can define a partial order for the locations of a timed automaton Aex(S) generated by
Procedure 1 as follows. Recall that a partial order on a set X , denoted v, is a relation on
X that is reflexive, transitive, and anti-symmetric.

97

Paper A

−1 0 1

−1

0

1

x
2

x1
−1 0 1

x1

(ϕ3)−1(a31)

−1 0 1
x1

Figure 6.10: Illustration of three different subdivisions of a two-dimensional state space.
The left and right subdivisions satisfy Proposition 24. The middle subdivision does not
satisfy Proposition 24, as, e.g., the extended cell shaded with gray consists of cells, which
have either two or three reachable cells.

We define the partial order on the set of locations abstracting extended cells as follows.

Definition 65 (Partial Order of Locations). Given a timed automaton Aex(S) = (E,E0,
C,Σ, I,∆). Let Rpar ⊆ E × E be a relation defined by

(eex,g, eex,g′) ∈ Rpar iff (6.37a)
gi ≤ g′i ∀i ∈ k. (6.37b)

We write eex,g v eex,g′ when (eex,g, eex,g′) ∈ Rpar.

The relationRpar is a partial order relation, and (E,v) is a partially ordered set, which
justifies its name.

From the partial order, we can provide a rough estimate of whether a location is reach-
able or not according to the following.

Proposition 25: Given a timed automaton Aex(S), a partially ordered set (E,v) of its locations,
and an initial location eex,g . Let eex,g v eex,g′ , then

Reach[0,∞)(A, eex,g) ∩ eex,g′ = ∅. (6.38)

We define a lattice according to the following.

Definition 66 (Lattice). A partially ordered set (X,v) is said to be a lattice if for any
finite set X ′ ⊆ X , the supremum and infimum of X ′ exist and belong to X .

Proposition 26: Let Aex(S) = (E,E0, C,Σ, I,∆) be a timed automaton generated from Proce-
dure 1, and let v be the partial order from Definition 65. Then the partially ordered set (E,v) is a
lattice.

We see that (E,v) is a lattice by construction, as whenever, e.g., eex,(a,b), eex,(b,a) ∈
E, then also eex,(a,a), eex,(b,b) ∈ E, and eex,(a,a) < eex,(a,b), eex,(a,a) < eex,(b,a) and

98

6 Conditions for the Subdivision

eex,(a,b) < eex,(b,b), eex,(b,a) < eex,(b,b). Therefore, both supremum and infimum are
defined for all E′ ⊆ E.

Additionally, it is seen that almost all solutions of the system converge towards the
location inf(E). By this we mean that the solutions end in the location inf(E). This
can happen when a system with saddle points is abstracted. Consider a two-dimensional
linear system with a saddle point. For this system all solutions initialized on one of
the eigenaxis converge to the saddle point, which will not be abstracted by the location
inf(E). However, in Rn for n > 1 this eigenaxis has Lebesgue measure zero. Therefore,
we say that almost all solutions diverge from the saddle point. This also means that the
analysis of convergence using inf(E) is ”blind” to solutions of measure zero.

6 Conditions for the Subdivision

The purpose of this section is to set up necessary and sufficient conditions for the subdi-
vision of the state space to generate sound, complete, and refinable abstractions.

Sound and Complete Abstractions

A useful abstraction shall preserve safety. Therefore, we introduce sound and complete
abstractions in the following [26]. A sound abstraction can verify safety, and a complete
abstraction can both verify and falsify safety.

Definition 67 (Sound Abstraction). Let Γ = (X, f) be a dynamical system and suppose
its state spaceX is subdivided byE(S) = {ei|i ∈ k}. Let the initial statesX0 =

⋃
i∈I ei

with I ⊆ k. Then a timed automaton A = (E,E0, C,Σ, I,∆) with E0 = {ei | i = I}
is said to be a sound abstraction of Γ on [t1, t2] if for all t ∈ [t1, t2]

ei ∩ Reach[t,t](Γ, X0) 6= ∅ implies (6.39a)
∃e0 ∈ T0 such that
αE(ei) ∈ φA(t, e0). (6.39b)

If a sound abstraction A is safe then Γ is also safe, as the abstraction reaches all
locations reached by Γ = (X, f).

Definition 68 (Complete Abstraction). Let Γ be a dynamical system and suppose its state
space X is subdivided by E(S) = {ei|i ∈ k} and let the initial states be X0 =

⋃
i∈I ei

with I ⊆ k. Then a timed automaton A = (E,E0, C,Σ, I,∆) with e0 = {ei | i = I}
is said to be a complete abstraction of Γ on [t1, t2] if it is a sound abstraction and for all
t ∈ [t1, t2] and

for each ei ∈ Reach[t,t](A, E0) (6.40a)
∃x0 ∈ X0 such that

φΓ(t, x0) ∈ α−1
E (ei). (6.40b)

If a complete abstraction A is safe (unsafe) then Γ is also safe (unsafe).
A sound and a complete abstraction of a dynamical system is illustrated in Figure 6.11.

99

Paper A

X0 X0

Figure 6.11: Illustration of the reachable set of a dynamical system (gray) from initial
set X0 and a sound approximation of this (cells within bold black lines) on the left and
a complete abstraction on the right. Note that the lowest right cell is not reached by the
dynamical system, but is reached by the sound abstraction.

Remark 12: It is not sufficient to demand that an abstraction is complete, since an abstraction with
only one location abstracting the entire state space is always complete.

Proposition 27: A timed automaton Aex(S) = A1|| . . . ||Ak is a sound (complete) abstraction of
the system Γ, if and only if A1, . . . ,Ak are sound (complete) abstractions of Γ.

Sufficient conditions for soundness and completeness of an abstraction are formulated
in the following.

Proposition 28 (Sufficient Condition for Soundness): A timed automatonA(S) is a sound abstrac-
tion of the system Γ, if its invariants and guards satisfy

tSi
gi
≤

|aigi − a
i
gi−1|

sup{|Lfϕi(x)| ∈ R≥0|x ∈ Sigi}
(6.41a)

tSi
gi
≥

|aigi − a
i
gi−1|

inf{|Lfϕi(x)| ∈ R≥0|x ∈ Sigi}
(6.41b)

where Lfϕi(x) is defined as shown in (6.4a).

The values of guards of tSi
gi

and tSi
gi

can be algorithmically generated. The invariant

tSi
gi

can be generated from Algorithm 1 and the guard can be generated from Algorithm 2.

Algorithm 1: Suppose Γ = (X, f) is a linear system, {ϕi|i ∈ k} is a family of quadratic Lyapunov
functions, where ϕi = xTP ix is associated with Si, and Si is generated using the regular values
{aij |j = 1, . . . , |Si|}. Let Lfϕi = −xTQix, and define γi as the solution to the following
optimization problem

maximize γi (6.42a)

subject to γiP i −Qi ≤ 0, γi > 0. (6.42b)

100

6 Conditions for the Subdivision

Then for any location e(g,h) ∈ E, the invariant is

I(e(g,h)) =

k∧
i=1

ci ≤ tSi
gi
, where (6.43a)

tSi
gi
≥
|aigi − a

i
gi−1|

aigi−1γ
i

. (6.43b)

Algorithm 2: Suppose Γ = (X, f) is a linear system, {ϕi|i ∈ k} is a family of quadratic Lyapunov
functions, where ϕi = xTP ix is associated with Si, and Si is generated using the regular values
{aij |j = 1, . . . , |Si|}. Let Lfϕ = −xTQix and define γi to be the solution to the following
optimization problem

min γi subject to (6.44a)

Qi − γiP i ≤ 0 (6.44b)

γi > 0. (6.44c)

Then for every pair of locations, e(g,h), e(g′,h′) ∈ E, where g′i−1 = gi there is a transition relation

δ(g,h)→(g′,h′) = (e(g,h), G(g,h)→(g′,h′), σ, R(g,h)→(g′,h′), e(g′,h′)),

where

G(g,h)→(g′,h′) =

k∧
i=1

{
ci ≥ tSi

gi
if gi − g′i = 1

ci ≥ 0 otherwise
(6.45a)

and

tSi
gi
≤
|aigi − a

i
gi−1|

aigiγ
i

. (6.45b)

The sufficient condition states that the abstraction is sound if tSi
gi

is less than or equal

to the time it takes to traverse Sigi maintaining a constant speed equal to the largest possi-
ble speed within Sigi . Similarly, tSi

gi
should be greater than or equal to the time it takes to

traverse Sigi maintaining a constant speed equal to the smallest possible speed within Sigi .
In the next example of a one-dimensional system, we calculate these sufficient conditions.

Example 10. Consider the system Γ = (X, f), where f is

ẋ = x (6.46)

and X = [0, 3]. Let ϕ = 1
2x

2 be a subdivisioning function for the system. Then Lfϕ =
−x2 according to (6.4a). An illustration of the subdivisioning functionϕ and its derivative
Lfϕ is shown in Figure 6.12. We subdivide X into three slices utilizing the set of values(
a1

1, a
1
2, a

1
3

)
= (1/2, 2, 9/2) such that S1

1 = [0, 1], S1
2 = [1, 2], and S1

3 = [2, 3], as shown
in Figure 6.13.

101

Paper A

0 1 2 3
0

2

4
ϕ

x
0 1 2 3

−10

−5

0

L
f
ϕ

x

Figure 6.12: Plot of the subdivisioning function and its derivative.

S1
1 S1

2 S1
3

0 1 2 3

x

Figure 6.13: Illustration of a one-dimensional state space divided into three slices.

Now, it is possible to calculate the sufficient conditions for soundness shown in (6.41).
These are

tS1
2
≤ |a

1
2 − a1

1|
| − (a1

2)2| =
3/2

4
s tS1

2
≥ |a

1
2 − a1

1|
| − (a1

1)2| = 3/2 s (6.47a)

tS1
3
≤ |a

1
3 − a1

2|
| − (a1

3)2| =
5/2

9
s tS1

3
≥ |a

1
3 − a1

2|
| − (a1

2)2| =
5/2

4
s. (6.47b)

Note that neither guards nor invariants for S1
1 are calculated, as the location associated

with this slice has no outgoing transitions and we can stay in this location forever.

Proposition 29 (Sufficient Condition for Completeness): Let S = {Si|i ∈ k} be a collection of
slice-families, and let

Sigi = (ϕi)−1([aigi−1, a
i
gi]). (6.48)

A deterministic timed automaton A(S) is a complete abstraction of Γ if

1. for any g ∈ G(S), recall the definition of G(S) from Definition 57, with gi ≥ 2 there exists
a time tigi such that for all x0 ∈ (ϕi)−1(aigi)

φΓ(tigi , x0) ∈ (ϕi)−1(aigi−1) (6.49)

and

2. tSi
gi

= tSi
gi

= tigi .

Equation (6.49) states that it takes the time tigi for all trajectories of Γ to propagate
from (ϕi)−1(aigi) to (ϕi)−1(aigi−1) (i.e., tigi is the time to travel through slice Sigi). Utiliz-
ing this time for both the invariant and guard conditions (i.e., tSi

gi
= tSi

gi
= tigi) implies

that the abstraction is complete. Recall that t is used for invariants, while t is used for
guard conditions.

102

6 Conditions for the Subdivision

Example 11. Consider the system defined in Example 10 and subdivide it into the same
slices S1

1 , S1
2 , and S1

3 .
The condition shown in (6.49) is automatically satisfied, as there is only one solution

from each level surface of ϕ. Therefore, t = t, i.e.,

tS1
2

= tS1
2

= ln(4) s (6.50a)

tS1
3

= tS1
3

= ln(9/4) s. (6.50b)

This finalizes the explanation of sound and complete abstractions, but as stared in
Remark 12 another condition, called refinability, should also be considered.

Refinable Abstraction

To ensure that an abstraction can get any desired accuracy, it should be refinable according
to the following definitions.

Definition 69 (Refinement of Subdivision). Let the subdivision E(S) be generated by
the slice-families S = {Si|i ∈ k}. Then the subdivision E(S̃) is a refinement of E(S) if
and only if for any e ∈ E(S) there is a cell ẽ ∈ E(S̃) such that

ẽ ⊆ e. (6.51)

Definition 70 (Refinable Abstraction). An abstraction A(S) of a system Γ is said to be
refinable if for all ε > 0 there exists an abstraction A(S̃), where E(S̃) is a refinement of
E(S), such that for all ẽ ∈ E(S̃)

ẽ ⊆ B(ε), (6.52)

where B(ε) is a ball with radius ε.

The least ε that satisfies (6.52) for all ẽ ∈ K(S̃) is called the radius of the subdivision.
We see that combining Definition 68 and Definition 70 yields the following corollary.

Corollary 6: If the system Γ is abstracted with a complete and refinable abstractionA(S), then for
all ε > 0 there exists a subdivision A(S̃) such that for all t ∈ [t1, t2]

α−1
K

(
Reach[t,t](A(S̃), E0)

)
⊆ Reach[t,t](Γ, X0) +B(ε). (6.53)

We say that the accuracy of the abstraction is the smallest ε such that (6.53) is sat-
isfied. Corollary 6 states that a complete and refinable abstraction can approximate the
reachable states of a system Γ arbitrarily close; hence, this type of abstraction solves
Problem 9 in Section 1. In conclusion, to get any desired radius of the subdivision, all
cells of its subdivision E(S) should converge towards points. In the next proposition, we
answer the question of minimal number of slice-families necessary to construct a refinable
abstraction.

Proposition 30 (Necessary Condition for Refinable Abstraction): IfA(S) is a refinable abstraction
of a system Γ, then S is a collection of n slice-families.

103

Paper A

To clarify this proposition the following example is provided.

Example 12. Consider a subdivision of the state space of a two-dimensional system
generated utilizing one slice-family shown in Figure 6.14.

−1 0 1

−1

0

1

x
2

x1

Figure 6.14: Subdivision of a two-dimensional state space utilizing one slice-family.

Imagine that level curves are added to improve the accuracy of the subdivision. It is
seen that the smallest cells that can be created utilizing only one slice-family are level
curves of the subdivisioning function. Therefore, the radius of the subdivision cannot
converge to zero, as required by Definition 70. However, subdividing the same state
space utilizing two slice-families would allow the radius of the subdivision to go to zero.

Now, the conditions for obtaining sound, complete, and refinable abstractions have
been set up. In the next section, a method for synthesizing such abstractions using Lya-
punov functions is provided.

7 Subdividing the State Space using Lyapunov Functions

To synthesize the subdivision presented in this paper, we need to generate subdivisioning
functions. As subdivisioning functions, we use Lyapunov functions since their sub-level
sets are positive invariant sets. It is beneficial to use Lyapunov functions as subdivisioning
functions, as this enables the use of existing methods for generating Lyapunov functions
used in controller design. This is possible even though Lyapunov functions are usually
associated to systems with stable equilibria, but recall from Definition 43 that in this
context they are associated to dynamical systems with hyperbolic equilibria. This is done
to allow Lyapunov functions to be subdivisioning functions for both stable and unstable
systems.

In the following, we provide existence results for refinable, sound, and complete ab-
stractions.

Refinable Abstraction

The use of continuous subdivisioning functions, see Definition 54, for generating the
subdivision gives a natural and easy way to describe the boundaries of slices and cells.
This also automatically makes subdivisions generated by n slice-families refinable.

A subdivision generated by continuous subdivisioning functions can be refined, since
for any slice ϕ−1([a1, a2]) the regular values a1 and a2 can be chosen arbitrarily close to

104

8 Examples

each other. Therefore, if n such functions exist, the abstraction generated from the subdi-
vision is refinable. The existence of n Lyapunov functions for a Morse-Smale system is
provided in Proposition 31.

Sound Abstraction

In this subsection we show that there exists a sound abstraction of any Morse-Smale
system. We do this by showing the existence of Lyapunov functions for Morse-Smale
systems, actually we show that there exists n Lyapunov functions for any Morse-Smale
system; hence, they are sound and refinable abstractions.

Definition 71. Let a ∈ CrV(f) if and only if there is p ∈ Cr(f) such that f(p) = a and
suppose Γ = (X, f). Then two Lyapunov functions ϕ1, ϕ2 : Rn → R are transversal if
the level sets (ϕ1)−1(a) and (ϕ2)−1(a) are transversal for any a ∈ R\{CrV(f)}.

Proposition 31: Let n > 1. For any Morse-Smale system on Rn, there exists n transversal Lya-
punov functions.

From this, the following theorem follows easily.

Theorem 10: Let Γ = (X, f) be a Morse-Smale system and let n > 1. Then there exists a sound
and refinable abstraction A(S) of Γ generated by n transversal Lyapunov functions.

Complete Abstraction

To generate complete abstractions, we set up a proposition that gives an easy testable con-
dition for completeness. A complete abstraction of (6.1) can be obtained by constructing
a subdivision generated by Lyapunov functions, which satisfies Proposition 29.

Proposition 32: Let each slice-family of S = {Si|i ∈ k} be associated with a Lyapunov function
ϕi(x) for the system Γ, such that Sij = (ϕi)−1([aij−1, a

i
j]) and let

ϕi(x) = αLfϕ
i(x) ∀x ∈ Rn. (6.54)

Then A(S) is a complete abstraction of Γ.

The existence of such Lyapunov functions is addressed in the following proposition.

Proposition 33: For any hyperbolic linear system Γ there exists n transversal Lyapunov functions
ϕi(x) each satisfying

ϕi(x) = αLfϕ
i(x) ∀x ∈ Rn. (6.55)

Theorem 11: For any hyperbolic linear system Γ there exists a complete abstraction given by n
transversal Lyapunov functions.

8 Examples

To illustrate the use of the proposed abstraction method, three examples are provided
in this section. In the first example, we provide the reachable sets of a sound and a

105

Paper A

complete abstractions of a simple dynamical system are provided. In the second example,
we demonstrate what type of questions we can answer using the proposed abstraction.
Note that these requirements cannot be verified using conventional technics from control
theory; however, using some existing simulation-based verification tools the verification
is possible. In the third example, we demonstrate that the method is applicable for high-
dimensional systems, by verifying a 100 dimensional system.

In the following, we compare the reachable sets of a sound and a complete abstraction
and see how their different subdivisions look. It is chosen to utilize a two-dimensional
linear system in the example, since it is possible to visualize its state space, but the method
applies for systems of arbitrary dimension. The considered linear system is specified in
the following

ẋ = Ax (6.56)

with X = [−10, 10]× [−10, 10]

A =

[
−3 −1
−2 −5

]
and X0 = [1.5, 2]× [−10,−9.5].

In both cases of the sound and the complete abstraction, the state space is subdivided
utilizing two different Lyapunov functions, i.e., two slice-families. Furthermore, each
slice-family consists of 10 sub-level sets, which are equally distributed on the considered
state space Figure 6.15. Both abstractions are timed automata with 361 locations (100
extended locations).

To simplify Figure 6.15, we have chosen to only depict the subdivisions of the state
space, not the timed automata.

−10 0 10
−10

−5

0

5

10

x
2

x1
−10 0 10

x1
−10 0 10

x1

Figure 6.15: Illustration of a sound abstraction (left subplot), a complete abstraction (mid-
dle subplot), and a comparison of their reachable sets (right subplot). The black area in
the right subplot is the reachable state space of (6.56), the green area is the reachable state
space of the complete abstraction, and the gray area is the reachable states of the sound
abstraction.

In the figure, the reachable states of the two abstractions are shaded gray and are com-
pared with the reachable space of the considered system in the right subplot. Notice that
no effort is done to make the initial states (black box) fit with the cells of the subdivi-
sions; hence, this introduces some over-approximation of the abstractions. In conclusion,

106

8 Examples

the reachable state space for the sound abstraction is larger than the reachable state space
for the complete abstraction, as expected.

When we look at the shape of the cells of the two subdivisions, it is seen that the
cells of the complete abstraction look more complicated than the shape of the sound
subdivision. Additionally, more computations are necessary for generating the complete
abstraction, as it is generated via conjugate transformation, as explained in the proof of
Proposition 33. Hence, the increased accuracy comes at a price - increased computational
complexity.

The next example shows what type of specifications we are capable of checking us-
ing the proposed abstraction. In the example, we consider a slightly more complicated
example, and a very complicated specification. The system is given by the following
three-dimensional system (again the dimensionality is kept low to allow visualization of
the example)

ẋ =

−0.1 −1 0

1 −0.1 0
0 0 −0.15

x. (6.57)

Now, we check if the system satisfies the following specification, which is illustrated
in Figure 6.16: Does all trajectories of the system (6.57) initialized inX0 = [−0.1, 0.1]×
[0.8, 1]× [0.9, 1] (blue box)

• avoid the unsafe region (red box),

• reach the bottom half of the state space (below the gray surface) within 10 s,

• and reach the goal set (green box) within 20 s and stay there.

To verify this specification, we subdivide the state space using three quadratic Lya-
punov functions ϕi(x) = xTP ix, for i ∈ {1, 2, 3} and

P 1 =

0.0050 0 0
0 0.0050 0
0 0 3.3333

 (6.58)

P 2 =

4.3069 0.0693 0
0.0693 4.6931 0

0 0 0.0033

 (6.59)

P 3 =

5.2475 −0.0248 0
−0.0248 4.7525 0

0 0 0.0033

 . (6.60)

The subdivision is not shown in the figure; whereas, both the requirements and a set of
trajectories of (6.57) are illustrated.

The analysis of the system says that the requirements are satisfied, as no trajectories
reach the red box, all trajectories go below x3 = 0.5 within 7 s and stay inside the green
box after 12.7 s. This also complies with the simulated trajectories shown in Figure 6.16.

Now, we verify a 100-dimensional system, by checking if all trajectories initialized in
the unit hypercube centered at xinit avoid the unit hypercube centered at xavoid. We do not
want to write all the 10,000 elements of the system matrix and the 100 coordinates of xinit

107

Paper A

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

x1x2

x
3

Figure 6.16: State space of the considered system. The blue box illustrates the initial
states of the system, the red box illustrates the unsafe states, and the green box illustrated
the goal states. The plane given by x3 = 0.5 is illustrated with gray and finally a set of
system trajectories are drawn with black lines.

and xavoid. Therefore, we provide the MATLAB code necessary to reproduce the setup in
the following:

rand (’ s t a t e ’ , 1) ; \% S e t s t a t e o f random g e n e r a t o r
randn (’ s eed ’ , 1) ; \% S e t seed o f random g e n e r a t o r
SYS = r s s (1 0 0 , 0) ; \% Genera te 100 d i m e n s i o n a l random s t a t e space model
rand (’ s t a t e ’ , 2) ; \% S e t s t a t e o f random g e n e r a t o r
randn (’ s eed ’ , 2) ; \% S e t seed o f random g e n e r a t o r
x i n i t = 10∗rand (1 , 1 0 0) ;\% Pick 100 random numbers from u n i f o r m d i s t .
rand (’ s t a t e ’ , 3) ; \% S e t s t a t e o f random g e n e r a t o r
randn (’ s eed ’ , 3) ; \% S e t seed o f random g e n e r a t o r
x a v o i d = 8∗rand (1 , 1 0 0) ; \% Pick 100 random numbers from u n i f o r m d i s t .

Before verifying a system of this size, it would be appropriate to apply some model order
reduction techniques [27] to obtain a lower order model. However, to demonstrate that it
is possible to verify such systems by the proposed method, the dimension is kept at 100;
hence, we use 100 Lyapunov functions.

It is not reasonable to just generate one automaton with a location for each cell of the
subdivision, as the automaton would have billions of locations. Therefore, we generate
one timed automaton per Lyapunov function (i.e. 100 timed automata). The automata
are analyzed separately, giving a time interval in which a solution may be in xavoid. If the
conjunction of all these time intervals is empty, then no trajectory reaches xavoid. In the
considered example, this time interval is empty; hence, all trajectories avoid xavoid.

108

9 Conclusion

9 Conclusion

In this paper, a method for abstracting dynamical systems by timed automata is proposed.
The abstraction is based on subdividing the state space of the dynamical systems by set-
differences of positively invariant sets.

To enable both verification and falsification of safety of the considered system based
on the abstraction, conditions for soundness, completeness, and refinability are derived.
Furthermore, it has been demonstrated that the abstraction can be obtained as a parallel
composition of multiple timed automata under certain conditions.

Via algorithms, based on LMI-based optimization problems, it is shown how the con-
ditions for the abstraction can be checked and how time information for the timed au-
tomaton can be generated for linear systems.

It is shown that there exist sound and refinable abstractions for hyperbolic Morse-
Smale systems and complete and refinable abstractions for all hyperbolic linear systems.
Finally, an example of a sound and a complete abstraction is provided and their reachable
sets are compared.

In the presented work, it is seen that abstractions generated by subdividing the state
space of a system with the use of Lyapunov functions can be designed to be sound, com-
plete, and refinable. Furthermore, a priori an upper bound on the over-approximation of
the reachable set introduced by the abstraction can be calculated. Finally, an example
shows that the method is applicable for high-dimensional systems, due to its composi-
tionality.

A Definitions

Definition 72 (Morse-Smale System [28]). A smooth vector field X ∈ Xr(M) will be
called a Morse-Smale system (or field) provided it satisfies the following conditions:

1. X has a finite number of singular points, say β1, . . . , βk, each hyperbolic. A hy-
perbolic singular point is a singular point such that in local coordinates the matrix
of partial derivatives of X has eigenvalues with nonzero real parts.

2. X has a finite number of closed orbits (periodic solutions), say βk+1, . . . , βn, each
hyperbolic.

3. For any p ∈M , α(p) = βi and ω(p) = βj for some i and j.

4. Let Ω(X) be the nonwandering1 points for X , then Ω(X) = {β1, . . . , βN}.

5. The stable and unstable manifolds associated with the βi have transversal intersec-
tion.

Definition 73 (Topologically Equivalent Vector Fields [29]). Two vector fields ξ, η ∈
Xr(M) are topologically equivalent if there exists a homeomorphism h : M → N (h is
continuous and has continuous inverse) such that

1. h ◦ φξ(R, x0) = φη(R, h(x0)) for each x0 ∈M ,

1We say that p ∈ M is a wandering point for X if there exists a neighborhood V of p and a number t0
such that φX(t, V) ∩ V = ∅ for |t| > t0.

109

Paper A

2. h preserves the orientation, that is if x0 ∈ M and δ > 0 there exists ε > 0 such
that, for 0 < t < δ, h ◦ φξ(t, x0) = φη(τ, h(x0)) for some 0 < τ < ε.

Remark 13: Two vector fields are topologically conjugate if t = τ in the previous definition.

From Definition 73, we see that the solution of a vector field η from some initial state
can be described by a continuous deformation (the homeomorphism h) of the solution to a
topologically equivalent vector field ξ. For a more formal explanation, see Proposition 4.1
in [18].

Definition 74 (Regular Value [24]). Let f : N → M be a smooth map. A point p in N
is a regular point if the differential

f∗,p : TpN → Tf(p)M (6.61)

is surjective. A point in M is a regular value if it is the image of a regular point.

Definition 75 (Timed-Abstracted Bisimulation [22]). Let A = (E,E0, C,Σ, I,∆) be a
timed automaton. A reflexive and symmetric relation R ⊆ E ×RC ×E ×RC is a time-
abstracted bisimulation if for all (e1, v1)R(e2, v2), (Note that we denote (e1, v1, e2, v2) ∈
R by (e1, v1)R(e2, v2))

• for all (e1, v1)
d→ (e′1, v

′
1) there exists (e′1, v

′
1)R(e′2, v

′
2) for which (e2, v2)

d→
(e′2, v

′
2), and

• for all (e1, v1)
σ→ (e′1, v

′
1), σ ∈ Σ, there exists (e′1, v

′
1)R(e′2, v

′
2) for which (e2, v2)

σ→
(e′2, v

′
2).

We say A1 and A2 are bisimilar if there exists a time-abstracted bisimulation R for
(A1,A2).

B Proofs

Proposition 18. If e(g,h)

⋂
(ϕi)−1(aigi−1) is not connected for some i, then σi is the label

of multiple outgoing transitions from the location e(g,h), i.e., there exist multiple transi-
tions in ∆, where e(g,h) is the source location and σi is the label. Therefore, the timed
automaton A (S) is nondeterministic.

Proposition 21. Consider the timed automaton A||(S) = A1(S1)|| . . . ||Ak(Sk) where
Ai(Si) = (Ei, E0,i, Ci,Σi, Ii,∆i) and Ei = {ei1, . . . , ei|Si|}, abstracting the slices
Si1, . . . , S

i
|Si|. Then the timed automaton A||(S) is given by

• Locations: E = E1 × · · · × Ek, which according to Definition 57 represents
extended cells, if the transversal intersection of all slices is nonempty i.e. (6.31) is
satisfied.

• Clocks: C = {ci, . . . , ck}, where ci monitors the time for being in a slice of Si.

110

2 Proofs

• Invariants: The invariant for location eex,g = (e1
g1
, . . . , ekgk) is identical to (6.22)

and is

I(eex,g) =

k∧

i=1

Ii(e
i
gi). (6.62)

• Input Alphabet: Σ = {σ1, . . . , σk}.

• Transition relations: Σi is disjoint from Σj for all i 6= j; hence, item 1) in Defi-
nition 63 never happens.

This implies that A||(S) = A1(S1)|| . . . ||Ak(Sk) and Aex(S) are isomorph.

Proposition 23. If the locations of Aex are extended cells, then soundness of Aex can be
reformulated to the following.

A timed automaton Aex with E0 = {eex,g|g ∈ G0 ⊆ G} is said to be a sound ab-
straction of Γ with X0 =

⋃
g∈G0

eex,g on [t1, t2] if for all t ∈ [t1, t2] and for all g ∈ G

k⋂

i=1

Sigi ∩ Reach[t,t](Γ, X0) 6= ∅ implies (6.63a)

∃e0 ∈ E0 such that
k⋂

i=1

Sigi ∈ α−1
K (φAex(t, e0)) (6.63b)

which is equivalent to: For all i ∈ k, all g ∈ G, and for all t ∈ [t1, t2]

Sigi ∩ Reach[t,t](Γ, X0) 6= ∅ implies (6.64a)

∃e0,i ∈ E0,i such that

α−1
K (φAi

(t, e0,i)) = Sigi . (6.64b)

From (6.64) it is seen that Aex = A1|| . . . ||Ak is sound if and only if Ai is sound for i ∈
k. Similar arguments can be used to prove the completeness part of Proposition 27.

Proposition 24. Let e(g,h) with h ∈m be the cells which union is the extended cell eex,g .
Then

I(e(g,h)) = I(e(g,k)) ∀h, k ∈m (6.65)

as the invariants are calculated based on slices (6.22).
If the subdivision satisfies (6.36), then the same outgoing transitions exist for all cells

within the same extended cell. Furthermore,

G(g,h)→(g′,h′) = G(g,k)→(g′,k′) ∀h, k ∈m (6.66)

since the guards are also calculated based on slices (19b) in [13]. This implies that all pos-
sible behaviors from each cell in an extended cell are the same; hence, A(S) is bisimilar
to a timed automaton Aex(S).

111

Paper A

Proposition 28. LetA(S) be a timed automaton with E0 = {ei|i ∈ I}, be an abstraction
of Γ with initial set X0 =

⋃
i∈I ei. If guards and invariants of A(S) satisfy (6.41), then

Reach[t1,t2](Γ, X0) ⊆ α−1
K (Reach[t1,t2](A, E0)) (6.67)

since for all x0 ∈ (ϕi)−1(aigi) there exists t ∈ [tSi
gi
, tSi

gi
] such that

φΓ(t, x0) ∈ (ϕi)−1(aigi−1). (6.68)

Proposition 29. The proposition states that it takes the same time for all trajectories of Γ
to propagate between any two level sets of ϕi. From this it follows thatA(S) is complete
if tSi

gi
and tSi

gi
are equal to tigi .

Proposition 30. If A(S) is a refinable abstraction, then for any ε > 0 there exists a
subdivision E(S) such that (30) in [13] holds for cells in E(S). Therefore,

Sigi ⊂ (ϕi)−1(aigi) +B(ε) (6.69)

where ε > 0. Note that aigi is a regular value of ϕi, i.e., the dimension of the level set
(ϕi)−1(aigi) is n− 1. The locations of A(S) are cells for which

⋃

h

e(g,h) =tki=1 S
i
gi (6.70a)

⊂tki=1

(
ϕ−1
i (aigi) +B(ε)

)
(6.70b)

⊂tki=1 ϕ
−1
i (aigi) +B(2ε). (6.70c)

But (6.70c) is true for any ε, thus it is enough to prove that

dim
(
tki=1 (ϕi)−1(aigi)

)
= 0. (6.71)

Using Theorem 7.7 in [30] the dimension of an extended cell is given by

dim
(
tki=1 (ϕi)−1(aigi)

)
= [[(n− 1) + (n− 1)− n] + (n− 1)− n] + (n− 1)− n . . .

(6.72a)

= k(n− 1)− (k − 1)n. (6.72b)

We see that if k 6= n then dim
(
tki=1 (ϕi)−1(aigi)

)
6= 0, thus we have contradiction. We

conclude that k = n.

Proposition 31. Let S(n,R) be a set of n×n symmetric matrices. S(n,R) is a subspace
ofM(n,R) of dim (S(n,R)) = n(n+1)/2. Consider the map ϕA : S(n,R)→ S(n,R)
and let

P 7→ ATP + PA. (6.73)

Now consider the map det : M(n,R)→ R and let

A 7→ det(A). (6.74)

112

2 Proofs

Then (det ◦ ϕA)−1({0}) is a closed set. Therefore,

UA ≡ {P ∈ S(n,R)|det ◦ ϕA(P) 6= 0} (6.75)

is an open set. VA ≡ V ∩ UA is open, where

V = {P ∈ S(n,R)|det(P) 6= 0} (V is open). (6.76)

Let Θ = {Q ∈ S(n,R)|Q > 0} by Proposition 2.18 in [18] the map

M(n,R)→ Cn/Sn defined by (6.77)
L 7→ diag([λ1, . . . , λn]) is continuous. (6.78)

Thus Θ is an open set in S(n,R).
We pick an open neighborhood around Q = ATP + PA and denote it U . Then for every
Q′ ∈ U there exists a (unique) P , thus ϕ−1

A (U) is a nonempty open set in S(n,R).
We can pick n linear independent matrices P1, . . . , Pn ∈ ϕ−1

A (U). This is possible
because ϕ−1

A (U) is open in S(n,R) and dim(S(n,R)) is n(n + 1)/2. Then for any
a ∈ R\{0} and i 6= j

{x ∈ Rn|xTPix = a} t {x ∈ Rn|xTPjx = a}. (6.79)

Extending this to Morse-Smale systems follows directly from Theorem 1 in [16].

