

Aalborg Universitet

Proceedings of the ICTSS 2012 Ph.D. Workshop

Weise, Carsten; Nielsen, Brian

Publication date:
2012

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Weise, C., & Nielsen, B. (Eds.) (2012). Proceedings of the ICTSS 2012 Ph.D. Workshop.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 25, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60510408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://vbn.aau.dk/en/publications/886ac676-4874-43c0-92ff-fd5a088cc1dd

Proceedings of the
ICTSS 2012 Ph.D. Workshop

Editors:

Carsten Weise and Brian Nielsen

Technical Report No. 12‐201.

ISBN: 1601‐0590.

Aalborg University

Department of Computer Science

Selma Lagerlöfsvej 300,

DK‐9220 Aalborg

Denmark

	
 	

Preface	

This technical report contains the proceedings of the Ph.D. Workshop held in conjunction with the The 24th
IFIP Int. Conference on Testing Software and Systems (ICTSS'12) in Aalborg, Denmark, November 19, 2012.

The well‐established ICTSS series of international conferences addresses the conceptual, theoretic, and
practical challenges of testing software systems, including communication protocols, services, distributed
platforms, middleware, embedded systems, and security infrastructures.

The aims of the ICTSS Doctoral Workshop is to provide a forum for PhD students to present preliminary
results and their thesis work and receive constructive feedback from experts in the field as well as from
peers. Also it is an opportunity for researchers to get an insight into new research topics in the field. Ph.D.
students at any stage of their doctoral studies may participate.

Seven abstracts were submitted. The submitted abstracts were reviewed and evaluated by 3 program
committee members against the above goals. Four contributions were invited to be presented at the
Workshop. It is the revised abstracts that are included in this report.

Aalborg, November 2012

Carsten Weise and Brian Nielsen (Editors)

Table	of	Contents	
Raluca Marinescu, Cristina Seceleanu, and Paul Pettersson: An Integrated Framework for Component‐

based Analysis of Architectural System Models .. 1

Kitouni Ilham, Saidouni Djamel‐Eddine, and Bouaroudj Kenza: Modeling and testing non‐deterministic

real‐time systems .. 7

Olivier Finot: Filtered Comparison for Oracle in Model Transformation Testing ... 13

Hamza Samih and Benoit Baudry: Relating Variability Modelling and Model‐Based Testing for Software

Product Lines Testing .. 18

An Integrated Framework for Component-based
Analysis of Architectural System Models

Raluca Marinescu, Cristina Seceleanu, and Paul Pettersson

Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University

Väster̊as, Sweden
{raluca.marinescu, cristina.seceleanu, paul.pettersson}@mdh.se

Abstract. Verifying architectural models of embedded systems is desir-
able, since architecture can impact the performance and resource usage
of the final system implementation. To fulfill this need, one could think
of combining formal verification and testing to achieve proofs of system
correctness with respect to functional and extra-functional requirements.
Our first step to accomplish this goal has concretized in the develop-
ment of a framework that integrates architectural models described in
East-adl language with component-based model-checking techniques.
The framework is supported by a tool called ViTAL, which captures the
behavior of East-adl functions as timed automata models, which can
be formally verified in the Uppaal Port model-checker that exploits
the components-based semantics at the architectural level. Later, the
same formal models will help generate test-suites to provide support for
model-based testing.

Keywords: East-adl, V&V techniques.

1 Introduction

Nowadays, many automotive functions are real-time, so a thorough Verification
and Validation (V&V) is necessary to ensure real-time requirements at the ar-
chitectural level. Current V&V tools are working isolated and their interaction is
difficult [9], if not impossible. A smart combination of this different techniques,
together with their successful application in industrial practice, could be the
next step in the V&V evolution.

Lately, a lot of effort has been devoted to generate test-suites from system
models (e.g., UML [4], Timed Automata (TA) [7]), and also to verify such models
(e.g., Uppaal [1], PROGRESS [10]). However, these are sparse results with
regard to the combination of V&V techniques.

The automotive industry provides its system specification in architectural
description languages with no precise formal semantic, making it harder to use
model-checking tools to analyze such embedded system (ES). In practice, some
companies (e.g., VOLVO Technology AB and Continental Automotive) are using
East-adl [2], an architecture description language dedicated to automotive ES,

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 1 of 22

2 Lecture Notes in Computer Science

which does not provide the possibility to construct, verify, and transform its
models using formal techniques. Formal verification of both functional and timed
behavior is necessary to ensure the real-time requirements at the architectural
level, making East-adl models a good basis for a combined V&V framework.

In our research, we intend to bring closer architectural description languages
and verification techniques, through a new framework that consists of an in-
tegrated methodology that has been implemented in a tool called ViTAL 1(A
Verification Tool for EAST-ADL Models using Uppaal Port) [3], which pro-
vides Component-Based (CB) verification of East-adl models via Uppaal
Port. The tool lets one describe functional East-adl behavior in TA seman-
tics. To show the applicability of our tool and method, we illustrate its use on an
industrial prototype, that is, Volvo Technology’s Brake-by-Wire system. Later,
ViTAL will be extended with test-suite generation capabilities to provide sup-
port for model-based testing, by generating test suites corresponding to various
functional and extra-functional goals.

The paper is organized as follows. Section 2 briefly overviews East-adl ar-
chitectural language, Uppaal Port model-checker, and model-based testing.
Section 3 presents the work already done and some preliminary results. In Sec-
tion 4 we give a short description of the Brake-by-Wire industrial case study.
Next, Section 5 describes our steps to finalize the proposed framework, before
concluding the paper in Section 6.

2 Preliminaries

EAST-ADL. The architecture description language East-adl is structured
into five abstraction levels, which represent different stages of the engineering
process, and provides traceability between them [2]. In addition, the structural
organization of East-adl has modeling constructs for behavior, requirements,
timing, variability, and safety aspects. It captures structural components that
refer to external or internal behavior as Simulink models.

