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ABSTRACT

Nowadays, Renewable Energy Sources (RES) are attracting more

and more interest. Thus, many countries aim to increase the share

of green energy and have to face with several challenges (e.g., bal-

ancing, storage, pricing). In this paper, we address the balancing

challenge and present the MIRABEL project which aims to proto-

type an Energy Data Management System (EDMS) which takes

benefit of flexibilities to efficiently balance energy demand and

supply. The EDMS consists of millions of heterogeneous nodes

that each incorporates advanced components (e.g., aggregation,

forecasting, scheduling, negotiation). We describe each of these

components and their interaction. Preliminary experimental re-

sults confirm the feasibility of our EDMS.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
Energy demand is increasing rapidly worldwide. Fossil fu-

els are a problematic way of producing energy due to green-
house gas emissions and potential exhaustion of oil supplies,
while nuclear energy is risky. Instead, renewable energy
sources (RES) such as wind, waves and solar power is seen
as the promising sustainable alternative.

Thus, many countries aim to increase the share of energy
from RES such as wind turbines and solar panels. How-
ever, the integration of renewable energy is challenging as
production from RES highly depends on weather conditions
and thus cannot be planned.

In order to facilitate the more efficient utilization of an
intermittent RES supply, the EU’s 7th Framework project
MIRABEL (Micro-Request-Based Aggregation, Forecasting
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Figure 1: Balancing the consumption and the RES
production

and Scheduling of Energy Demand, Supply and Distribution)
designs and prototypes an Energy Data Management Sys-
tem (EDMS). Particularly, this project copes with the prob-
lem of RES by balancing supply and demand with the help
of flexibilities. Indeed, flexible demand (e.g., the usage of a
washing machine or charging an electric vehicle) can often
be shifted to the time when production from RES is avail-
able. Conversely, non-flexible demand (e.g., the usage of
lights, TV, or a cooking stove) must be satisfied at the time
when it is demanded. Figure 1 visualizes situations before
(top graph) and after (bottom graph) the MIRABEL system
balances demand and RES supply. Here, the solid gray and
shaded areas depict non-flexible and flexible demand, aggre-
gated from hundreds of consumers. The EDMS can utilize
production from RES (dashed line) more efficiently by shift-
ing flexible demand in time (bottom graph). Interestingly,
the EDMS also contributes to reduce peak demand by plan-
ing energy flows in a physical grid based on the automatic
scheduling of energy demands from millions of consumers.

From an architectural point of view, the EDMS consists
of millions of homogeneous nodes that are organized hier-
archically to reflect the harmonized model of the European
electricity market [4] (Figure 2). Highest level nodes are
used by electricity network operators (TSOs – transmission
system operators), middle level nodes – by traders (balance-
responsible parties – BRPs), and lowest level nodes – by
prosumers (entities that are consumers and/or producers).
We anticipate that the EDMS will eventually span over the
entire Europe, thus encompassing millions of nodes.

When trying to balance energy supply and demand ef-
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Figure 2: Architecture of the EDMS

fectively, a number of general data management challenges
arise. These include managing very large-scale wide-area
distributed systems, providing high availability and fault tol-
erance, supporting near-realtime data synchronization and
integration, and enabling advanced analytics. Some of these
challenges are inherently addressed in our system. Indeed,
even in critical scenarios (e.g., nodes unreachable, failed exe-
cution deadlines) the overall system would gracefully behave
as in the traditional setting because pending flexibilities sim-
ply timeout and customers fall back to the open contract.
Furthermore, specific research challenges are found within
data aggregation, forecasting, scheduling, and negotiation.
In this paper, initial results about the EDMS architecture
are presented through the following contributions. First, we
provide an efficient technique to aggregate flex-offers that
preserves as much flexibilities as possible. Second, an accu-
rate and efficient forecasting technique is proposed since it
is a fundamental precondition to the overall quality of the
system. Third, a scheduling model for balancing energy de-
mand and supply is provided. Fourth, a negotiation module
is defined to find an agreement between the prosumers and
its BRP about the price for flex-offers. Finally, we describe
how these components interact and provide preliminary ex-
perimental results to validate the feasibility of the EDMS.