Proposition 32. Let ϕ be a Lyapunov function for the system Γ and let x, x′ ∈ ϕ−1(am).
According to Proposition 29 the abstraction is complete if there exists a tm, for m =
2, . . . , k such that

φΓ(tm, x), φΓ(tm, x
′) ∈ ϕ−1(am−1). (6.80)

This is true if

Lfϕ(φΓ(t, x))− Lfϕ(φΓ(t, x′)) = 0 ∀t. (6.81)

The combination of (6.80) and (6.81) implies that for all c > 0 there exists an α such that

ϕ−1(c) = (Lfϕ)−1
(c
α

)
(6.82)

hence for all x there exists an α such that

ϕ(x) = αLfϕ(x). (6.83)

Proposition 33. This is proved for linear systems, by constructing the complete abstrac-
tion.

Consider a linear differential equation
[
ẋ1

ẋ2

]
=

[
λ1I1 0

0 λ2I2

] [
x1

x2

]
(6.84)

113

Paper A

where I1, I2 are identity matrices and λ1 < 0 and λ2 > 0.
The stable and unstable subspaces of (6.84) are orthogonal and can be treated sepa-

rately. This system is divided into a stable space described by x1 and an unstable space
described by x2. For i ∈ {1, 2} let ϕi(xi) = xT

i Pixi be a quadratic Lyapunov function.
Then its derivative is Lfϕ(xi) = xT

iQixi, where

2λiPi = Qi for i = 1, 2. (6.85)

This implies that any quadratic Lyapunov function satisfies Proposition 32 and hence
generates a complete abstraction.

Since hyperbolic linear systems are topologically conjugate if and only if they have
the same index [31]. There is a homeomorphism h : Rn → Rn such that any hyperbolic
linear system is topologically conjugate of (6.84), by choosing I1 and I2 appropriately.
Note that h is a diffeomorphism on Rn\{0}.

This implies that there exists a complete abstraction of every hyperbolic linear system.

References

[1] E. Asarin, T. Dang, G. Frehse, A. Girard, C. L. Guernic, and O. Maler, “Recent
progress in continuous and hybrid reachability analysis,” in Proceedings of the 2006
IEEE Conference on Computer Aided Control Systems Design, Munich, Germany,
2006, pp. 1582–1587.

[2] H. Guéguen, M.-A. Lefebvre, J. Zaytoon, and O. Nasri, “Safety verification and
reachability analysis for hybrid systems,” Annual Reviews in Control, vol. 33, no. 1,
pp. 25–36, 2009.

[3] A. Girard, “Reachability of uncertain linear systems using zonotopes,” in Hy-
brid Systems: Computation and Control, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2005, vol. 3414, pp. 291–305.

[4] A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control.
Birkhäuser Boston, 1997.

[5] H. Yazarel and G. J. Pappas, “Geometric programming relaxations for linear system
reachability,” in Proceedings of the 2004 American Control Conference, Boston,
MA, USA, 2004, pp. 553–559.

[6] O. Maler and G. Batt, “Approximating continuous systems by timed automata,”
in Formal Methods in Systems Biology, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008, vol. 5054, pp. 77–89.

[7] A. Tiwari, “Abstractions for hybrid systems,” Formal Methods in System Design,
vol. 32, no. 1, pp. 57––83, 2008.

[8] L. d. Alfaro, T. A. Henzinger, and R. Majumdar, “Symbolic algorithms for infinite-
state games,” in Proceedings of the 12th International Conference on Concurrency
Theory, Aalborg, Denmark, 2001, pp. 536–550.

114

2 Proofs

[9] M. Morse and G. A. Hedlund, “Symbolic dynamics,” American Journal of Mathe-
matics, vol. 60, no. 4, pp. 815–866, 1938.

[10] R. Ghosh and C. Tomlin, “Symbolic reachable set computation of piecewise affine
hybrid automata and its application to biological modelling: Delta-Notch protein
signalling,” Systems Biology, vol. 1, no. 1, pp. 170–183, June 2004.

[11] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on Uppaal,” in International
School on Formal Methods for the Design of Real-Time Systems, vol. 3185, 2004,
pp. 200–237.

[12] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time systems,” in
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
June 1990, pp. 414–425.

[13] C. Sloth and R. Wisniewski, “Abstraction of continuous dynamical systems utilizing
Lyapunov functions,” in Proceedings of the 49th IEEE Conference on Decision and
Control, Atlanta, Georgia, USA, December 2010, pp. 3760–3765.

[14] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic models for
incrementally stable switched systems,” IEEE Transactions on Automatic Control,
vol. 55, no. 1, pp. 116–126, January 2010.

[15] F. Clarke, Y. Ledyaev, R. Stern, and P. Wolenski, Nonsmooth Analysis and Control
Theory. Springer, 1998.

[16] K. R. Meyer, “Energy functions for Morse Smale systems,” American Journal of
Mathematics, vol. 90, no. 4, pp. 1031–1040, 1968.

[17] Y. Matsumoto, An Introduction to Morse Theory. American Mathematical Society,
2002.

[18] J. P. Junior and W. de Melo, Geometric Theory of Dynamical Systems: An Introduc-
tion. Springer, 1980.

[19] M. W. Hirsch, Differential Topology. Springer, Heidelberg, 1976.

[20] M. M. Peixoto, “Structural stability on two-dimensional manifolds,” Topology,
vol. 1, no. 2, pp. 101–120, 1962.

[21] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science,
vol. 126, no. 2, pp. 183–235, April 1994.

[22] U. Fahrenberg, K. Larsen, and C. Thrane, “Verification, performance analysis and
controller synthesis for real-time systems,” in Fundamentals of Software Engineer-
ing, ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2010,
vol. 5961, pp. 34–61.

[23] M. Broucke, “A geometric approach to bisimulation and verification of hybrid
systems,” in Proceedings of the 37th IEEE Conference on Decision and Control,
Tampa, FL, USA, December 1998, pp. 4277–4282.

115

Paper B

[24] L. W. Tu, An Introduction to Manifolds. Springer, 2008.

[25] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities
in System and Control Theory, ser. SIAM studies in applied mathematics. SIAM,
1994, vol. 15.

[26] R. Alur, T. Dang, and F. Ivančić, “Progress on reachability analysis of hybrid sys-
tems using predicate abstraction,” in Hybrid Systems: Computation and Control,
ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2003, vol.
2623, pp. 4–19.

[27] A. C. Antoulas, Approximation of large-scale dynamical systems, ser. Advances in
Design and Control. SIAM, 2005.

[28] R. Wisniewski, “Flow lines under perturbations within section cones,” Ph.D. disser-
tation, Department of Mathematical Sciences, Aalborg University, 2005.

[29] R. Wisniewski and M. Raussen, “Geometric analysis of nondeterminacy in dynam-
ical systems,” Acta Informatica, vol. 43, no. 7, pp. 501–519, 2007.

[30] G. E. Bredon, Topology and Geometry. Springer, 1993.

[31] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical
Systems & An Introduction to Chaos, 2nd ed. Elsevier, 2004.

116

Paper B

Complete Abstractions of Dynamical Systems by Timed Automata

Christoffer Sloth and Rafael Wisniewski

This paper was published in:
Nonlinear Analysis: Hybrid Systems, 2012

Copyright c©2012 Elsevier Ltd.
The layout has been revised

1 Introduction

Abstract

This paper addresses the generation of complete abstractions of polynomial dy-
namical systems by timed automata. For the proposed abstraction, the state space is
divided into cells by sublevel sets of functions. We identify a relation between these
functions and their directional derivatives along the vector field, which allows the
generation of a complete abstraction.

To compute the functions that define the subdivision of the state space in an al-
gorithm, we formulate a sum of squares optimization problem. This optimization
problem finds the best subdivisioning functions, with respect to the ability to approx-
imate the dynamical system, in a subset of admissible subdivisioning functions.

1 Introduction

Formal verification is used to prove that a system satisfies a specification, e.g., ”no system
trajectories can reach an unsafe subset of the state space”. Formal verification has been
successfully developed in computer science for verifying various classes of models and
specifications, e.g., to verify timed temporal logics of timed automata [1].

Similarly, formal verification methods have been developed for dynamical systems;
see [2] for a survey. However, as the verification of system properties such as safety is
based on reachability calculations, which in general are incomputable for continuous and
hybrid systems [3], the developed methods are mostly approximate, and do not apply for
general classes of systems. According to [2], the main source of complexity in the veri-
fication procedure of continuous and hybrid systems is the computation of the reachable
set of the continuous dynamics.

Indirect verification methods are based on abstracting the considered systems by mod-
els of reduced complexity, while preserving certain properties of the original systems.
This is accomplished for hybrid systems in [4], for continuous systems in [5], and for
controller design in [6]. For relating the considered system with an abstraction of it, the
notions of soundness and completeness are used. Roughly speaking, the reachable set
of a sound (complete) abstraction includes (equals) the reachable set of the original sys-
tem. Remark that the original system and the abstraction may be of different categories;
hence, the relation between their reachable sets should be appropriately defined. This is
accomplished in Section 3.

The class of direct verification methods does not abstract the dynamical system by
another model, but handles the considered system directly. One such method is presented
in [7], where the safety is determined based on the calculation of the backwards reachable
set from a target set, by numerically calculating the solution of a Hamilton-Jacobi partial
differential equation.

Generally, indirect methods allow expressive specifications, but simple dynamical
models, and direct methods allow less expressive specifications, but more general sys-
tem models. The method used in this paper is indirect, as it is based on abstracting the
system by a timed automaton.

In this work, we strive to use the better of the two classes of methods. Hence, we
will allow expressive specifications, but to obtain a close resemblance between the ab-
straction and a possibly complicated dynamical system, the abstraction is generated via
a subdivision of the state space, which is conducted in accordance with the vector field.

119

Paper B

We restrict the vector field to be a polynomial map, which allows algorithmic generation
of the subdivision, similar to the algorithms presented in [8].

The proposed abstraction generates a timed automaton; hence, timed specifications
can be considered, e.g., having a time-dependent unsafe set. The subdivisioning is in-
spired by [4] that uses foliations to divide the state space. Whereas, we use level sets
of polynomial functions to generate invariant sets similar to [9]. The general framework
of the abstraction method is presented in [10, 11]. In these works, no conditions for
generating complete abstractions are provided; hence, this paper provides a step towards
generating abstractions that preserves the reachability property.

The main contribution of this paper is to formulate a necessary and sufficient condition
for the subdivision of the state space, under which a complete abstraction can be gener-
ated. This condition shows that the directional derivative of the subdivisioning function
along the vector field is a function of the subdivisioning function itself. A second result
is the development of an algorithm for computing the best subdivisioning function for a
polynomial system.

Comparison to Related Work

The method used for abstracting models by timed automata in this paper has similarities
with other verification and abstraction methods, but also has distinct properties, as e.g.
the abstraction is a timed automaton in contrast to automata or transition systems used in
most other works. In the following, we compare the method used in this paper (for short
we call it TA-abstraction) to a few selected methods that are similar to TA-abstraction.

The principle of the barrier certificate method presented in [12] is to find a positive
invariant set given as a sublevel set of a function (the level set is called a barrier) that
includes the initial set, but excludes the unsafe set. If such a set can be found, the system
is safe. Since only one function is used to separate the initial set and unsafe set, this
function may be required to be very complicated. This is exemplified in the following.

Consider the two-dimensional linear system given by
[
ẋ1

ẋ2

]
=

[
−0.1 1
−1 −0.1

] [
x1

x2

]
, (7.1)

with initial set X0 = [−0.05, 0.05]× [4.95, 5.05] and unsafe set Xu = [−0.05, 0.05]×
[0.85, 0.95].

To verify the safety of this system, a very high degree barrier certificate must be
identified. A barrier certificate is illustrated in Figure 7.1 by the red line, which is the
level set or barrier separating the initial set and unsafe set. Note that the barrier certificate
is generated by hand, as an attempt to solve the problem in SOSTOOLS failed.

The barrier certificate is a special instance of the TA-abstraction, and this particular
choice of subdivisioning function would result in an abstraction given by a timed au-
tomaton with two locations, where all solutions stay in the initial location for all times.
However, the TA-abstraction allows the use of multiple subdivisioning functions; hence,
these may be of lower degree at the cost of the need for several level sets.

Another related method is developed in [13, 14, 15], and is in the class of sign
based abstractions described in [16]. The similarities between this method and the TA-
abstraction is that level sets of multiple functions are used to subdivide the state space
and that the transitions in the abstract model are generated based on the Lie derivative of

120

1 Introduction

-5 0 5
-5

0

5

x1

x
2

Figure 7.1: Illustration of the initial set (green box) and unsafe set (red box) together with
some admissible system trajectories (block lines). The red line is the graph of a barrier
certificate that proves the safety of the system.

the function used to subdivide the state space with respect to the vector field. In fact, the
admissible subdivisioning functions in the TA-abstraction is only a subset of the admissi-
ble subdivisioning functions of this abstraction, since we require the Lie derivative of the
subdivisioning functions with respect to the vector field to be decreasing (except at criti-
cal points). Additionally, we include time in the abstract model; hence, a more accurate
calculation of the reachable set is obtained. This is clear from the following example.

Consider a dynamical system, given by
[
ẋ1

ẋ2

]
=

[
1
1

]
. (7.2)

The subdivision of the state space is illustrated in Figure 7.2 by black lines, and the set of
initial states is shaded gray.

0 1 2 3
0

1

2

3

x1

x
2

Figure 7.2: Phase plot of a system with constant derivatives. The system is initialized
in the bottom left cell. If an automaton is generated based on the Lie derivative on the
boundary of cells, we can only conclude that the reachable set is a subset of the first
quadrant.

121

Paper B

By use of the sign based abstraction, the entire first quadrant is reachable, but by use
of TA-abstraction only a block diagonal trace is reachable (cells within the bold black
line in Figure 7.2); see the full example in Section 7. Finally, we provide conditions
for generating a complete abstraction, whereas this method only provides a heuristics for
generating additional subdivisioning functions based on an initial collection of subdivi-
sioning functions.

An abstraction method is presented in [17], which along the lines of the previously
explained method, generates discrete abstractions of systems using the Lie derivative. As
multi-affine systems (i.e., the degree of the vector field in any of the variables is less
than or equal to 1) are considered on a rectangular subdivision of the state space, the
computations of the Lie derivative can be done efficiently.

Methods for verifying systems based on the generation of positive invariant sets also
exist. In [9], the generation of box shaped invariant sets is treated. This is motivated by
examples from biology, but is not as general as the TA-abstraction as the shape of the
invariant is constraint and the time is not used. Finally, in [18] control is used to shape the
Lie derivative on the boundaries of rectangles to obtain some overall control objective.

When comparing TA-abstraction to the above mentioned abstractions, the complexity
of generating the TA-abstraction seems to be higher. This is the case as time information
should be generated in addition to the discrete structure of the sign based abstraction.
However, as demonstrated in the examples, TA-abstraction improves the reachability cal-
culations and allows the use of lower dimensional polynomials to generate the abstraction
compared to the barrier certificate method.

This paper is organized as follows. Section 2 contains preliminary definitions, Sec-
tion 3 explains how a dynamical system and an abstract model are related, and Section 4
explains how the state space is subdivided using level sets of functions. Section 5 de-
scribes how a timed automaton can be generated from the subdivision and gives a nec-
essary and sufficient condition for generating a complete abstraction. Subsequently, Sec-
tion 6 presents algorithms for synthesizing the abstraction, and an example is provided in
Section 7. Finally, Section 8 comprises conclusions.

Notation

The set {1, . . . , k} is denoted by k. BA is the set of maps A→ B. The power set of A is
denoted 2A. The cardinality of the set A is denoted |A|. We consider the Euclidean space
(Rn, 〈, 〉), where 〈, 〉 is the standard scalar product. N = {1, 2, . . . } is the set of natural
numbers, and Z = {. . . ,−1, 0, 1, . . . } is the set of integers.

2 Preliminaries

The purpose of this section is to provide definitions related to dynamical systems and
timed automata.

122

2 Preliminaries

Dynamical Systems

A dynamical system Γ = (X, f) has state space X ⊆ Rn and dynamics described by a
system of ordinary differential equations f : X → Rn

ẋ = f(x). (7.3)

Throughout the paper, we assume that f has non-degenerate critical points and that the
vector field f is polynomial. This enables the use of algorithms in solving the problems.

We only consider polynomials with real-valued variables, and for n ≥ 1 we denote the
polynomial ring R[x1, . . . , xn] by R[x]. In addition, a map f : Rn → Rm is said to be
polynomial if its coordinate functions are polynomials, i.e., fi ∈ R[x] for i = 1, . . . ,m.

The solution of (7.3), from an initial state x0 ∈ X0 ⊆ X at time t ≥ 0 is described
by the flow function φΓ : [0, ε]×X → X , ε > 0 satisfying

dφΓ(t, x0)

dt
= f (φΓ(t, x0)) (7.4)

for all t ∈ [0, ε] and φΓ(0, x0) = x0.
For a map f : A→ B, and a subset C ⊆ A, we define f(C) ≡ {f(x)| x ∈ C}. Thus,

the reachable set is defined as follows.

Definition 76 (Reachable set of Dynamical System). The reachable set of a dynamical
system Γ from a set of initial states X0 ⊆ X on the time interval [t1, t2] is

φΓ([t1, t2], X0). (7.5)

Finally, we define a positive invariant set that is paramount for the subdivision of the
state space.

Definition 77 (Positive Invariant Set). Given a system Γ = (X, f), a set U ⊆ X is said
to be positively invariant if for all t ≥ 0

φΓ(t, U) ⊆ U. (7.6)

Timed Automata

We use the notation of [1] in the definition of a timed automaton. Let Ψ(C) be a set of
diagonal-free clock constraints for a set of clocks C. This set contains all invariants and
guards of the timed automaton, and is described by the following grammar

ψ ::= c ./ k|ψ1 ∧ ψ2, (7.7a)

where

c ∈ C, k ∈ R≥0, and ./∈ {≤,<,=,>,≥}. (7.7b)

Note that the clock constraint k should usually be a rational number, but in this paper, no
effort is made to convert the clock constraints into rational numbers. However, any real
number can be approximated by a rational number with an arbitrary small error ε > 0.
To make a clear distinction between syntax and semantics, the elements of ./ are bold
to indicate that they are syntactic operations. The semantics of the grammar is presented
after the definition of a timed automaton.

123

Paper B

c = 5, β

γ, d := 0

d < 4, α, c := 0

guard
action

reset

invariant

initial location location

c < 8

p q

Figure 7.3: The transition between the location p and q with the label α may take place
whenever the value of clock d is less than 4 and must take place before the value of clock
c reaches 8. Once this transition occurs, the value of clock c is reset to 0.

Definition 78 (Timed Automaton). A timed automaton A is a tuple (E, E0, C,Σ, I,∆),
where

• E is a finite set of locations, and E0 ⊆ E is the set of initial locations;

• C is a finite set of clocks;

• Σ is the input alphabet;

• I : E → Ψ(C) assigns invariants to locations;

• ∆ ⊆ E × Ψ(C) × Σ × 2C × E is a finite set of transition relations. A transition
relation is a tuple (e,Ge→e′ , σ, Re→e′ , e′) assigning an edge between two locations,
where e is the source location and e′ is the destination location. Ge→e′ ∈ Ψ(C) is
the set of guards, σ is a symbol in the alphabet Σ, and Re→e′ ⊆ C is a subset of
clocks.

Example 13. A timed automaton is illustrated in Figure 7.3. The locations are denoted
by p and q, where the initial location is p (indicated with a source less arrow); there are
two clocks denoted by c and d, and actions designated by α, β, and γ. The transition
between location p and q may take place whenever the value of clock d is less than 4, but
must take place before the value of clock c reaches 8. The transition happens when the
action α occurs. Once this transition is taken, the value of clock c resets to 0.

There is no invariant in q. This means that the system can be in location q no matter
what the values of the clocks are.

The semantics of a timed automaton is defined in the following.

Definition 79 (Clock Valuation). A clock valuation on a set of clocks C is a mapping
v : C → R≥0. The initial valuation v0 is given by v0(c) = 0 for all c ∈ C. For a
valuation v, a scalar d ∈ R≥0, and R ⊆ C, the valuations v + d and v[R] are defined as

(v + d)(c) = v(c) + d, (7.8a)

v[R](c) =

{
0 for c ∈ R,
v(c) otherwise.

(7.8b)

124

2 Preliminaries

It is seen that (7.8a) is used to progress time and (7.8b) is used to reset the clocks in
the set R to zero.

We denote the set of maps v : C → R≥0 by RC≥0.

Remark 14: This notation indicates that we identify a valuation v with C-tuples of nonnegative
reals in R|C|≥0 , where |C| is the number of elements in C. We impose the Euclidean topology on
RC≥0.

Definition 80 (Semantics of Clock Constraint). A clock constraint in Ψ(C) is a set of
clock valuations {v : C → R≥0} given by

Jc ./ kK = {v : C → R≥0|v(c) ./ k} (7.9a)
Jψ1 ∧ ψ2K = Jψ1K ∩ Jψ2K. (7.9b)

For convenience, we denote v ∈ JψK by v |= ψ and denote the transition (e, v, σ, e′, v′)
by (e, v)

σ→ (e′, v′) in the following.

Definition 81 (Semantics of Timed Automaton). The semantics of a timed automaton
A = (E,E0, C,Σ, I,∆) is the transition system JAK = (S, S0,Σ∪R≥0, Ts∪Td), where
S is the set of states

S = {(e, v) ∈ E ×RC≥0| v |= I(e)},

S0 ⊆ S is the set of initial states

S0 = {(e, v) ∈ E0 ×RC≥0| v = v0}.

Note that E ×RC≥0 induces subspace topology on S.
Ts ∪ Td is the union of the following sets of transitions

Ts = {(e, v)
σ→ (e′, v′)| ∃(e,Ge→e′ , σ, Re→e′ , e′) ∈ ∆

such that v |= Ge→e′ and v′ = v[Re→e′]},
Td = {(e, v)

d→ (e, v + d)| ∀d′ ∈ [0, d] : v + d′ |= I(e)}.

Hence, the semantics of a timed automaton is a transition system that comprises an in-
finite number of states: product of E and RC≥0 and two types of transitions: the transition
set Ts between discrete states with possibly a reset of clocks belonging to a subsetRe→e′ ,
and the transition set Td that corresponds to time passing within the invariant I(e).

In the following, we define an analog to the solution of a dynamical system for a timed
automaton.

Definition 82 (Run of Timed Automaton). A run of a timed automaton A is a possibly
infinite sequence of alternations between time steps and discrete steps of the following
form

(e0, v0)
d1−→ (e0, v1)

σ1−→ (e1, v2)
d2−→ . . . , (7.10)

where di ∈ R≥0 and σi ∈ Σ.

125

Paper B

By forcing alternation of time and discrete steps in Definition 82, the time step di is
the maximal time step between the discrete steps σi−1 and σi. The next example clarifies
the semantics of a timed automaton.

Example 14. A timed automaton with two locations and two clocks is illustrated in Fig-
ure 7.3. All runs of the timed automaton start in the location p, and has initial valuation
v0. Furthermore, the time between an action α (a transition decorated by the label α)
and an action β is 5 time units. There are infinitely many different runs of the timed
automaton, and a few examples are

Run 1 : (p, (0, 0))
1−→ (p, (1, 1))

α−→ (q, (0, 1))
2−→ (q, (2, 3))

γ−→

(q, (2, 0))
3−→ (q, (5, 3))

β−→ (p, (5, 3))→ . . .

Run 2 : (p, (0, 0))
3−→ (p, (3, 3))

α−→ (q, (0, 3))
4−→ (q, (4, 7))

γ−→

(q, (4, 0))
1−→ (q, (5, 1))

β−→ (p, (5, 1))→

This finalizes the preliminary definitions. In the next section, we develop the neces-
sary concepts for comparing solutions of a dynamical system with solutions of a timed
automaton.

3 Abstractions of Dynamical Systems

To evaluate the generated abstraction, it is necessary to define a relation between solution
trajectories of a dynamical system and runs of a timed automaton. This is accomplished
in this section, by first defining the continuous behavior of a timed automaton, in terms of
a trajectory. Second, we define a so-called abstraction function, which associates subsets
of the state space to locations of a timed automaton. Finally, we define and construct
sound and complete abstractions.

Trajectory of a Timed Automaton

A vital object for studying the behavior of any dynamical system is its trajectory. There-
fore, we define a trajectory of a timed automaton [10]. At the outset, we introduce a
concept of a time domain.

In the following, we denote sets of the form {a, . . . } with a ∈ Z≥0 as {a, . . . ,∞}.
Let k ∈ N ∪ {∞}; a subset Tk ⊂ Z≥0 × R≥0 with disjoint (union) topology will be
called a time domain if there exists an increasing sequence {ti}i∈{0,...,k} in R≥0 ∪ {∞}
such that

Tk =
⋃

i∈{1,...,k}
{i} × Ti,

where

Ti =

{
[ti−1, ti] if ti <∞
[ti−1,∞[if ti =∞.

Note that Ti = [ti−1, ti] for all i if k = ∞. We say that the time domain is infinite if
k = ∞ or tk = ∞. The sequence {ti}i∈{0,...,k} corresponding to a time domain will be
called a switching sequence.

126

3 Abstractions of Dynamical Systems

We define two projections π1 : E × RC≥0 → E and π2 : E × RC≥0 → RC≥0 by
π1(e, v) = e and π2(e, v) = v.

Definition 83 (Trajectory). A trajectory of the timed automatonA is a pair (Tk, γ) where
k ∈ N ∪ {∞} is fixed, and

• Tk ⊂ Z≥0 ×R≥0 is a time domain with switching sequence {ti}i∈{0,...,k},
• γ : Tk → S and recall that S is the (topological) space of joint continuous and

discrete states; see Definition 81 and Remark 14. The map γ satisfies:

1. For each i ∈ {1, . . . , k − 1}, there exists σ ∈ Σ such that

γ(i, ti)
σ−→ γ(i+ 1, ti) ∈ Ts.

2. Let 0 be a vector of zeros and 1 be a vector of ones in RC . For each i ∈
{1, . . . , k}

π2(γ(i, ti−1 + d)) = π2(γ(i, ti−1)) + d1 ∀d ∈
{

[0, ti − ti−1] if ti <∞
[0, ∞[if ti =∞

where π2(γ(i, ti−1 + d)) ∈ JI(π1(γ(i, ti)))K and π2(γ(1, t0)) = 0. (Item 2
ensures that the time derivative of the valuation of each clock is one, between
the discrete transitions.)

Note that γ is continuous by construction. Recall the definition of v0 from Definition 79.
A trajectory at (e, v0) (with v0 |= I(e)) is a trajectory (Tk, γ) with γ(1, t0) = (e, v0).

We define a discrete counterpart of the flow map.

Definition 84 (Flow Map of Timed Automaton). The flow map of a timed automaton A
is a multivalued map

φA : R≥0 × S0 → 2S ,

defined by (e′, v′) ∈ φA(t; e, v0) if and only if there exists a trajectory (Tk, γ) at (e, v0)
such that t = tk − t0 and (e′, v′) = γ(k, tk).

It will be instrumental to define a discrete flow map ΦA : R≥0 × E0 → 2E , which
forgets the valuation of the clocks

ΦA(t, e) = π1 ◦ φA(t; e, v0). (7.11)

In other words, ΦA is defined by: e′ ∈ ΦA(t, e) if and only if there exists a run (7.10)
of JAK initialized in (e, v0) that reaches the location e′ at time t =

∑
i di.

Example 15 (Continuation of Example 14). In this example, the time domain Tk and
trajectory of Run 1 in Example 14 are elucidated. The time domain is

Tk = {1} × [0, 1] ∪ {2} × [1, 3] ∪ {3} × [3, 6] ∪ {4} × [6,

From the time domain, it is seen that there are three discrete switches and that the total
time of the run is 6 time units. The trajectory of the run is shown in Figure 7.4. To
visualize the trajectory, the valuation of the clock c is illustrated by a blue solid line
and the valuation of clock d is illustrated by a red dashed line. Furthermore, the current
location of the automaton is indicated by its name.

127

Paper B

t
t4

t3

p

q

t2
t1

q

π2(γ(i, t))

p

t0
1

2

3

4

i

Figure 7.4: Trajectory of Run 1 in Example 14.

The reachable set of a timed automaton is defined as follows.

Definition 85 (Reachable set of Timed Automaton). The reachable locations of a system
A from a set of initial locations E0 ⊆ E on the time interval [t1, t2] is defined as

ΦA([t1, t2], E0) ≡
⋃

(t,e)∈[t1,t2]×E0

ΦA(t, e). (7.12)

Abstractions

We develop a concept of an abstraction of the dynamical system Γ. It consists of a finite
number of sets E ≡ {eλ| λ ∈ Λ}, called cells. The cells cover the state space X

X =
⋃

λ∈Λ

eλ.

To the subdivision E, we associate an abstraction function, which to each point in the
state space associates the cells that this point belongs to.

Definition 86 (Abstraction Function). Let E ≡ {eλ| λ ∈ Λ} be a finite subdivision
of the state space X ⊆ Rn. An abstraction function for E is the multivalued function
αE : X → 2E defined by

αE(x) ≡ {e ∈ E| x ∈ e}. (7.13)

For a given dynamical system Γ, we want to simultaneously devise a subdivision E
of the state space X and create a timed automaton A with locations E such that

1. the abstraction is sound on an interval [t1, t2]:

αE ◦ ΦΓ(t,X0) ⊆ ΦA(t, αE(X0)), for all t ∈ [t1, t2]

128

4 Subdividing the State Space

X0 X0

Figure 7.5: Reachable set of a dynamical system (shaded area), and reachable sets of
automata (cells within bold lines). In the left figure, the reachable set of the automaton
includes more cells than the ones reached by the dynamical system, i.e., the abstraction is
sound. In the right figure, the reachable set of the automaton includes only the cells that
are reached by the dynamical system, i.e., the abstraction is complete.

2. the abstraction is complete on an interval [t1, t2]:

αE ◦ ΦΓ(t,X0) = ΦA(t, αE(X0)) for all t ∈ [t1, t2].

If a sound abstractionA is safe then Γ is also safe, as the abstraction reaches all locations
reached by Γ = (X, f). Soundness is close to the notion of simulation; however, by
soundness we relate different categories of models. Figure 7.5 illustrates the reachable
set of a dynamical system, along with reachable sets of a sound abstraction (left) and a
complete abstraction (right).

It is possible to describe the behavior of the original system by a transition system
[19]; hence, allowing the generation of simulation and bisimulation relations between the
original and abstract systems. This will not be pursued in details in this paper. However,
if we define an observation map of the transition system describing the original system by
associating states in cells with the cell, and add a discrete transition when a boundary of
a cell is crossed, then a discrete abstraction simulates the original system and a complete
abstraction is bisimilar to the original system.

In the remainder of the paper, we provide as answer to the following questions

• How should the state space be subdivided to allow the generation of a complete
abstraction of a dynamical system?

• How can the subdivisioning functions be algorithmically found?

4 Subdividing the State Space

This section presents the method used for subdividing the state space by functions, but not
how the functions should be chosen to obtain a complete abstraction. This is explained
in Section 5. The subdivision of the state space is generated by intersecting sublevel sets
of functions, and has two components: slices and cells. A slice is a sublevel set of one
subdivisioning function, whereas a cell is a connected component of the intersection of
sublevel sets of more functions.

129

Paper B

The definition a subdivision is motivated by the definition of a complex in algebraic
topology [20].

Definition 87. Let Λ be an index set, and K = {Pi}i∈Λ be a family of subsets in a
Euclidean space E. We let |K| = ∪i∈ΛPi with the subspace topology inherited from E.
We call K a subdivision of a subset Y of E, if

1. int(P) 6= ∅, for all P ∈ K,

2. P ∩ P ′ belongs to the boundary of P and P
′

for all P, P
′ ∈ K,

3. each point of |K| has a neighborhood intersecting only finitely many elements of
K,

4. |K| = Y .

Let A ⊆ Rn, then cl(A) denotes the closure of A. We define a slice as the set-
difference of positively invariant sets.

Definition 88 (Slice). A nonempty set S is a slice if there exist two open sets A1 and A2

such that

1. A1 is a proper subset of A2,

2. A1 and A2 are positively invariant (see Definition 77), and

3. S = cl(A2\A1).

Since A1 and A2 are positively invariant sets, a trajectory initialized in S can prop-
agate to A1, but no solution initialized in A1 can propagate to S. This implies that, via
these invariants, we can study the possible trajectories of a dynamical system. We will
adopt the convention that ∅ is a positively invariant set of any dynamical systems.

To devise a subdivision of a state space, we need to define collections of slices, called
slice-families.

Definition 89 (Slice-Family). Let k ∈ N and

A0 ⊂ A1 ⊂ · · · ⊂ Ak

be a collection of positive invariant sets of a dynamical system Γ = (X, f) with X ⊆ Ak
and A0 = ∅. We say that the collection

S ≡ {Si = cl(Ai\Ai−1)| i ∈ k}

is a slice-family generated by the sets {Ai| i ∈ k} or just a slice-family.

We associate a function to each slice-family S to provide a simple way of describing
the boundary of a slice. Such a function is called a subdivisioning function.