UPPAAL PORT. Based on Uppaal model-checker an extension for CB sys-
tems called Uppaal Port was released [5]. It uses local time semantics and
a Partial Order Reduction Technique (PORT) to improve the efficiency of the
verifier. Uppaal Port is suited for the analysis of East-adl models because
it assumes a “read-execute-write” component model semantics in its input lan-
guage.

Model-based Testing (MBT). It derives test suites based on the specified
functional requirements from a behavioral model of the system, covering one or
more particular criteria [8]. A test harness executes the test suite against the
implementation under test and the result is compared to the expected result,
prescribed by the specification, by a test oracle. The test oracle delivers a verdict
for each test case in the test suite.

1 ViTAL is available at http://www.vitaltool.org

No

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 2 of 22

Lecture Notes in Computer Science 3

3 Contribution of the Thesis

The behavior of an East-adl function prototype (FP) is described using exter-
nal notations such as UML and Simulink, which do not have direct support for
formally verifying East-adl models. We propose a framework that integrates
architectural description languages and verification techniques for CB ES, which
have been implemented in the ViTAL tool. As depicted in Fig 1, the system de-
signer creates the EAST-ADL models in a dedicated tool (e.g. Papyrus) and
adds behavior to the East-adl components, as TA models, such that Uppaal
Portmodel-checker can be used to simulate the system model and verify various
requirements (e.g., functional and timing requirements). We specify the inter-
nal behavior of each elementary FP as TA, and construct a complete system
behavior model by the parallel composition of local behaviors. In addition, we
map FP ports onto Uppaal Port read/write variables. A composition of func-
tion behaviors is considered a network TA that enables us to analyze and verify
behaviors of the entire system using Uppaal Port model checker. To be able
to perform this, we implement an automatic model transformation to Uppaal
Port, which enables Uppaal Port to handle East-adl models enriched with
TA behavior as input.

Fig. 1. The workflow of the integrated simulation and verification tool of East-adl
models

The above steps are implemented in our ViTAL tool, which provides an
integrated environment for architectural description languages and verification
techniques, based on different Eclipse plug-ins, as depicted in Fig. 2. The User

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 3 of 22

4 Lecture Notes in Computer Science

Interface integrates an editor for East-adl models in the Eclipse framework,
as well as a TA editor to model the timing and functional behavior of East-
adl FPs. Uppaal Port introduces support for simulation and verification,
using a client-server architecture. The Uppaal Port model-checker consists
of two modules: the Eclipse plug-in used as the graphical simulator, and the
server executing the verification. Using the integrated simulator it is possible to
validate the behavior and timing of an East-adl system model, prior to design
and implementation.

Fig. 2. Overview of the ViTAL tool architecture

In order to integrate the formal model of Uppaal Port TA with East-adl,
we need to first perform a semantic anchoring of the latter to a component model
that obeys the read-execute-write semantics, hence preserving the informal se-
mantics of East-adl without altering its structure. The Mapping Editor shown
in Fig. 2 can be seen as a function π : EAST − ADL → UPPAALPORT ,
which maps each FP to an intermediate component, input ports to intermediate
component data-flow input ports, output ports to the intermediate component
data-flow output ports, connectors to the intermediate component connections,
and the timing constraints to timing annotations.

ViTAL provides support only for the analysis of functional and timing re-
quirements of EAST-ADL functions, but the limited software and hardware re-
sources of complex automotive embedded systems require the analysis and ver-
ification of extra-functional requirements. Due to the lack of resource modeling
notations in East-adl, allocations of components cannot be analyzed and re-
fined at earlier phases of design. To address this problem, we propose a modeling
extension to the current East-adl language with associated abstract resource
information [6]. In order to annotate and reason about resource usage of EAST-
ADL models, we need a semantic extension of the model and its behavior. At

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 4 of 22

Lecture Notes in Computer Science 5

the structural level, the resources are part of our extension of the EAST-ADL
language in order to obtain resource awareness. At the behavioral level, Priced
Timed Automata (PTA) can be used as a framework for the formal analysis
of the corresponding models and the resource consumption represented as real-
valued cost variables, and their evolution.

4 Applying ViTAL on the Brake-by-Wire System

The Brake-by-Wire (BBW) system consists of five Electronic Control Units
(ECUs) connected by a network bus: a central ECU connected to the brake
pedal and another four ECUs connected to each wheel. The central ECU has
three components: a brake pedal sensor, a component that calculates the global
brake torque from the brake pedal position, and a component that distributes
the global torque to the four wheels. Each wheel ECU also has three components:
a sensor that measures the wheel speed, a component for the brake actuator, and
an ABS controller. The ABS controller is based on a simple logic: if the slip rate
of the wheel is larger than 0.2, then the brake actuator is released and no brake
is applied. Otherwise, the requested brake torque decided by the central ECU is
used.

A set of properties concerning the safety and liveness of the BBW system
have been verified with ViTAL. Here, we present a few representative properties
that we have verified in our previous work [3]:

– The property of deadlock freedom;
– Timing properties, like the end-to-end deadlines;
– Functional properties, which relate to the slip rate value.

5 Future Work

To provide a real combination of V&V techniques, tailored for East-adl ar-
chitectural language, which is our main research goal, we plan to extend our
framework with offline test suite generation capabilities for both functional and
extra-functional testing goals. The tool support will be based on ViTAL and
will use model-based testing to derive test-suites from East-adl functions en-
riched with TA behavior models, by exploiting the trace information resulted as
witnesses (or counter-examples) from Uppaal Port verification of appropriate
properties.