Many other projects work on balancing energy demand
and supply, including MEREGIO (www.meregio.de), FE-
NIX (www.fenix-project.org), EU DEEP (www.eu-deep.com),
ADDRESS (www.addressfp7.org), EDISON (www.edison-
net.dk), MORE MICROGRIDS (www.microgrids.eu), and
EcoGrid EU (www.eu-ecogrid.net). Overall, these projects
tend to be focused on quite specific demand types such
as heat pumps or electric vehicles, or on specific ways of
controlling devices. The MIRABEL approach to flexibility
is able to generalize and combine these more specific ap-
proaches. Indeed, a major strength of the MIRABEL ap-
proach is that it is able to accommodate all forms of both
flexible demand, e.g., heat pumps, dishwashers, washing ma-
chines, freezers, and supply, e.g., from private solar pan-
els, in a completely general way. Additionally, the flexible
demand and supply of not just large, but also small and
medium-size, industrial prosumers can easily be handled.
The solutions developed in MIRABEL thus have an impact
far beyond the project itself.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the MIRABEL use scenario. Section 3
gives an overview of a node architecture. Section 4 intro-
duces the problem of aggregating flex-offers and outlines
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our solution. Section 5 describes the challenges and solu-
tions for forecasting energy time series. Section 6 discusses
the MIRABEL scheduling approach, while Section 7 outlines
the negotiation approach. Section 8 discusses the interaction
and interdependencies between the individual components,
and Section 9 presents initial experimental results. Finally,
Section 10 concludes the paper.

2. MIRABEL USE SCENARIO
The following sequence illustrates a typical flow of events

within the MIRABEL system.
Step 1. A consumer arrives home at 10pm and wants to

recharge the electric car’s battery at lowest possible price by
the next morning. Once plugged in, the system recognizes
the vehicle and chooses a default energy consumption pro-
file, which, among other information, defines consumption
completion time at 7am.

Step 2. The prosumer’s node (level 1) generates an en-
ergy planning object, called flex-offer (Figure 3). The solid
gray and shaded area represents the profile and the dotted
area at the bottom shows the time flexibility interval - earli-
est start time is 10pm and latest start time is 5am to finish
consumption by 7am.

Step 3. Based on weather forecasts, the trader’s node
(level 2) schedules the flex-offer to start energy consumption
at 3am and sends back a message to the prosumer’s node.

Step 4. The consumer’s node of EDMS starts supplying
energy to the electric vehicle at 3am. Actually consumed
energy is visualized with the gray dashed line in Figure 3.
The car’s battery is fully charged at 5am.

The trader’s node collects such flex-offers from millions of
consumers. Then, it aggregates these (micro) flex-offers into
larger ones, called macro flex-offers. These - define larger
energy quantities in their energy profiles due to the aggrega-
tion. Later, the aggregated flex-offers are scheduled so that
they match supply from RES thus minimizing imbalances
in the part of electricity network, for which the trader has
balance responsibility. Such scheduled flex-offers are disag-
gregated intomicro scheduled flex-offers and finally reported
back to the consumers. A consumer is given a discount for
energy if she provides flexibilities using flex-offers. Produc-
ers can also issue flex-offers. These are treaded equivalently
to flex-offers for consumption.

The aggregated flex-offers are used to buy and sell energy
at the energy market (via the market operator or directly
with other traders). This means that the process is essen-
tially repeated at a higher level: the aggregated flex-offers
are sent to a TSO’s node (level 3) for further aggregation,
scheduling, and disaggregation. When the TSO’s node for-



wards back scheduled flex-offers to the trader, they are dis-
aggregated and reported back to respective prosumers in the
same way as locally managed flex-offers.

3. NODE ARCHITECTURE OVERVIEW
In the global MIRABEL architecture, nodes represent the

atomic entity and has to be designed with great care to guar-
antee good overall performances. In the rest of the paper, we
thus focus on the description of Local Energy Data Manage-
ment System (LEDMS) running on each of the MIRABEL
homogeneous nodes. We start by providing an overview of
the LEDMS architecture. Details on key components are
given in the next sections.