130

4 Subdividing the State Space

Definition 90 (Subdivisioning Function). Let Γ = (X, f) be a dynamical system and
Cr(f) denote the set of critical points of f . Let S be a slice-family generated by the
sets {Ai| i ∈ k}. A continuous function ϕ : Rn → R smooth on Rn\Cr(f) is a
subdivisioning function for S if there is a sequence

a0 < . . . < ak, ai ∈ R ∪ {−∞,∞},

where whenever ai ∈ R, it is a regular value of ϕ such that

cl(Ai) = ϕ−1([ai−1, ai]). (7.14)

Remark that by regular level set theorem, for ai ∈ R, the boundary ϕ−1(ai) of Ai is
a smooth embedded submanifold of Rn of co-dimension 1 [21].

We will create cells that cover the entire state space, by intersecting slices. To ensure
robustness of the subdivision, it is important that the slices intersect transversally. The
robustness of a transversal intersection is readily seen from the definition of transversal
intersection [22].

Definition 91 (Transversal Intersection). Suppose that N1 and N2 are embedded sub-
manifolds of M . We say that N1 intersects N2 transversally if, whenever p ∈ N1 ∩N2,
we have Tp(N1) + Tp(N2) = Tp(M). (The sum is not direct, just the set of sums of
vectors, one from each of the two subspaces of the tangent space Tp(M).)

The definition states that N1 and N2 are transversal if the tangent vectors to N1 and
N2 span the entire space at each point of intersection. Hence, this transversality condition
can be tested algorithmically.

−0.5 0 0.5

−0.5

0

0.5

x1

x
2 p

N1N2

Tp(N1)

Tp(N2)

−0.5 0 0.5
x1

p

N1N2

Tp(N1)
Tp(N2)

Figure 7.6: The left subplot shows an intersection that is not transversal; whereas, the
right subplot shows a transversal intersection of two level sets.

The left subplot of Figure 7.6 illustrates level sets of two subdivisioning functions
(hence two embedded submanifolds of R2). They intersect at the point p, and their tan-
gents (black lines) generate a one dimensional subspace. This implies that their tangent
vectors only span one dimension at p, i.e., Tp(N1) + Tp(N2) 6= Tp(M). Therefore, this
intersection is not transversal. Note that there exists an arbitrary small perturbation such
that the intersection of the two level sets will be empty (this perturbation is given by a
smooth map; see Theorem 2.1 in [22]). Therefore, this subdivision is not robust.

131

Paper B

In the right subplot of Figure 7.6, two level sets intersecting at point p are illustrated.
Their tangent vectors (black lines) spanR2, i.e., the level sets intersect transversally. Note
that two manifolds that do not intersect are also transversal.

We define transversal intersection of slices as follows.

Definition 92 (Transversal Intersection of Slices). We say that the slices S1 and S2 inter-
sect each other transversally and write

S1 t S2 = S1 ∩ S2 (7.15)

if their boundaries, bd(S1) and bd(S2), intersect each other transversally.

Cells are generated via intersecting slices.

Definition 93 (Extended Cell). Let S = {Si|i ∈ k} be a collection of k slice-families
and let

G(S) ≡ {1, . . . , |S1|} × · · · × {1, . . . , |Sk|} ⊂ Nk.
Denote the jth slice in Si by Sij and let g ∈ G(S). Then

eex,g ≡ tki=1 S
i
gi , (7.16)

where gi is the ith component of the vector g. Any nonempty set eex,g is called an extended
cell of S.

The cells in (7.16) are denoted by extended cells, since the transversal intersection of
slices may form multiple disjoint sets in the state space. It is desired to have cells, which
are connected.

Definition 94 (Cell). Let S = {Si|i ∈ k} be a collection of k slice-families. A cell e(g,h)

of S is a connected component of an extended cell of S
⋃

h

e(g,h) = eex,g, where (7.17a)

e(g,h) ∩ e(g,h′) = ∅ ∀h 6= h′. (7.17b)

There exist algorithms for determining the number of connected components of semi-
algebraic sets given by polynomials (the number of connected components is given by
the 0th Betti number [20]), and providing semi-algebraic descriptions of the connected
components. One such algorithm is presented in [23]. Recall that R[x1, . . . , xk] de-
notes the polynomial ring defined in Section 2. The algorithm takes as input a family of
polynomials {P1, . . . , Ps} ⊂ R[x1, . . . , xk] whose degrees are at most d, and outputs a
semi-algebraic description of each connected component. The complexity of that algo-
rithm is bounded by sk+1dO(k3), where O denotes the big-O notation [24, p. 252]. For
more details on the algorithm, see chapter 15 in [25].

A finite subdivision based on the transversal intersection of slices is defined in the
following.

Definition 95 (Finite Subdivision). Let S = {Si|i ∈ k} be a collection of slice-families.
We define a finite subdivision E(S) by

e ∈ E(S) (7.18)

if and only if e is a cell of S.

132

5 Generation of Timed Automaton from Finite Subdivision

We propose to use only functions that are decreasing along trajectories of the dy-
namical system Γ as subdivisioning functions, similar to Lyapunov functions, to obtain
robustness of the subdivision. Indeed, the robustness is ensured as the vector field is
transversal to the boundaries of the cells. This implies that there exists an arbitrary small
perturbation of the vector field, such that it is still transversal to the boundary of the cells.
The following definition origins from [26].

Definition 96 (Decreasing Subdivisioning Function). LetX be an open connected subset
of Rn. Suppose f : X → Rn is continuous, and recall that Cr(f) denotes the set of
critical points of f . Then a real non-degenerate differentiable function ϕ : X → R is said
to be a subdivisioning function for f if

p is a critical point of f ⇔ p is a critical point of ϕ

Lfϕ(x) ≡
n∑

j=1

∂ϕ

∂xj
(x)f j(x) (7.19a)

Lfϕ(x) < 0 ∀x ∈ X\Cr(f) (7.19b)

and there exists α > 0 and an open neighborhood of each critical point p ∈ Cr(f), where

||Lfϕ(x)|| ≥ α||x− p||2. (7.20)

We only require the vector field to be transversal to the level curves of a function ϕ,
i.e., Lfϕ(x) = 〈∇ϕ(x), f(x)〉 < 0 for all x ∈ X\Cr(f) and require nothing about the
sign of ϕ.

In the next section, we present a procedure for generating a timed automaton from a
subdivision, and show how the subdivisioning functions should be chosen to generate a
complete abstraction.

5 Generation of Timed Automaton from Finite Subdivision

A timed automaton A is generated from a finite subdivision E(S) as follows.

Definition 97 (Generation of Timed Automaton). Given a finite collection of slice-famili-
es S = {Si| i ∈ k}, and T = {(tigi , t

i
gi) ∈ R2

≥0| i ∈ k, gi ∈ {1, . . . , |Si|}}. The timed
automaton A(S, T) = (E,E0, C,Σ, I,∆) is defined by

• Locations: The locations of A are given by

E = E(S). (7.21)

This means that a location e(g,h) is identified with the cell e(g,h) = α−1
E(S)({e(g,h)})

of the subdivision E(S), see Definition 86.

• Clocks: The set of clocks is C = {ci| i ∈ k}.

• Alphabet: The alphabet is Σ = {σi| i ∈ k}.

133

Paper B

• Invariants: In each location e(g,h), we impose an invariant

I(e(g,h)) =

k∧

i=1

ci ≤ t
i
gi . (7.22)

• Transition relations: If a pair of locations e(g,h) and e(g′,h′) satisfy the following
two conditions

1. e(g,h) and e(g′,h′) are adjacent; that is e(g,h) ∩ e(g′,h′) 6= ∅, and

2. g′i ≤ gi for all i ∈ k.

Then there is a transition relation

δ(g,h)→(g′,h′) = (e(g,h), G(g,h)→(g′,h′), σ
i, R(g,h)→(g′,h′), e(g′,h′)),

where

G(g,h)→(g′,h′) =

k∧

i=1

{
ci ≥ tigi if gi − g′i = 1

ci ≥ 0 otherwise.
(7.23a)

Note that gi − g′i = 1 whenever a transition labeled σi is taken.

Let i ∈ k. We define R(g,h)→(g′,h′) by

ci ∈ R(g,h)→(g′,h′) (7.23b)

iff gi − g′i = 1.

From the definition, it is seen that if the ith face is the common facet of the cells e(g,h)

and e(g′,h′), then a transition is possible if the valuation of clock ci is greater than tigi . If
the particular cells are not adjacent then no guard conditions are imposed.

If the set S is a singleton, i.e., S = {S1} then by slightly abusing the notation, we
write A

(
S1, (t, t)

)
instead of A

(
{S1}, {(t, t)}

)
.

We are interested in verifying a temporal logic statement over some regions of the
state space; however, as the locations of the abstraction correspond to cells of the sub-
division of the state space, level sets must be chosen such that the regions defined by
predicates in temporal logic are subsets of a union of cells of the subdivision. Finally, the
actual verification is conducted on the over-approximation of the regions involved in the
temporal logic statement.

To ensure that the properties of an abstraction is not only valid for a particular choice
of level sets, we impose the condition for any choice of regular values in the subdivision.

From Definition 97, it is seen that to generate a timed automaton, it is required to
devise a subdivision of the state space, and a set of invariant and guard conditions. There-
fore, we provide condition under which an abstraction is complete, recall the definition
of a complete abstraction in Section 3.

Proposition 34: Given a dynamical system Γ = (X, f), a collection of subdivisioning functions
{ϕi| i ∈ k}, a collection of regular values {aigi | i ∈ k, gi ∈ {1, . . . , |Si|}} generating S, and
T = {(tigi , t

i
gi)| i ∈ k, gi ∈ {1, . . . , |Si|}}. The timed automaton A(S, T) is a complete

abstraction of Γ if and only if for any i ∈ k

134

5 Generation of Timed Automaton from Finite Subdivision

1. for any g ∈ G(S) (see the definition of G(S) in Definition 93), such that gi ≥ 2 there exists
a time tigi such that for all x0 ∈ (ϕi)−1(aigi)

φΓ(tigi , x0) ∈ (ϕi)−1(aigi−1) (7.24)

and

2. tSi
gi

= tSi
gi

= tigi .

The proof of Proposition 34 can be found in the Appendix A.
Proposition 34 does not provide a straightforward method for computing a complete

abstraction, as the conditions are not numerically tractable. Therefore, we rephrase (7.24)
as a relation between the level sets of the subdivisioning function and its derivative along
the vector field. This is given in the following theorem.

Theorem 12: Let Γ = (X, f) be a dynamical system. There exists a complete abstraction of Γ if
and only if there exists a collection of subdivisioning functions {ϕi| i ∈ k}, such that for any ϕ
and any regular value a ∈ R there exists b ∈ R such that

{x ∈ Rn| ϕ(x)− a = 0} ⊆ {x ∈ Rn| Lfϕ(x)− b = 0}, (7.25)

Proof. We show that (7.24) implies (7.25). Let x′0, x
′′
0 ∈ (ϕ)−1(a) by (7.24)

ϕ(φΓ(t, x′0)) = ϕ(φΓ(t, x′′0)) ∀t ∈ R. (7.26)

We differentiate with respect to t

∑

i

∂ϕ

∂xi
(φΓ(t, x′0))fi(φΓ(t, x′0)) =

∑

i

∂ϕ

∂xi
(φΓ(t, x′′0))fi(φΓ(t, x′′0)) ∀t ∈ R.

(7.27a)

Lfϕ(φΓ(t, x′0)) = Lfϕ(φΓ(t, x′′0)) ∀t ∈ R. (7.27b)

Let t = 0, then Lfϕ(x′0) = Lfϕ(x′′0). Hence, (7.25) is satisfied.
To show that (7.25) implies (7.24), we define a convenient state transformation in-

spired by [27, p. 13]. In the new coordinates, the vector field has only one nonzero
component.

Let M = ϕ−1(a) be a smooth manifold. Define the smooth function η : M → R as

η(x) ≡ 1

||∇ϕ||2 (x), (7.28)

where∇ϕ is the gradient of ϕ. Define the vector field ξ as

ẋ = η(x)∇ϕ(x) = ξ(x). (7.29)

Let 〈∇ξ, f〉 ≡ Dξ(f) for all f . Then the total derivative of ϕ(ξ) is

Dϕ(ξ) = 〈∇ϕ, ξ〉 = η〈∇ϕ,∇ϕ〉 = 1, (7.30)

Now, we define the map F (·, ·) : M × [a, b]→ ϕ−1([a, b]) as

t 7→ ϕ ◦ F (x0, t) = c+ t, (7.31)

135

Paper B

where F (x0, t) is the solution of ξ from initial state x0. Now we use new coordinates
x = F (q); hence,

ẋ = DF (q)q̇ = f(x) (7.32a)

q̇ = (DF (q))−1f(F (q))︸ ︷︷ ︸
=f̃(q)

(7.32b)

We rewrite ϕ in q-coordinates

ϕ(x) = ϕ ◦ F (q)︸ ︷︷ ︸
=ϕ̃(q)

(7.33)

Let x1, x2 ∈M , then by (7.25)

Dϕf(x1) = Dϕf(x2). (7.34)

From (7.33), we get

dϕ̃(q) = dϕ(F (q))D(F (q))(q) (7.35)

and in f̃(q)

dϕ̃q(f̃(q)) = dϕF (q)D(F (q))q(DF (q))−1f(F (q)) (7.36)
= dϕF (q)f(F (q)). (7.37)

It is seen that ϕ̃ only depends on the last coordinate. Therefore,

ψ̃ = Dϕ̃f̃ = f̃n. (7.38)

Since ψ(x1, t) = ψ(x2, t) for any pair x1, x2 ∈ M and t ∈ [a, b], we have f̃n(x1, t) =
f̃n(x2, t). In other words, the nth component of the vector field f̃ is independent of its
first n− 1 coordinates. As a consequence the inclusion (7.24) holds.

Corollary 7: From (7.26) in the proof of Theorem 12, the time tSi
gi

= tSi
gi

= tigi in Proposition 34

can be calculated for a slice Sigi = (ϕi)−1([a, b]) by simulating a trajectory from any point x0 ∈
(ϕi)−1(b) and determining the time tigi , when φΓ(tigi , x0) ∈ (ϕi)−1(a).

In the remainder of the section, we identify the necessary relation between polyno-
mials ϕ,ψ ∈ R[x] that satisfy (7.25). Definitions related to polynomials are provided in
A.

In this work, we are only interested in using irreducible polynomials to subdivide the
state space, as they have a closed and connected variety [28, p. 90]. By using irreducible
polynomials, the generated slices are connected components, as desired. Finally, we
provide the relationship between polynomials ϕ,ψ ∈ R[x] that satisfy (7.25).

Theorem 13: Let ϕ,ψ ∈ R[x]. For any regular value a ∈ R, there exists b ∈ R such that

{x ∈ Rn| ϕ(x)− a = 0} ⊆ {x ∈ Rn| ψ(x)− b = 0}, (7.39)

where ϕ− a is irreducible if and only if

ψ = c0 + c1ϕ+ c2ϕ
2 + c3ϕ

3 + · · · . (7.40)

136

5 Generation of Timed Automaton from Finite Subdivision

Proof. First, we show that (7.40) implies (7.39). Let x̃ ∈ {x ∈ Rn| ϕ(x)− a = 0} then
by (7.40), ψ(x̃) is constant, i.e., there exists b ∈ R such that (7.39) is true.

The proof of the converse is more involved. By Theorem 14 from [29, p. 178], con-
dition (7.39) is equivalent to the existence of b ∈ R for any regular value a ∈ R such
that

(ψ − b) ∈ I(Z(ϕ− a)).

Theorem 14 states that for irreducible polynomials

I(ϕ− a) = I(Z(ϕ− a)).

Finally, by definition 101, this makes (7.39) equivalent to the existence of p ∈ R[x] and
b ∈ R for any regular value a ∈ R such that

ψ(x)− b = p(x)(ϕ(x)− a). (7.41)

Now we show that (7.41) is indeed equivalent to ψ(x) and ϕ(x) being related as shown
in (7.40). Pick a, a′, a′′ ∈ R any three regular values of ϕ(x) (such a choice is possible
by Sard’s theorem, as the set of critical values of ϕ has measure zero [30].), b, b′, b′′ ∈ R,
and let p, p′, p′′ ∈ R[x] such that

ψ(x)− b = p(x)(ϕ(x)− a) (7.42)
ψ(x)− b′ = p′(x)(ϕ(x)− a′) (7.43)
ψ(x)− b′′ = p′′(x)(ϕ(x)− a′′) (7.44)

For any x̃ ∈ ϕ−1(a′) then (7.42) becomes

b′ − b = p(x̃)(a′ − a) (7.45)

p(x̃) =
b′ − b
a′ − a = α. (7.46)

It follows that

{x ∈ Rn| ϕ(x)− a′ = 0} ⊆ {x ∈ Rn| p(x)− α = 0} (7.47)

By (7.41), this is equivalent to

p(x)− α = q(x)(ϕ(x)− a′). (7.48)

This implies that (7.42) is equivalent to the existence of q ∈ R[x1, . . . , xn] such that

ψ(x) = b+ (α+ q(x)(ϕ(x)− a′))(ϕ(x)− a). (7.49)

By inserting x̃ into (7.44) and repeating the previous procedure, we see that (7.44) is
equivalent to the existence of q′′ ∈ R[x] such that

ψ(x) = b′′ + (α′′ + q′′(x)(ϕ(x)− a′))(ϕ(x)− a′′), (7.50)

137

Paper B

where α′′ = (b′ − b′′)/(a′ − a′′). It is seen that (7.49) is equal to (7.50). Now let
x̄ ∈ ϕ−1(a′′), then

b+ (α+ q(x̄)(a′′ − a′))(a′′ − a) = b′′ (7.51)

q(x̄) =
b′′−b
a′′−a − α
a′′ − a′ = ᾱ. (7.52)

By rewriting q(x), similar to p(x) previously, (7.49) is equivalent to

ψ(x) = b+ (α+ (ᾱ+ r(x)(ϕ(x)− a′′))(ϕ(x)− a′))(ϕ(x)− a). (7.53)

By continuing this procedure, we see that ψ(x) should be some polynomial in ϕ(x), as
shown in (7.40). By hypothesis, ψ has a finite degree; hence, the procedure ends.

Essentially, (7.40) states that ψ must be a polynomial in ϕ to ensure that any level set
of ϕ is a subset of some level set of ψ.

6 Computation of Subdivisioning Functions

The purpose of this section is to show how to find subdivisioning functions that generate
a complete abstraction. The functions are found by solving either a linear or a sum of
squares optimization problem. If functions that allow the generation of a complete ab-
straction cannot be found with the imposed structure, the optimization problems provide
the best functions for generating a sound abstraction. In this context, a good choice of
subdivisioning functions gives a small difference between the times used in the guard and
invariant conditions.

Problem Formulation

We cannot search for polynomials ϕ and ψ with the relation shown in (7.40) using linear
or sum of squares optimization problems, as the coefficients of the polynomials would
appear in different powers. Therefore, we assume that ψ is an affine function of ϕ.

Proposition 35: Given a dynamical system Γ = (X, f), c0, c1, c0, c1 ∈ R, and a subdivisioning
function ϕ such that

c0 + c1ϕ(x) ≤ Lfϕ(x) ≤ c0 + c1ϕ(x) ∀x. (7.54)

Let CrV(ϕ) be the set of critical values of ϕ. Then for any pair of regular values a1 < a2, where
CrV(ϕ) ∩ [a1, a2] = ∅, and any x0 ∈ ϕ−1(a2) there exists t > 0 that satisfies

sign(c1a2 + c0)t ≤ sign(c1a2 + c0)
1

c1
log(

c0
c1

) log(
a2

a1
) , and (7.55a)

sign(c1a2 + c0)t ≥ sign(c1a2 + c0)
1

c1
log(

c0
c1

) log(
a2

a1
) (7.55b)

such that

φΓ(t, x0) ∈ ϕ−1(a1). (7.56)

138

6 Computation of Subdivisioning Functions

Proof. A subdivisioning function is defined to be decreasing for all x ∈ Rn\Cr(f);
hence, ϕ is decreasing for all x ∈ ϕ−1(a), where a is a regular value, i.e., a 6= CrV(ϕ).
Therefore, any solution initialized in ϕ−1(a2) reaches ϕ−1(a1) in some finite time. If
ψ(x) = c0 + c1ϕ(x), we have

ϕ(t) = ec1tϕ(0) +

∫ t

0

e(t−s)c1c0ds (7.57)

ϕ(t) = ec1tϕ(0) +
c0
c1

(ec1t − 1). (7.58)

For some ϕ(t) and ϕ(0), it is seen that

t =
1

c1
log(

c0
c1

) log(
ϕ(t)

ϕ(0)
). (7.59)

Substituting this in the inequality, with ϕ(0) = a2 and ϕ(t) = a1

sign(c1a1 + c0)t ≤ sign(c1a1 + c0)
1

c1
log(

c0
c1

) log(
a1

a2
). (7.60)

The second condition can be calculated in a similar manner.

Note that ψ(x) is required to be negative for any x ∈ X\Cr(f). Therefore, (c1a1+c0)
and (c1a1 + c0) should also be negative; hence, (7.55a) gives a lower bound on t and
(7.55b) gives an upper bound on t. Furthermore, it is seen from (7.55) that for c0 = c0
and c1 = c1, the abstraction generated by ϕ(x) is complete. Otherwise, we minimize
the time interval given by (7.55), to obtain the most accurate sound abstraction. This
is accomplished by minimizing the upper bound and maximizing the lower bound on ψ
given in (7.54). The procedure for this is provided next.

First, we make the polynomials ϕ,ψ homogeneous, to eliminate the constants c0 and
c0.

Definition 98 ([29]). A homogeneous polynomial (or form) is a polynomial where all
monomials have the same total degree d.

We can transform a polynomial into a homogeneous polynomial as follows.

Lemma 7 ([29]). Let f be any polynomial inR[x] of degree less than or equal to d. Then

f̄(x0, . . . , xn) = xd0f(
x1

x0
, . . . ,

xn
x0

) (7.61)

is a homogeneous polynomial of degree d.

It is very important to choose the degree d correctly, when generating the homoge-
neous polynomial, to ensure the following property.

Lemma 8. Let f and f̄ be related by (7.61). If d is even, then f(x) ≥ 0 for all x ∈ Rn if
and only if f̄(x) ≥ 0 for all x ∈ Rn+1.

139

Paper B

Proposition 36: Let ϕ,ψ ∈ R[x] and c0, c1 ∈ R. Then

ψ(x) ≤ c0 + c1ϕ(x) ∀x ∈ Rn (7.62)

if and only if

ψ̄(y) ≤ 1 + c1ϕ̄(y) ∀y ∈ Rn+1, (7.63)

where ϕ̄, ψ̄ ∈ R[x0, . . . , xn] are homogeneous polynomials of ϕ,ψ.

Proof. Let ϕ,ψ ∈ R[x] and c0, c1 ∈ R and let

ψ(x) ≤ c0 + c1ϕ(x) ∀x ∈ Rn. (7.64)

Then

ψ(x d
√
c0) ≤ c0 + c1ϕ(x d

√
c0) ∀x ∈ Rn. (7.65)

Let ϕ̄, ψ̄ ∈ R[x0, . . . , xn] be homogeneous polynomials of ϕ,ψ, then by definition of a
homogeneous polynomial

c0ψ̄(y) ≤ c0 + c0c1ϕ̄(y) ∀y ∈ Rn+1, (7.66)

hence

ψ̄(y) ≤ 1 + c1ϕ̄(y) ∀y ∈ Rn+1. (7.67)

From Proposition 36, we see that by considering homogeneous polynomials, only one
decision variable is needed to obtain each bound of (7.54).

Generation of Optimization Problem

As the vector field and the subdivisioning functions are polynomial, we will use sum
of squares optimization problems to compute subdivisioning functions. The following
explanation of sum of squares polynomials is based on [31, 32].

Definition 99. A polynomial p ∈ Pn,d is called sum of squares (SOS) if

p =

k∑

i=1

p2
i (7.68)

for some polynomials pi ∈ Pn with i = 1, . . . , k.

The set of sum of squares polynomials is a subset of nonnegative polynomials [31],
which can be treated using semidefinite programming, as described below. We denote the
set of sum of squares polynomials in n variables by Σn.

The existence of a sum of squares decomposition of a polynomial p ∈ Pn,d can be
expressed as a semidefinite programming feasibility problem. Therefore, the formulation

140

6 Computation of Subdivisioning Functions

of a problem as sum of squares makes the problem computationally tractable; however,
the number of decision variables in the program is

N =

(
n+ 2d

2d

)
. (7.69)

In the search of sum of squares polynomials, it is exploited that the existence of an SOS
decomposition of a polynomial p is equivalent to the existence of a matrix Q = QT ≥ 0
such that

p = ZTQZ, (7.70)

where Z is a vector of monomials of degree less than or equal to half the degree of p.
Let k, l ∈ Z>0, let αi,j ∈ R[x] for (i, j) ∈ k× l, and wj ∈ R. An SOS programming

problem is

minimize
(c1,...,cl)∈Rl

l∑

j=1

wjcj subject to

αi,0 +

l∑

j=1

αi,jcj ∈ Σn∀i = 1, . . . , k.

(7.71)

It is seen that an SOS programming problem is a minimization of a linear cost subject to
SOS feasibility constraints.

The main issue with sum of squares polynomials is that a polynomial may be nonneg-
ative, even though it cannot be represented as a sum of squares [32].

Now, we can find the subdivisioning function that gives the best abstraction, via a
sum of squares optimization problem. Note that this is very similar to the problem of
finding the maximum decay rate of a system, which can be formulated as a generalized
eigenvalue problem. This problem can be solved by the bisection method.

In the considered problem, we do not assume the system to be stable nor unstable;
hence, we cannot assume any sign of the decay rate. However, to avoid complicating
the optimization problems, we assume that the decay rate is positive (in the optimization
problem γ > 0), but if γ < 0 all maximizations should just be replaced with minimiza-
tions and vice versa.

Proposition 37: Suppose Γ = (X, f) is a polynomial system, then the subdivisioning function ϕ,
minimizing the upper bound of (7.63) is given by the following optimization problem

max γ subject to

1 + γϕ− Lfϕ ∈ Σn

−Lfϕ ∈ Σn

γ > 0

(7.72)

and the subdivisioning function ϕ, maximizing the lower bound of (7.63) is given by the following
optimization problem

min γ subject to

−1− γϕ+ Lfϕ ∈ Σn

−Lfϕ ∈ Σn

γ > 0.

(7.73)

141

Paper B

These optimization problems can be solved using the bisection method [33]. Note that
the previous optimization problems can be solved in tools such as SOSTOOLS [34]. This
is a tool that transforms sum of squares optimization problems into semidefinite programs
(SDPs), which can be directly solved using, e.g., SeDuMi. Solving SDPs is polynomial
time [35]; hence, the sum of squares optimization problem can be solved in polynomial
time, with the number of decision variables given by (7.69).

To clarify the statement, we also pose the optimization problem using LMIs, which
can be used for linear systems with quadratic subdivisioning functions. To say that a
symmetric matrix M is positive definite (positive semidefinite), we write M � 0 (M �
0).

Corollary 8: Suppose Γ = (X, f) is a linear system, with f(x) = Ax, and let ϕ(x) = xTPx,
where P is a symmetric n× n matrix. Define the matrix Q as

Q ≡ ATP + PA. (7.74)

Then the upper bound of (7.63) is given by the following optimization problem

max γ subject to

γP −Q � 0

Q ≺ 0, γ > 0.

(7.75)

and the subdivisioning function ϕ, maximizing the lower bound of (7.63) is given by the following
optimization problem

min γ subject to

γP −Q � 0

Q ≺ 0, γ > 0.

(7.76)

To show that functions generating complete abstractions do exist, we provide subdi-
visioning functions for a linear and a polynomial system in the following.

Consider the following linear system
[
ẋ1

ẋ2

]
=

[
1.275 1.25
−2.3125 −1.475

] [
x1

x2

]
. (7.77)

The subdivisioning function

ϕ(x) =
[
x1 x2

] [74 44
44 40

] [
x1

x2

]
(7.78)

satisfies the condition for completeness, as ϕ = 5Lfϕ.
For the polynomial system

[
ẋ1

ẋ2

]
=

[
x3

1x2

x2
1x

2
2

]
, (7.79)

a subdivisioning function

ϕ(x) = x2
1x2 (7.80)

is related to its derivative along the vector field via the relation 3ϕ2 = Lfϕ.

142

7 Illustrative Example

c ≤ 0.5

d ≤ 0.5

e(1,1)

c ≥ 0

c := 0
c ≤ 0.5

d ≤ 0.5

e(1,2)

c
≥

0,c
:=

0

c ≤ 0.5

d ≤ 0.5

e(2,1)

c ≥ 0

c := 0
c ≤ 0.5

d ≤ 0.5

e(2,2)

d
≥

0,d
:=

0

c ≥ 0.5

c := 0
c ≤ 0.5

d ≤ 0.5

e(1,3)

c
≥

0.
5,c

:=
0

c ≥ 0.5

c := 0
c ≤ 0.5

d ≤ 0.5

e(2,3)

d
≥

0,d
:=

0

d
≥

0.
5

d
:=

0

c
≥

0,c
:=

0

d
≥

0.
5,d

:=
0

c
≥

0.
5,c

:=
0

d
≥

0.
5,d

:=
0

c ≤ 0.5

d ≤ 0.5

e(3,1)

c ≥ 0

c := 0
c ≤ 0.5

d ≤ 0.5

e(3,2)

c ≥ 0.5

c := 0
c ≤ 0.5

d ≤ 0.5

e(3,3)

d
≥

0.
5

d
:=

0

d
≥

0.
5

d
:=

0

d
≥

0

d
:=

0

d
≥

0

d
:=

0

d
≥

0

d
:=

0

Figure 7.7: Timed automaton for the abstraction of the example at Figure 7.2.

7 Illustrative Example

In this section, we provide an abstraction of the system introduced in Section 1 and an
illustrative example of a subdivision of a state space for a polynomial dynamical system.

For example of a subdivision of the state space shown at Figure 7.2, the TA-abstraction
generates a timed automaton shown in Figure 7.7, where only the first nine locations are
illustrated.

The abstraction is complete; hence, it takes the same time for any solution to traverse
a slice. For the particular subdivision, where all cells are squares with a width and height
of 0.5, it takes 0.5 time units for any solutions to traverse a slice; hence, all guards and
invariants are 0.5 time units.

In the next example, we consider a two dimensional system that has the following
polynomial vector field

[
ẋ1

ẋ2

]
=

[
x2

1 + x2

x1 − x2 − 2

]
(7.81)

143

Paper B

and has a stable critical point in (x1, x2) = (−2,−4) and a saddle point in (x1, x2) =
(1,−1). To give an intuition about the behavior of trajectories of the vector field, the
vector field and nullclines are shown in Figure 7.8.

−5 0 5
−6

−4

−2

0

2

x1

x
2

Figure 7.8: Vector field with two equilibria. The two lines represent nullclines of the
vector field.

We generate a subdivision of the state space of the system, using the sum of squares
method shown in the previous section. This gives two subdivisioning functions

ϕ1(x) = − 0.000337x3
1 + 0.00178x2

1 − 0.00425x1x2 − 0.00670x1

+ 0.000381x4
2 + 0.00327x3

2 + 0.0107x2
2 + 0.0172x2 + 0.143

(7.82a)

ϕ2(x) = − 0.00617x3
1 − 0.00151x2

1x2 − 0.00676x2
1 − 0.0140x1x2

+ 0.0150x1 + 0.000757x3
2 + 0.0109x2

2 + 0.0351x2 − 1.921.
(7.82b)

Using the two subdivisioning functions, a timed automaton can be generated from the
subdivisioning of the state space. We do not show the timed automaton, but the subdivi-
sion of the state space is illustrated in Figure 7.9.

−5 0 5
−6

−4

−2

0

2

x1

x
2

Figure 7.9: Subdivision of the state space using ϕ1 (black) and ϕ2 (red).

An abstraction of the system will have one location per cell in the subdivision of
the state space. To allow the illustration of the timed automaton, we only show the part

144

8 Conclusion

c ≤ 2.16

d ≤ 0.75

c ≥ 0.02

c := 0
d ≤ 0.75

c
≥

0.
02

, c
:=

0

c ≤ 2.16
c ≥ 0.02

c := 0

d
≥

0.
00

4,
d

:=
0

c ≥ 0.02

c := 0

c ≤ 2.16

d ≤ 0.75

c ≥
0.02, c

:=
0

c ≥ 0.02

c := 0
c ≤ 2.16

d ≥
0.004, d

:=
0

d
≥

0
.0

04

d
:=

0

c ≥
0.02, c

:=
0

d ≥
0.004, d

:=
0 c

≥
0.
02

, c
:=

0

d
≥

0.
00

4,
d

:=
0

c ≤ 2.16

d ≤ 0.75

c ≥ 0.02

c := 0
d ≤ 0.5

c ≥ 0.02

c := 0

c ≤ 2.16

d ≤ 0.75

d
≥

0
.0

0
4

d
:=

0

d
≥

0
.0

04

d
:=

0

d
≥

0
.0

04

d
:=

0

d
≥

0
.0

04

d
:=

0

d
≥

0
.0

04

d
:=

0
Figure 7.10: Illustration of a timed automaton abstracting the system given in (7.81).

of the abstraction that surrounds the stable critical point in (x1, x2) = (−2,−4). The
guards and invariants are generated as shown in [11], by searching for the minimum and
maximum values of the derivative of the subdivisioning functions in each slice. The
timed automaton is illustrated in Figure 7.10, where the middle location abstracts the cell
containing the stable critical point. Therefore, no invariants are imposed in this location.
The abstraction is sound - not complete. We have excluded names on the locations, to
make the illustration more clear.