To be able to carry out resource-wise analysis of East-adl models, we in-
tend to integrate our extension with a formal model, that supports resource
analysis techniques for performing quantitative consumption analysis. We could
show how analysis goals (e.g., feasibility analysis, optimal resource analysis) can
be formalized and reasoned about by combining East-adl with an abstract
resource-aware behavioral model [6].

Last but not least, we intend to transform the abstract test-suites in ex-
ecutable test-suites and use them on the actual system implementation to be
able to asses the effectiveness of our framework.

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 5 of 22

6 Lecture Notes in Computer Science

6 Conclusion

Our research goal of V&V of East-adlmodels requires a consistent environment
that brings together model-driven development, formal analysis, and test-suite
generation. The employed formalism is the TA framework that captures the
execution flow inside each FP and the complex interactions between components.
In this paper, we have described a methodology towards the integration of East-
adl andUppaal Port and its implementation in a tool called ViTAL. As future
work, we will extend ViTAL with test-suite generation capabilities to enable the
verification of East-adl models. Through our framework, we hope to bring
together the V&V techniques, tailored for architectural models of ES.

Acknowledgment: The research leading to these results has received funding

from the ARTEMIS Joint Undertaking under grant agreement number 269335 and

from VINNOVA, the Swedish Governmental Agency for Innovation Systems, within

the MBAT project.

References

1. Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
Uppaal a tool suite for automatic verification of real-time systems. In Hybrid
Systems III, Lecture Notes in Computer Science. Springer, 1996.

2. MAENAD Consortium. East-adl domain model specification.
http://www.maenad.eu/, 2011.

3. E.P. Enoiu, R. Marinescu, C. Seceleanu, and P. Pettersson. Vital: A verification
tool for east-adl models using uppaal port. In 17th International Conference on
Engineering of Complex Computer Systems (ICECCS), 2012.

4. S. Gnesi, D. Latella, and M. Massink. Formal test-case generation for uml stat-
echarts. In Ninth IEEE International Conference on Engineering Complex Com-
puter Systems, 2004.

5. John H̊akansson, Jan Carlson, Aurelien Monot, and Paul Pettersson and.
Component-based design and analysis of embedded systems with uppaal port. In
6th International Symposium on Automated Technology for Verification and Anal-
ysis, 2008.

6. Raluca Marinescu and Eduard Paul Enoiu. Extending east-adl for modeling and
analysis of system for resource-usage. In Proceedings of the 4th IEEE International
Workshop on Component-Based Design of Resource-Constrained Systems. IEEE
Computer Society Press, 2012.

7. Brian Nielsen and Arne Skou. Automated test generation from timed automata.
In Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science. Springer, 2001.

8. A. Pretschner. Model-based testing. In 7th International Conference on Software
Engineering (ICSE), 2005.

9. M. Utting and B. Legeard. Practical model-based testing: a tools approach. Morgan
Kaufmann, 2007.

10. A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu, and P. Pettersson. Formal
semantics of the procom real-time component model. In 35th Euromicro Confer-
ence on Software Engineering and Advanced Applications, 2009.

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 6 of 22

Modeling and testing non deterministic real time

systems

Ilham Kitouni
1
, Djamel-Eddine Saidouni

1
 and Kenza Bouaroudj

1

1 MISC Laboratory, University Mentouri

Constantine, 25000, Algeria

{ kitouni, saidouni, bouaroudj }@misc-umc.org

Abstract. The aim of this paper is to propose a new testing approach based on

Timed Refusals Regions Graph (TRRG) in order to test non deterministic real

time systems. Those systems are modeled by Durational Actions Timed

Automata (DATA*). We characterize the DATA* model and we propose a

framework to generate TRRG from DATA*. We discuss a technique to generate

a canonical tester from TRRG. An implementation based on the combination of

Meta-modeling and Graph Grammars, to transform a DATA* structure into a

TRRG in the aim of creating a canonical tester and generating a test cases.

Keywords: Testing based models, refusals graphs, maximality semantics, non

deterministic real time systems, canonical tester.

1 Introduction

The design and implementation of correct critical and real time systems is one of the

major challenges of information technology. Formal testing can greatly increase the

confidence in the functioning of these systems. It allows checking the correctness of a

system with respect to its specification.

In this work we are interested in testing based models where the temporal behavior

of systems is taken into account. Testing based on timed refusals allows the

comparison between the behavior of the specification and the implementation, if the

implementation refuses an action after a timed trace, the specification also refuses this

action after the same trace. That means I and S have the same refusals sets and the

same timed traces. This theoretical approach is necessary to generate testers.

Systems are modeled by durational action timed automata (DATA*). It is

constructed on classical timed automata and augmented by maximality semantics. This

later allows us i) to carry durations of actions, which is realistic assumption for

specifying in a natural way systems and ii) to handle true concurrency. In [2] DATA*

is proven to be a determinizable model and have suitable properties. From this point of

view, it is well appropriate for modeling real time concurrent and distributed systems.

In the second time we propose a testing architecture based on the use of timed

refusals regions graph structure (TRRG) for generating a canonical tester. The DATA*

structure is determinized and decorated by refusals sets named Refusals DATA*

(RDATA*), after the state space of RDATA* is reduced using an equivalence relation

on regions, this step construct the TRRG [3].

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 7 of 22

In the next section, we define the DATA* model with properties. In section 3, test

architecture is presented. Finally, we discuss some open issues in section 4.

2. DATA* Model

The DATA* model is a timed automata over an alphabet representing actions to be

executed. This model takes into account, in the specification, the duration of actions

based on an intuitive idea: temporal and structural non-atomicity of actions. This

model seems interesting because it coated timed automata model by maximality

semantics.

In the DATA* model, the actions durations are represented by constraints on the

transitions and in the states. In this sense, any enabled transition represents the

beginning of the action execution. On the target state of transition, a timed expression

means that the action is possibly under execution (which is different from invariant in

some class of timed automata); we recall that is a characteristic of maximality

semantics based models.