The Control component is the central component orches-
trating all other components and processes within the node.
The Communication component is responsible for exchang-
ing messages (flex-offers, supply and demand measurements,
forecasts, etc.) between the current and other LEDMSs
nodes. The Forecasting component is responsible for fore-
casting the expected demand and supply within the electric-
ity grid based on historical measurements. In the LEDMS,
these forecasts primarily serve as input to the flex-offers
scheduling, handled by the Scheduling component. The pri-
mary task of the Scheduling component is to balance sup-
ply and demand in the relevant part of the electricity grid,
based on flexibilities provided by flex-offers. It is infeasible
for the Scheduling component to schedule the millions of mi-
cro flex-offers individually. Instead, similar micro flex-offers
are aggregated into larger macro flex-offers that can then be
scheduled within reasonable time. The aggregation is done
by the Aggregation component. The Negotiation compo-
nent handles the pricing of individual scheduled flex-offers,
and the contracting between two users. Physical users can
interact with LEDMS, set parameters, and analyze the data
through the User Interface component. Finally, all historical
and current time demand/supply, forecasting model param-
eters, flex-offers, price and contracts are stored and man-
aged by the Data Management component. Thus, it plays
a major role since it interacts with most of LEDMS com-
ponent. To meet the above mentioned data management
requirements, data are persistently stored using a multidi-
mensional schema [6] that can be seen as a combination of
star and snowflake schemas. This single, unified schema is
flexible enough to support actors at all levels, some of which
only use subparts of the schema, e.g., prosumers nodes do
not make use of market area data.

4. AGGREGATION
As noted in Section 2, Aggregation inputs a large set

(> 106 per day) of flex-offers (e.g., from prosumers) and
outputs a substantially smaller set of aggregated flex-offers.
Disaggregation transforms these into a set of scheduled (mi-
cro) flex-offers. This process must always satisfy the:
Disaggregation requirement. It should be always pos-
sible to correctly disaggregate scheduled flex-offers. Ag-
gregated scheduled flex-offers can always be converted into
(non-aggregated) scheduled flex-offers while respecting the
initial flex-offer constraints. If not, the macro-level schedule
does not correspond to the micro-level one, and it is impossi-
ble to balance energy supply and demand at the micro-level.

Additionally, the process should try to meet a trade-off
between the following three conflicting requirements:

Compression requirement. The number of aggregated
flex-offers should be as small as possible to reduce schedul-
ing time.
Flexibility requirement. The loss of flexibility in the ag-
gregation should be as small as possible. When aggregating
two or more flex-offers into a single one, either energy flexi-
bility (the ability to scale energy up or down at a given time)
or time flexibility (the ability to shift energy use/production
in time) is often lost because of the many possible flexibility
combinations, only one of which can be chosen.
Efficiency requirement. Aggregation, scheduling, and
disaggregation must complete within a given (short) time.
We now describe how aggregation and disaggregation were
designed to satisfy these requirements.

Aggregation Component Overview

First, it is assumed that a set of flex-offers is always aggre-
gated into a single aggregated flex-offer. All internal con-
straints of an aggregated flex-offer are conservatively pro-
duced so that (1) all profiles of the underlying flex-offers can
always be shifted in the time flexibility range of the aggre-
gated flex-offer; (2) energy values in the aggregated flex-offer
profile are computed by summing the values from the under-
lying flex-offers profiles. Such approach satisfies the disag-
gregation requirement because the schedule that is produced
using the aggregated flex-offers can always be disaggregated
into an equivalent schedule with the non-aggregated flex-
offers.

Second, in order to provide control over the compression
factor and flexibility losses, a set of user-defined aggregation
thresholds (e.g., duration tolerance, start after tolerance)
is introduced. They allow determining similar flex-offers
that can potentially be aggregated. Specifically, two flex-
offers are allowed to be aggregated together only if their at-
tribute values (e.g., duration, start after time) deviate by no
more than user-specified thresholds. As shown in the exper-
iment section, combinations of the aggregation parameter
values allow controlling the flexibility loss and the preferred
compression factor. Moreover, the aggregation parameters
might not be sufficient when aggregating a large number of
identical flex-offers. In such a case, all identical flex-offer will
be aggregated into a single aggregated flex-offer thus losing
the flexibility to schedule them individually. To prevent this,
a so called bin-packer is designed. It allows to specify lower
and upper bounds on one of the following aggregated flex-
offer properties: (1) the number of flex-offers included into
a single aggregate, (2) the amount of energy (or time flexi-
bility) an aggregated flex-offer has to offer, etc. It should be
noticed that this bin-packer is an optional feature and can
be turned off.