8 Conclusion

In this paper, a method for abstracting dynamical systems by timed automata is presented.
The abstraction is based on subdividing the state space of a dynamical systems using
sublevel sets of subdivisioning functions.

We show that a dynamical system can be abstracted completely by a timed automaton
if the functions that generate the subdivision of the state space have directional derivatives
along the vector field, that are functions of the subdivisioning function itself. This allows
the verification of dynamical systems by timed automata.

Additionally, we provide algorithms for finding subdivisioning functions; however,
we restrict the directional derivative of the subdivisioning function along the vector field
to be an affine function of the subdivisioning function itself, and not just a polynomial

145

Paper B

function of the subdivisioning function. The algorithms are presented as LMI and sum
of squares optimization problems, which can be used to verify polynomial dynamical
systems.

Finally, the method has been successfully applied on a polynomial system with two
equilibria.

A Proofs and Definitions

Proof of Proposition 34. We first show that the two conditions imply that A(S, T) is a
complete and refinable abstraction of Γ. Let x0 ∈ (ϕi)−1(aigi) then by (7.24)

φΓ(t, x0) ∈ Sigi ∀t ∈ (0, tigi), (7.83a)

φΓ(t, x0) ∈ Sigi ∩ Sigi−1 ∀t = tigi , and (7.83b)

φΓ(t, x0) ∈ Sigi−1 ∀t ∈ (tigi , t
i
gi + tigi−1). (7.83c)

Note that the valuation of the clock v(ci) = 0 for t = 0; hence, by condition 2

φA(t, αK(x0)) = αK(Sigi) ∀t ∈ (0, tigi), (7.84a)

φA(t, αK(x0)) = αK(Sigi) ∪ αK(Sigi−1) ∀t = tigi , and (7.84b)

φA(t, αK(x0)) = αK(Sigi−1) ∀t ∈ (tigi , t
i
gi + tigi−1

). (7.84c)

Hence, αK ◦ φΓ(t, x0) = φA(t, αK(x0)).
The other direction if proved by contradiction. In contradiction to (7.24), suppose that

x′0, x
′′
0 ∈ (ϕi)−1(aigi) and there exist τ ′ < τ ′′ such that

aigi−1 = ϕ(φΓ(τ ′, x′0)) (7.85)

aigi−1 = φΓ(τ ′′, x′′0). (7.86)

Then there exists ε > 0 such that

φΓ(τ ′, x′0) /∈ Sigi (7.87)

φΓ(τ ′′ − ε, x′′0) ∈ Sigi . (7.88)

Hence, αE ◦ φΓ(x′0, τ
′′ − ε) 6= αE ◦ φΓ(x′′0 , τ

′′ − ε), i.e., the abstraction cannot be
complete.

The following definitions can be found in [29] and [31].

Definition 100. An ideal I of R[x] is a subset of R[x] satisfying

1. 0 ∈ I .

2. If a, b ∈ I then a+ b ∈ I .

3. If a ∈ I and b ∈ R[x], then ab ∈ I .

Definition 101. Let S ⊆ R[x]. The ideal generated by S is

I(S) = {g1si + · · ·+ gnsn| n ∈ N, gi ∈ R[x], si ∈ S} . (7.89)

146

1 Proofs and Definitions

Definition 102. For any set S ⊆ Rn, I(S) denotes the ideal in R[x] consisting of all
polynomials vanishing on S, i.e., I(S) = {f ∈ R[x]| f(x) = 0∀x ∈ S}.
Definition 103. For any set S in R[x], Z(S) denotes the set of common zeros of S, i.e.,
Z(S) = {x ∈ Rn|f(x) = 0∀f ∈ S}.
Definition 104 (Irreducible Polynomial [28]). A polynomial p ∈ R[x] is called irre-
ducible if it is nonconstant and there exist no two nonconstant polynomials p1, p2 ∈ R[x]
such that

p = p1p2. (7.90)

Proposition 38 ([28]): Let V be a irreducible variety and V = ∪ri=1Vi, a union of closed subsets,
then V = Vi for some i.

Theorem 14 ([29]): Let K be a real closed field, and suppose f ∈ K[x] is irreducible. The follow-
ing are equivalent:

1. (f) is real.

2. (f) = I(Z(f)).

3. dim(Z(f)) = n− 1.

4. The polynomial f has a non-singular zero inKn (i.e., there is an x ∈ Kn such that f(x) = 0
and ∂f

∂xi
6= 0 for some i ∈ n).

5. The polynomial f changes sign onKn (i.e., there exist x, y ∈ Kn such that f(x)f(y) < 0).

References

[1] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science,
vol. 126, no. 2, pp. 183–235, April 1994.

[2] H. Guéguen, M.-A. Lefebvre, J. Zaytoon, and O. Nasri, “Safety verification and
reachability analysis for hybrid systems,” Annual Reviews in Control, vol. 33, no. 1,
pp. 25–36, 2009.

[3] E. Asarin, T. Dang, G. Frehse, A. Girard, C. L. Guernic, and O. Maler, “Recent
progress in continuous and hybrid reachability analysis,” in Proceedings of the 2006
IEEE Conference on Computer Aided Control Systems Design, Munich, Germany,
2006, pp. 1582–1587.

[4] M. Broucke, “A geometric approach to bisimulation and verification of hybrid
systems,” in Proceedings of the 37th IEEE Conference on Decision and Control,
Tampa, FL, USA, December 1998, pp. 4277–4282.

[5] O. Maler and G. Batt, “Approximating continuous systems by timed automata,”
in Formal Methods in Systems Biology, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008, vol. 5054, pp. 77–89.

[6] M. Kloetzer and C. Belta, “A fully automated framework for control of linear sys-
tems from temporal logic specifications,” IEEE Transactions on Automatic Control,
vol. 53, no. 1, pp. 287–297, February 2008.

147

Paper B

[7] I. Mitchell, A. Bayen, and C. Tomlin, “A time-dependent Hamilton-Jacobi formula-
tion of reachable sets for continuous dynamic games,” IEEE Transactions on Auto-
matic Control, vol. 50, no. 7, pp. 947–957, 2005.

[8] C. Sloth and R. Wisniewski, “Algorithmic approach to abstracting linear systems by
timed automata,” in Proceedings of the 18th IFAC World Congress, Milano, Italy,
August 2011, pp. 4546–4551.

[9] A. Abate, A. Tiwari, and S. Sastry, “Box invariance in biologically-inspired dynam-
ical systems,” Automatica, vol. 45, no. 7, pp. 1601–1610, 2009.

[10] R. Wisniewski and C. Sloth, “Abstraction of dynamical systems by timed automata,”
Modeling, Identification and Control, vol. 32, no. 2, pp. 79–90, 2011.

[11] C. Sloth and R. Wisniewski, “Verification of continuous dynamical systems by
timed automata,” Formal Methods in System Design, vol. 39, no. 1, pp. 47–82, 2011.

[12] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochas-
tic safety verification using barrier certificates,” IEEE Transactions on Automatic
Control, vol. 52, no. 8, pp. 1415–1428, August 2007.

[13] A. Tiwari and G. Khanna, “Nonlinear systems: Approximating reach sets,” in Hy-
brid Systems: Computation and Control, ser. Lecture Notes in Computer Science,
R. Alur and G. Pappas, Eds. Springer Berlin / Heidelberg, 2004, vol. 2993, pp.
171–174.

[14] A. Tiwari, “Abstractions for hybrid systems,” Formal Methods in System Design,
vol. 32, no. 1, pp. 57––83, 2008.

[15] A. Tiwari and G. Khanna, “Series of abstractions for hybrid automata,” in Hy-
brid Systems: Computation and Control, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2002, vol. 2289, pp. 425–438.

[16] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, 2009.

[17] M. Kloetzer and C. Belta, “Reachability analysis of multi-affine systems,” in Hy-
brid Systems: Computation and Control, ser. Lecture Notes in Computer Science,
J. Hespanha and A. Tiwari, Eds. Springer Berlin / Heidelberg, 2006, vol. 3927, pp.
348–362.

[18] C. Belta and L. C. Habets, “Controlling a class of nonlinear systems on rectangles,”
IEEE Transactions on Automatic Control, vol. 51, no. 11, pp. 1749–1759, November
2006.

[19] A. Girard and G. J. Pappas, “Approximation metrics for discrete and continuous
systems,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 782–798,
2007.

[20] G. E. Bredon, Topology and Geometry. Springer, 1993.

[21] L. W. Tu, An Introduction to Manifolds. Springer, 2008.

148

[22] M. W. Hirsch, Differential Topology. Springer, Heidelberg, 1976.

[23] S. Basu, R. Pollack, and M.-F. Roy, “Complexity of computing semi-algebraic de-
scriptions of the connected components of a semi-algebraic set,” in Proceedings of
the 1998 international symposium on Symbolic and algebraic computation. ACM,
1998, pp. 25–29.

[24] M. Sipser, Introduction to the Theory of Computation, 2nd ed. Thomson Course
Technology, 2006.

[25] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry,
2nd ed., ser. Algorithms and Computation in Mathematics. Springer, 2006, vol. 10.

[26] K. R. Meyer, “Energy functions for Morse Smale systems,” American Journal of
Mathematics, vol. 90, no. 4, pp. 1031–1040, 1968.

[27] J. W. Milnor, Morse Theory, ser. Annals of Mathematics Studies 51. Princeton
University Press, 1963.

[28] B. Hassett, Algebraic Geometry. Cambridge University Press, 2007.

[29] M. Marshall, Positive Polynomials and Sums of Squares. American Mathematical
Society, 2008, vol. 146.

[30] A. Sard, “The measure of the critical values of differentiable maps,” Bulletin Amer-
ican Mathematical Society, vol. 48, no. 12, pp. 883–890, 1942.

[31] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems,”
Mathematical Programming, vol. 96, no. 2, pp. 293–320, 2003.

[32] J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry. Springer, 1998.

[33] S. Boyd and L. E. Ghaoui, “Method of centers for minimizing generalized eigenval-
ues,” Linear Algebra and its Applications, vol. 188-189, pp. 63–111, 1993.

[34] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, “SOSTOOLS and its
control applications,” in Positive Polynomials in Control, ser. Lecture Notes in Con-
trol and Information Sciences. Springer Berlin / Heidelberg, 2005, vol. 312, pp.
273–292.

[35] B. Gärtner and J. Matousek, Approximation Algorithms and Semidefinite Program-
ming. Springer, 2012.

149

Paper C

Abstractions for Mechanical Systems

Christoffer Sloth and Rafael Wisniewski

This paper was published in:
Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods

for Nonlinear Control, August 2012

Copyright c©International Federation of Automatic Control (IFAC)
The layout has been revised

1 Introduction

Abstract

This paper proposes a method for discretizing the state space of mechanical sys-
tems. This is a first attempt in using reduction techniques for mechanical systems
in the subdivisioning of the state space. The method relies on a combination of
transversal and tangential manifolds for the conservative mechanical system. The
tangential manifolds are generated using constants of motion, which can be derived
from Noether’s theorem. The transversal manifolds are subsequently generated on a
reduced space, given by the Routhian, via action-angle coordinates. The method fully
applies for integrable systems.

We focus on a particular aspect of abstraction - subdividing the state space, as
existing methods can be applied on the discretized state space to obtain an automata-
based model. The contribution of the paper is to show that well-known reduction
methods can be used to generate abstract models, which can be used for formal veri-
fication.

1 Introduction

In the design of a safety-critical system, it is vital to formally verify the system before its
deployment. Formal verification can be used to prove the safety of a system, i.e., that no
admissible solution trajectory reaches a forbidden subset of the state space, see [1] for a
survey.

There exist lots of methods for verifying different properties of systems, and the
choice of a method should be done based on the dynamics of the considered system and
the properties that should be verified. A method for verifying timed and temporal speci-
fications of timed automata is presented in [2]. In addition, a framework for verifying the
safety of more general stochastic hybrid systems, by the use of Lyapunov-like functions
called barrier certificates, is presented in [3].

We generate an abstract model of a mechanical system based on a subdivision of the
state space, to verify the system. We follow the ideas of [4, 5] and generate the subdivision
using invariant sets. However, in contrast to [5] where box invariants are considered, the
proposed method uses more general sets, and in contrast to [4], we provide a method
for generating the tangential and transversal manifolds used in the subdivisioning for
mechanical systems. To allow the verification of timed and temporal specifications, we
abstract the system by a timed automaton instead of a directed graph, which is most
commonly used.

In this paper, we utilize symmetry reduction techniques used in mechanics to real-
ize the subdivision. We apply Lagrange-D’Alembert’s principle to model the mechani-
cal system. At first, we remove all dissipation and discretize the resulting conservative
system. Using the Lagrangian, we identify cyclic coordinates, and generate tangential
manifolds given by constants of motion of the system found via Noether’s theorem. Sub-
sequently, we generate transversal manifolds on a reduced system, given by the Routhian,
via the use of action-angle coordinates. Afterwards, we add the dissipation and obtain
a so-called transversal subdivision. This gives a finite discretization of the state space
for integrable mechanical systems. For more general mechanical systems, the effective-
ness of the method depends on the symmetries of the system. Note that our approach
is elementary as it is accomplished in coordinates, in contrast to abstract coordinate free
formalism for reductions in mechanical systems [6]. The generated abstract model is a

153

Paper C

timed automaton that can be checked in existing tools; hence, allowing the verification
of timed and temporal properties of the mechanical system. To delimit the content of the
paper, we only present the method for generating the subdivision, as the abstract model
subsequently can be generated using [7].

This paper is organized as follows. Section 2 contains preliminary definitions, Sec-
tion 3 explains how to make abstractions for a mechanical system, and Section 4 applies
the proposed subdivision on a model of the inverted pendulum on a cart. Finally, Section 5
comprises conclusions.

2 Preliminaries

The purpose of this section is to provide definitions related to dynamical systems and
subdivisions of state spaces.

Dynamical System

An autonomous dynamical system Γ = (X, f), with state space X ⊆ Rn and continuous
map f : X → Rn, has dynamics described by ordinary differential equations

ẋ = f(x). (8.1)

Let φΓ : [0, ε]×X0 → X , ε > 0 be the flow map satisfying

dφΓ(t, x0)

dt
= f (φΓ(t, x0)) (8.2)

for all t ∈ [0, ε] and x0 = φΓ(0, x0).
For a map f : A → B, and a subset C ⊆ A, f(C) ≡ {f(x)| x ∈ C}. Thus, the

reachable set of a system Γ from a set of initial states X0 ⊆ X on the time interval [t1, t2]
is

ΦΓ([t1, t2], X0). (8.3)

Subdivisioning

A definition of a cell, generated by a collection of functions is given below, where k
denotes the set {1, . . . , k}.

Definition 105 (Cell). Let Φ = {ϕi : Rn → R|i ∈ k} be a collection of functions, let
A = {Ai|i ∈ k} be a collection of sets of regular values, where Ai = {aji ∈ R|j ∈ Ii ⊆
N} is a set of regular values of ϕi and aji < aj

′

i if j < j′. Assume that the level sets
ϕ−1
i (aji) and ϕ−1

i′ (aj
′

i′) intersect transversally for all i 6= i′, j ∈ Ii, and j′ ∈ Ii′ . Then a
connected component of

k⋂

i=1

ϕ−1
i ([aji , a

j′

i]) (8.4)

with aji , a
j′

i ∈ Ai and j < j′ is called a cell.

154

2 Preliminaries

A finite subdivision E(Φ,A) is defined to be the collection of all cells generated by
Φ and A according to Definition 105.

Definition 106 (Transversal Subdivision). Let X be an open connected subset of Rn.
Suppose f : X → Rn is continuous and let Cr(f) be the set of critical points of f
(equilibria). Let Φ = {ϕi : X → R|i ∈ k} be a set of real differentiable functions,
where

Lfϕ(x) ≡
n∑

j=1

∂ϕ

∂xj
(x)f j(x) (8.5a)

and let A = {Ai|i ∈ k} be a collection of sets of regular values. Then the finite subdivi-
sion E(Φ,A) is said to be transversal (we call it a transversal subdivision) if for each cell
e ∈ E(Φ,A) there is a subdivisioning function ϕi ∈ Φ such that

Lfϕi(x) 6= 0 ∀x ∈ e\Cr(f) (8.5b)

and for all i ∈ k

Lfϕi(x) = 0 ∀x ∈ Cr(f). (8.5c)

It is seen from (8.5b) that at least one subdivisioning function has to have nonzero
gradient in each cell (8.5b); hence, the vector field should be transversal to the level
sets of at least one subdivisioning function. This is important in the generation of time
information for the abstraction.

Abstraction

To motivate the proposed abstraction procedure, it is briefly explained in the following.
For details see [7].

Consider a state space subdivided into a number of cells, as shown in Figure 8.1.
The abstraction procedure consists of first generating discrete locations E, representing
the cells. Second, an edge is added between two locations if there exists a trajectory
initialized in one cell that eventually reaches the adjacent cell. Finally, time information
is added as guards and invariants to quantify “eventually reached”. A timed automaton
is illustrated in Figure 8.1. The locations are denoted by e1, . . . , e4; there are two clocks
denoted by c and d. The transition between location e1 and e2 may happen whenever
the clock c ≥ 2 and must take place before the clock c exceeds 3. Once this transition
occurs, the clock c resets to 0. The timed automaton A models the system by bounding
the time that a trajectory can stay within a cell. We denote the reachable locations from
initial locations E0 on the time interval [t1, t2] by

ΦA([t1, t2], E0). (8.6)

To the subdivision E, we associate an abstraction function, which to each point in the
state space associates the cells that this point belongs to.

Definition 107 (Abstraction Function). Let E ≡ {eλ| λ ∈ Λ} be a finite subdivision of
the state space X . An abstraction function for E is the multivalued function defined by

αE : X → 2E , αE(x) = {e ∈ E| x ∈ e}.

155

Paper C

e4

e2e1

e3

c ≤ 3
d ≤ 5

e1
c ≤ 4
d ≤ 5

e2

c ≤ 3
d ≤ 1

e3
c ≤ 4
d ≤ 1

e4

c ≥ 2, c := 0

d ≥ 1
d := 0

c ≥ 2, c := 0

c ≥
2, c :=

0

d ≥
1, d :=

0

d ≥ 1
d := 0

Figure 8.1: A phase plot of a system and a subdivision of its state space. The behavior of
the system is abstracted by a timed automaton.

To be able to draw conclusions about the original system Γ based on the abstraction
A, it is essential to determine how the two models are related. This relation is given in
terms of reachable sets in the following.

Definition 108. Let Γ = (X, f) be a dynamical system, and suppose its state space X is
subdivided by E = {e1, . . . , ek}. Let the initial states X0 =

⋃
i∈I ei, with I ⊆ k. Then

an abstraction A with locations E and initial locations E0 = {ei|i ∈ I} is said to be

1. sound on an interval [t1, t2] if

αE ◦ ΦΓ(t,X0) ⊆ ΦA(t, αE(X0)), for all t ∈ [t1, t2]

2. complete on an interval [t1, t2] if

αE ◦ ΦΓ(t,X0) = ΦA(t, αE(X0)) for all t ∈ [t1, t2].

If a sound abstraction A is safe then Γ is also safe, as the abstraction reaches all
locations reached by Γ = (X, f). If a complete abstraction A is safe (unsafe) then Γ is
also safe (unsafe).

3 Method

In this section, the method for discretizing mechanical systems is presented. The dis-
cretization is accomplished in the following steps

(A) Discard all dissipation of the system and subdivide the state space of the conserva-
tive system using tangential and transversal manifolds.

(B) Add dissipation and select level sets to obtain a transversal subdivision, see Defini-
tion 106.

(C) Generate a timed automaton abstracting the system, according to [8].

156

3 Method

We show in Proposition 40 that a transversal subdivision generated by n subdivisioning
functions can be realized for integrable systems using the presented procedure.

First, we consider the mechanical system without dissipation, as this enables the iden-
tification of cyclic coordinates and first integrals or constants of motion. The constants
of motion are functions with level sets being tangential manifolds; hence, they are used
as subdivisioning functions. Then the model is reduced using Routh reduction [9]. This
reduced space is subdivided using transversal manifolds, which are generated via action-
angle coordinates. Finally, we add dissipation to the system. This implies that the system
trajectories no longer are confined to a certain constant of motion. Instead, the system
trajectories traverse the manifolds according to dynamics described by the dissipation.
This subdivision is shown to be transversal.

Discretizing Conservative Mechanical System

The aim of this subsection is to provide guidance for finding 2n mutually transversal sub-
divisioning functions for a conservative mechanical system with n degrees of freedom. It
is required to find 2n mutually transversal subdivisioning functions, i.e., functions whose
gradients are linearly independent at each point (except of critical points), to obtain arbi-
trary accuracy of the abstraction. The method consists of the following steps

1. Identify cyclic coordinates from the Lagrangian.

2. Find tangential manifolds via Noether’s theorem.

3. Reduce the system using Routh reduction.

4. Find transversal manifolds for the reduced system using action-angle coordinates.

We assume that the mechanical system with n degrees of freedom is described by n
Euler-Lagrange equations of motion in generalized coordinates.

Identification of Cyclic Coordinates

Recall that a coordinate qi is said to be cyclic if the Lagrangian of a system does not
depend on it.

From the Lagrangian of a system, it is seen that ∂L/∂qi = 0 if qi is cyclic; hence,
the generalized momentum ∂L/∂q̇i is constant. This means that cyclic coordinates iden-
tify symmetries of the system, where a symmetry is a transformation that generates a
displacement under which the system is invariant, e.g., a translation along a cyclic coor-
dinate. Therefore, each cyclic coordinate should be subdivided independently of the other
coordinates, i.e., if qi is a cyclic coordinate then

ϕ : (q, q̇) 7→ qi (8.7)

should be used as subdivisioning function. The cyclic coordinate should be discarded in
the remainder of the subdivisioning procedure.

157

Paper C

Identification of Tangential Manifolds

[4] proposes a partition based on tangential and transversal manifolds, generated by folia-
tions. This method is based on the local existence of m− 1 linear independent tangential
manifolds on Rm.

Definition 109. Suppose N1, . . . , Nk are co-dimension 1 submanifolds of Rm, and let
ν(Ni,R

m) be normal bundles of Ni (in Rm) [10, p. 253]. Then N1, . . . , Nk are said to
be linear independent manifolds, if for any x ∈ ⋂i∈kNi there exist (x, vi) ∈ ν(Ni,R

m),
i ∈ k with vi 6= 0, vi are linearly independent.

It is seen that the normal to the linear independent manifolds are linearly independent
at each point of their intersection. From Flow Box Theorem, see [11], it is seen that locally
there exist m− 1 tangential manifolds and one transversal manifold in the neighborhood
of a regular point.

We are interested in constructing the tangential manifolds without the use of solutions
of the differential equations. This motivates the identification of tangential manifolds, via
the Euler-Lagrange equations. In contrary to the local analysis, the presented method may
not identify 2n− 1 constants of motion; however, the tangential manifolds are identified
globally. The number of constants of motion that one can find for a given system is not a
priori known.

Following [12, p. 207], the function H is a first integral of the Hamiltonian phase
flow with Hamiltonian function H . This implies that we can always find one constant
of motion: the Hamiltonian. The Hamiltonian function should be used as a tangential
subdivisioning function

ϕ(q, q̇) = H(q, q̇). (8.8)

An integrable system has, per definition, n linear independent tangential manifolds.
These are also called functionally independent constants of motion. The Poisson bracket
is used in the definition of an integrable system. Recall that given two smooth real-valued
functions A and B defined on the phase space of a Hamiltonian system, the canonical
Poisson bracket of A and B is defined by

{A,B} =

N∑

i=1

(
∂A

∂qi
∂B

∂pi
− ∂B

∂qi
∂A

∂pi

)
, (8.9)

where (qi, pi) are conjugate pairs of canonical coordinates [13].

Definition 110 (Integrable System). A Hamiltonian systems in a 2n-dimensional sym-
plectic manifold is said to be integrable (in the Arnold-Liouville sense) if there exist n
functionally independent constants of motion that are in involution, meaning that they
pairwise satisfy

{Fi, Fj} = 0 ∀i, j. (8.10)

Constants of motion can be found, by using the symmetries of the system, given by
the cyclic coordinates, according to the following theorem [12, p. 88].

158

3 Method

Theorem 15 (Noether’s Theorem): LetM be a smooth manifold, L : TM → R a smooth function
on its tangent bundle TM . If the system (M,L) admits the one-parameter group of diffeomor-
phisms hs : M → M , s ∈ R, then the lagrangian system of equations corresponding to L has a
first integral I : TM → R. In local coordinates q on M the integral I is written in the form

I(q, q̇) =
∂L

∂q̇

dhs(q)

ds
s=0. (8.11)

From the theorem, it is seen that we can find one constant of motion per cyclic co-
ordinate, as the generalized momentum ∂L/∂q̇i is constant if qi is cyclic; hence, the
generalized momentum should be used as a tangential subdivisioning function

ϕ(q, q̇) =
∂L

∂q̇i
. (8.12)

In relation to Theorem 15, let M = Rn and let the first coordinate be a cyclic coordinate,
then hs : (q1, . . . , qn) 7→ (q1 + s, . . . , qn) is a one-parameter group. Note that symmetry
under translation corresponds to momentum conservation, symmetry under rotation to
angular momentum conservation, symmetry in time to energy conservation [14].

Reduction of the System

The remaining subdivision should be conducted on a reduced state space, given by the
following theorem, which can be used to restrict the dynamics of a system to a lower
dimensional surface using constants of motion, [15].

Theorem 16 (Routh Reduction): Let L : R2n → R be the Lagrangian for a system with n degrees
of freedom. Assume that q1 is a cyclic coordinate and that locally ∂2L/∂q̇1∂q̇1 6= 0 so that q̇1

can be expressed as q̇1 = %(q2, . . . , qn, q̇2, . . . , q̇n). Consider the Routhian Rµ : R2(n−1) → R

defined as the function Rµ = L − q̇1µ, where all instances of q̇1 are substituted by the function
% and momentum p1 = µ. The Routhian is now interpreted as the Lagrangian for a system with
(n− 1) degrees of freedom (q2, . . . , qn).

Any solution (q1(t), . . . , qn(t)) of the Euler-Lagrange equations of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n (8.13)

with momentum p1 = µ, projects onto a solution (q2(t), . . . , qn(t)) of the Euler-Lagrange equa-
tions

d

dt

∂Rµ

∂q̇k
− ∂Rµ

∂qk
= 0, k = 2, . . . , n. (8.14)

Conversely, any solution of the Euler-Lagrange equations for Rµ can be lifted to a solution of the
Euler-Lagrange equations for L with momentum p1 = µ.

Using Theorem 16, we can obtain Euler-Lagrange equations of reduced dimension,
which should be used in the generation of the transversal manifolds.

The idea of Routh reduction is to use the constants of motion as coordinates in the
system description. This enables the system to be analyzed using fewer coordinates, as
the system has no dynamics in the coordinates given by the constants of motion. The
concept is shown in Figure 8.2.

159

Paper C

{A,B} =

N∑

i=1

(
∂A

∂qi
∂B

∂pi
− ∂B

∂qi
∂A

∂pi

)
(8)

where (qi, pi) are conjugate pairs of canonical coordinates.

Definition 7. (Integrable System). A Hamiltonian systems
in a 2n-dimensional symplectic manifold is said to be
integrable (in the Arnold-Liouville sense) if there exist n
functionally independent constants of motion that are in
involution, meaning that they pairwise satisfy

{Fi, Fj} = 0 ∀i, j. (9)

Constants of motion can be found, by using the symmetries
of the system, given by the cyclic coordinates, according
to the following theorem (Arnold, 1989, p. 88).

Theorem 1. (Noether’s Theorem). Let M be a smooth
manifold, L : TM → R a smooth function on its tan-
gent bundle TM . If the system (M,L) admits the one-
parameter group of diffeomorphisms hs : M →M , s ∈ R,
then the lagrangian system of equations corresponding to
L has a first integral I : TM → R. In local coordinates q
on M the integral I is written in the form

I(q, q̇) =
∂L

∂q̇

dhs(q)

ds
s=0. (10)

From the theorem, it is seen that we can find one con-
stant of motion per cyclic coordinate, as the generalized
momentum ∂L/∂q̇i is constant if qi is cyclic; hence, the
generalized momentum should be used as a tangential
partitioning function

ϕ(q, q̇) =
∂L

∂q̇i
. (11)

In relation to Theorem 1, let M = Rn and let the first
coordinate be a cyclic coordinate, then hs : (q1, . . . , qn) 7→
(q1 + s, . . . , qn) is a one-parameter group. Note that sym-
metry under translation corresponds to momentum con-
servation, symmetry under rotation to angular momentum
conservation, symmetry in time to energy conservation
Butterfield (2005).

Reduction of the System The remaining partition should
only be conducted on a reduced state space, given by
the following theorem, which can be used to restrict the
dynamics of a system to a lower dimensional surface using
constants of motion.

Theorem 2. (Routh Reduction Langerock et al. (2010)).
Let L : R2n → R be the Lagrangian for a system with n
degrees of freedom. Assume that q1 is a cyclic coordinate
and that ∂2L/∂q̇1∂q̇1 6= 0 so that q̇1 can be expressed
as q̇1 = %(q2, . . . , qn, q̇2, . . . , q̇n). Consider the Routhian
Rµ : R2(n−1) → R defined as the function Rµ = L − q̇1µ,
where all instances of q̇1 are replaced by %. The Routhian
is now interpreted as the Lagrangian for a system with
(n− 1) degrees of freedom (q2, . . . , qn).

Any solution (q1(t), . . . , qn(t)) of the Euler-Lagrange equa-
tions of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n (12)

with momentum p1 = µ, projects onto a solution
(q2(t), . . . , qn(t)) of the Euler-Lagrange equations

d

dt

∂Rµ

∂q̇k
− ∂Rµ

∂qk
= 0, k = 2, . . . , n. (13)

0

2

4

6−5
0

5

−3

−2

−1

0

1

2

3

θ̇

θ

ẋ
c

Fig. 3. Simulation results of the inverted pendulum. The
two surfaces are level sets of the constants of motion.
The black line is the simulated trajectory.

Conversely, any solution of the Euler-Lagrange equations
for Rµ can be lifted to a solution of the Euler-Lagrange
equations for L with momentum p1 = µ.

Using Theorem 2, we can obtain Euler-Lagrange equations
of reduced dimension, which should be used in the gener-
ation of the transversal manifolds.

The idea of Routh reduction is to use the constants of
motion as coordinates in the system description. This
enables the system to be analyzed using fewer coordinates,
as the system has no dynamics in the coordinates given by
the constants of motion. This concept can be seen from
Fig. 3.

The figure illustrates two constants of motion and a
solution trajectory (black line) that is located at their
intersection; hence, the solution can be described using
only one coordinate (apart from the constants of motion).

Identification of Transversal Manifolds We have not
found general method for finding transversal manifolds;
however, for integrable systems, we can find transversal
manifolds via the use of action-angle coordinates.

Theorem 3. (Jose and Saletan (1998)). Consider a com-
pletely integrable Hamiltonian system with constants of
motion C1(q, p) = H(q, p), C1(q, p), . . . , Cn(q, p) which are
in involution. The hypersurfaces given by sets of constants
c = {ci|i ∈ n}

S(c) = {(q, p) ∈ T ∗Q|Ci(q, p) = ci, i = 1, . . . , n} (14)

are invariant under the flow of the Hamiltonian system. If
S(c) is compact and connected, then S(c) can be mapped
in a diffeomorphic way on a n-torus Tn = S1 × · · · × S1.
Each circle can be described by an angle coordinate θi(t)
with dynamics

dθi
dt

= Ωi(c), i = 1, . . . , n. (15)

From the theorem we see that for integrable systems we
can find a coordinate system, where n coordinates are
given by constants of motion and n coordinates which
are independent of each other and are given by trivial
dynamics. For each action-angle θi, a transversal partition
function

ϕi(q, p) = θi (16)

Figure 8.2: The two surfaces are level sets of the constants of motion. The black line is
the simulated trajectory.

The figure illustrates two constants of motion and a solution trajectory (black line)
that is located at their intersection; hence, the solution can be described using only one
coordinate (apart from the constants of motion).

Identification of Transversal Manifolds

We have not found general method for finding transversal manifolds; however, for inte-
grable systems, we can find transversal manifolds via the use of action-angle coordinates.

Theorem 17 ([16]): Consider a completely integrable Hamiltonian system with constants of motion
C1(q, p) = H(q, p), C1(q, p), . . . , Cn(q, p) which are in involution. The hypersurfaces given by
sets of constants c = {ci|i ∈ n}

S(c) = {(q, p) ∈ T ∗Q|Ci(q, p) = ci, i = 1, . . . , n} (8.15)

are invariant under the flow of the Hamiltonian system. If S(c) is compact and connected, then
S(c) can be mapped in a diffeomorphic way on a n-torus Tn = S1 × · · · × S1. Each circle can be
described by an angle coordinate θi(t) with dynamics

dθi
dt

= Ωi(c), i = 1, . . . , n. (8.16)

From the theorem we see that for integrable systems one can find a coordinate sys-
tem, where n coordinates are given by constants of motion and n coordinates which are
independent of each other and are given by trivial dynamics. For each action-angle θi, a
transversal subdivisioning function

ϕi(q, p) = θi (8.17)

should be used in the subdivision of the state space. For details in the synthesis of the
coordinate transformation, see [16].

160

3 Method

Note that the proposed method does not provide 2n linear independent subdivisioning
functions for all systems; however, for integrable systems they can be found via Theo-
rem 17. Therefore, the proposed subdivision can be applied to partly subdivide a state
space, and then the remaining part of the state space can be subdivided using, e.g., hyper-
cubes as used in most other abstraction procedures.

Obtaining Transversal Subdivision

The final step of the subdivisioning procedure is to check if the subdivision is transversal.
We show that a transversal subdivision can always be found for integrable systems.