Interleaved interpretations of concurrency are justified by assumption that all

actions are atomic a direct consequence is that no two actions can occur

simultaneously. In the opposite, maximality semantics based models present

concurrent actions differently from choice [6]. As an illustration, consider the example

depicted by Fig.1. In fact, information {x,y} on locations S2 and S4, in Fig.1.b make

the difference and inform about the concurrent execution of actions (a and b).

From operational point of view, each clock is associated to an action. This clock is

reset to 0 at the start of action and will be used in the construction of the temporal

constraints as transitions guard.

• Formalization

Definition1 : A DATA* D is a tuple ()fSD LLTXlL ,,,,, 0 over ACT a finite set of

actions, L is a finite set of locations, Ll ∈0 is the initial location, X is a finite set of

variables named clocks and TD is a set of edges. Lf is a subset of L for terminal

locations. A clock takes values from R
+
 or it is undefined, denoted by⊥. Without loss

of generality, we write { }⊥∪= ++
⊥ RR where the set of nonnegative real numbers is

extended with the special value⊥ . An edge ()',,,, lxaGle = represents a transition from

location l to location l’ on input symbol a, x is a clock to be reset with this transition. G

is the corresponding guard. Finally,

)(: XS CPLL → is a maximality function which

decorates each location by a set of timed formula named: Actions Durations. Those

concern overlapping execution of actions. XC is a set of clock constraints over X.

Definition2: The semantic of a DATA* D is given by the timed transitions system

(TTS): ()→,, 0sSD over ACT +
⊥R . A state of SD (or configuration) is a pair),(vl such

that l is a location and v is a valuation function over X , with initial

configuration ()⊥,0l . A terminal (accepting) configuration of TTS is a pair ()vl, with l

in Lf.

U

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 8 of 22

Two types of transitions between configurations of SD are possible and correspond

respectively to time passing thus the run of transition from D.

In this work, we mainly focus on the decision problems and closure properties of

DATA*. Hence, our aim is to characterize timed languages recognized by DATA* in

terms of some suitable deterministic class of timed automata. We also show that

DATA* are closed under Boolean operations. We investigate the expressive power of

DATA*, we show that the DATA*0, which are a DATA* with null durations, are

expressively equivalent to Event Recording Automata [5]. However, the known strict

inclusion of DATA*0 in DATA* seems to result into a new map for inclusion in the

class of timed languages.

After we give a technique of reducing regions automaton of DATA* in an

aggregated regions automaton to avoid explosion state space. We show that there is a

homomorphism on the behaviors of the two automata [1].

Fig 1: Representation of concurrency and choice in maximality semantics and interleaving

semantics.

 Illustrate the DATA* model with the example above (Fig.2):

Fig 2: DATA*.

 �; �; ����[]b ; �; ���� �; ���� |||�; ����

S0

S2 S1

S4 S3

�

� �

�

S0

S2 S1

S4 S3

�

� �

�

S0

S2 S1

S4 S3

 ∅�� ∅��

 ∅�� ∅��

∅

{�} {�}

{�, �} {�, �}

S0

S2 S1

S4 S3

 ∅�� ∅��

 � �� � ��

{�} {�}

∅

{�} {�}

a. Interleaving semanctics

b. Maximality semanctics

S

0

S

1

S

2 ∅

∅, �, �

{x ≥2}

x ≥ 2, �,y
 {y ≥10}

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 9 of 22

3 Test Architecture

We propose a new testing architecture for testing systems modeled by DATA* the

aim is to construct a canonical tester by several transformations. Moreover, we

investigated the automatic extraction of test cases. A detailed presentation of this

approach is in [3]. We summarize it as follow:

1- Construction of RDATA* from specification automaton. 2-Construction and

reduction of regions graph from RDATA* named TRRG, based on aggregation

method established for timed automata in [1]. 3- Generation of canonical tester from

TRRG graph. 4- Automatic extraction of test cases based on coverage criteria.

• Refusals DATA*: is a deterministic DATA* extended by refusals sets:

Definition3: RD = (D, Ref���) with D= ()fSD LLTXlL ,,,,, 0 is a deterministic DATA*

over Act and Ref���: L → P "P#Act'''' ∪ Act))))*+ is an application that associates for any

l ∈ L a set of refusals. Act'''' = {(a', G): a ∈ Act} and Act)))) = {(a), G): a ∈ ACT}.
We define the timed permanent and timed temporary refusals sets : V5 = {(a', G)} ∈

Ref���(l) as timed permanent refusal. It means that the action a may be refused

permanently from the state l, this refusal is possible but not certain. This certitude will

take place after the satisfaction of guard G. this refusal results from determinization

operation of DATA* structure. V6 = {(a), G)} ∈ Ref���(l): as timed temporary refusal

and it means that action is refused as much as the guard G is not satisfied. This refusal

results from durational actions hypothesis. P "P#V5 ∪ V6*+ is partition of parts of refusals
sets. Based on determinization property of DATA* model and definition of different

kind of refusals the construction of RDATA* is done.

• Minimization of Refusals Sets: The minimization procedure of refusals sets

eliminates redundant information about refusals at any location of RDATA*.

Definition4: Let 78 = (8, 79:;<=) be a RDATA*, > ∈ ? and let @, A ∈ 79:;<=(>),
@ ⋐ A ∶ ∀(�', ∅) ∈ @ , (�', ∅) ∈ A �EF ∀(�), G) ∈ @ 9H�ℎ9J (�), G) ∈ A �J (�', ∅) ∈ A .

The minimization of refusals set A produces a new set A’ calculated for any location

 > ∈ ? is as follows:

1- ∀@ ∈ 79:;<=(>)H: (�', ∅) ∈ @ �EF (�), G) ∈ @ �ℎ9E J9K�L9 (�), G):J�K @

2- Minimize 79:;<=(>) with respect to the relation ⋐.