Third, an incremental aggregation is supported. There-
fore, aggregated flex-offers can be incrementally updated to
avoid a from-scratch re-computation (an aggregation from
scratch is also supported). Thus, a more efficient flex-offer
aggregation can be achieved.

Research Results

Based on these design decisions, the aggregation compo-
nent was implemented. It accepts a set of flex-offer updates,
i.e., information about accepted or expiring flex-offers (those
with approaching assignment before time), and produces a
set of aggregated flex-offer updates, i.e., information about
created, deleted, and changed aggregated flex-offers.



The aggregation component consists of the following 3
sub-components: (1) group-builder, (2) bin-packer, and (3)
n-to-1 aggregator. These sub-components are chained so
that provided flex-offer updates traverse them sequentially.
First, flex-offer updates are accumulated within the group-
builder until their further processing is invoked. Then, when
invoked (e.g., by the control component. See Section 2), the
group-builder internally maintains similar flex-offer groups
and produces group-updates, i.e., information about created,
deleted, and changed groups. Then, when the bin-packer
receives those group-updates, it utilizes them to maintain
so called sub-groups, i.e, bounds-satisfying groups of sim-
ilar flex-offers, and to produce sub-group updates, i.e., in-
formation about created, deleted, and changed sub-groups.
Finally, the produced sub-group updates are issued to the
n-to-1 aggregator. This sub-component utilizes sub-group
updates (or group-updates if the bin-packer is disabled) to
maintain a set of aggregated flex-offers and to produce re-
spective aggregated flex-offer updates. The disaggregation
of flex-offers is also performed by the n-to-1 aggregator. Since
our approach meets the disaggregation requirement, the dis-
aggregation technique is quite straightforward and is hence
not further detailed here.

Research Directions

The current solution satisfies the defined requirements but
some challenges remain to be addressed. They are challenges
related to the current aggregation component design and the
aggregation of flex-offers in general.

First, it is a challenge to integrate the bin-packer with a
group-builder, i.e., the component that partitions flex-offers
into disjoint groups based on their similarity. In the cur-
rent design, these two elements are independent and, there-
fore, the group-builder is unaware about the goals of the bin-
packer. A better partitioning of flex-offer can be achieved
if all flex-offers are partitioned in one iteration so that they
suit better for the bin-packing. Performing the partitioning
incrementally is a part of the challenge.

Second, it is a challenge to develop a flex-offer aggregation
technique that simultaneously supports additional types of
flexibility, e.g., price, energy interval duration, or power flex-
ibilities. Third, a challenge is to find a more advanced flex-
offer representation which, for the same compression ratio,
can preserve flexibility of multiple prosumers with lower flex-
ibility loss. Building aggregation techniques for such repre-
sentation is a part of the challenge. Finally, it is a challenge
to generalize flex-offer aggregation approaches into a multi-
criteria grouping operator and a user defined aggregation
operator for a relational database management system.

5. FORECASTING
Accurate and efficient forecasts of energy consumption

and production are a fundamental precondition for dynamic
and fine-grained scheduling. Based on forecasts, schedules
for RES supply and demand are initially computed and af-
terwards incrementally maintained if forecast values change
over time. Specific characteristics of energy time series like
multi-seasonality (daily, weekly, annual) or dependency on
external information like weather or calendar events mo-
tivate the employment of forecast models tailor-made for
the energy domain. In addition, different forecast horizons
(short-term, mid-term, long-term) as well as the forecasting
of flex-offers have to be provided. Finally, forecasting faces

the challenge of a large scale hierarchical system with high
update rates of new measurements and evolving time series,
which require continuous model evaluation and adaptation.