Proposition 39: Let the system (M,L) be defined as shown in Theorem 15 with first integral in
local coordinates (U, ς)

I(q, q̇) =
∂L

∂q̇

dhs(q)

ds
. (8.18)

Then by adding external forces Q to the system, the time derivative of I becomes

d

dt
I(q, q̇) = Q

dhs(q)

ds
. (8.19)

Proof. Let φ : R → U , q = φ(t) be a local solution to the Lagrange equation. Since
hs preserves L, the translation of a solution, hs ◦ φ : R → U also satisfies the Lagrange
equations for any s.

Let the mapping Υ : R×R→ Rn, given by q = Υ(s, t) = hs(φ(t)). We will denote
the derivatives with respect to t by dots and with respect to s by primes. By hypothesis

∂L(Υ, Υ̇)

∂s
=
∂L

∂q
Υ′ +

∂L

∂q̇
Υ̇′ = 0 (8.20)

where the partial derivatives of L are taken at the point q = Υ(s, t), q̇ = Υ̇(s, t).
For any fixed s, Υ : R→ Rn satisfies

∂L

∂q
(Υ(s, t), Υ̇(s, t)) =

∂

∂t

(
∂L

∂q̇
(Υ(s, t), Υ̇(s, t))

)
−Q(Υ(s, t), Υ̇(s, t)) (8.21)

By inserting (8.21) into (8.20) we get
(
d

dt

∂L

∂q̇

)
Υ′ −QΥ′ +

∂L

∂q̇
Υ̇′ =

d

dt

(
∂L

∂q̇
q′
)
−QΥ′ = 0 (8.22a)

dI

dt
= QΥ′. (8.22b)

Proposition 40: Let (M,L) be an integrable system, and let k = 2n; thus, k = {1, . . . , 2n}. Then
there exists a collection of nonempty sets of regular values A = {Ai|i ∈ k} for the subdivisioning
functions Φ = {ϕi(q, q̇)|i ∈ k} (see Theorem 17), such that the generated subdivisionE = (Φ,A)
is transversal.

161

Paper C

Proof. Consider cells containing no critical points. Only one of the 2n subdivision-
ing functions should have a nonzero gradient in each cell. We look at points, where
dI/dt = 0, i.e., QΥ′ = 0. Let G = {(q, q̇)|QΥ′ = 0} and let Cr(f) be the set of
critical points. By the definition of transversality, the transversal subdivisioning func-
tions ϕi(q, q̇) are transversal to the vector field at each point in G\Cr(f), i.e., for each
transversal subdivisioning function given by (8.17)

ϕ̇i(q, q̇) 6= 0 ∀(q, q̇) ∈ G\Cr(f). (8.23)

This implies that there exists A such that the subdivision is transversal.

4 Example

The proposed abstraction is applied to an inverted pendulum. The units are omitted to
clarify the presentation.

The cart has a point mass mc, a position xc, velocity ẋc, and acceleration ẍc. The
pendulum is modeled as a point mass mp extended from the cart in a massless rod of
length l and has inertia Ip with respect to the point, where the pendulum is attached to
the cart. The angle of the pendulum with respect to the vertical axis is θ. Finally, the cart
is affected by a frictional force Ff = −kẋc. A state space model of the system is shown
in [17, p. 28], and we use the following parameter values: g = 9.82, l = 1, mp = 1,
mc = 2, Ip = 1, k = 1. The Lagrangian is

L(x) =
1

2
(mc +mp)ẋ2

c +
1

2
(Ip +mpl

2)θ̇2 +mpẋcθ̇l cos θ −mpgl cos θ. (8.24)

Discretizing Conservative Mechanical System

Identification of Cyclic Coordinates

The cart position xc is a cyclic coordinate, as ∂L/∂xc = 0. The subdivisioning function
for the cyclic coordinate is given by

ψ1(x) = xc. (8.25)

Identification of Tangential Manifolds

The Hamiltonian is a constant of motion. Therefore, we get the following subdivisioning
function

ψ2(x) =
1

2
(mc +mp)ẋ2

c +
1

2
(Ip +mpl

2)θ̇2 +mpẋcθ̇l cos θ +mpgl cos θ. (8.26)

Second, Theorem 15 is used to identify ∂L/∂ẋc as a constant of motion, since this is the
conjugate momentum corresponding to xc

ψ3(x) = (mc +mp)ẋc +mpθ̇l cos θ. (8.27)

The dimension of both ψ−1
2 (a2) and ψ−1

3 (a3) is two, and their intersection is one
dimensional [18, p. 114]; hence, there exist no more linearly independent tangential man-
ifolds. Level sets of ψ2(x) and ψ3(x) are shown in Figure 8.2.

162

4 Example

Reduction of the System

The reduced system only depends on the variables θ and θ̇, and has Routhian

Rµ(θ, θ̇) =− 1

2

(
µ−mpθ̇l cos θ

)2

mc +mp
+

1

2
(Ip +mpl

2)θ̇2 −mpgl cos θ (8.28)

where ψ3(x) = µ.

Identification of Transversal Manifolds

From Rµ(θ, θ̇), the momentum pθ ≡ ∂Rµ(θ, θ̇)/∂θ̇ can be expressed in terms of the
value of the hamiltonian function Hµ(θ, pθ) = Eµ corresponding to Rµ(θ, θ̇) and θ

pθ(θ,E
µ) = ±

√
2b

(
Eµ +

1

2

µ2

mc +mp
−mpgl cos θ

)
+ a2 (8.29)

where

a =
µmpl cos θ

mc +mp
, b = (Ip +mpl

2)− (mpl cos θ)2

mc +mp
.

The action variable is defined as

J =

∮
pdq, (8.30)

where the integration is over an entire period. In particular, if the pendulum takes a
full rotation, then the integration is from 0 to 2π. Otherwise the integration is from
the minimum angle to the maximum angle and back again. This angle can be found
from (8.29), as the momentum pθ is zero, when the pendulum reaches its minimum and
maximum angle. This expression is solved in Maple, and is a third degree polynomial
in cos(θ). The expression is not explicitly shown, as it is very long, but the graph of the
hamiltonian function Hµ as a function of θ and µ for pθ = 0 is shown in Figure 8.3.

It is seen that θ = π (hanging downwards), when µ = 0 and Hµ = −mpgl and there
are no solutions with lowerHµ when µ = 0. Furthermore, the pendulum swings between
θ and −θ + 2π until the value of the hamiltonian function gets greater that mpgl, where
the pendulum starts to do full rotations; hence, pθ 6= 0 everywhere.

The action variable J only depends on Eµ, not θ. Therefore, J = J(Hµ, µ) =
J(Eµ, µ) and

ẇ =
∂Hµ(J)

∂J
= v(J). (8.31)

The value of v as a function of Eµ and µ can be calculated in Maple, and relates to
frequency at which the pendulum oscillates. Finally, we get

w = v(J)t+ β. (8.32)

The action variable is not used as a subdivisioning function, as it is a constant, but
ψ4(x) = w is a transversal subdivisioning function.

163

Paper C

0 1 2 3 4 5 6-10
-5

0
5

10

0

5

10

θ

µ

H
µ

-5

-10

Fig. 4. Graph of Hµ as a function of θ and µ for pθ = 0.

motion equals the simulated trajectory exactly. Hence, the
intersection describes the reachable states of the system in
the (θ, θ̇, ẋc)-space.

Reduction of the System The reduced system only de-
pends on the variables θ and θ̇, and has Routhian

Rµ(θ, θ̇) =− 1

2

(
µ−mpθ̇l cos θ

)2

mc +mp
+

1

2
(Ip +mpl

2)θ̇2

−mpgl cos θ (27)

where ψ3(x) = µ.

Identification of Transversal Manifolds From Rµ(θ, θ̇),

the momentum pθ ≡ ∂Rµ(θ, θ̇)/∂θ̇ can be expressed in
terms of the value of the hamiltonian function Hµ(θ, pθ) =

Eµ corresponding to Rµ(θ, θ̇) and θ

pθ(θ,E
µ) = ±

√
2b

(
Eµ +

1

2

µ2

mc +mp
−mpgl cos θ

)
+ a2

(28)

where

a =
µmpl cos θ

mc +mp
, b = (Ip +mpl

2)− (mpl cos θ)2

mc +mp
.

The action variable is defined as

J =

∮
pdq, (29)

where the integration is over an entire period. In par-
ticular, if the pendulum takes a full rotation, then the
integration is from 0 to 2π. Otherwise the integration
is from the minimum angle to the maximum angle and
back again. This angle can be found from (28), as the
momentum pθ is zero, when the pendulum reaches its
minimum and maximum angle. This expression is solved
in Maple, and is a third degree polynomial in cos(θ). The
expression is not explicitly shown, as it is very long, but
the graph of the hamiltonian function Hµ as a function of
θ and µ for pθ = 0 is shown in Fig. 4.

It is seen that θ = π (hanging downwards), when µ = 0
andHµ = −mpgl and there are no solutions with lowerHµ

when µ = 0. Furthermore, the pendulum swings between
θ and −θ+ 2π until the value of the hamiltonian function
gets greater that mpgl, where the pendulum starts to do
full rotations; hence, pθ 6= 0 everywhere.

The action variable J only depends on Eµ, not θ. There-
fore, J = J(Hµ, µ) = J(Eµ, µ) and

ẇ =
∂Hµ(J)

∂J
= v(J). (30)

The value of v as a function of Eµ and µ can be calculated
in Maple, and relates to frequency at which the pendulum
oscillates. Finally, we get

w = v(J)t+ β. (31)

The action variable is not used as a partitioning function,
as it is a constant, but ψ4(x) = w is a transversal
partitioning function.

4.2 Generation of Abstraction

We do not show the abstraction of for the inverted pen-
dulum, but a detailed description of the abstraction pro-
cedure, including a method for calculating the invariants
and guards is shown in Wisniewski and Sloth (2011). We

use ψ̇i(x)

ψ̇1(x) = ẋc, ψ̇2(x) = −kẋc, ψ̇3(x) = −kẋ2
c . (32)

The value of ψ̇4(x) is again calculated in Maple. Now
regular values can be chosen to generate E in accordance
with Proposition 2.

The generated timed automaton is a sound abstraction
and can be automatically verified by a tool. Therefore, we
can verify timed temporal properties of the mechanical sys-
tem via the verification of the generated timed automaton.
Note that for integrable systems, we can generate arbitrary
small cells. Hence, the abstraction can be generated with
an arbitrary accuracy.

5. CONCLUSION

In this paper, we have provided a constructive method
for partitioning the state space of integrable mechanical
systems. This partitioning can be used in the abstraction
of the mechanical system by a combinatorial model such
as a timed automaton. The partition is generated by inter-
secting tangential and transversal manifolds. The genera-
tion of the manifolds is based on reduction techniques for
mechanical systems, via the Euler-Lagrange equations and
Noether’s theorem. We identify cyclic coordinates, find
constants of motion, and find transversal functions. The
method is presented and applied on the inverted pendulum
on a cart, showing its applicability for a nonlinear system.
Furthermore, it is shown that a transversal partition can
always be obtained for integrable systems using the pro-
posed partition.

REFERENCES

Abate, A., Tiwari, A., and Sastry, S. (2009). Box
invariance in biologically-inspired dynamical
systems. Automatica, 45(7), 1601–1610. doi:
10.1016/j.automatica.2009.02.028.

Alur, R. and Dill, D.L. (1994). A theory of timed
automata. Theoretical Computer Science, 126(2), 183–
235. doi:10.1016/0304-3975(94)90010-8.

Arnold, V. (1989). Mathematical Methods of Classical
Mechanics. Springer-Verlag, 2. edition.

Bredon, G.E. (1993). Topology and Geometry. Springer.

Figure 8.3: Graph of Hµ as a function of θ and µ for pθ = 0.

Generation of Abstraction

We do not show the abstraction of for the inverted pendulum, but a detailed description
of the abstraction procedure, including a method for calculating the invariants and guards
is shown in [8]. We use ψ̇i(x)

ψ̇1(x) = ẋc, ψ̇2(x) = −kẋc, ψ̇3(x) = −kẋ2
c . (8.33)

The value of ψ̇4(x) is again calculated in Maple. Now regular values can be chosen to
generate E in accordance with Proposition 40.

The generated timed automaton is a sound abstraction and can be automatically ver-
ified by a tool. Therefore, we can verify timed temporal properties of the mechanical
system via the verification of the generated timed automaton in tools such as Uppaal or
Kronos.

5 Conclusion

In this paper, we have provided a constructive method for subdividing the state space of
integrable mechanical systems. This subdivision can be used in the abstraction of the
mechanical system by a combinatorial model such as a timed automaton. The subdivi-
sion is generated by intersecting tangential and transversal manifolds. The generation of
the manifolds is based on reduction techniques for mechanical systems, via the Euler-
Lagrange equations and Noether’s theorem. The method is applied to the inverted pendu-
lum on a cart, showing its applicability for a nonlinear system. Furthermore, it is shown
that a transversal subdivision can always be obtained for integrable systems using the
proposed subdivision.

164

References

[1] H. Guéguen, M.-A. Lefebvre, J. Zaytoon, and O. Nasri, “Safety verification and
reachability analysis for hybrid systems,” Annual Reviews in Control, vol. 33, no. 1,
pp. 25–36, 2009.

[2] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science,
vol. 126, no. 2, pp. 183–235, April 1994.

[3] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochas-
tic safety verification using barrier certificates,” IEEE Transactions on Automatic
Control, vol. 52, no. 8, pp. 1415–1428, August 2007.

[4] M. Broucke, “A geometric approach to bisimulation and verification of hybrid
systems,” in Proceedings of the 37th IEEE Conference on Decision and Control,
Tampa, FL, USA, December 1998, pp. 4277–4282.

[5] A. Abate, A. Tiwari, and S. Sastry, “Box invariance in biologically-inspired dynam-
ical systems,” Automatica, vol. 45, no. 7, pp. 1601–1610, 2009.

[6] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. Springer-
Verlag, 1999.

[7] C. Sloth and R. Wisniewski, “Verification of continuous dynamical systems by
timed automata,” Formal Methods in System Design, vol. 39, no. 1, pp. 47–82, 2011.

[8] R. Wisniewski and C. Sloth, “Abstraction of dynamical systems by timed automata,”
Modeling, Identification and Control, vol. 32, no. 2, pp. 79–90, 2011.

[9] H. Goldstein, Classical Mechanics. Addison-Wesley, 1960.

[10] J. M. Lee, Introduction to Smooth Manifolds. Springer, 2000.

[11] J. P. Junior and W. de Melo, Geometric Theory of Dynamical Systems: An Introduc-
tion. Springer, 1980.

[12] V. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed. Springer-
Verlag, 1989.

[13] J. E. Marsden, Lectures on Mechanics. Cambridge University Press, 1992.

[14] J. Butterfield, “On symmetry and conserved quantities in classical mechanics,”
arXiv:physics/0507192v1, 2005.

[15] B. Langerock, F. Cantrijn, and J. Vankerschaver, “Routhian reduction for quasi-
invariant Lagrangians,” Journal of Mathematical Physics, vol. 51, no. 2, 2010.

[16] J. V. Jose and E. J. Saletan, Classical Dynamics: A Contemporary Approach. Cam-
bridge University Press, 1998.

[17] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

[18] G. E. Bredon, Topology and Geometry. Springer, 1993.

165

Paper D

Compositional Safety Analysis using Barrier Certificates

Christoffer Sloth, George J. Pappas, and Rafael Wisniewski

This paper was published in:
Proceedings of the 15th ACM International Conference on Hybrid Systems:

Computation and Control, 2012.

Copyright c©2012 ACM New York, NY, USA
The layout has been revised

1 Introduction

Abstract

This paper proposes a compositional method for verifying the safety of a dynam-
ical system, given as an interconnection of subsystems. The safety verification is
conducted by the use of the barrier certificate method; hence, the contribution of this
paper is to show how to obtain compositional conditions for safety verification.

We show how to formulate the verification problem, as a composition of coupled
subproblems, each given for one subsystem. Furthermore, we show how to find the
compositional barrier certificates via linear and sum of squares programming prob-
lems.

The proposed method makes it possible to verify the safety of higher dimensional
systems, than the method for centrally computed barrier certificates. This is demon-
strated by verifying the safety of an emergency shutdown of a wind turbine.

1 Introduction

Safety verification is an important part of developing a control system. Safety verifi-
cation ensures that a control system does not violate any state constraints. Numerous
methods have been developed for verifying the safety of a system; see [1] for a review.
These methods range over analytical methods, numerical simulation-based methods, and
discrete abstraction methods.

The safety verification determines if the reachable states of a system intersect a set of
unsafe states. Computing the reachable states of a dynamical system is in general very
difficult, as seen in [2]; hence, it may only be possible for systems of low dimension.
Therefore, several methods have been developed to approximate the reachable set of a
dynamical system. In [3], the reachable states are approximated based on simulated tra-
jectories, by exploiting that trajectories initialized close to each other stay in the proximity
of each other.

Another class of methods, e.g., [4] verifies the safety of a system, by using the vector
field to find invariant sets that do not include the unsafe states. Similarly, the papers [5, 6],
provide a method for calculating barrier certificates for safety analysis of continuous,
stochastic, and hybrid systems. The idea of these works is to find a barrier function that is
decreasing along system trajectories, and has a zero level set (a so called barrier), which
no solution trajectory crosses. If the set of initial states is a subset of the zero sublevel set
of the barrier function, and the set of unsafe states is in its complement, then the system
is safe.

Common to the previously mentioned methods is that they verify the safety of a sys-
tem, by studying a system directly. However, it may be beneficial to study a system as
an interconnection of subsystems, and decompose the verification problem into smaller
subproblems. This is suggested for compositional stability analysis in [7].

In this paper, we show how the barrier certificates in [5, 6] can be generated for a
system, given as an interconnection of subsystems. Compositional conditions are given
for finding barrier certificates. Additionally, linear matrix inequalities (LMIs) and sum of
squares (SOS) are used to generate the barrier certificates, which are solved numerically,
by use of SOSTOOLS for MATLAB [8].

The paper is organized as follows. Section 2 explains the verification problem in terms
of barrier certificates, and Section 3 explains how to reformulate the verification problem

169

Paper D

by a composition of certificates generated individually for each subsystem. Section 4
shows how to compute the barrier certificates, both via LMIs and polynomial inequalities.
Section 5 demonstrates the use of the method, by proving safety of a shutdown procedure
for a wind turbine, and Section 6 comprises conclusions.

2 Safety Verification using Barrier Certificates

In this section, we present the barrier certificate method, which can be used to verify the
safety of a dynamical system.

We consider a continuous system given as a system of ordinary differential equations

ẋ = f(x, d), (9.1)

where x ∈ Rn is the state and d ∈ D ⊆ Rm is the disturbance input.
For some measurable and essentially bounded disturbance function d̄ : R≥0 → D,

i.e., d̄ ∈ L∞(R≥0, D), we denote the solution of the Cauchy problem (9.1) with x(0) =

x0 on an interval [0, T] by φd̄x0
, i.e.,

dφd̄x0
(t)

dt
= f

(
φd̄x0

(t), d̄(t)
)

(9.2)

for almost all t ∈ [0, T] and φd̄x0
(0) = x0.

We consider a system given by Γ = (f,X,X0, Xu, D), where f : Rn+m → Rn is
continuous, X ⊆ Rn, X0 ⊆ X , Xu ⊆ X , and D ⊆ Rm. In the safety verification, we
only consider trajectories initialized in X0 that are contained in the set X . We verify if
there exists a trajectory that can reach an unsafe set Xu.

For a map f : A → B and subset C ⊂ A, we write f(C) ≡ {f(x)| x ∈ C}. Thus,
the safety of a system Γ is defined as follows.

Definition 111 (Safety). Let Γ = (f,X,X0, Xu, D) be given. A trajectory φd̄X0
:

[0, T]→ Rn is unsafe if there exists a time t ∈ [0, T] and a disturbance d̄ ∈ L∞(R≥0, D),
such that φd̄X0

([0, t]) ∩Xu 6= ∅ and φd̄X0
([0, t]) ⊆ X .

We say that a system Γ is safe if there are no unsafe trajectories.

For a function f : Rn → R, Z(f) denotes the set

Z(f) = {x ∈ Rn|f(x) = 0}. (9.3)

The safety property can be verified using the following.

Proposition 41 (Strict barrier certificate [5]): Let Γ = (f,X,X0, Xu, D) be given. If there exists
a differentiable function B : X → R satisfying

B(x) ≤ 0 ∀x ∈ X0, (9.4a)

B(x) > 0 ∀x ∈ Xu, and (9.4b)

LfB(x, d) < 0 ∀(x, d) ∈ Z(B)×D. (9.4c)

Then the system Γ is safe.

170

3 Compositional Barrier Certificates

B(x) ≤ 0
B(x) > 0

X

X0

Xu

Z(B)

Figure 9.1: Illustration of a setX , which contains the initial setX0 and the unsafe setXu.
The dashed line illustrates the zero level set of B.

Proposition 41 states that a trajectory initialized within the zero sublevel set of a func-
tionB, cannot cross the zero level setZ(B), ifB is decreasing (along system trajectories)
on the zero level set. This is illustrated in Figure 9.1.

The set of barrier certificates satisfying Proposition 41 is nonconvex, due to (9.4c).
However, the following more conservative proposition has a convex set of feasible barrier
certificates. The convexity property becomes apparent in the computation of the barrier
certificates in Section 4.

Corollary 9 (Weak barrier certificate [5, 6]): Let Γ = (f,X,X0, Xu, D) be given. If there exists a
differentiable function B : X → R satisfying

B(x) ≤ 0 ∀x ∈ X0, (9.5a)

B(x) > 0 ∀x ∈ Xu, and (9.5b)

LfB(x, d) ≤ 0 ∀(x, d) ∈ X ×D. (9.5c)

Then the system Γ is safe.

Corollary 9 states that a trajectory of a system initialized in a state within the zero sub-
level set of a nonincreasing function (along system trajectories), cannot reach the com-
plement of the zero sublevel set.

The difference between Proposition 41 and Corollary 9 is that (9.5c), in contrast to
(9.4c), must hold for all states and all disturbances. Additionally, the inequality constraint
(9.4c) is strict weathers it is weak in (9.5c).

3 Compositional Barrier Certificates

In this section, we assume that a dynamical system is given as an interconnection of
subsystems. This allows the safety verification to be split up into smaller subproblems in
addition to some coupling constraints.

To provide an overview of the proposed compositional setup, we initially consider an
example from [7], consisting of three interconnected subsystems. The interconnection of
the three subsystems is shown in Figure 9.2. Properties of the interconnected system are
to be analyzed by studying its components as isolated systems, in conjunction with their
coupling.

171

Paper D

Σ1 Σ2

Σ3

y1

y1
2

y2
2y3

d1

d3

d2

Figure 9.2: Interconnection of three subsystems Σ1,Σ2,Σ3.

Let each subsystem be described by a system of continuous ordinary differential equa-
tions and an output map

Σ1 :

{
ẋ1 = f1(x1, d1, u1)

y1 = h1(x1)
(9.6a)

Σ2 :

{
ẋ2 = f2(x2, d2, u2)

y2 = h2(x2)
(9.6b)

Σ3 :

{
ẋ3 = f3(x3, d3, u3)

y3 = h3(x3),
(9.6c)

where xi ∈ Xi ⊆ Rni is the state, di ∈ Di ⊆ Rmi is the disturbance, and ui ∈ Rqi
is an interconnection input, given by ui = gi(x1, . . . , x̂i, . . . , xk). Here, x̂i indicates
that xi is removed. Additionally, yi ∈ Rri is an interconnection output, given by the
map hi : Rni → Rri . Note that the interconnection of the subsystems gives a relation
between ui and yi. In Figure 9.2, y2 = (y1

2 , y
2
2), u1 = (y1

2 , y3), u2 = y1, and u3 = y2
2 .

The output yi belongs to the set

Yi ≡ hi(Xi) ⊆ Rri . (9.7a)

Similarly, ui belongs to the set

Ui ≡ gi(X1, . . . , X̂i, . . . , Xk) ⊆ Rqi . (9.7b)

In the remainder of the paper, we present a method for generating barrier certificates
for some general topology of the interconnection of subsystems.

Let k ∈ N be the number of subsystems. For i = 1, . . . , k we consider a system
Γ = ({fi}, {Xi}, {X0,i}, {Xu,i}, {Di}), where {fi} is a collection of continuous vector
fields with fi : Rni+mi+qi → Rni , Xi ⊆ Rni , X0,i, Xu,i ⊆ Xi, and Di ⊆ Rmi . Let

X = X1 × · · · ×Xk ⊆ Rn, (9.8a)
X0 = X0,1 × · · · ×X0,k ⊆ X, (9.8b)
Xu = Xu,1 × · · · ×Xu,k ⊆ X, (9.8c)
D = D1 × · · · ×Dk ⊆ Rm, (9.8d)

172

3 Compositional Barrier Certificates

U = U1 × · · · × Uk ⊆ Rq, and (9.8e)
Y = Y1 × · · · × Yk ⊆ Rr. (9.8f)

Remark 15: The assumption that the sets X and D are given as cartesian products of Xi and Di in
(9.8), limits the sets that can be directly expressed; however, by using multiple sets, the original set
can, in principle, be approximated. Therefore, the previous restriction does not theoretically restrict
the method, but it may complicate the computations involved in the safety verification.

In the following, we present two lemmas that show how to compose the inequality
constraints on the barrier function and its derivative in Proposition 41 into separate con-
straints for the subsystems and coupling constraints. We omit the proofs of both lemmas,
as they are straightforward.

In Lemma 9, we let the vector field be given as an interconnection of subsystems, and
show that (9.4c) can be composed into an inequality constraint for each subsystem, and a
coupling constraint.

Lemma 9. Let k ∈ N. Let x = (x1, . . . , xk) ∈ X , d = (d1, . . . , dk) ∈ D, u =
(u1, . . . , uk) ∈ U , y = (y1, . . . , yk) ∈ Y , where X , D, U , Y are given as shown in (9.8).
For i = 1, . . . , k let

ẋ1

...
ẋk

 =

f1(x1, d1, u1)

...
fk(xk, dk, uk)

 = f(x, d), (9.9a)

ui = gi(x1, . . . , x̂i, . . . , xk), (9.9b)
yi = hi(xi). (9.9c)

Suppose that there is a bijective map Υ : U → Y .
Then there exists a continuous function ϕ : Rn → R such that

ϕ(x)f(x, d) < 0 ∀(x, d) ∈ X ×D (9.10)

if for i = 1, . . . , k there exist continuous functions ϕi : Rni → R and γi : Rqi+ri → R

such that for all (xi, di, ui) ∈ Xi ×Di × Ui

ϕi(xi)fi(xi, di, ui) < γi(ui, h(xi)) and (9.11a)
∑

i

γi(ui, h(xi)) ≤ 0. (9.11b)

Lemma 9 can be used to decompose (9.4c) into an inequality constraint for each
subsystem in addition to a coupling constraint.

Lemma 10. Let k ∈ N. For i = 1, . . . , k let fi : Rni → R be a continuous function,
and Xi ⊆ Rni be compact. There exists a constant ci ∈ R for all i such that

fi(xi)− ci ≤ 0 ∀xi ∈ Xi and (9.12a)
∑

i

ci ≤ 0 ∀xi ∈ Xi (9.12b)

173

Paper D

if and only if
∑

i

fi(xi) ≤ 0 ∀xi ∈ Xi. (9.13)

Proof. See Paper E on page 196.

Using Lemma 9 and Lemma 10, we rewrite Proposition 41 as follows.

Proposition 42: Let k ∈ N and let the dynamical system Γ = ({fi}, {Xi}, {X0,i}, {Xu,i}, {Di})
be given. If there exist differentiable functions Bi : Xi → R, constants αi, βi ∈ R, and functions
γi : Rqi+ri → R for i = 1, . . . , k such that

Bi(xi) + αi ≤ 0 ∀xi ∈ X0,i, (9.14a)

Bi(xi)− βi > 0 ∀xi ∈ Xu,i, (9.14b)

LfiBi(xi, di, ui) < γi(ui, hi(xi)) ∀ui ∈ Ui, xi ∈ Z(Bi), di ∈ Di, (9.14c)

and ∑
i

αi ≥ 0,
∑
i

βi ≥ 0,
∑
i

γi(ui, hi(xi)) ≤ 0 ∀ui ∈ Ui, xi ∈ Z(Bi). (9.14d)

Then the system Γ is safe.

Proof. We show that Proposition 42 ensures that the conditions in Proposition 41 are
satisfied. Let x ≡ (x1, . . . , xk)T and B : Rn1+···+nk → R be defined as B(x) =∑
iBi(xi). By Lemma 10, (9.14a) and (9.14b) are by the satisfaction of (9.14d) equiva-

lent to

B(x) ≤ 0 ∀x ∈ X0, (9.15a)
B(x) > 0 ∀x ∈ Xu. (9.15b)

Finally, by (9.14c) and (9.14d)
∑

i

LfiBi(xi, di, ui) <
∑

i

γi(ui, hi(xi)) ≤ 0 ∀ui ∈ Ui, xi ∈ Z(Bi), di ∈ Di.

(9.15c)

This is by Lemma 9 equivalent to (9.4c). Hereby, the system Γ is safe.

The inequality constraints (9.14a)-(9.14c) must be satisfied for each subsystem, and
(9.14d) couples the subproblems. Notice that the function B is decreasing along the
solution, but each function Bi is not necessarily decreasing along the solution.

In the following, we rewrite Corollary 9 using the same technique.

Corollary 10: Let k ∈ N and let the dynamical system Γ = ({fi}, {Xi}, {X0,i}, {Xu,i}, {Di})
be given. If there exist differentiable functions Bi : Xi → R, constants αi, βi ∈ R, and functions
γi : Rqi+ri → R for i = 1, . . . , k such that

Bi(xi) + αi ≤ 0 ∀xi ∈ X0,i, (9.16a)

Bi(xi)− βi > 0 ∀xi ∈ Xu,i, (9.16b)

LfiBi(xi, di, ui) ≤ γi(ui, hi(xi)) ∀ui ∈ Ui, xi ∈ Xi, di ∈ Di, (9.16c)

174

4 Computation of Barrier Certificates

and ∑
i

αi ≥ 0,
∑
i

βi ≥ 0,
∑
i

γi(ui, hi(xi)) ≤ 0 ∀ui ∈ Ui, xi ∈ Xi. (9.16d)

Then the system Γ is safe.

Proposition 42 and Corollary 10 provide compositional conditions for the safety ver-
ification. In the next section, we show how to compute the barrier certificates.

4 Computation of Barrier Certificates

In this section, we show how to compute barrier certificates from the conditions set up in
Section 2 and Section 3.

Remark that any desired computational method may be applied to find the barrier
certificates, and that different methods can be applied on different subproblems for the
compositional conditions in Section 3. This is beneficial if some subsystems are linear
and others are polynomial.

To demonstrate the computation of barrier certificates, we show how to compute the
barrier certificates using sum of squares programming and linear programming. The pri-
mary focus is on sum of squares programming, as it is a generalization of linear pro-
gramming. Therefore, we only explicitly formulate LMI conditions for the solution of
Corollary 10.

To do the computations in a tool such as MATLAB, we restrict the vector fields to be
linear (for linear programs) and polynomial (for sum of squares programs). Furthermore,
we parameterize the barrier certificates as polynomials, respectively quadratic forms, and
require the invariant, initial, unsafe, and disturbance sets to be given by linear and poly-
nomial equality or inequality constraints.

First, we set up some notation about polynomials.

Definition 112 (Polynomial [9]). A polynomial p in n variables x1, . . . , xn is a finite
linear combination of monomials

p(x) =
∑

α

cαx
α =

∑

α

cαx
α1
1 · . . . · xαn

n , (9.17)

where cα ∈ R and the sum is over a finite number of n-tuples α = [α1, . . . , αn] with
αi ≥ 0.

The total degree of a monomial xα is α1 + · · ·+αn. Additionally, the total degree of
a polynomial is equal to the highest degree of its component monomials. The degree of a
polynomial p is denoted by deg(p).

We only consider polynomials with real valued variables, and denote the set of poly-
nomials in n variables by Pn. Recall that a map f : Rn → Rm is said to be polynomial if
its coordinate functions are polynomials, i.e., fi ∈ Pn for i = 1, . . . ,m; hence, f ∈ Pmn .

Sum of squares polynomials are used in the generation of safety certificates and are
explained in the following, based on [9].

175

Paper D

Definition 113. A polynomial p ∈ Pn is called sum of squares (SOS) if

p =

k∑

i=1

p2
i (9.18)

for some polynomials pi ∈ Pn with i = 1, . . . , k.

We denote the set of sum of squares polynomials in n variables by Σn.
The set of sum of squares polynomials is a subset of nonnegative polynomials [9],

which can be treated using semidefinite programming, as described below.
The existence of a sum of squares decomposition of a polynomial p ∈ Pn, with

d = deg(p), can be expressed as a semidefinite programming feasibility problem. There-
fore, the formulation of a problem as sum of squares makes the problem computationally
tractable; however, the number of decision variables in the program is

N =

(
n+ 2d

2d

)
=

(n+ 2d)!

2d!n!
. (9.19)

In the search for sum of squares polynomials, it is exploited that the existence of a SOS
decomposition of a polynomial p is equivalent to the existence of a positive semidefinite
matrix Q = QT ≥ 0 such that

p = ZTQZ, (9.20)

where Z is a vector of monomials of degree less than or equal to half the degree of p.
Let k, l ∈ N, let αi,j ∈ Pn for (i, j) ∈ {1, . . . , l} × {1, . . . , k}, and wj ∈ R. An

SOS programming problem is

minimize
(c1,...,ck)∈Rk

k∑

j=1

wjcj subject to (9.21a)

αi,0 +

k∑

j=1

αi,jcj ∈ Σn∀i = 1, . . . , l. (9.21b)

It is seen that an SOS programming problem is a minimization of a linear cost, subject to
SOS feasibility constraints.