• Timed Refusals Regions Graph: In previous work [1], we have defined an

aggregation operation on regions automaton states for timed automata based on

observable traces, using an equivalence relation. This aggregation reduces significantly

the graph size. For this purpose we have adapted the proposed algorithm to generate

aggregated regions automaton for DATA* which preserves the reachability property.

While the regions graph associated to the DATA* was creating, symmetrical

aspects of clock regions is revealed. Indeed, because of the causal dependence of

actions when considering durations of actions, the guards of the transitions have a

particular form also the single clock reset, in the beginning of action execution. These

two characteristics allow us deducting the form of regions and their successors which

verify guards and clock rest at each point of time.

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 10 of 22

This detailed principle is used to construct and reduce in the same time de timed

refusals regions graph TRRG.

Testing with TRRG [3]: In our case we introduce the use of TRRG in testing timed

systems specified by DATA*. Therefore, the conformance relation must be decided

and we have to take into account actions which elapse in addition to temporal

requirements. The TRRG structure permits to define a timed extension of conformance

relation based on classical conf relation for DATA* defined in [9]. This relation was

widely used in the practice of the test on Labeled Transitions Systems.

We define a timed conformance relation named conftpr as follows:

Definition5: M is a timed trace , R S�E:;<= T ≝ ∀M ∈ V�J�S9�(T)

#W�J�(R, M) ⊆ W�J�(T, M)*�EF #79:;<=(R, M) ⊆ 79:;<=(T, M)*.

The use of this notion of conformance makes DATA* more expressive. And confTPR

can be refined and used explicitly for creating a tester for deriving test cases.

• Implementation [4]: The proposed approach was implemented using graph

transformation. Which is a process converts a model to another model. This task

requires a set of rules (Graph Grammars) that define how the source model has to be

analyzed and transformed into other elements of the target model. For this purpose

AToM
3
 is used.

5 Conclusion and future Work

The consideration of temporary refusals in testing is a question that has been

addressed in the literature since 1981 [12]. For instance, Langerak [11] considers

system which may refuses some actions, however these refusals may disappear after

applying extra events on it. In this theory, the origin of temporary refusals is unknown

and extra events are needed to eliminate this lock.

Tretmans in [10] has defined the notion of quiescence in system behaviors, this

situation may occur when a system executes a cyclic sequence of silent actions. To

distinguish between quiescence situation and temporary refusals, Brinksma and al

propose in [13] an extension of the conformance relation for real time systems and

introduce a notion of quiescence parameterized by upper bound of duration for this

lock. While this period has not expired, the refusal may be temporary, the system is

considered in a quiescence location.

Nielsen proposes in [8], an approach for testing timed systems based on a

Hennessy’s testing theory [7] specifications are defined as event recording automata

over a given finite set of actions. The specification structure is converted to a trace

equivalent deterministic state machine whose states are labeled with the must sets for

that state. A simple timed generalization of Hennessy’s tests. This theory is based on

tree abstraction defined as: after σ must A, after σ must Ø and canσ; σ become a timed

trace (a sequence of alternating actions and time delays), after which an action in A

must be accepted immediately for example.

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 11 of 22

Our proposition presents similarity from Nielsen one, the difference consists in the

conformance relation and the model used for specification. We think that our approach

is more general and rich in the sense that it combines, advantages from maximality

semantics, non deterministic timed models and refusals testing.

A lot of works remain to be done; we plan to use this result in order to construct a

validating approach for R.T. systems, and to define how to select complete tests and

the possibility to combine model checking algorithms and refusals testing.

References

1. I. Kitouni, H. Hachichi, D.E. Saidouni: A Simple Approach for Reducing Timed Automata.

In: The 2nd IEEE International Conference on Information Technology and e-Services

(ICITeS 2012). Sousse, Tunisia (March 24-26, 2012).

 2. I. Kitouni, H. Hachichi, K. Bouaroudj and D.E. Saidouni: Durational Actions Timed

Automata: Determinization and Expressiveness. In: International Journal of Applied

Information Systems (IJAIS) 4(2):1-11, September 2012. Published by foundation of

Computer Science. New York, USA.

3. I. Kitouni, H. Hachichi, K. Bouaroudj and D.E. Saidouni: Timed Refusals Graph for Non-

Deterministic Timed Systems. In: International Journal of Computer Science and

Telecommunications (IJCST). Volume 3, Issue 9, September 2012.

4. H. Hachichi, I. Kitouni, K. Bouaroudj and D.E. Saidouni: A Graph Transformation Approach

for Testing Timed Systems. In: The 18th International Conference on Information and

Software Technologies (ICIST 2012) published as a volume of Springer-Verlag CCIS 319,

pp. 123–137, Kaunas, Lithuania (September 13th - 14th, 2012).

5. R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: a determinizable class of timed

automata. Theoretical Computer Science, 211(1–2):253–273, (1999)

6. H. Bowman and R. Gomez: Concurrency Theory, Calculi and Automata for Modelling

Untimed and Timed Concurrent Systems. ISBN-10: 1-85233-895-4 ISBN-13: 978-1-85233-

895-4 Springer-Verlag London Limited (2006)

7. R. D. Nicola and M. Hennessy. Testing Equivalences for Processes. Theoretical Computer

Science, 34:83–133, (1984)

8. B. Nielsen. Specification and Test of Real-Time Systems. PhD thesis, Department of

computer Science, Aalborg University, Denmark, april 2000.

9. E. Brinksma , theory for the derivation of tests. In S. Aggarwal and K. Sabnani, editors,

Proceedings of the 8th IFIP, Symposium on Protocol Specification, Testing and Verification

(PSTV 1988). North-Holland, (1989).

