

Aalborg Universitet

Lowering of blood glucose and its variability by computerized decision support

Riddersholm, Signe Juul; Preiser, Jean-Charles; Rousing, Mark Lillelund; Pielmeier, Ulrike; Andreassen, Steen

Publication date: 2012

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Riddersholm, S. J., Preiser, J-C., Rousing, M. L., Pielmeier, U., & Andreassen, S. (2012). Lowering of blood glucose and its variability by computerized decision support. Abstract from Clinical Diabetes Technology Meeting, Los Angeles, CA, United States.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Lowering of blood glucose and its variability by computerized decision support

Signe Juul Riddersholm, MD; Jean-Charles Preiser, MD; Mark Lillelund Rousing, M.Sc.; Ulrike Pielmeier, PhD, M.B.A.; Steen Andreassen, PhD, Dr. Tech.

Aalborg University, Center for Model-based Medical Decision Support, Aalborg, Denmark sjr@hst.aau.dk

Objective:

The safety and effectiveness of a medical decision support system controlling stress hyperglycemia (Glucosafe), was tested prospectively in a medico-surgical intensive care unit (ICU) with a heterogeneous patient population. Using penalty functions for insulin and blood glucose, Glucosafe balances insulin treatment against glycemic outcome.

Method:

Insulin treatment was provided according to the local usual insulin algorithm (days 1 and 3) or according to Glucosafe (day 2) to reach the target range of 90-150 mg/dl. Nutrition was provided according to departmental guidelines. After the first 6 patients penalty functions were adapted by increasing target blood glucose from $99\pm10\%$ to $104\pm10\%$ mg/dl and increasing the penalty for high insulin doses.

Results :

Glucosafe was tested on 13 patients (age: 69.8 ± 11.1 ; SAPS II: 44 ± 16). The use of Glucosafe reduced both the intrapatient mean and SD of blood glucose significantly on day 2 (mean: 104 ± 7 mg/dl;N=98) relative to both day 1 (mean: 140 ± 11 mg/dl; N = 90, p<0.0005) and day 3 (mean: 116 ± 10 mg/dl; N = 60, p<0.005). Hypoglycemia (< 60 mg/dl) was not observed on any day.

On day 2 (Glucosafe) 78% of measurements were in the target range compared to 67% on day 1 and 74% on day 3.

On average insulin doses for days 1 and 3 combined were 2,08 units/h. Glucosafe used higher average insulin doses (3.62 and 2.4 units/h) before and after the adaptation of the penalty function. There was no significant difference in glycemia before and after the adaptation.

Conclusion:

Using Glucosafe with penalty functions adapted to the local environment safely improved the performance of glycemic control.