Computation of Barrier Certificates

To compute barrier certificates using sum of squares programming, we restrict the vector
fields to be polynomial. Furthermore, the invariant, initial, unsafe, and disturbance sets
must be semialgebraic sets, i.e., be given by polynomial inequalities, as follows.

Let gX : Rn → RkX , gX0
: Rn → RkX0 , gXu : Rn → RkXu , and gD : Rm → RkD

for some kX , kX0 , kXu , kD ∈ N be given as vectors of polynomials gi ∈ Pn, i.e., for
example gX ∈ PkXn and gX = [g1, . . . , gkX]T. Then

X ≡ {x ∈ Rn|gX(x) ≥ 0}, (9.22a)
X0 ≡ {x ∈ Rn|gX0

(x) ≥ 0}, (9.22b)
Xu ≡ {x ∈ Rn|gXu(x) ≥ 0}, (9.22c)
D ≡ {d ∈ Rm|gD(d) ≥ 0}, (9.22d)

176

4 Computation of Barrier Certificates

where the inequalities in (9.22) are satisfied entry-wise.

Example 16. We show how (9.22) can be used to form a cylindrical set. Let x ∈ R3,
x1,min, x1,max, x2,c, x3,c, r ∈ R and gX be

gX(x) =

[
(x1 − x1,min)(x1,max − x1)

r2 − (x2 − x2,c)
2 − (x3 − x3,c)

2

]
. (9.23)

It is seen that gX(x) ≥ 0, when x1 ∈ [x1,min, x1,max] and (x2, x3) is in the disk centered
at (x2,c, x3,c) with radius r. This implies that the set X given by (9.22a) and (9.23) is a
cylinder.

In the computation of barrier certificates, we use a generalization of the S-procedure
[10], which is shown in Lemma 11.

Lemma 11. Let V be a subset of X ⊆ Rn. Let f ∈ Pn and g ∈ Pkn . Suppose g(x) ≥ 0
(element-wise) for any x ∈ V . If

1. λ ∈ Σkn and

2. f − λTg ∈ Σn.

Then f(x) ≥ 0 for all x ∈ V .

Now we can compute barrier certificates that satisfy Proposition 41 using sum of
squares.

Proposition 43: Let the system Γ = (f,X,X0, Xu, D) and polynomials g∗ shown in (9.22) be
given, and let ε1, ε2 > 0. If there exist B ∈ Pn, λX0 ∈ Σ

kX0
n , λXu ∈ Σ

kXu
n , λB ∈ Pn+m, and

λD ∈ ΣkDn+m such that

−B − λT
X0
gX0 , (9.24a)

B − ε1 − λT
XugXu , and (9.24b)

− LfB − ε2 − λT
DgD − λT

BB (9.24c)

are sum of squares. Then the system Γ is safe.

As Proposition 43 follows directly from Proposition 20 in [5], no proof is provided.
However, all conditions follow directly from Lemma 11. Consider (9.24a), where B ∈
Pn, gX0

∈ PkX0
n , λX0

∈ Σ
kX0
n , (9.24a)∈ Σn, and gX0

(x) ≥ 0 for any x ∈ X0. Then
B(x) ≤ 0 for all x ∈ X0.

Note that (9.24c) contains a scalar product between λB and B, which are both un-
known. This is the reason why the conditions in Proposition 43 cannot be found directly
by an SOS programming problem, neither by a linear program for quadratic B. There-
fore, we generate an iterative algorithm for solving the problem. This algorithm is similar
to iterative algorithms used for solving bilinear matrix inequalities via LMIs, see [11].

In the following iterative algorithm, it is necessary to get a feasible solution in each
step. Therefore, the barrier certificate is initially found for only a subset of the distur-
bances D̃ ⊆ D, initial conditions X̃0 ⊆ X0, etc., to ease the feasibility. Let cX ∈ RkX≥0

177

Paper D

xxmin xmax

cX

0
x̃min x̃max

Figure 9.3: Illustration of gX and the sets X = [xmin, xmax] and X̃ = [x̃min, x̃max], given
by gX and g̃X .

be a vector of nonnegative numbers. Let g̃X = gX − cX and define

X̃ ≡ {x ∈ Rn|g̃X(x) ≥ 0} ⊆ X. (9.25)

By decreasing each entry of cX , the set X̃ is enlarged, and if cX = 0 then X̃ = X . This
is illustrated in Figure 9.3 for a set given by gX(x) = (x− xmin)(xmax − x).

It is seen that the map gX generates the set X = [xmin, xmax] and X̃ = [x̃min, x̃max]. If
cX is greater than the maximum value of gX , then X̃ = ∅.

Algorithm 1: Let the system Γ = (f,X,X0, Xu, D) and polynomials g∗ shown in (9.22) be given.

0. Initialization: Choose vectors cX0 ∈ R
kX0
≥0 , cXu ∈ R

kXu
≥0 , cD ∈ R

kD
≥0 such that each entry

ci,∗ is sufficiently large and define polynomials g̃∗ ≡ g∗−c∗. Choose ε1, ε2 > 0 and specify
a polynomial λB ∈ Pn+m, e.g., by choosing λB = 0 or 1. Find B ∈ Pn, λX0 ∈ Σ

kX0
n ,

λXu ∈ Σ
kXu
n , and λD ∈ ΣkDn+m such that

−B − λT
X0
g̃X0 , (9.26a)

B − ε1 − λT
Xu g̃Xu , and (9.26b)

− LfB − ε2 − λT
D g̃D − λT

BB (9.26c)

are sum of squares.

1. Fix the barrier certificate: FixB obtained from the previous step. Choose vectors ∆c∗ ≥ 0
and update c∗, such that c∗ := c∗ −∆c∗ and redefine the polynomials g̃∗ ≡ g∗ − c∗. Find
λX0 ∈ Σ

kX0
n , λXu ∈ Σ

kXu
n , λB ∈ Pn+m, and λD ∈ ΣkDn+m such that (9.26) are sum of

squares.

2. Fix multiplier: Fix λB obtained in the previous step. Choose vectors ∆c∗ ≥ 0 and update
c∗, such that c∗ := c∗ − ∆c∗ and redefine the polynomials g̃∗ ≡ g∗ − c∗. Find B ∈ Pn,
λX0 ∈ Σ

kX0
n , λXu ∈ Σ

kXu
n , and λD ∈ ΣkDn+m such that (9.26) are sum of squares.

If all entries of the vector c∗ are zero, then terminate the algorithm; otherwise, go to step 1.

If Algorithm 1 terminates, then Γ is safe.
Algorithm 1 alternates between freezing the coefficients of λB and B, to remove

the product between the two unknown polynomials in (9.26c). Furthermore, the set of
disturbances and the sets for which B should be positive or negative are initially smaller
than D, X0 and Xu and are gradually enlarged until they are equal to X0 and Xu. In
the enlargement of the sets, it is important that a feasible solution is found in each step
of the algorithm. Notice that Algorithm 1 is not guaranteed to terminate or converge to

178

4 Computation of Barrier Certificates

the global optimum; however, this is a general problem with non-convex optimization
problems, see e.g. [12].

Corollary 9 can be solved directly, via the following SOS programming problem.

Corollary 11: Let the system Γ = (f,X,X0, Xu, D) and polynomials g∗ shown in (9.22) be
given, and let ε1 > 0. If there exist B ∈ Pn, λX0 ∈ Σ

kX0
n , λXu ∈ Σ

kXu
n , λX ∈ ΣkXn+m, and

λD ∈ ΣkDn+m such that

−B − λT
X0
gX0 , (9.27a)

B − ε1 − λT
XugXu , and (9.27b)

− LfB − λT
XgX − λT

DgD (9.27c)

are sum of squares. Then the system Γ is safe.

Computation of Compositional Barrier Certificates

In this subsection, we show how barrier certificates can be expressed in a compositional
manner, using SOS optimization for Proposition 42 and Corollary 10, and using LMIs for
Corollary 10. The interconnected system can be formulated as one system, but this would
increase the number of decision variables involved in the safety verification, compared
to the proposed compositional approach. This is an important issue when working with
SOS optimization, and is apparent from (9.19).

Let k ∈ N be the number of subsystems, and define g∗ ∈ Pk∗ . In the decomposition,
the considered sets are restricted, as shown in (9.8), where

Xi ≡ {xi ∈ Rni |gXi(xi) ≥ 0}, (9.28a)
X0,i ≡ {xi ∈ Rni |gX0,i(xi) ≥ 0}, (9.28b)
Xu,i ≡ {xi ∈ Rni |gXu,i(xi) ≥ 0}, (9.28c)
Di ≡ {di ∈ Rmi |gDi(di) ≥ 0}, (9.28d)
Ui ≡ {ui ∈ Rqi |gUi(ui) ≥ 0}. (9.28e)

Proposition 42 is written in terms of SOS in the following.

Proposition 44: Let k ∈ N, the polynomials g∗ shown in (9.28), and the dynamical system Γ =
({fi}, {Xi}, {X0,i}, {Xu,i}, {Di}) be given, and let ε1, ε2 > 0. If there exist Bi ∈ Pni , αi ∈ R,

βi ∈ R, γi ∈ Pqi+ri , λX0,i ∈ Σ
kX0,i
ni , λXu,i ∈ Σ

kXu,i
ni , λBi ∈ Pni+mi+qi , λDi ∈ Σ

kDi
ni+mi+qi

,

and λUi ∈ Σ
kUi
ni+mi+qi

such that

−Bi − λT
X0,i

gX0,i − αi, (9.29a)

Bi − ε1 − λT
Xu,igXu,i − βi, and (9.29b)

− LfiBi − ε2 + γi − λT
Di
gDi − λ

T
Bi
Bi − λT

Ui
gUi (9.29c)

are sum of squares and ∑
i

αi,
∑
i

βi, and −
∑
i

γi (9.29d)

are sum of squares. Then the system Γ is safe.

179

Paper D

Proposition 44 has a product between λT
Bi

and Bi, which implies that Algorithm 1
must be used to solve it. Additionally, dual decomposition should be used to decompose
the conditions; however, this is only demonstrated for the following SOS program for
solving Corollary 10.

Corollary 12: Let k ∈ N, the polynomials g∗ shown in (9.28), and the dynamical system Γ =
({fi}, {Xi}, {X0,i}, {Xu,i}, {Di}) be given, and let ε1 > 0. If there exist B ∈ Pni , αi ∈ R,

βi ∈ R, γi ∈ Pqi+ri , λX0,i ∈ Σ
kX0,i
ni , λXu,i ∈ Σ

kXu,i
ni , λXi ∈ Σ

kXi
ni+mi+qi

, λDi ∈ ΣkDni+mi+qi
,

and λUi ∈ Σ
kUi
ni+mi+qi

such that

−Bi − λT
X0,i

gX0,i − αi, (9.30a)

Bi − ε1 − λT
Xu,igXu,i − βi, and (9.30b)

− LfiBi + γi − λT
Xi
gXi − λ

T
Di
gDi − λ

T
Ui
gUi

(9.30c)

are sum of squares and ∑
i

αi,
∑
i

βi, and −
∑
i

γi. (9.30d)

are sum of squares. Then the system Γ is safe.

In the following, we show how to prove safety using LMIs based on Corollary 10.
The vector field fi is given by

ẋ = Aixi +B1,idi +B2,iui (9.31a)
yi = Cixi, (9.31b)

where Ai is an ni × ni matrix, B1,i is an ni ×mi matrix, B2,i is an ni ×mi matrix, and
Ci is an qi × ni matrix. We say that Bi(xi) = xT

i Pixi, g∗(xi) = xT
iG∗xi where Pi and

G∗ are symmetric matrices, and αi, βi ∈ R. Furthermore, we define γi as

γi =

[
ui
xi

]T [
Γu,i 0

0 Γx,i

] [
ui
xi

]
, (9.32)

where Γu,i and Γx,i are diagonal matrices.

Corollary 13: Let k ∈ N, the polynomials g∗ shown in (9.28), and the dynamical system Γ =
({fi}, {Xi}, {X0,i}, {Xu,i}, {Di}) be given, where {fi} is a collection of linear vector fields,
and G∗ is symmetric. If there exist Pi = P T

i , αi, βi ∈ R, and matrices Γu,i,Γx,i given in (9.32),
λX0,i ∈ R≥0, λXi ∈ R≥0, λDi ∈ R≥0, and λUi ∈ R≥0 such that

− Pi − λX0,iGX0,i − αiI ≥ 0 (9.33a)

Pi − λXiGXi − βiI > 0, and (9.33b)
AT
iPi + PiAi + λXiGXi PiB1,i PiB2,i CT

BT
1,iPi λDiGDi 0 0

BT
2,iPi 0 λUiGUi − Γu,i 0
C 0 0 −Γx,i

 < 0, (9.33c)

180

4 Computation of Barrier Certificates

and ∑
i

αi ≥ 0,
∑
i

βi ≥ 0,
∑
i

γi ≤ 0. (9.33d)

Then the system Γ is safe.

To practically solve the safety problem in Corollary 12, we set up an optimization
problem by use of dual decomposition [13]. Dual decomposition can be used to solve
different types of optimization problems. We consider only the following type of opti-
mization problem.

minimize f(x) = f1(x1, y) + f2(x2, y) subject to
x1 ∈ C1, x2 ∈ C2, h1(x1, y) + h2(x2, y) ≤ 0.

(9.34)

We decompose the optimization problem (9.34) into two separate optimization problems,
which are coupled through some additional decision variables as follows

minimize f(x) = f1(x1, y1) + f2(x2, y2) subject to
x1 ∈ C1, x2 ∈ C2, y1 = y2, h1(x1, y1) + h2(x2, y2) ≤ 0.

The dual problem can be set up, as f1 and f2 have no shared variables. The Lagrangian
for the problem is

L(x1, y1, x2, y2, λ1, λ2) = f1(x1, y1) + f2(x2, y2)

+λT
1(y1 − y2) + λ2 (h1(x1, y1) + h2(x2, y2)) .

(9.35)

Let λ = (λ1, λ2). The dual function becomes

ϕ(λ1, λ2) = ϕ1(λ1, λ2) + ϕ2(λ1, λ2), (9.36)

where

ϕ1(λ) = inf
x1,y1

(
f1(x1, y1) + λT

1y1 + λ2h1(x1, y1)
)
, (9.37a)

ϕ2(λ) = inf
x2,y2

(
f2(x2, y2)− λT

1y2 + λ2h2(x2, y2)
)
. (9.37b)

The optimization problems for ϕ1 and ϕ2 can be solved independently, given values for
λ1 and λ2. Finally, the master problem is

maximize ϕ1(λ1, λ2) + ϕ2(λ1, λ2), (9.38)

with variables λ1 and λ2.
To solve the master problem, we utilize the subgradient algorithm given in [14]. Note

that all functions in this paper are polynomial, thus differentiable; hence, other gradient
methods can be used instead of the subgradient method.

Let f : Rn → R be a convex function, and let x, y ∈ Rn. Then any vector g ∈ Rn
that satisfies

f(y) ≥ f(x) + gT(y − x) (9.39)

181

Paper D

is called a subgradient at x.
Let f : Rn → R be a convex function. Then the subgradient algorithm gives a

sequence of points {x(k)}∞k=0 according to

x(k+1) = x(k) −∆kg
(k), (9.40)

where x(k) is the kth iterate, x(0) is the initial point, g(k) is a subgradient of f at x(k), and
∆k is the step size. When the function f to be minimized is differentiable, then g(k) is
the unique gradient of f at point x(k).

For diminishing step size, the algorithm is guaranteed to converge to the optimal
value, see [15]. Therefore, we use the following diminishing step size

∆k =
a

b+ k
, (9.41)

where a > 0 and b ≥ 0.
The following algorithm is used to solve the dual decomposition for the problem

shown in (9.34). Note that we denote by x̄(k)
1 and ȳ(k)

1 the optimal values of x1 and y1 for
problem (9.37a) at iteration k, given some λ1, λ2.

Algorithm 2: Given an optimization problem, as shown in (9.34).

0. Initialization: Let k = 0, define the step size ∆k, and choose some λ(0)
1 , λ(0)

2 , ε > 0.

1. Solve subproblems:
Solve (9.37a) to find x̄(k)

1 and ȳ(k)
1 ,

solve (9.37b) to find x̄(k)
2 and ȳ(k)

2 .

2. Update dual variables:
λ

(k+1)
1 := λ

(k)
1 −∆k(ȳ

(k)
2 − ȳ(k)

1),
λ

(k+1)
2 := λ

(k)
2 + ∆k(h1(x̄

(k)
1 , ȳ

(k)
1) + h2(x̄

(k)
2 , ȳ

(k)
2)),

k := k + 1.
If |λ(k+1)

1 − λ(k)
1 | > ε, then go to step 1. Otherwise, terminate the algorithm.

Note that step 2 in Algorithm 2 tries to maximize (9.38).
The first observation in the considered problem is that γi has to be a diagonal matrix;

otherwise, the cost of the optimization problem is not linear. For convenience, we let
γ̄i be a vector containing the diagonal elements of γi. Let λ ≡ (λ1, λ2, λ3) the dual
function is

ϕ(λ) =
∑

i

ϕi(λ), (9.42)

where

ϕi(λ) ≡ inf
αi,βi,γ̄i

−λ1αi − λ2βi + λT
3 γ̄i (9.43)

subject to

−Bi − λT
X0,i

gX0,i
− αi, (9.44a)

Bi − ε1 − λT
Xu,i

gXu,i − βi, and (9.44b)

− LfiBi + γi − λT
Di
gDi

(9.44c)

182

5 Example

Aerodynamics Drive train

Tower

Ft

vt

ωr
Trvw

Tgβ

Figure 9.4: Wind turbine modeled as an interconnection of three subsystems.

are sum of squares.
Remark that λ3 is a vector. The dual problem becomes

sup
λ≥0

∑

i

ϕi(λ). (9.45)

In the following, we explain how the subgradient algorithm can be used to solve the
previous optimization problem. Let α∗i (λ) be the optimal value of αi for a given λ. Then
the gradients of ϕ1(λ), . . . , ϕk(λ) are

gi(λ) =
[
α∗i (λ) β∗i (λ) γ∗i (λ)

]
. (9.46)

From (9.39) and (9.46), we get for all µ ≡ (µ1, µ2, µ3) and i = 1, . . . , k

ϕi(µ) ≥ ϕi(λ) + gi(µ− λ). (9.47)

The function to be maximized is ϕ(λ) =
∑
i ϕi(λ), which has a gradient g(λ(k)) =∑

i gi(λ
(k)). The vector of multipliers is updated according to (9.40), and is

λ(k+1) = λ(k) −∆kg
T
(
λ(k)

)
. (9.48)

It is seen that if
∑
i αi ≥ 0 is violated, then λ(k+1)

1 > λ
(k)
1 , as the first element of

g(λ(k)) is negative. This puts a larger penalty on the violation of the constraint through
the dual variable λ1.

5 Example

In this section, we demonstrate the applicability of the compositional safety analysis,
by analyzing the safety of an emergency shutdown of a wind turbine. The emergency
shutdown procedure is simplified for presentation, and the wind turbine model is a slight
modification of the CART3 wind turbine model [16].

The wind turbine is modeled as an interconnection of three subsystems: aerodynamics
(subsystem 1), tower (subsystem 2), and drive train (subsystem 3). A block diagram of
the wind turbine is shown in Figure 9.4.

The wind turbine is driven by an exogenous input - the wind vw. Via the aerodynam-
ics, the wind exerts a torque Tr on the rotor shaft, and a force Ft on the top of the tower.

183

Paper D

This bends the tower and makes the rotor shaft rotate. The rotor shaft is connected to a
generator through a gear and a generator shaft. A converter applies a torque Tg to the
generator shaft.

The magnitude of the torque Tr and the force Ft depends on the pitch angle β, the
rotor speed ωr, and the wind speed at the rotor vw − vt, given by the speed of the wind vw
and the velocity of the tower vt. These relations are usually described by lookup tables
(Cp and Ct tables); however, we approximate them by polynomials.

In case of severe faults, a wind turbine is shut down by pitching the blades to an angle
of β = 90◦, while applying a constant generator torque Tg = 3, 580 Nm, until the rotor
speed is below a threshold of 0.77 rad/s, from which it is not possible to apply a torque
from the generator; hence, the wind turbine is left uncontrolled. At a pitch angle of 90◦,
the aerodynamic thrust is acting in the opposite direction of the nominal rotation; hence,
it decelerates. Additionally, by applying a relatively high generator torque, the rotor shaft
is decelerated even faster. This may cause the tower to sway too much or twist the rotor
shaft beyond the limit accepted by the turbine structure. Therefore, we verify that this
does not happen. The subsystems of the wind turbine are modeled as shown in (9.49),
and will be left without further explanation.

[
v̇r
ω̇r,f

]
=

[
−cvrvr + (vw − vt)
−cωr,fωr,f + ωr

]

h1 =

[
p1

p2

]
,

(9.49a)

[
v̇t
ẋt

]
=

[
1
Mt

(Ft −Btvt − ktxt)

vt

]

h2 = vt

(9.49b)

ω̇r

θ̇∆

ω̇g

 =

1
Jr

(Tr − krθ∆ −Br(ωr − 1
Ng
ωg))

ωr − 1
Ng
ωg

1
Jg

(
1
Ng

(krθ∆ +Br(ωr − 1
Ng
ωg))− Tg

)

h3 = ωr

(9.49c)

where

p1 =
(
c11 + c12ωr,f + c13vr + c14ω

2
r,f + c15v

2
r + c16ωr,fvr

)
v3

r (9.49d)

p2 = (c21 + c22ωr,f + c23vr + c24v
2
r + c25ωr,fvr)v

2
r + c26 + c27ω

2
r,f (9.49e)

The parameters of the wind turbine are the following: Mt = 7.76 · 103 kg, Bt =
18.6 kN/(m/s), kt = 2.7 MN/m, Ng = 43, Jr = 611.1 · 103 kgm2, Br = 24 kNm/(rad/s),
kr = 24.7 ·106 Nm/rad, cvr = 11.65, cωr,f = 21, c11 = −32.42 ·106, c12 = −746.0 ·106,
c13 = 53.03·106, c14 = −1.128·109, c15 = −18.63·106, c16 = 384.6·106, c21 = 8492.6,
c22 = 300.88 · 103, c23 = −11.85 · 103, c24 = 3584.0, c25 = −90.32 · 103, c26 = 318.3,
and c27 = 1.692 · 106. We have omitted the units on the constants c∗, as they have no
physical interpretation.

184

5 Example

The considered region of the state space is

X1 = [2, 28]× [0.77, 4], (9.50a)
X2 = [−0.01, 0.07]× [−0.05, 0.05], (9.50b)

X3 = [0.77, 4]× [−25, 25] · 10−3 × [33.2, 172.7]. (9.50c)

Furthermore, the inputs to the subsystems take values in the following sets

D1 = [5, 25], (9.51a)
U1 = [0.77, 4]× [−0.5, 0.5], (9.51b)

U2 = [1.3554, 94.413] · 103, (9.51c)

U3 = [−141.86, −0.126] · 106. (9.51d)

It is chosen to initialize the system in the so called full load region, corresponding to a
wind speed between 11.7 m/s and 25 m/s, where the wind turbine is operated at a constant
rotor speed of 3.88 rad/s; hence, the set of initial states is

X0,1 = [11.7, 25]× [3.8, 3.95], (9.52a)
X0,2 = [−0.005, 0.005]× [0.01, 0.02], (9.52b)

X0,3 = [3.8, 3.95]× [6.25, 6.27] · 10−3 × [164, 171]. (9.52c)

We should verify that the following unsafe sets cannot be reached

Xu,1 = [2, 3] ∪ [27, 28]× [0.77, 4], (9.53a)
Xu,2 = [−0.01, 0] ∪ [0.06, 0.07]× [−0.04, −0.03] ∪ [0.03, 0.04], (9.53b)

Xu,3 = [0.77, 4]× [−25, −10] · 10−3 ∪ [10, 25] · 10−3 × [33.2, 172.7]. (9.53c)

Now the verification problem has been set up, and we do the verification using Corol-
lary 12. To allow the verification, we need to characterize Xi, X0,i , Xu,i, and Ui by
polynomials. This is accomplished as by specifying a maximum value xmax and mini-
mum value xmin of some variable x, and then defining

g ≡ −(x− xmin)(x− xmax). (9.54)

The polynomial g is nonnegative for x ∈ [xmin, xmax] and otherwise negative.
To give an impression of the convergence of the algorithm, the values of the multi-

pliers λ1, . . . , λ6 are shown in Figure 9.5. The safety of the system is verified by Corol-
lary 12, and the barrier function is

B(x) = 0.0388ω2
r θ

2
∆ + 0.0350ω2

r θ∆ + 0.748ω2
r − 0.00869ωrωg + 0.569ω2

g

− 0.00332ωgθ∆ + 1.223θ2
∆ − 97.0 · 10−6v2

t xt − 0.256v2
t

+ 0.00173vtx
2
t − 2.15vtxt + 0.0658vt − 0.755x2

t + 0.0785xt

+ 0.00387v2
r − 0.00943vrωr,f − 0.107vr + 0.0207ω2

r,f + 0.103ωr,f

+ 1.609.

(9.55)

185

Paper D

0 5 10 15 20 25 30 35 40 45 50
0

1

2

Iteration number

Figure 9.5: Values of the multipliers λ as a function of the number of iterations.

6 Conclusion

We have presented a method for verifying the safety of an interconnection of subsystems.
The method is based on the identification of barrier certificates, where the certificates are
found for each subsystem, but are coupled through some additional constraints.

The presented method allows the safety verification of higher dimensional systems, as
the verification is decomposed into smaller coupled subproblems, and allows subsystems
to be analyzed with different computational methods.

The method has been used to verify the safety of an emergency shutdown procedure
for a wind turbine.

References

[1] H. Guéguen, M.-A. Lefebvre, J. Zaytoon, and O. Nasri, “Safety verification and
reachability analysis for hybrid systems,” Annual Reviews in Control, vol. 33, no. 1,
pp. 25–36, 2009.

[2] I. Mitchell, A. Bayen, and C. Tomlin, “A time-dependent Hamilton-Jacobi formula-
tion of reachable sets for continuous dynamic games,” IEEE Transactions on Auto-
matic Control, vol. 50, no. 7, pp. 947–957, 2005.

[3] A. Girard and G. Pappas, “Verification using simulation,” in Hybrid Systems: Com-
putation and Control, ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2006, vol. 3927, pp. 272–286.

[4] A. Abate, A. Tiwari, and S. Sastry, “Box invariance in biologically-inspired dynam-
ical systems,” Automatica, vol. 45, no. 7, pp. 1601–1610, 2009.

[5] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochas-
tic safety verification using barrier certificates,” IEEE Transactions on Automatic
Control, vol. 52, no. 8, pp. 1415–1428, August 2007.

[6] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier
certificates,” in Hybrid Systems: Computation and Control, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2004, vol. 2993, pp. 271–274.

[7] U. Topcu, A. Packard, and R. Murray, “Compositional stability analysis based on
dual decomposition,” in Proceedings of the 48th IEEE Conference on Decision and
Control, December 2009, pp. 1175–1180.

186

[8] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, “SOSTOOLS and its
control applications,” in Positive Polynomials in Control, ser. Lecture Notes in Con-
trol and Information Sciences. Springer Berlin / Heidelberg, 2005, vol. 312, pp.
273–292.

[9] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems,”
Mathematical Programming, vol. 96, no. 2, pp. 293–320, 2003.

[10] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities
in System and Control Theory, ser. SIAM studies in applied mathematics. SIAM,
1994, vol. 15.

[11] J. Helton and O. Merino, “Coordinate optimization for bi-convex matrix inequal-
ities,” in Proceedings of the 36th IEEE Conference on Decision and Control, De-
cember 1997, pp. 3609–3613.

[12] T. Iwasaki, “The dual iteration for fixed-order control,” IEEE Transactions on Auto-
matic Control, vol. 44, no. 4, pp. 783–788, April 1999.

[13] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decomposition meth-
ods,” 2008.

[14] N. Z. Shor, K. C. Kiwiel, and A. Ruszcayǹski, Minimization methods for non-
differentiable functions. New York, NY, USA: Springer-Verlag New York, Inc.,
1985.

[15] B. T. Polyak, “Subgradient methods: A survey of Soviet research,” in Proceedings
of a IIASA Workshop, ser. Nonsmooth Optimization, vol. 3, 1977, pp. 5–29.

[16] J. Laks, L. Pao, and A. Wright, “Control of wind turbines: Past, present, and future,”
in Proceedings of the 2009 American Control Conference, June 2009, pp. 2096–
2103.

187

Paper E

On the Existence of Compositional Barrier Certificates

Christoffer Sloth, Rafael Wisniewski, and George J. Pappas

This paper was published in:
Proceedings of the 51st IEEE Conference on Decision and Control, December

2012.

Copyright c©2012 IEEE
The layout has been revised

1 Introduction

The paper is modified to accommodate the assessment committee’s corrections.

Abstract

This paper provides a necessary and sufficient condition for the compositional
verification of a continuous system with additively separable barrier functions. The
compositional safety verification enables the verification of an interconnection of sub-
systems. The idea behind the compositional analysis is to allow the verification of
systems with a high dimension, by the verification of multiple lower dimensional
subproblems. In the compositional safety analysis, a particular structure is imposed
on the barrier certificate, restricting the applicability of the method.

Some examples that can be verified to be safe using the centralized method can-
not be verified using the compositional method. These examples highlight how not
to decompose systems, and should be used to guide the decomposition of a system
into appropriate subsystems. Finally, we provide a refined condition for the compo-
sitional safety analysis that enables the verification of the more general systems, by
imposing a less restrictive structure of the barrier function, but the refined method has
an increased computational complexity.

1 Introduction

Safety verification is a necessary part of developing safety-critical control systems, where
a malfunction may have severe consequences. The safety verification ensures that a con-
trol system does not violate any state constraints. Numerous methods have been devel-
oped for verifying the safety of a system; see [1] for a survey. These methods range
over analytical methods, numerical simulation-based methods, and discrete abstraction
methods.

The safety verification determines if the reachable set intersects a set of unsafe states.
The computation of the reachable states for a dynamical system is in general very dif-
ficult [2], and it may only be possible to calculate approximate the reachable states for
systems of low dimension. According to [3], safety verification is applicable for systems
with approximately five or less continuous states. Therefore, several methods have been
developed to approximate the reachable set of a dynamical system. In [4], the reachable
states are approximated using a finite number of simulated trajectories, and exploiting an
incremental stability condition.

Another class of methods, e.g., [5, 6] verifies the safety of a system, by using the
vector field to find invariant sets that do not include the unsafe states. Similarly, the
papers [7, 8] provide a method for calculating barrier certificates for safety analysis of
continuous, stochastic, and hybrid systems. The idea of these works is to find a barrier
function that is decreasing along system trajectories, and has a zero level set (a so-called
barrier), which no solution trajectory crosses. If the set of initial states is a subset of the
zero sublevel set of the barrier function, and the set of unsafe states is in its complement,
then the system is safe.

The generation of the barrier certificates is similar to the generation of Lyapunov
functions for proving stability. Therefore, it is important to use a computational method
that scales well. Therefore, linear matrix inequalities (LMIs) and sum of squares (SOS)
are used to generate the barrier certificates [9].

191

Paper E

Common to the previously mentioned methods is that they verify the safety of a sys-
tem, by studying a system directly. However, it may be beneficial to study a system as
an interconnection of subsystems, and decompose the verification problem into smaller
subproblems. This is suggested for compositional stability analysis in [10] and an analy-
sis framework based on assume-guarantee reasoning is presented in [11]. In addition, a
compositional method for generating barrier certificates is proposed in [12].

In this paper, we show when compositional barrier certificates can be generated using
the method presented in [12]. It is shown that barrier certificates generated by the compo-
sitional method are additively separable functions. This implies that the decomposition
of a system into subsystems should be generated such that an additively separable barrier
certificate exists. Otherwise, the compositional method fails to verify the system. This is a
very restrictive assumption; hence, the method is not as general as the centralized method
presented in [7, 8]. However, in oppose the centralized method, the compositional method
scales very well.

To alleviate potential issues with the compositional method, we propose another safety
condition that is capable of handling more systems, but the method has a higher compu-
tational complexity.

To shorten the presentation, we only consider so-called weak barrier certificates, but
the results apply for strict barrier certificates as well. Furthermore, we do not show how
to algorithmically generate the certificates. Details about the generation of barrier certifi-
cates can be found in [12].

The paper is organized as follows. Section 2 explains the verification problem in terms
of barrier certificates, and Section 3 explains the compositional condition for generating
barrier certificates. Section 4 classifies the barrier certificates that can be generated by
the compositional method, and Section 5 proposes a more general method for doing the
compositional safety analysis. Finally, Section 6 comprises conclusions.

2 Barrier Certificates

In this section, we present the barrier certificate method, which can be used to verify the
safety of a dynamical system.

We consider a continuous system given as a system of ordinary differential equations

ẋ = f(x), (10.1)

where x ∈ Rn is the state. Compared to [7, 8, 12] on which this paper is based, the
disturbance input to the system is omitted to clarify the presentation. However, the results
in this paper can be easily extended to include disturbances.

We denote the solution of the Cauchy problem (10.1) with x(0) = x0 on an interval
[0, T] by φx0 , i.e.,

dφx0(t)

dt
= f (φx0

(t)) (10.2)

for all t ∈ [0, T].
We consider a system given by Γ = (f,X,X0, Xu), where f : Rn → Rn is con-

tinuous, X ⊆ Rn, X0 ⊆ X , and Xu ⊆ X . In the safety verification, we only consider

192

3 Compositional Barrier Certificates

trajectories initialized in X0 that are contained in the set X . We verify if there exists a
trajectory that can reach an unsafe set Xu.

For a map f : A → B and subset C ⊂ A, we write f(C) ≡ {f(x)| x ∈ C}. Thus,
the safety of a system Γ is defined as follows.