10. J. Tretmans, Test generation with inputs,outputs and repetitive quiescence. In Software-

Concepts and Tools,17(3) (1996)

11. R. Langerak, Transformations and Semantics for LOTOS. PhD thesis, University of Twente,

Netherland, (1992)

12. I. Phillips, refusal testing ; theoretical computer science : 241-284,1987. Smith, T.F.,

Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195-

197 (1981)

13. E. Brinksma, L. Brandan, and Briones. Test generation framework for quiescent real time

systems. In J. Grabowski and B. Nielsen, editors, FATES, volume 3395 of LNCS, pages 64-

78, Berlin Heidelberg, Springer-Verlag, (2005)

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 12 of 22

Filtered Comparison for Oracle in Model
Transformation Testing

Olivier Finot (PhD Student),
Jean-Marie Mottu, Gerson Sunyé, and Christian Attiogbe (Advisors)

LINA CNRS UMR 6241
University of Nantes
2, rue de la Houssinière

F-44322 Nantes Cedex, France
olivier.finot@univ-nantes.fr

Abstract. Focusing on one part of a produced output helps in improv-
ing model transformation testing

1 Introduction

Models are becoming a key element in software engineering. With Model
Driven Engineering (MDE), they are the heart of the development pro-
cess. They are used to describe a system at some state of its develop-
ment, and they evolve with transformations. Model transformations can
be chained, up to the production of executable code.
However, any error in a transformation of such a chain will be spread
to the resulting code. But while testing the produced code might detect
the bug, finding its origin will be difficult. Therefore, it would be useful
to check the chain’s development by verifying the transformations.
The subject of this PhD thesis is the study of test oracles in MDE, and
particularly for model transformation testing. Several contributions have
already been published on the verification of model transformation. Our
goal is to pursue research on this field and improve existing methods to
test model transformations.
In Section 2, we present part of our work on the subject of model trans-
formation testing. We propose a new approach to build a partial test
oracle.1. Then, in Section 3 we discuss current and future work. Finally
we conclude in Section 4.

2 Partial Oracle for Model Transformation
Testing

Model transformations are automated to be highly reused. If we want to
reuse a piece of software, we have to trust it. We can not have any errors
in something we will reuse numerous times. We use test to ensure the
correctness of a model transformation w.r.t. its specification.
The tester provides a valid input model, then she executes the Transfor-
mation Under Test (TUT) over this input model. Finally the test oracle

1 a paper on the subject is currently under review for ICST13

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 13 of 22

2

Fig. 1. Example M in, of Hierarchical State Machine

(a) Variant Mout
1 with

only One Final State
(b) Variant Mout

2 with
Two Final States

Fig. 2. Possible Results for the Flattening of M in

is what we are interested in, it controls the output model produced by
the TUT’s execution.
We are particularly interested in oracles for model transformation test-
ing. While several studies discuss the generation and selection of input
models [1] [2] [3] [4], the oracle is seldom considered [5] [6].
In some cases, the transformation’s output is particularly complex. Thus,
building an oracle controlling such an output is all the more difficult. An
example of such a complex output is the case of polymorphic outputs. In
this case the transformation’s specification allows several valid variants
of a given output. For example if we consider a program running an
operation on a Finite State Machine (FSM) in order to flatten it, the
input of this program is transformed into another FSM expressing the
same behavior without using any composite state. We can transform the
input model presented in Figure 1 into the output model depicted in
Figure 2(a). With such state machines, the number of final states is not
limited to only one. Thus, the FSM presented in Figure 2(b) is also a
correct output for the flattening of the FSM presented in Figure 1.
While the implementation of such a transformation is deterministic, the
specification allows several variants. The developer implements only one
of these variants. However, when building an oracle, the tester must
not consider the transformation’s implementation, since she might be
influenced by errors made by the developer. Thus, she has to design an
oracle that checks that the produced output of the Transformation Under
Test is one of the possible variants.
Classically, building a test oracle for model transformation consists in
comparing the produced output model with a reference one [5]. The
reference output model is the output model expected for the correct
transformation of the input. Applying this approach to model transfor-
mations with polymorphic outputs would mean having the tester define
one reference output model for each of the variants and then compare
the produced output model to all of them. If the produced output model
is identical to one of the reference output models, the test passes; other-
wise it fails. Applying this classical approach to polymorphic outputs is

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 14 of 22

3

time-and effort-consuming for the tester. She has to manually define all
the reference outputs, and run the comparisons.
In [7], we propose a more efficient approach to build an oracle to test
model transformations with polymorphic outputs. We notice that in the
polymorphic outputs of a model transformation some elements do not
change from one variant to the other. In the example of the Figure 2, this
is the case for the initial and simple states as well as for the transitions
between them, they belong to the common part of the variants; the other
elements form the variable part.
Our idea is to build an oracle focussing on this common part. Since by
definition, the common part is identical in all the variants, this oracle
will only need one reference output model as oracle data. The produced
output model is compared to the reference one. The result of this com-
parison is then filtered in order to eliminate any difference concerning the
variable part of the output model. If the filtered result of the comparison
is empty, the common parts of both the produced and reference out-
put model are identical, the test passes. Otherwise, the produced output
model contains errors, an then the test fails.
Figure 3 summarizes our approach. We provide as oracle data the refer-
ence output model as well as patterns. In order to eliminate the differ-
ences about the variable part, we need to know which elements belong
to this variable part. We define these elements according to their types
(e.g. their meta-classes). The patterns we provide are meta-model ex-
cerpts defining the variable part of the transformation’s output.
Our approach, requires the tester to identify the common and variable
parts of the transformation’s polymorphic outputs. A transformation has
polymorphic outputs because the specification allows several syntaxes for
a given semantics. Either it is clearly stated which elements are the source
of this polymorphism, or this piece of information can be found in the
output meta-model.
Languages, for instance, usually contain binary operators such as the
logical or for which the order of the operands does not matter. Therefore
a model instance of this language can have several variants by modifying
this order; here the variable part is composed of all the instances of the
operator and their operands. For instance, Bisztray et al. [8] transform
UML activity diagrams into modelized CSP programs; the BinaryOper-
ators and their instances form the variable part. The common part is
identified only once for all test cases of a given transformation.

Fig. 3. Our Approach to Build a Partial Oracle

In our approach, we focus on controlling one part the produced output,
producing a partial verdict. Nevertheless, a partial verdict is already a
good piece of information. We are able to detect errors in the produced

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 15 of 22

4

output model using only one reference output model, whereas the clas-
sical approach requires to define as many reference output models as
correct variants of the output model.
This approach has been automatized and we ran experiments on two
different case studies. We concluded that our approach requires the tester
to define less model elements, than with the classical approach. In those
case studies, the common part is more important than the variable one
This work has been submitted to ICST 2013 and is currently under
review.

3 Ongoing Work

This PhD’s subject is test oracles in MDE. We discussed in Section 2
one contribution aimed at partially controlling the polymorphic outputs
of a model transformation.
Another part of the work on this subject consists in completing the
obtained partial verdict, by controlling the unchecked variable part of
the produced outputs. Whereas for the common part we use a reference
output model, the idea here is to work directly on the produced output
model. The tester starts by checking that the expected elements for this
variable part are present in the model (in Figure 2, transitions from the
states B and C towards final states). Then she ensures that there is
nothing else in the variable part (no other instance of the meta-model
fragments used for the filter).
Model transformations do not always produce polymorphic outputs. Also,
defining a comprehensive reference output model can still be difficult
even when it is not polymorphic. For instance, the larger the handled
models become, the harder it is for the tester to define a reference out-
put model. It is time-and effort-consuming for her to manually define
a large and often complicated model. However it is easier to produce
a partial reference output model focussing on some elements. With our
approach, she could use this partial reference output model to obtain a
partial verdict. This partial verdict can be a useful piece of information.
Outside the scope of model transformations the tester can still be faced
with the complexity of the produced outputs. It can be difficult to man-
ually produce a comprehensive reference output when dealing with large
graphs or databases. Complex outputs are not just big sets with many
properties, these properties are organised and structured. Applying our
approach the tester can define partial oracles controlling such complex
outputs. She only needs a partial reference output and a definition of
the part she would not be interested in. In the case of regression testing,
the partial reference output is produced by the previous version of the
System Under Test.

4 Conclusion

The topic of this PhD thesis is about test in a model driven engineer-
ing environment. Our first contribution is the proposal of an efficient

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 16 of 22

5

approach to build a partial oracle controlling the common part of poly-
morphic outputs in a model driven environment. We are currently work-
ing on controlling the remaining, variable part. Also while the proposed
approach was defined to control the polymorphic outputs of a model
transformation, we are currently studying its to other model transfor-
mations. Afterwards we will confront our approach to other programs
with complex output data.

References

1. Sen, S., Baudry, B., Mottu, J.M.: On combining multi-formalism
knowledge to select models for model transformation testing. In:
ICST. (2008) 328–337

2. Fleurey, F., Baudry, B., Muller, P.A., Le Traon, Y.: Qualifying input
test data for model transformations. SOSYM (2009)

3. Mottu, J.M., Sen, S., Tisi, M., Cabot, J.: Static analysis of model
transformations for effective test generation. In: ISSRE. (2012)

4. González, C.A., Cabot, J.: Atltest: A white-box test generation ap-
proach for ATL transformations. In: MoDELS. (2012) 449–464

5. Mottu, J.M., Baudry, B., Le Traon, Y.: Model transformation testing
: oracle issue. In: MoDeVVa. (2008)

6. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for
the verification of model transformations. ECEASST (2009)

7. Finot, O., Mottu, J.M., Sunye, G., Attiogbe, C.: Comparaison de
modèles filtrée pour le test de transformations de modèles. In: Con-
férence en IngénieriE du Logiciel CIEL. (2012)

8. Bisztray, D., Ehrig, K., Heckel, R.: Case study: Uml to csp transfor-
mation. AGTIVE (2007)

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 17 of 22

Relating Variability Modeling and Model-Based Testing

for Software Product Lines Testing

Hamza Samih

hamza.samih@inria.fr

Abstract. More and more industries must build and simultaneously maintain sev-

eral variants of a system in order to satisfy different user requirements. Software

Product Line (SPL) engineering aims at identifying and managing commonality and

variability (i.e., differences) among a set of variants. The development of an SPL

needs solutions for including the testing activity. In this work, we explore how Mod-

el-Based Testing (MBT) can be applied in the context of SPL engineering. MBT is

effective for testing a single system. Currently this technique cannot handle variability

in test generation. To raise this limitation, we propose an approach based on function-

al requirements to link a variability model with a test model realized with MaTeLo

MBT tool. The aim is to generate a test model for a selected member product of SPL.

1 Introduction

The extreme diversity of users and requirements for software systems forces software

industry to increase the degree of variability and adaptability of their products. A

growing number of companies adopt a SPL approach to deal with this major change

in software development. This approach usually consists in designing a variability

model, which captures all common and variable parts of the SPL. Then, software

architects can decide on which variants to choose in order to derive a specific product

in the line. SPL is a promising approach to increase reuse of core software assets,

systematically document variability and eventually improve time-to-market for vari-

ants of a given system. However, from a testing point of view, SPL represents a major

challenge. In particular, model-based testing does not support the notion of variability

to automatically generate test cases for specific products [3] [4].