Definition 114 (Safety). Let Γ = (f,X,X0, Xu) be given. A trajectory φX0
: [0, T] →

Rn is unsafe if there exists a time t ∈ [0, T], such that φX0
([0, t]) ∩ Xu 6= ∅ and

φX0
([0, t]) ⊆ X .
We say that a system Γ is safe if there are no unsafe trajectories.

To verify the safety of Γ, we use the following proposition. We do not consider the
so-called strict barrier certificate in this paper, as the weak barrier certificate is more com-
putationally tangible. However, the results presented in the paper can easily be derived
for strict barrier certificates.

Proposition 45 (Weak barrier certificate [7, 8]): Let Γ = (f,X,X0, Xu) be given. If there exists a
differentiable function B : X → R satisfying

B(x) ≤ 0 ∀x ∈ X0, (10.3a)

B(x) > 0 ∀x ∈ Xu, and (10.3b)

LfB(x) ≤ 0 ∀x ∈ X. (10.3c)

Then the system Γ is safe.

Proposition 45 states that a trajectory of a system initialized in a state within the
zero sublevel set of a nonincreasing function (along system trajectories), cannot reach the
complement of the zero sublevel set.

Notation

For k ∈ N. Given x = (x1, . . . , xk) ∈ Rn1 × · · · × Rnk , with xi ∈ Rni , we define
x̂i ≡ (x1, . . . , xi−1, xi+1, . . . , xk). Similarly, given a sequence of maps (h1, . . . , hk),
we define ĥi ≡ (h1, . . . , hi−1, hi+1, . . . , hk).

3 Compositional Barrier Certificates

In this section, we pose the safety verification as a compositional problem, by assuming
that a dynamical system is given as an interconnection of subsystems. This is based on
conditions given in [12].

First, we provide the definition of an interconnected system and provide a small ex-
ample, to give the necessary intuition. Note that any system (10.1) can be given as an
interconnection of subsystems.

Definition 115. Let Γ = (f,X,X0, Xu) be a dynamical system with

ẋ = f(x), (10.4)

where x ∈ Rn is the state.

193

Paper E

Σ1 Σ2

Σ3

y1

y1
2

y2
2y3

Figure 10.1: Interconnection of three subsystems Σ1,Σ2,Σ3.

Let k ∈ N and x = (x1, . . . , xk). For i = 1, . . . , k, let xi ∈ Rni , let gi : Rn−ni →
Rmi and hi : Rni → Rqi be continuous maps, and let q ≡∑i qi. LetX = X1×· · ·×Xk,
X0 = X0,1 × · · · × X0,k, and Xu = Xu,1 × · · · × Xu,k. We say that the system Γ =
({fi}, {Xi}, {X0,i}, {Xu,i}) with

ẋi = fi(xi, gi(x̂i)),

yi = hi(xi)
(10.5)

where the map gi gives the inputs to subsystem i and that the map hi gives the outputs of
subsystem i for i = 1, . . . , k is an interconnected system of f(x) if

f(x) =

f1(x1, g1(x̂1))
...

fi(xi, gi(x̂i))
...

fk(xk, gk(x̂k))

(10.6)

for all x ∈ X and there exist maps ei : Rq−qi → Rmi such that

gi = ei ◦ ĥi. (10.7)

The compositional setup is clarified by providing a system consisting of three inter-
connected subsystems. The interconnection of the three subsystems is shown in Fig-
ure 10.1.

Let each subsystem be described by a system of continuous ordinary differential equa-
tions and an output map

Σ1 :

{
ẋ1 = f1(x1, g1(x̂1))

y1 = h1(x1)
(10.8a)

Σ2 :

{
ẋ2 = f2(x2, g2(x̂2))

y2 = h2(x2)
(10.8b)

Σ3 :

{
ẋ3 = f3(x3, g3(x̂3))

y3 = h3(x3),
(10.8c)

194

4 Existence of Compositional Barrier Certificates

where xi ∈ Xi ⊆ Rni is the state and yi ∈ Rqi is the output given by the map hi :
Rni → Rqi . Note that the interconnection of the three subsystems is defined by ei :
Rq−qi → Rmi . From Figure 10.1, it is seen that

e1 :(y1
2 , y

2
2 , y3) 7→ (y1

2 , y3), (10.9a)
e2 :(y1, y3) 7→ y1, (10.9b)

e3 :(y1, y
1
2 , y

2
2) 7→ y2

2 . (10.9c)

Note that the interconnected system induces a natural graph structure, where there are
no self-loops and there is only one edge from one vertex to another. The graph can be
described by an adjacency matrix E ∈ Rk × Rk, where E(i, j) = 1 if there is an edge
between subsystem i and j, with the head at subsystem i and the tail at subsystem j. Note
that the ith row of E can be derived from ei. For the graph in Figure 10.1 the adjacency
matrix is

E =

0 1 1
1 0 0
0 1 0

 . (10.10)

Finally, we can state the combinatorial condition for safety.

Corollary 14 ([12]): Let k ∈ N and let the dynamical system Γ = ({fi}, {Xi}, {X0,i}, {Xu,i})
be given. If there exist differentiable functionsBi : Xi → R, constantsαi, βi ∈ R, and continuous
functions γi : Rqi+mi → R for i = 1, . . . , k such that

Bi(xi) + αi ≤ 0 ∀xi ∈ X0,i, (10.11a)

Bi(xi)− βi > 0 ∀xi ∈ Xu,i, (10.11b)

LfiBi(xi, gi(x̂i)) ≤ γi(hi(xi), gi(x̂i)) ∀(xi, x̂i) ∈ Xi × X̂i, (10.11c)

and ∑
i

αi ≥ 0,
∑
i

βi ≥ 0,
∑
i

γi(hi(xi), gi(x̂i)) ≤ 0 ∀(xi, x̂i) ∈ Xi × X̂i. (10.11d)

Then the system Γ is safe.

4 Existence of Compositional Barrier Certificates

In this section, we show that Proposition 45 and Corollary 14 are equivalent, if ϕ is
assumed to be additively separable and the differential of the output maps has constant
rank. First, we define an additively separable function and state a necessary assumption
on the output map. Then we provide three lemmas from which the main theorem follows.
Finally, we provide two examples, one of which the compositional method cannot be used
to verify.

Definition 116. Let k ∈ N and i = 1, . . . , k. We say that a function ϕ : Rn → R is
additively separable in x = (x1, . . . , xk) if there exist functions ϕi : πi(R

n)→ R, where
πi is a projection that takes (x1, . . . , xk) to xi such that

ϕ(x) =
∑

i

ϕi(xi) ∀x ∈ Rn, (10.12)

where xi ∈ Rni and n =
∑
i ni.

195

Paper E

Lemma 15 relies on the generation of a coordinate transformation that can be gener-
ated if the following assumption on the output map holds.

Assumption 2: Let Dhi be the differential of hi. For i = 1, . . . , k

Dhi(xi) (10.13)

has constant rank.

The assumption guarantees that an output cannot occasionally ”disappear”.
A necessary and sufficient condition is given below for the composition of inequality

constraints.

Lemma 12. Let k ∈ N. For i = 1, . . . , k, let ni ∈ N, fi : Rni → R be a continuous
function, and Xi ⊆ Rni be compact. There exist constants ci ∈ R such that

fi(xi)− ci ≤ 0 ∀xi ∈ Xi and (10.14a)
∑

i

ci ≤ 0 (10.14b)

if and only if
∑

i

fi(xi) ≤ 0 ∀xi ∈ Xi. (10.15)

Proof. It is seen that (10.14) implies (10.15), by summing (10.14a) for i = 1, . . . , k

∑

i

fi(xi) ≤
∑

i

ci ∀xi ∈ Xi, (10.16)

which by (10.14b) is bounded from above by zero.
To show that (10.15) implies (10.14), let

Γ̄ ≡ sup{
∑

i

fi(xi)|xi ∈ Xi},

x̄ ≡ arg sup{
∑

i

fi(xi)|xi ∈ Xi},

Γ̃ ≡
∑

i

sup{fi(xi)|xi ∈ Xi}, and

x̃ ≡ arg
∑

i

sup{fi(xi)|xi ∈ Xi}.

It is seen that fi(x̄i) ≤ fi(x̃i), which implies that Γ̄ ≤ Γ̃.
Note that x̃ ∈ X1 × · · · ×Xk, i.e., Γ̄ ≥ Γ̃. This implies that Γ̄ = Γ̃ ≤ 0.
For i = 1, . . . , k, let ci ≡ sup{fi(xi)|xi ∈ Xi}; then condition (10.14b) is satisfied.

Furthermore, per definition of ci

fi(xi) ≤ ci ∀xi ∈ Xi, (10.17)

which implies (10.14a).

196

4 Existence of Compositional Barrier Certificates

From Lemma 12, it is seen that an inequality (10.15) in n variables is equivalent to k
inequalities in ni variables and an inequality constraint involving only constants. This is
used later to decompose inequality constraints.

The following result is used in Lemma 15, to reduce the number for coupling variables
in the compositional condition for safety in Corollary 14, by exploiting Assumption 2.

Lemma 13. Let γ : Rn → R be a continuous function and let h : Rn → Rq be a
smooth map such that Dh has constant rank k. Then there are smooth maps h̄ : U → Z,
with U ⊂ Rn and Z ⊂ Rn−k, such that Dh̄ has constant rank n − k, and continuous
functions γ̃ : Y → R, with Y ⊂ Rq+(n−k) such that

γ(x) = γ̃(h(x), h̄(x)) ∀x ∈ Rn. (10.18)

Proof. We use Constant Rank Theorem, recalled here for completeness: Let V , W be m,
n-dimensional vector spaces and U ⊂ V an open set. If h : U → W is a smooth map
such that Dh has constant rank k in U , then for each point p ∈ U there are charts (U,ϕ)
and (W,ψ) containing p, h(p) such that

ψ ◦ h ◦ ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0). (10.19)

To see how γ̃ and h̄ can be generated, we give the following commutative diagram based
on Constant Rank Theorem. R

Rn
h //

ϕ x7→(a,b)
��

γ

99

Rq

ψ h(x)7→(a,0)
��

Rk ×Rn−k

π2 (a,b)7→b
��

// Rk ×Rn−k

π1 (a,0) 7→a
��

Rn−k Rk

Now, the functions h̄ and γ that satisfy (10.18) are h̄ = π2◦ϕ, where π2 : (x1, . . . , xn) 7→
(xk+1, . . . , xn) and let γ̃ = γ◦ϕ−1◦(π1◦ψ, id), where π1 : (x1, . . . , xn) 7→ (x1, . . . , xk)
and id is the identity map of dimension n− k.

The local patches agree on their intersection, as the function γ is defined globally.

Lemma 14. Let y = (y1, . . . , yk) ∈ Y1×· · ·×Yk ⊆ Rm1×· · ·×Rmk , hi : Rni → Rmi ,
let m =

∑
imi, and γi : Rmi ×Rni ×Rm−mi → R. Then for every (y1, . . . , yk)

max
(z1,...,zk)∈h−1

1 (y1)×···×h−1
k (yk)

∑

i

γi(yi, zi, ŷi) =
∑

i

max
zi∈h−1

i (yi)
γi(yi, zi, ŷi). (10.20)

197

Paper E

Proof. For any y, let

Γ̄(y) ≡ max
(z1,...,zk)∈h−1

1 (y1)×···×h−1
k (yk)

∑

i

γi(yi, zi, ŷi),

z̄(y) ≡ arg max
(z1,...,zk)∈h−1

1 (y1)×···×h−1
k (yk)

∑

i

γi(yi, zi, ŷi),

Γ̃(y) ≡
∑

i

max
zi∈h−1

i (yi)
γi(yi, zi, ŷi), and

z̃(y) ≡ arg
∑

i

max
zi∈h−1

i (yi)
γi(yi, zi, ŷi).

It is seen that γi(yi, z̄i(y), ŷi) ≤ γi(yi, z̃i(y), ŷi); hence, Γ̄(y) ≤ Γ̃(y).
For any y, z̃(y) ∈ h−1

1 (y1) × · · · × h−1
k (yk). This implies Γ̄(y) ≥ Γ̃(y); hence,

Γ̄(y) = Γ̃(y). Note that this is a consequence of γi’s independence of ẑi.

The final lemma on the decomposition of inequality constraints is shown next.

Lemma 15. Let k ∈ N. For i ∈ {1, . . . , k}, let

• mi, ni, qi ∈ N and define q ≡∑i qi,

• Vi = Xi × X̂i ⊆ Rni ×Rn−ni be compact and be the closure of an open set,

• fi : Rni+mi → Rni and gi : Rn−ni → Rmi be continuous maps, defined in (10.6)
and (10.7),

• ϕi : Rni → R be a continuous function,

• hi : Rni → Rqi be a smooth map such that Dhi has constant rank ri.

There exist continuous functions γi : Rqi+mi → R such that for all (xi, x̂i) ∈ Vi

ϕi(xi)fi(xi, gi(x̂i)) ≤ γi(hi(xi), gi(x̂i)), and (10.21a)
∑

i

γi(hi(xi), gi(x̂i)) ≤ 0 (10.21b)

if and only if
∑

i

ϕi(xi)fi(xi, gi(x̂i)) ≤ 0 ∀(xi, x̂i) ∈ Vi. (10.22)

Proof. It is seen that (10.21) implies (10.22), by summing (10.21a) for i = 1, . . . , k, such
that

∑

i

ϕi(xi)fi(xi, gi(x̂i)) ≤
∑

i

γi(hi(xi), gi(x̂i)) ∀(xi, x̂i) ∈ Vi, (10.23)

which by (10.21b) is bounded from above by zero.
To show that (10.22) implies (10.21), let

γ̄i(xi, gi(x̂i)) ≡ ϕi(xi)fi(xi, gi(x̂i)) ∀(xi, x̂i) ∈ Vi. (10.24)

198

4 Existence of Compositional Barrier Certificates

By (10.22)
∑

i

γ̄i(xi, gi(x̂i)) ≤ 0 ∀(xi, x̂i) ∈ Vi. (10.25)

Lemma 13 states that by assuming that Dhi has constant rank ri; there exist functions
γ̃i : Rqi+(ni−ri)+mi → R and maps h̄i : Rni → Rni−ri such that for all (xi, x̂i) ∈ Vi

γ̃i(hi(xi), h̄i(xi), gi(x̂i)) = γ̄i(xi, gi(x̂i)). (10.26)

We rewrite (10.25) as follows
∑

i

γ̃i(hi(xi), h̄i(xi), gi(x̂i)) ≤ 0 ∀(xi, x̂i) ∈ Vi. (10.27)

Recall that gi = ei ◦ ĥi. For every (y1, . . . , yk), the following equality holds

max
(z1,...,zk)∈h−1

1 (y1)×···×h−1
k (yk)

∑

i

γ̃i(yi, h̄i(zi), ei(ŷi))

=
∑

i

max
zi∈h−1

i (yi)
γ̃i(yi, h̄i(zi), ei(ŷi)),

(10.28)

since the choice of zi is independent of the choice of zj for all i 6= j. This is seen from
Lemma 14.

We define

γi(yi, ei(ŷi)) ≡ max
zi∈h−1

i (yi)∩Xi

γ̃i(yi, h̄i(zi), ei(ŷi)). (10.29)

It is seen from (10.27) that
∑

i

γi(hi(xi), gi(x̂i)) ≤ 0 ∀(xi, x̂i) ∈ Vi. (10.30)

Furthermore, by (10.24) for all (xi, x̂i) ∈ Vi

ϕi(xi)fi(xi, gi(x̂i)) = γ̄i(xi, gi(x̂i)) = γ̃i(hi(xi), h̄i(xi), gi(x̂i)) ≤ γi(hi(xi), gi(x̂i))
(10.31)

We show that γi is continuous. According to Theorem 4 and Theorem 5 in [13], γi is
continuous at yi if γ̃i is continuous and h−1

i ∩Xi is continuous as a multivalued map and
h−1
i (yi)∩Xi is compact. In the following, we discard the indices on h and denote Xi by
V .

The map h−1 is continuous, as h is a composition of a projection p with homeomor-
phisms ψ and ϕ, since h according to Lemma 13 can be written

h = ψ−1 ◦ ψ ◦ h ◦ ϕ−1 ◦ ϕ,

where p = ψ ◦ h ◦ ϕ−1 is a projection. Therefore, h is also an open map.
h−1(x) ∩ V is upper semi-continuous at x0 if for any open set U ⊃ h−1(x0) ∩ V

there exists an open set W of x0 such that h−1(W) ∩ V ⊂ U . Since h−1 is continuous,

199

Paper E

it is known that for any open set Ū ⊃ h−1(x0) there exists an open set W̄ such that
h−1(W̄) ⊂ Ū . Therefore, h−1(W̄) ∩ V ⊂ Ū ∩ V = U .

h−1(x) ∩ V is lower semi-continuous at x0 if for any y0 ∈ h−1(x0) ∩ V and for any
open neighborhood Ω(y0) of y0, there exists open neighborhood Ω(x0) of x0 such that
for any x ∈ Ω(x0),

h−1(x) ∩ V ∩ Ω(y0) 6= ∅.
From the continuity of h−1, we know that for any open neighborhood Ω(y0) there

exists open neighborhood Ω̄(x0) such that for any x ∈ Ω̄(x0)

h−1(x) ∩ Ω(y0) 6= ∅.
By assumption, y0 ∈ h−1(x0) ∩ V and y0 ∈ Ω(y0). For any y0 ∈ V (also y0 ∈ Bd(V)),
Ω(y0) ∩ int(V) is an open and nonempty set. Therefore, the set

B ≡ h−1(Ω̄(x0)) ∩ int(V) ∩ Ω(y0)

is open.
Since h is an open map, h(B) is an open neighborhood of x0. Let Ω̃(x0) = h(B),

then for every x ∈ Ω̃(x0), h−1(x) ∩B 6= ∅. This implies that for every x ∈ Ω̃(x0)

h−1(x) ∩ int(V) ∩ Ω(y0) 6= ∅.
This implies that h−1(x) ∩ V is continuous.

For every x, the sets h−1(x) is closed and V is compact. Hence, h−1(x) ∩ V is
compact. This proves the continuity of γ.

Notice the importance of using γi in oppose to γ̄i. γi is only a function of the outputs
of subsystem i, while γ̄i is a function of its entire state vector. This implies that the di-
mension of the coupling is drastically reduced if the number of output variables is small
compared to the number of states. Furthermore, it is important to note that γi is contin-
uous, as it enables γi to be approximated arbitrarily close by polynomials on a compact
set. This is favorable, as polynomial inequality and equality constraints can be solved
algorithmically by use of sum of squares programming [14].

We can now state when Proposition 45 and Corollary 14 are equivalent.

Theorem 18: Let k ∈ N, and let

ẋ1

...
ẋi
...
ẋk

 =

f1(x1, g1(x̂1))
...

fi(xi, gi(x̂i))
...

fk(xk, gk(x̂k))

 (10.32)

be an interconnected system of f(x).
There exists an additively separable continuous function ϕ : Rn → R such that

ϕ(x) ≤ 0 ∀x ∈ X0, (10.33a)

ϕ(x) > 0 ∀x ∈ Xu, and (10.33b)

Lfϕ(x) ≤ 0 ∀x ∈ X (10.33c)

200

4 Existence of Compositional Barrier Certificates

if and only if for i = 1, . . . , k there exist continuous functions ϕi : Rni → R and γi : Rqi+mi →
R and constants αi, βi ∈ R such that

ϕi(xi) + αi ≤ 0 ∀x ∈ X0, (10.34a)

ϕi(xi)− βi > 0 ∀x ∈ Xu, (10.34b)

Lfiϕi(xi, gi(x̂i)) ≤ γi(hi(xi), gi(x̂i)) ∀x ∈ X (10.34c)

and ∑
i

αi ≥ 0, (10.34d)∑
i

βi ≥ 0, and (10.34e)∑
i

γi(hi(xi), gi(x̂i)) ≤ 0. (10.34f)

Proof. The conditions (10.34) implies (10.33) directly. Therefore, we only show the
opposite direction. Suppose ϕ is additively separable, then per definition there exist con-
tinuous functions ϕi : Rni → R such that

ϕ(x) =
∑

i

ϕi(xi) ∀x ∈ X. (10.35)

This implies that (10.33) can be written as
∑

i

ϕi(xi) ≤ 0 ∀x ∈ X0, (10.36a)

∑

i

ϕi(xi) > 0 ∀x ∈ Xu, and (10.36b)

∑

i

Lfiϕi(xi, gi(x̂i)) ≤ 0 ∀x ∈ X. (10.36c)

From Lemma 12, it follows directly that (10.36a) is equivalent to (10.34a) and (10.34d).
In addition, (10.36b) is equivalent to (10.34b) and (10.34e). Finally, Lemma 15 shows
that (10.33c) is equivalent to (10.34c) and (10.34f).

Remark that to generate the additively separable barrier functions, one should only
use the sum of bases in xi for i ∈ {1, . . . , k}.

To clarify the theorem, Example 17 demonstrates the necessity of αi and βi.

Example 17. Consider the following simple dynamical system

Σ1 : ẋ = −x (10.37a)
Σ2 : ẏ = −y (10.37b)

where x, y ∈ R. The system is split into two independent dynamical systems Σ1 and
Σ2. The set of initial states is X0 = [4, 5] × [4, 5] and the set of unsafe states is Xu =
[1, 2]× [4, 5]. The vector field, X0, and Xu are illustrated in Fig. 10.2.

From X0 and Xu, it is seen that there exists no function ϕ2 such that ϕ2(y) ≤ 0 for
all y ∈ [4, 5] and ϕ2(y) > 0 for all y ∈ [4, 5]. Therefore, the constants αi and βi are

201

Paper E

1 2 3 4 5
3

3.5

4

4.5

5

5.5

6

y

x

X0Xu

Figure 10.2: Vector field (blue arrows) and safe and unsafe sets (black boxes).

necessarily different from zero, even though the dynamics is completely decoupled for
the two subsystems.

An additively separable barrier certificate ϕ =
∑
i ϕi is given by ϕ1 = 0.26x4 −

2x3 + 3x2 + 2.65 and ϕ2 = 0.1y2 − 1.6. For α1 = 2.2, α2 = −1.8, β1 = 1.2,
β2 = −0.8, the conditions in (10.34) are satisfied.

Note other compositional methods for the analysis of dynamical systems, such as
[10], suffer similar deficits due to the restriction to additively separable functions.

5 Refined Compositional Analysis

We propose another condition for safety, which at the cost of more coupling variables
handles more general problems. The idea is to let each ϕi depend on both xi and gi(x̂i).

To simplify the notation of the problem, we define the set of neighbors for subsystem
i, as the set of subsystems, which has an output that is an input to subsystem i. The set of
neighbors is defined from the adjacency matrix E, see (10.10), describing the intercon-
nection of the subsystems. We say that the neighbors of subsystem i have the following
indices

Ni = {j ∈ {1, . . . , k}|E(i, j) = 1}. (10.38)

We define N̄i ≡ Ni ∪ {i}. The complement of N̄i is given as

N̄ c
i = {1, . . . , k}\N̄i. (10.39)

Let z = (z1, . . . , zk) and A ⊆ {1, . . . , k}, then we define ẑA ≡ {zi|i ∈ {1, . . . , k}\A}
and zA ≡

∑
i∈A zi.

Now, we can state the refined safety condition as follows.

202

5 Refined Compositional Analysis

Proposition 46: Let k ∈ N, and let

ẋ1

...
ẋi
...
ẋk

 =

f1(x1, g1(x̂1))
...

fi(xi, gi(x̂i))
...

fk(xk, gk(x̂k))

 (10.40)

be an interconnected system of f(x).
There exists a continuous function ϕ : Rn → R given by

ϕ(x) =
∑
i

ϕi(xi, gi(x̂i)) ∀x ∈ Rn (10.41)

such that

ϕ(x) ≤ 0 ∀x ∈ X0, (10.42a)

ϕ(x) > 0 ∀x ∈ Xu, and (10.42b)

Lfϕ(x) ≤ 0 ∀x ∈ X (10.42c)

if and only if for i ∈ {1, . . . , k} there exist continuous functions γi : R
qN̄i

+mNi → R, αi :
Rqi+mi → R, and βi : Rqi+mi → R such that

ϕi(xi, gi(x̂i)) + αi(hi(xi), gi(x̂i)) ≤ 0 ∀x ∈ X0, (10.43a)

ϕi(xi, gi(x̂i))− βi(hi(xi), gi(x̂i)) > 0 ∀x ∈ Xu, (10.43b)∑
j∈N̄i

∂ϕi
∂xj

(xi, gi(x̂i))fj(xj , gj(x̂j)) ≤ γi(x̂N c
i
, ĝN c

i
(x̂N c

i
)) ∀x ∈ X (10.43c)

and ∑
i

αi(hi(xi), gi(x̂i)) ≥ 0,∑
i

βi(hi(xi), gi(x̂i)) ≥ 0,∑
i

γi(x̂N c
i
, ĝN c

i
(x̂N c

i
)) ≤ 0.

(10.43d)

Proof. The equivalence between (10.42a) and (10.43a), and (10.42b) and (10.43b) fol-
lows directly from the proof of Lemma 15 starting from (10.27) to the end of the proof.
To obtain (10.43c), observe that ∂ϕi

∂xj
(xi, gi(x̂i)) is only nonzero for j ∈ N̄i. For each

nonzero partial derivative, ∂ϕi/∂xj is multiplied by fj(xj , gj(x̂j)) that is a function of
xj and gj(x̂j). This implies that the left hand side of (10.43c) depends on x̂N̄ c

i
(states of

subsystem i and its neighbors) and ĝN c
i
(x̂N c

i
) (the neighbors inputs - not its own, as their

states are already in γi).

The seemingly subtle change of ϕi has a great impact on the number of coupling
variables involved in the generation of the barrier certificate. Therefore, one should only
include gi(x̂i) in ϕi if it is really necessary. Remark that a subset of functions ϕi may be
dependent of gi(x̂i), while others may only depend on xi.

203

Paper E

6 Conclusion

We have classified the barrier certificates, which can be generated by a proposed compo-
sitional method for verifying the safety of continuous dynamical systems. It is shown that
even for some linear systems, the compositional method fails to verify the safety.

Even though the compositional method is not as general as a centralized safety ver-
ification, it is very useful in the verification of high-dimensional systems, since it scales
well in the number of states in the system. Therefore, counterexamples where the com-
positional method does not apply should be used to generate ”good” decompositions of
systems.

A second compositional condition for safety was proposed, which alleviates some of
the issues of the initial method, but has a higher computational cost. Therefore, the choice
of method is a compromise between generality and computational complexity. Therefore,
our future work is to identify the necessary structure of the barrier certificate based on the
vector field.

References

[1] H. Guéguen, M.-A. Lefebvre, J. Zaytoon, and O. Nasri, “Safety verification and
reachability analysis for hybrid systems,” Annual Reviews in Control, vol. 33, no. 1,
pp. 25–36, 2009.

[2] I. Mitchell, A. Bayen, and C. Tomlin, “A time-dependent Hamilton-Jacobi formula-
tion of reachable sets for continuous dynamic games,” IEEE Transactions on Auto-
matic Control, vol. 50, no. 7, pp. 947–957, 2005.

[3] J. Ding, J. H. Gillula, H. Huang, M. P. Vitus, W. Zhang, and C. J. Tomlin, “Hybrid
systems in robotics,” IEEE Robotics & Automation Magazine, vol. 18, no. 3, pp.
33–43, September 2011.

[4] A. Girard and G. Pappas, “Verification using simulation,” in Hybrid Systems: Com-
putation and Control, ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2006, vol. 3927, pp. 272–286.

[5] A. Abate, A. Tiwari, and S. Sastry, “Box invariance in biologically-inspired dynam-
ical systems,” Automatica, vol. 45, no. 7, pp. 1601–1610, 2009.

[6] C. Sloth and R. Wisniewski, “Verification of continuous dynamical systems by
timed automata,” Formal Methods in System Design, vol. 39, no. 1, pp. 47–82, 2011.

[7] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochas-
tic safety verification using barrier certificates,” IEEE Transactions on Automatic
Control, vol. 52, no. 8, pp. 1415–1428, August 2007.

[8] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier
certificates,” in Hybrid Systems: Computation and Control, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2004, vol. 2993, pp. 271–274.

204

[9] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, “SOSTOOLS and its
control applications,” in Positive Polynomials in Control, ser. Lecture Notes in Con-
trol and Information Sciences. Springer Berlin / Heidelberg, 2005, vol. 312, pp.
273–292.

[10] U. Topcu, A. Packard, and R. Murray, “Compositional stability analysis based on
dual decomposition,” in Proceedings of the 48th IEEE Conference on Decision and
Control, December 2009, pp. 1175–1180.

[11] F. Kerber and A. van der Schaft, “Compositional analysis for linear control sys-
tems,” in Proceedings of the 13th ACM international conference on Hybrid systems:
computation and control. New York, NY, USA: ACM, 2010, pp. 21–30.

[12] C. Sloth, G. J. Pappas, and R. Wisniewski, “Compositional safety analysis using
barrier certificates,” in Proceedings of Hybrid Systems: Computation and Control,
2012, pp. 15–23.

[13] J.-P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag, 1984.

[14] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems,”
Mathematical Programming, vol. 96, no. 2, pp. 293–320, 2003.

205

Paper F

Towards Safe Robotic Surgical Systems

Christoffer Sloth, Rafael Wisniewski, Jesper A. Larsen, John Leth, and Johan
Poulsen

This paper is submitted to:
IEEE Transactions on Biomedical Engineering.

Copyright c©2012 IEEE
The layout has been revised

1 Introduction

The paper is extended with a description of the modeling in an appendix.

Abstract

A proof of safety is paramount for an autonomous robotic surgical system to
ensure that it does not cause trauma to patients. However, a proof of safety is rarely
constructed, as surgical systems are too complex to be dealt with by most formal
verification methods.

In this paper, we design a controller for motion compensation in beating-heart
surgery, and prove that it is safe, i.e., the surgical tool is kept within an allowable
distance and orientation of the heart. We solve the problem by simultaneously finding
a control law and a barrier function using a sequential method.

The motion compensation system is simulated from several initial conditions to
demonstrate that the designed control system is safe for every admissible initial con-
dition.

1 Introduction

In the past decades, there has been an immense development of robotic surgical systems.
This has led to regular use of robotic assistance in surgery of human patients.

In cardiac bypass surgery several advantages exist if the procedure can be carried out
without the use of extracorporeal circulation. However, this means that the delicate coro-
nary artery anastomosis has to be performed on a beating heart. This is a very technical
demanding task due to the pulsating movement of the heart.

It was proposed in [1] to provide a video image in the robotic console to the surgeon
that looks as if the heart is static (although it still is beating), and move the surgical
instruments in a similar pulsating motion as the heart is beating. Then the surgeon can
perform the procedure using a real time image where the heart as well as the surgical
instruments looks static. This makes subsequent coronary artery anastomosis much easier
for the surgeon to do.

In this paper, we focus on the design of the required control system for moving the
surgical instruments. The addition of automatic control introduces a risk for the surgical
robot to cause trauma to patients, without human intervention [2], as experienced with
the Therac-25 [3]. To alleviate this potential issue, the safety (correct behavior) of control
systems must be formally proved before they are employed in surgical systems.

In the past two decades, lots of methods for designing safe dynamical systems have
been developed [4]. However, these methods have not been frequently applied to robotic
surgical systems. An exception is [5] that presents a verification of high level plans for
composing procedures in robotic surgery in relation to puncturing. Formal verification
has not yet been used much in robotic surgery, since methods based on reachability can
only handle systems with a few continuous states [4], and other more scalable methods do
not apply to the nonlinear dynamics of the robotic system. Recently, attention has been
directed towards the development of methods for improving the scalability of verifica-
tion methods by using assume-guarantee reasoning [6] and compositional computational
techniques [7].

To design a safe motion compensation control system for beating-heart surgery, we
use the barrier certificate method, which was developed for safety verification [8], and
extended to the design of safe controllers [9]. We use an experimentally generated model

209

Paper F

from [10] to describe the movement of the heart as a combination of respiratory motion
and heart beating. The safe control system is designed for a 6 degree of freedom robot
based on the end-effector [11]. To make the controller design method applicable to high
dimensional systems, we exploit ideas from the computational techniques in [6, 7] to
allow a sequential calculation of controllers for each joint of the robot. This is possible
since the safety requirement is decomposed into separate requirements for the tracking of
each joint angle. To find the control laws, we derive a method for realizing the control law
similar to [12, 9]. To delimit the content of this paper, we abstract the important image
processing away and assume that the position and orientation of the heart is measured
[13]. To make the study realistic, we introduce uncertainties in the model. A detailed
description of the utilized models is provided in [14].

This paper is organized as follows. Section 2 presents a model of the considered
system and states the addressed problem, and Section 3 presents the designed control sys-
tem, where the safety of the system is guaranteed by a barrier certificate. Section 4 shows
simulated trajectories satisfying the specification, and Section 5 comprises conclusions.

2 Problem Formulation

The purpose of this section is to present a mathematical model of the interrelation be-
tween the beating heart and the robotic arm that compensates for the movement of the
heart. Additionally, we define safety and finalize by stating the objective of the paper in
Problem 10.

Model of Beating Heart

It is chosen to base this work on an existing model of a beating heart presented in [10]
that describes the movement of the coronary arteries. This model has been experimentally
generated. The principle of the model is to have two independent motions: respiratory
motion and beating of the heart. Both motions are combinations of rotation and transla-
tion, and as the diaphragm moves the heart, the resulting movement of a point on the heart
surface is a combination of both movements. Figure 11.1 illustrates the arrangement of
reference frames used in the modeling.

The objective of this paper is to design a controller that can control a surgical tool to a
point of interest on the heart surface at a given orientation. To accomplish this, we model
the physiological motion using time-varying coordinate transformations [15].