This PhD project addresses one core challenge: how can we reconcile variability

modelling and model-based testing in order to reuse test models for the automatic

generation of product-specific test cases. Recent work has addressed a part of this

question by adapting combinatorial test selection to variability models. Hervieu et al.

[5] and Perrouin et al. [7] propose different techniques that select a subset of all pos-

sible products for testing, based on pairwise coverage of interactions between variants

in the product line. However, these techniques do not generate the test cases for the

selected products.

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 18 of 22

In this work, we rely on OVM (Orthogonal Variability Model) [3], [4] for variabil-

ity modelling and MaTeLo
1
for model based testing.

The MaTeLo Model-Based Testing is a tool developed by ALL4TEC French SME,

its approach is to optimize the test process and improve the systems validation thanks

to Markov chains based usage models to generate automatically test cases [1][2].

ALL4TEC look to introduce the variability in its test approach based on Model-Based

testing by creating one usage model to test a product line. To validate that assumption

we are faced to two challenges.

1. The first challenge is to link OVM model with MaTeLo test model of product line

by managing the traceability between the variability and the equivalent elements of

test model. This traceability is based on functional requirements of software sys-

tem, which each requirement must be linked to equivalent features and to equiva-

lent elements of test model.

2. The second challenge is to extract automatically an equivalent test model to a se-

lected product of SPL. The core challenge is to extract a model that contains all

equivalent test elements that describe the behavioral of the selected product fea-

tures, as well as to be complete and valid model on the point of view Markov

chain.

In the next section, we present the formalisms and the SPL testing approach we will

use in the PhD work.

1 The acronym for “Markov Test Logic”. An MBT tool that is dedicated for building usage

models and generating test cases. It is developed by ALL4TEC

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 19 of 22

2 SPL Testing by MBT

Figure. 1. SPL Testing by MBT

The first phase proceeds in three steps. The first step in that approach is realizing

the test model of SPL. On MaTeLo we can associate functional requirements de-

scribed in naturel language on each transition of the test model, to check in the test

generation whether is covered it or not (right Top on the Fig.1) [1]. The second step is

to model the variability of product line (left Top on the Fig.1) using OVM figures.

The OVM is a formalism to document only the variability of SPL, in this model

the all way may vary a product line are figured by variation point (VP) and all in-

stance of VPs are figured by variant (V) . The Vs are no more than features, which

help to configure the valid products while enforcing the constraints between VPs, V

or both [4]. The top left Figure 1 depicts the OVM model.

The last step is linking the both formalisms, the MaTeLo test model with OVM us-

ing the requirements documentation. The traceability is assured by linking manually

each requirement that described variability of SPL, to equivalent feature on OVM and

link it also to the equivalent transition on the MaTeLo test model (Top of Fig.1).

The second phase is generating a test model for selected valid product, but before

we need first to configure manually all products from the OVM model (Left bottom

of Fig.1). The products configuration is based on selecting all desired features to

compose the product under development in accordance with constraints between VPs

and Vs. The configured products are used as input to algorithm of test model genera-

tor. We select the product to generate its test model. The general principle of the algo-

rithm is as follows:

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 20 of 22

1. Extract all requirements that satisfy all composed features of selected product.

2. Select all tagged transitions within MaTeLo test model by the selected require-

ments in the first iteration.

3. Delete all not matched elements of test model to selected product.

4. Update the rest of test model for selected product to be a valid Markov chain mod-

el.

Finally with MaTeLo tool, we can derive for the generated test model of selected

product the equivalent test cases (bottom part of Fig.1).

3 Conclusion and perspective

In this work we propose a new technic to test SPL with MBT, by enriching the test

model with the variability thanks to traceability with functional requirements tagged

in the both formalisms.

Currently the association requirements – features, requirements – transitions and

product configuration is done manually. Therefore we need to reason about consisten-

cy and for implementing an efficient solution to derive automatically and safely a

“test model”.

We plan to do an industrial experimentation in European project MBAT
2
 where we

are involved, to validate that assumption the realization a test model for SPL and the

proposal of extracting a test model for a valid product of realistic SPL.

REFERENCES

1. Le Guen, H. (2003, septembre). Thelin. Practical experiences about statistical usage

testing. In STEP. Amsterdam.

2. Mark Utting, B. L. (2007). Pratical Model-Based testing A tools Approach. ISBN-13: 978-

0123725011

3. Disambiguating the Documentation of Variability in Software Product Lines:A Separation

of Concerns, Formalization and Automated Analysis. Univ of Duisburg Es-

sen,Essen Heymans,P. ; Pohl,K. ; Schobbens,P.Y. ; Saval,G. Page(s): 243 - 253

4. Pohl, K., Bockle, G., and van der Linden, F., Software Product Line Engineering : Founda-

tions,Principles, and Techniques, Springer (2005)

5. A. Hervieu, B. Baudry, and A. Gotlieb, “Pacogen: Automatic generation of pairwise test

configurations from feature models,” in Proc. of the 22nd IEEE Int. Symp. on Softw. Reli-

ability Engineering (ISSRE’11), Hiroshima, Japan, Nov. 2011

6. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-Oriented Domain Analy-

sis (FODA) Feasibility Study,” Software Engineering Institute, Tech. Rep. CMU/SEI-90-TR-21,

Nov. 1990.

2 The Combined Model-based Analysis and Testing of Embedded Systems is one of

ARTEMIS European projects

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 21 of 22

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Heymans,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pohl,%20K..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Schobbens,%20P.-Y..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Saval,%20G..QT.&newsearch=partialPref

7. Perrouin, G., Sen, S., Klein, J., Baudry, B., Traon, Y.L.: Automated and scalable t-wise

test case generation strategies for software product lines. In: Third International Confer-

ence on Software Testing, Verification and Validation (2010)

Proceedings of the ICTSS 2012 Ph.D. Workshop Page 22 of 22