For a point p ∈ R3 and a coordinate frame ΨA, let Ap denote the coordinates of p in
the coordinate frame ΨA. For coordinate frame ΨA and ΨB , the coordinates Ap and Bp
of the point p are related by

[
Ap
1

]
=

[
A
BR

A
Bp

0 1

]

︸ ︷︷ ︸
A
BT

[
Bp
1

]
, (11.1)

where A
BR is a 3 × 3 rotation matrix and A

Bp is a 3 × 1 vector translating the origin of
coordinate frame ΨA to the origin of coordinate frame ΨB .

We use this formalism to describe the behavior of the diaphragm and the heart. It is
chosen to let Ψ0 and Ψd coincide at time 0, i.e., 0

dR(0) = I and 0
dp = 0. The diaphragm

210

2 Problem Formulation

title here

author here

May 30, 2012

y
Ψ0

z

y

z

y
Ψ

h

z

x
Ψ7

y

Ψd

Figure 1: Illustration in they, z-plane, of how the coordinate frames are placed. In the figure, the tick line
indicate the surface of the patient, the line indicate the surface of the “initial” position of the diaphragm with
the frameΨ0 attached, the dotted line with the frameΨd attached indicates the diaphragm at a position in
the breathing phase (different from the “initial” position), and the dotted ellipse with the framΨh attached
indicate the surface of thr heart.

[Mun66] FiXme: sg

References

[Mun66] James R. Munkres.Elementary differential topology, volume 1961 ofLectures given at Mas-
sachusetts Institute of Technology, Fall. Princeton University Press, Princeton, N.J., 1966.

1

Figure 11.1: Out of scale illustration of coordinate frame in the y, z-plane. The reference
frame is denoted by Ψ0, the frame on the diaphragm is denoted by Ψd, the frame on the
heart is denoted by Ψh, and the frame on the surgical tool is denoted by Ψ7.

(Ψd) rotates approximately 2◦ around the x- and z-axis of Ψ0 in Figure 11.1 and is trans-
lated along the y- and z-axis of Ψ0. The behavior is periodic with a time period of 4 s.
The point of interest on the heart surface (Ψh) rotates around the x- and y-axis of Ψd and
is translated along the x- and y-axis of Ψd. This behavior has a period of 1.1 s. The re-
sulting movement of the point of interest on the heart surface is described in the reference
frame Ψ0 using the following time-dependent transformation

0
hT (t) =0

d T (t) d
hT (t). (11.2)

A patient’s heart movement is nondeterministic; hence, we add a disturbance to the
system that represents a variation in the time period of the heart and diaphragm.

Figure 11.2 shows the translation of the heart with respect to the reference frame Ψ0.
The elements of the transformation matrices are given by the solution of the system of

0 2 4 6 8 10
−6

−4

−2

0

2

Time [s]

T
ra
n
sl
at
io
n
[m

m
]

Figure 11.2: Translation of the point of interest on the heart surface along the x-axis
(blue), y-axis (green), and z-axis (red) of the reference frame Ψ0.

polynomial differential equations describing the heart model [14].

211

Paper F

Model of Robotic Arm

We consider a 6 degree of freedom robotic arm composed of a da Vinci Surgical end-
effector [11], and a 3 degree of freedom prismatic base robot. The robotic arm is described
using the same formalism as the heart, but as the length of the links of the robot are fixed,
only the rotations can vary. A kinematic model of the robotic arm is detailed in [14]. The
angles of the 6 joints must be controlled to steer the tool frame to the point of interest on
the heart surface. Therefore, we need an inverse kinematic description of the robot that,
for a desired position and orientation of the tool frame, provides the six angles that realize
the desired pose. The inverse kinematic description is provided in [14].

The model of the robot can be augmented with the heart model to form a system of
ordinary differential equations (affine in control and disturbance)

ẋ = f(x) + g(x)u+ h(x)d, (11.3)

where x ∈ Rn is the state, u ∈ Rm is the control input, and d ∈ D ⊆ Rp is the
disturbance input. In this work, we control the angular velocities of the robotic arm;
hence, θ̇i = ui, where ui is the control input.

Safety of the System

We consider a control system given by Γ = (f, g, h,X,X0, Xu, D), where f : Rn →
Rn, g : Rn → Rn×m, and h : Rn → Rn×p are continuous, X ⊆ Rn, X0 ⊆ X ,
Xu ⊆ X , and D ⊆ Rp is convex. The system is controlled via the continuous map
k : Rn → Rm defining the closed-loop behavior

fcl : x 7→ f(x) + g(x)k(x). (11.4)

The closed-loop system is denoted by Γcl = (fcl, h,X,X0, Xu, D). For a measurable and
essentially bounded disturbance function d̄ : R≥0 → D, we denote the solution of the
Cauchy problem for the closed-loop system with x(0) = x0 on an interval [0, T] by φd̄x0

,
i.e.,

dφd̄x0
(t)

dt
= fcl

(
φd̄x0

(t)
)

+ h
(
φd̄x0

(t)
)
d̄(t) (11.5)

for almost all t ∈ [0, T]. We denote the set of solutions from all initial conditions x0 in
X0 by φd̄X0

.
In the safety verification, we only consider trajectories initialized in X0 that are con-

tained in the set X . We verify if there exists a trajectory that can reach an unsafe set Xu.
The safety of a system Γcl is defined as.

Definition 117 (Safety). Let Γcl = (fcl, h,X,X0, Xu, D) be a control system. A trajec-
tory φd̄X0

: [0, T]→ Rn with disturbance d̄ is unsafe if there exists a time t ∈ [0, T], such
that φd̄X0

([0, t]) ∩Xu 6= ∅ and φd̄X0
([0, t]) ⊆ X .

We say that the system Γcl is safe if there are no unsafe trajectories.

The surgical robotic system is safe if the relative rotation and position between the
tool frame and the heart frame is kept within certain bounds.

The objective of this work is to solve the following problem.

212

3 Control Algorithm

Problem 10: Given a system Γ = (f, g, h,X,X0, Xu, D), design a control law k : Rn → Rm

such that the system Γcl = (fcl, h,X,X0, Xu, D), where fcl is given by (11.4), is safe.

3 Control Algorithm

The purpose of this section is to present the method used for designing the safe con-
trol system. To ease the controller design, we initially decompose the specification into
subspecifications.

To allow the design of a safe control system for a complex system, it is appropriate
to decompose the specification into a specification for each subsystem. This enables the
design of separate controllers for each subsystem, based on the assumption that each
of the controllers comply with their partial specifications [6]. We use this principle in
the design of the controller for the surgical robot. The requirement to the tracking of
the position and orientation of the surgical tool is decomposed into requirements on the
tracking of joint angles of the robot. The decomposed requirements are |θi−θi,ref| ≤ θi,e,
where θi,e is the maximum allowed tracking error of the ith joint angle.

To satisfy the specification, we design a control system consisting of six controllers,
one per joint of the robot. The barrier certificate method used for designing the controller
is similar to [9]; however, we define a control barrier function in a less restrictive manner.
Furthermore, we allow unknown but bounded disturbance inputs. The addition of distur-
bances is crucial in medical applications, where the system (the patient) is described by
an uncertain model.

In the definition of a control barrier function, we denote the complement of X by Xc,
and use the notion of contingent cone [16]. Let K be a nonempty subset of a space X
and let x belong to K. The contingent cone to K at x is the set

TK(x) =

{
v ∈ X| lim

h→0+
inf

dK(x+ hv)

h
= 0

}
, (11.6)

where dK(y) denotes the distance of y to K, defined by

dK = inf
z∈K
||y − z||. (11.7)

A control barrier function is defined as

Definition 118. Given a control system Γ. A continuously differentiable function B :
X → R satisfying

X0 ⊂ B−1((−∞, 0]) ⊂ Xc
u , and (11.8a)

there exists u ∈ Rm such that for any d ∈ D and x ∈ B−1(0)

f(x) + g(x)u+ h(x)d ∈ TB−1((−∞,0])(x) (11.8b)

is called a control barrier function.

The intuition of a control barrier function B is to separate the initial set X0 and the
unsafe set Xu by the zero level set of B. This is ensured by (11.8a). On the zero level set,
it must be possible to control the vector field to point into the zero sublevel set; hence, all

213

Paper F

solutions avoid the unsafe set Xu that is in the complement of the zero sublevel set. This
is ensured by (11.8b).

Given a control barrier function, a control law must be found that ensures the safety
of the system. A selection of such a control law is provided in the following, inspired by
[12]. We denote the Lie derivative of B along f by LfB.

Proposition 47: Let Γ be a control system, let B be an associated proper control barrier function,
and let LgB(x) 6= 0 for x ∈ B−1(0). There exists a pair of real numbers (γ1, γ2) with 0 < γ1 <
γ2 such that the control

k = −ξ(||b||)
a+ α+

√
(a+ α)2 + κ2bTb

bTb
b, (11.9)

where a ≡ LfB, bT ≡ LgB, cT ≡ LhB, κ > 0,

α(x) ≡ sup
d∈D

cT(x)d, (11.10)

and ξ : R→ [0, 1] defined by

ω(z) ≡

{
0 if z ≤ 0

exp(−1/z) if z > 0
(11.11)

ξ(z) ≡ ξ(γ1,γ2)(z) ≡
ω(z − γ1)

ω(z − γ1) + ω(γ2 − z)
, (11.12)

is continuous and ensures safety for the closed-loop system Γcl.

Proof. The safety of Γcl is proved by showing that the Lie derivative of the control barrier
function is negative for all x ∈ B−1(0); hence, by Nagumo’s Theorem B−1((−∞, 0]) is
positively invariant [16]. The Lie derivative of the control barrier function for the closed-
loop system is

LfclB = LfB + LgBk + LhBd (11.13)

= −ξ(||b||)(α+
√

(a+ α)2 + κ2bTb) + cTd. (11.14)

The function B is proper, thus B−1(0) is compact. By compactness of B−1(0) and
since LgB(x) 6= 0 for x ∈ B−1(0), there exists (γ1, γ2) such that ξ(||b(x)||) = 1 for all
x ∈ B−1(0) (ξ is a bump function [17]). It is seen that −

√
(a+ α)2 + κ2bTb < 0, as

κ2bTb > 0. From (11.10), it is seen that cTd − α ≤ 0 for all x ∈ B−1(0). This implies
that LfclB < 0 for all x ∈ B−1(0).

By Section 6.5 in [16], α is continuous since D is convex, c is continuous, and α
is linear in d for each x. Thus the controller k is continuous, as it is the product of the
continuous function ξ and a second function that is continuous at any point except at
b = 0. Since ξ(||b||) = 0 in a neighborhood of b = 0, the product is continuous for all
x.

Corollary 15: The properness of B imposed in Proposition 47 can be replaced with compactness
of {x ∈ X|b(x) = 0}.

214

4 Simulation Results

To design the control system for the surgical robot, we find one control barrier func-
tion per joint of the robot, and use it in the design of a controller. It is possible to com-
pletely separate the design of the six controllers, as the reference signal θi,ref for the ith
joint angle is generated independent of the other joint angles. Therefore, all control bar-
rier functions are on the following form

Bi(x) = (θi − θi,ref(x))2 − θ2
i,e. (11.15)

It is seen that the value ofBi is nonpositive when the tracking error is within the specified
bound. Since the dynamics of the robot is given as integrators θ̇i = ui for i = 1, . . . , 6,
Bi is a control barrier function when θi,e > 0. Therefore, we can directly calculate the
control laws using Proposition 47 and the designed controllers are safe by design. This
finalizes the controller design.

4 Simulation Results

The purpose of this section is to demonstrate how well the designed controllers track the
movement of the heart, and keep the tracking error within the specified bounds.

The control barrier functions are chosen to obtain a tracking error less than 0.02 rad
of any joint angle. Figure 11.3 shows 5 simulations of the motion compensation with
different initial conditions and disturbances to the model. Note that we initialize the
system with a nonzero tracking error.

−0.2

−0.1

0

θ 6
,r
ef

[r
ad

]

0 2 4 6 8 10
−0.01

0

0.01

Time [s]

θ 6
,e

[r
ad

]

Figure 11.3: The upper subplot shows the reference signal θ6,ref, and the lower subplot
shows the tracking error of θ6 from different initial conditions.

All trajectories are within the safety bound of 0.02 rad.
The tracking of the position of the tool is shown in Figure 11.4. It demonstrates that

the controller puts the surgical tool at a constant relative position with respect to the heart

The tracking error of the position is also within the required bounds. We have omitted
a visualization of the tracking of the orientation to save space.

5 Conclusion

In this paper, it was demonstrated that it is possible to derive a safety proof for a robotic
surgical system, despite its high complexity. The key to constructing the proof of safety

215

Paper F

0 2 4 6 8 10
−6

−4

−2

0

2

Time [s]

T
ra
n
sl
at
io
n
[m

m
]

Figure 11.4: Position of the tool (origin of Ψ7, blue lines) and position of the point of
interest on the heart surface (origin of Ψh, green lines) in the reference frame Ψ0.

is to decompose the safety problem into small subproblems that can be solved indepen-
dently. This allows the generation of multiple control barrier functions, allowing the
design of individual controllers for each subsystem.

We have designed and simulated a safe controller for a 6 degree of freedom robot that
is capable of compensating for the physiological movements experienced in beating-heart
surgery.

The use of safety verification may lead the prevail of autonomous control in robotic
surgery, as guaranteed safety will increase the acceptance of sophisticated computer aids
in robotic surgery.

A Dynamic Heart Model

In this section, we derive the dynamics of the heart model. First, we provide time-
dependent transition matrices; subsequently, we provide the transition matrices as the
solution of a system of differential equations. The dynamic heart model is derived from
[10, 18].

The movement of the diaphragm is given by a rotation around the x- and y-axis of the
reference frame Ψ0 and a translation along the x- and z-axis of Ψ0.

The rotation matrix for the diaphragm is

R0
d =

cosφd sinφd 0
− sinφd cosφd 0

0 0 1

1 0 0
0 cos θd sin θd
0 − sin θd cos θd

 , (11.16)

where

φd(t) = 3/2 sin(ωdt) (11.17a)
θd(t) = −3/2 sin(ωdt) (11.17b)
ωd = 2π/4. (11.17c)

The translation of the diaphragm is given by

p0
d =

0
7/6 cos(2ωdt)− 7/6

5/3 sin(ωdt)

 . (11.18)

216

1 Dynamic Heart Model

Similarly, the heart rotates around the y- and z-axis of the diaphragm frame Ψd and
translates along its y- and z-axis. This movement is given by

Rd
h =

cosφh sinφh 0
− sinφh cosφh 0

0 0 1

cosψh 0 − sinψh
0 1 0

sinψh 0 cosψh

 (11.19)

and

pd
h =

15/14 cos(ωht)− 2
−10/9 sin(ωht)− 10/9

0

 , (11.20)

where

φh(t) = 9/4 cos(ωht) (11.21a)
ψh(t) = 3/8 cos(2ωht)− 9/8 (11.21b)
ωh = 2π/1.1. (11.21c)

In this work, we are interested in the behavior of the heart expressed in the reference
frame Ψ0. The transformation matrix is calculated from

0
hT (t) =0

d T (t) d
hT (t), (11.22)

and is

0
hT (t) =

[
0
dR(t)d

hR(t) 0
dp(t) + 0

dR(t)d
hp(t)

0 1

]
. (11.23)

The movements described above can be expressed as the solution of a system of poly-
nomial differential equation. It is necessary to find this vector field to accomplish the
analysis of this paper. The vector field is

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11

ẋ12

ẋ13

ẋ14

ẋ15

ẋ16

=

ωdx2

−ωdx1

2ωdx4

−2ωdx3

3/2ωdx2x6

−3/2ωdx2x5

−3/2ωdx2x8

3/2ωdx2x7

ωhx10

−ωhx9

2ωhx12

−2ωhx11

−9/4ωhx9x14

9/4ωhx9x13

−6/8ωhx11x16

6/8ωhx11x15

+

x2 0
−x1 0
2x4 0
−2x3 0

3/2x2x6 0
−3/2x2x5 0
−3/2x2x8 0
3/2x2x7 0

0 x10

0 −x9

0 2x12

0 −2x11

0 −9/4x9x14

0 9/4x9x13

0 −6/8x11x16

0 6/8x11x15

d. (11.24)

217

Paper F

Note that the interpretation of each state is seen from the initial condition provided in
(11.25). We show how the rotations and translations can be expressed in terms of the
solution of the differential equation.

The rotation matrix R0
d and translation p0

d are shown in the following in terms of the
solution φ(t) of the vector field from initial condition

φ(0) =

sin(ωd0)
cos(ωd0)
sin(2ωd0)
cos(2ωd0)

sin(3/2 sin(ωd0))
cos(3/2 sin(ωd0))

sin(−3/2 sin(ωd0))
cos(−3/2 sin(ωd0))

sin(ωh0)
cos(ωh0)
sin(2ωh0)
cos(2ωh0)

sin(9/4 cos(ωh0))
cos(9/4 cos(ωh0))

sin(3/8 cos(2ωh0)− 9/8)
cos(3/8 cos(2ωh0)− 9/8)

(11.25)

R0
d(t) =

φ6(t) φ5(t) 0
−φ5(t) φ6(t) 0

0 0 1

1 0 0
0 φ8(t) φ7(t)
0 −φ7(t) φ8(t)

 , (11.26)

and

p0
d(t) =

0
7/6φ4(t)− 7/6

5/3φ1(t)

 . (11.27)

Similar expressions are set up for the heart

Rd
h(t) =

φ14(t) φ13(t) 0
−φ13(t) φ14(t) 0

0 0 1

φ16(t) 0 −φ15(t)

0 1 0
φ15(t) 0 φ16(t)

 (11.28)

and

pd
h(t) =

15/14φ10(t)− 2
−10/9φ9(t)− 10/9

0

 . (11.29)

B Kinematic Model of Robot

In this section, the kinematic model of the robot is presented. The considered 6 degree of
freedom robot is shown in Figure 11.5.

218

2 Kinematic Model of Robot

x2

y2

z2

x1

z1

y1 θ1

θ2

x3

y3

z3

θ3

x4

z4

y4

θ4
x5

y5

z5

θ5

y6

x6

z6

θ6

z7

x7

y7

Figure 11.5: Illustration of the considered robot. Coordinate frames and angles are added
to the figure, to show how the robot can be controlled.

In the bottom of the robot we put a base frame Ψb. We provide all link transformations
and a transformation from the wrist frame (Ψ6) to the base frame. The base frame of the
robot Ψb is not the reference frame utilized in the design of the controller. This is chosen
to be at the initial location of the diaphragm to ease calculations. The link transformations
are

0
bT =

1 0 0 0
bpx

0 1 0 0
0 0 1 0

bpz
0 0 0 1

 (11.30a)

b
1T (θ1) =

cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1

 (11.30b)

1
2T (θ2) =

cos θ2 − sin θ2 0 0
0 0 −1 0

sin θ2 cos θ2 0 d2

0 0 0 1

 (11.30c)

2
3T (θ3) =

cos θ3 − sin θ3 0 a3

sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1

 (11.30d)

3
4T (θ4) =

cos θ4 − sin θ4 0 0
0 0 −1 0

sin θ4 cos θ4 0 0
0 0 0 1

 (11.30e)

219

Paper F

4
5T (θ5) =

cos θ5 − sin θ5 0 0
0 0 −1 0

sin θ5 cos θ5 0 d5

0 0 0 1

 (11.30f)

5
6T (θ6) =

0 0 −1 0
cos θ6 − sin θ6 0 0
− sin θ6 − cos θ6 0 0

0 0 0 1

 (11.30g)

6
7T =

1 0 0 a7

0 0 −1 0
0 1 0 0
0 0 0 1

 . (11.30h)

The parameters for the robot are a3 = 600 mm, a7 = 14 mm, d2 = 600 mm, d5 =
467 mm, 0

bpx = 700 mm, and 0
bpz = 50 mm.

In the remainder, we use following short hand notation ci ≡ cos θi, cij ≡ cos(θi+θj),
si ≡ sin θi, and sij ≡ sin(θi + θj). A transformation from the wrist frame to the base
frame is

b
6T (θ) =

(−(c1c23c4 + s1s4)s5 + c1s23c5)c6 − (c1c23s4 − s1c4)s6

(−(s1c23c4 − c2s4)s5 + s1s23c5)c6 − (s1c23s4 − c2c4)s6

(−s23c4s5 − c23c5)c6 − s23s4s6

0

−(−(c1c23c4 + s1s4)s5 + c1s23c5)s6 − (c1c23s4 − s1c4)c6
−(−(s1c23c4 − c2s4)s5 + s1s23c5)s6 − (s1c23s4 − c2c4)c6

(s23c4s5 + c23c5)s6 − s23s4c6
0

−(c1c23c4 + s1s4)c5 − c1s23s5 c1c23d5 + c1c2a3

−(s1c23c4 − c2s4)c5 − s1s23s5 s1s23d5 + s1c2a3

−s23c4c5 + c23s5 −c23d5 + s2a3 + d2

0 1

 .

(11.31)

C Inverse Kinematics

To control the robot to a desired position and orientation, we derive the six joint angles
θ1, . . . , θ6 from a given reference matrix 0

7T . The relation between θ1, . . . , θ6 and 0
7T is

0
7T = 0

bT
b
1T (θ1)1

2T (θ2)2
3T (θ3)3

4T (θ4)4
5T (θ5)5

6T (θ6)6
7T, (11.32)

where

0
7T =

r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 . (11.33)

220

3 Inverse Kinematics

The transformation from the tool frame Ψ7 to the wrist frame Ψ6 is shown below

b
6T (θ) = 0

bT
−1 b

7T
6
7 T
−1 (11.34a)

=

1 0 0 −0
bpx

0 1 0 0
0 0 1 −0

bpz
0 0 0 1

r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

1 0 0 −a7

0 0 1 0
0 −1 0 0
0 0 0 1

 (11.34b)

=

r11 −r13 r12 px −0
b px − a7r11

r21 −r23 r22 py − a7r21

r31 −r33 r32 pz −0
b pz − a7r31

0 0 0 1

 . (11.34c)

For convenience, we introduce the following notation

r̄11 r̄12 r̄13 p̄x
r̄21 r̄22 r̄23 p̄y
r̄31 r̄32 r̄33 p̄z
0 0 0 1

 ≡

r11 −r13 r12 px −0
b px − a7r11

r21 −r23 r22 py − a7r21

r31 −r33 r32 pz −0
b pz − a7r31

0 0 0 1

 (11.35a)

b
6T ≡

r̄11 r̄12 r̄13 p̄x
r̄21 r̄22 r̄23 p̄y
r̄31 r̄32 r̄33 p̄z
0 0 0 1

 . (11.35b)

We find an expression for θ1, by use of

b
1T
−1(θ1)b

6T = 1
2T (θ2)2

3T (θ3)3
4T (θ4)4

5T (θ5)5
6T (θ6), (11.36)

where the right hand side of (11.36) is

(−c23c4s5 + s23c5)c6 − c23s4s6

s4s5c6 − c4s6

(−s23c4s5 − c23c5)c6 − s23s4s6

0

(c23c4s5 − s23c5)s6 − c23s4c6
−s4s5s6 − c4c6

(s23c4s5 + c23c5)s6 − s23s4c6
0

−c23c4c5 − s23s5 c2a3 + s23d5

s4c5 0
−s23c4c5 + c23s5 s2a3 − c23d5

0 1

 .

(11.37)

221

Paper F

Therefore, (11.37) is equal to

cos θ1 sin θ1 0 0
− sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1

r̄11 r̄12 r̄13 p̄x
r̄21 r̄22 r̄23 p̄y
r̄31 r̄32 r̄33 p̄z
0 0 0 1

 . (11.38)

Element (2,4) of the above matrix equality yields

cos(θ1)py − sin(θ1)px = 0. (11.39)

Hence, θ1 = tan−1(py/px).
We derive an expression for θ3 using elements (1,4) and (3,4) of the above matrix

equality

c2a3 + s23d5 = c1px + s1py (11.40a)
s2a3 + d2 − c23d5 = pz. (11.40b)

By squaring both equations and summing them, we get an expression for s3

s3 =
(c1px + s1py)2 + (pz − d2)2 − a2

3 − d2
5

2a3d5
. (11.41)

Hence, θ3 = sin−1(s3).
To calculate θ2, we first calculate θ2 + θ3 denoted by θ23. This is calculated from

b
3T
−1(θ)

b
3T
−1(θ) =

c1c23 s1c23 s23 −d2s23 − a3c3
−c1s23 −s1s23 c23 −d2c23 + a3s3

s1 −c1 0 0
0 0 0 1

 (11.42)

Elements (1,4) and (2,4) result in

s23 =
a3c3(pz − d2) + (a3s3 + d5)(c1px + s1py)

(pz − d2)2 + (c1px + s1py)2
(11.43a)

c23 =
a3c3(c1px + s1py)− (a3s3 + d5)(pz − d2)

(pz − d2)2 + (c1px + s1py)2
, (11.43b)

and θ23 can be found from

tan(θ23) =
a3c3(pz − d2) + (a3s3 + d5)(c1px + s1py)

a3c3(c1px + s1py)− (a3s3 + d5)(pz − d2)
. (11.44)

Now, θ2 = θ23 − θ3.
θ4 is calculated from elements (1,3) and (3,3) of b

3T
−1(θ)

c1c23r̄13 + s1c23r̄23 + s23r̄33 = −c4c5 (11.45a)
s1r̄13 − c1r̄23 = −s4c5 (11.45b)

222

3 Inverse Kinematics

If c5 6= 0, then

tan θ4 =
−(s1r̄13 − c1r̄23)

−(c1c23r̄13 + s1c23r̄23 + s23r̄33)
. (11.46)

We calculate θ5 from

b
4T
−1(θ)0

6T = 4
5T (θ5)5

6T (θ6), (11.47)

where

b
4T
−1(θ) =

c1c23c4 + s1s4 s1c23c4 − c1s4 s23c4 −c1c2a3

−c1c23s4 + s1c4 −s1c23s4 − c1c4 −s23s4 −s1c2a3

c1s23c4 s1s23 −c23 −s2a3 + d2

0 0 0 1

 (11.48)

and

4
5T (θ5)5

6T (θ6) =

−s5c6 s5s6 −c5 0
s6 c6 0 0
c5c6 c5s6 −s5 d5

0 0 0 1

 . (11.49)

Elements (1,3) and (3,3) of the above matrix equality are

−c5 = (c1c23c4 + s1s4)r̄13 + (s1c23c4 − c1s4)r̄23 + s23c4r̄33 (11.50a)
−s5 = c1s23r̄13 + s1s23r̄23 − c23r̄33. (11.50b)

This implies that

tan(θ5) = tan−1

(
s5

c5

)
. (11.51)

We calculate θ6 from

b
5T
−1(θ)b

6T = 5
6T (θ6), (11.52)

where

b
5T
−1(θ) =

(c1c23c4 + s1s4)c5 + c1s23s5

−(c1c23c4 + s1s4)s5 + c1s23c5
c1c23s4 − s1c4

0

(s1c23c4 − c1s4)c5 + s1s23s5

−(s1c23c4 − c1s4)s5 + s1s23c5
s1c23s4 + c1c4

0

s23c4c5 − c23s5 −c1s23d5 − c1c2a3

−s23c4s5 − c23c5 −s1s23d5 − s1c2a3

s23s4 c23d5 − s2a3 − d2

0 1

(11.53)

223

Paper F

Elements (2,1) and (3,1) of the above matrix equality are

(−(c1c23c4 + s1s4)s5 + c1s23c5)r̄11

+ (−(s1c23c4 − c1s4)s5 + s1s23c5)r̄21 + (−s23c4s5 − c23c5)r̄31 = c6
(11.54a)

(c1c23s4 − s1c4)r̄11 + (s1c23s4 + c1c4)r̄21 + s23s4r̄31 = −s6. (11.54b)

This implies that

θ6 = tan−1

(
s6

c6

)
. (11.55)

References

[1] Y. Nakamura, K. Kishi, and H. Kawakami, “Heartbeat synchronization for robotic
cardiac surgery,” in IEEE International Conference on Robotics and Automation,
vol. 2, 2001, pp. 2014–2019.

[2] G. P. Moustris, S. C. Hiridis, K. M. Deliparaschos, and K. M. Konstantinidis, “Evo-
lution of autonomous and semi-autonomous robotic surgical systems: a review of
the literature,” The International Journal of Medical Robotics and Computer As-
sisted Surgery, vol. 7, no. 4, pp. 375–392, 2011.

[3] N. Leveson and C. Turner, “An investigation of the Therac-25 accidents,” Computer,
vol. 26, no. 7, pp. 18–41, July 1993.

[4] J. Ding, J. H. Gillula, H. Huang, M. P. Vitus, W. Zhang, and C. J. Tomlin, “Hybrid
systems in robotics,” IEEE Robotics & Automation Magazine, vol. 18, no. 3, pp.
33–43, September 2011.

[5] R. Muradore, D. Bresolin, L. Geretti, P. Fiorini, and T. Villa, “Robotic surgery:
Formal verification of plans,” IEEE Robotics Automation Magazine, vol. 18, no. 3,
pp. 24–32, September 2011.

[6] F. Kerber and A. van der Schaft, “Compositional analysis for linear control sys-
tems,” in Proceedings of the 13th ACM international conference on Hybrid systems:
computation and control. New York, NY, USA: ACM, 2010, pp. 21–30.

[7] C. Sloth, G. J. Pappas, and R. Wisniewski, “Compositional safety analysis using
barrier certificates,” in Proceedings of Hybrid Systems: Computation and Control,
2012, pp. 15–23.

[8] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochas-
tic safety verification using barrier certificates,” IEEE Transactions on Automatic
Control, vol. 52, no. 8, pp. 1415–1428, August 2007.

[9] P. Wieland and F. Allgöwer, “Constructive safety using control barrier functions,” in
Proceedings of the 7th IFAC Symposium on Nonlinear Control Systems, 2007, pp.
462–467.

224

3 Inverse Kinematics

[10] G. Shechter, C. Ozturk, J. Resar, and E. McVeigh, “Respiratory motion of the heart
from free breathing coronary angiograms,” IEEE Transactions on Medical Imaging,
vol. 23, no. 8, pp. 1046–1056, aug. 2004.

[11] L. W. Sun, F. Van Meer, J. Schmid, Y. Bailly, A. A. Thakre, and C. K. Yeung,
“Advanced da Vinci surgical system simulator for surgeon training and operation
planning,” The International Journal of Medical Robotics and Computer Assisted
Surgery, vol. 3, no. 3, pp. 245–251, 2007.

[12] E. D. Sontag, “A ’universal’ construction of Artstein’s theorem on nonlinear stabi-
lization,” Systems & Control Letters, vol. 13, no. 2, pp. 117–123, 1989.

[13] R. Richa, A. P. L. Bo, and P. Poignet, “Towards robust 3d visual tracking for motion
compensation in beating heart surgery,” Medical Image Analysis, vol. 15, no. 3, pp.
302–315, 2011.

[14] C. Sloth, R. Wisniewski, J. Larsen, J. Leth, and J. Poulsen, “Model of beating-heart
and surgical robot,” Aalborg University, Tech. Rep., 2012.

[15] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed. Pearson
Prentice Hall, 2005.

[16] J.-P. Aubin, Viability Theory. Birkhäuser, 1991.

[17] I. H. Madsen and J. Tornehave, From Calculus to Cohomology. Cambridge Uni-
versity Press, 1997.

[18] V. Duindam and S. Sastry, “Geometric motion estimation and control for robotic-
assisted beating-heart surgery,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, November 2007, pp. 871–876.

225

	Contents
	Preface
	Abstract
	Synopsis
	Introduction
	Motivation
	State-of-the-Art and Background
	Research Hypotheses
	Outline of the Thesis

	Formal Verification
	Specifications
	Model Checking

	Abstracting Continuous Systems by Timed Automata
	Preliminaries
	Abstractions of Dynamical Systems
	Properties of the Abstraction
	Algorithmic Generation of Abstraction
	Abstractions for Mechanical Systems
	Conclusion

	Safety Guarantees for Continuous Systems
	Safety Verification using Barrier Certificates
	Compositional Safety Verification
	Computation of Compositional Barrier Certificates
	Existence of Compositional Barrier Certificates
	Design of Safe Controllers
	Conclusion

	Conclusions and Future Work
	Summary of Contributions
	Conclusions
	Future Work

	References
	Contributions
	Paper A: Verification of Continuous Dynamical Systems by Timed Automata
	Introduction
	Preliminaries
	Generation of Finite Subdivision
	Generation of Timed Automaton from Finite Subdivision
	Properties of the Generated Timed Automaton
	Conditions for the Subdivision
	Subdividing the State Space using Lyapunov Functions
	Examples
	Conclusion
	Definitions
	Proofs
	References

	Paper B: Complete Abstractions of Dynamical Systems by Timed Automata
	Introduction
	Preliminaries
	Abstractions of Dynamical Systems
	Subdividing the State Space
	Generation of Timed Automaton from Finite Subdivision
	Computation of Subdivisioning Functions
	Illustrative Example
	Conclusion
	Proofs and Definitions
	References

	Paper C: Abstractions for Mechanical Systems
	Introduction
	Preliminaries
	Method
	Example
	Conclusion
	References

	Paper D: Compositional Safety Analysis using Barrier Certificates
	Introduction
	Safety Verification using Barrier Certificates
	Compositional Barrier Certificates
	Computation of Barrier Certificates
	Example
	Conclusion
	References

	Paper E: On the Existence of Compositional Barrier Certificates
	Introduction
	Barrier Certificates
	Compositional Barrier Certificates
	Existence of Compositional Barrier Certificates
	Refined Compositional Analysis
	Conclusion
	References

	Paper F: Towards Safe Robotic Surgical Systems
	Introduction
	Problem Formulation
	Control Algorithm
	Simulation Results
	Conclusion
	Dynamic Heart Model
	Kinematic Model of Robot
	Inverse Kinematics
	References