Overview Forecasting Approach

Our system architecture consists of two main components:
(1) the transparent forecast model creation and usage and
(2) the transparent forecast model update and maintenance.
The model creation component automatically creates fore-
cast models, either beforehand or when the respective fore-
casts are demanded, where we apply the Engle, Granger, Ra-
manathan, and Vahid-Arraghi (EGRV) Model [11] and the
Triple Seasonality Holt Winters (HWT) Model [12]. The
EGRV-Model is a multi-equation energy demand forecast
model that uses an individual model for each intra-day pe-
riod (e.g., one model for each hour). In addition, weather
information, calendar events (e.g., holidays) and context
knowledge of energy types (e.g., constraints on the produced
energy) are included. If the EGRV model does not provide
accurate results, we fall back to the alternative (more ro-
bust) HWT-Model, which is a energy specific adaptation
of the general purpose Holt-Winters exponential smoothing
forecast model. Besides forecasting traditional energy de-
mand and supply, we provide the possibility of forecasting
flex-offers. Flex-offers can be viewed as multi-variate time
series that consists of a vector of observations (e.g., min
power, max power) per time slice. To forecast flex-offers,
we decompose this multi-variate time series into a set of
univariate time series and apply our already defined fore-
cast model types to the individual time series.
Model creation involves computationally expensive param-
eter estimation, where we reuse existing well-established lo-
cal (e.g., Downhill-Simplex [8]) and global (e.g., Simulated
Annealing [1]) parameter estimators. The scheduling com-
ponent can explicitly request forecast values or may register
forecast queries as continuous queries in order to obtain no-
tifications whenever the forecast values change significantly.
A continuous stream of new measurements require a con-
tinuous maintenance of forecast models. For each new time
series value, we update our forecast models that consists
of a simple update of smoothing constants or the shift of
lagged input values. This implies low additional costs. Due
to changing time series characteristics, the accuracy of the
forecast models might be reduced over time, which poses
the necessity of adapting the model parameters. To evalu-
ate the need for a model adaptation, we offer different model
evaluation strategies (e.g., time- or threshold-based). Fur-
thermore, the model adaption exploits the context knowl-
edge of previous model estimations in order to speed up this
time-consuming process of parameter re-estimation.

Research Results

Furthermore, we briefly summarize selected research results
that enhance and further specify the default MIRABEL
forecasting approach introduced above. Forecasting always
needs to cope with the trade off between forecast accuracy
and runtime of parameter estimation. We offer different op-
timizations that address this challenge in terms of model
creation on physical (parallelized model creation) and log-
ical level (hierarchical forecasting), model usage (publish-
subscribe forecast queries) and model maintenance (context-
aware model adaption).
Parallelized Model Creation Energy-domain-specific



multi-equation forecast models (e.g., EGRV-Model) com-
prise a large number of parameters, for what reason the esti-
mation of such models is time consuming. As multi-equation
models consist of several independent individual models, we
can reduce the time needed for estimating such models by
partitioning and parallelization. Therefore, we horizontally
partition the time series according to the multi-equation ac-
cess pattern and parallelize the model estimation process
according to the resulting independent data partitions.
Hierarchical Forecasting Based on the hierarchical or-
ganization of the energy market, the macroscopic system
architecture is inherently distributed, where at each system
node, one or several forecast models might be created and
used according to the scope of the particular role. Beside
the use of individual forecast models, forecast models can be
used to aggregate or disaggregate forecast values without the
need for individual models at each system node. Therefore,
we provide an advisor component that computes for a given
hierarchical structure a configuration of forecast models ac-
cording to specified accuracy and runtime constraints [5].
Publish-Subscribe Forecast Queries The scheduling com-
ponent does not always need or even not want to have the
most up-to-date forecast values as every new forecast value
triggers the computationally expensive maintenance of sched-
ules. Only if forecast values change significantly, notifi-
cations are required. Therefore, in addition to requesting
forecast values, we offer the interaction scheme of so-called
publish-subscribe forecast queries. Hereby, our goal is to
minimize the overall costs of the subscriber.
Context-Aware Model Adaptation The development
of energy time series strongly depends on background pro-
cesses and influences that together form the context of a
time series. Observing these context information offers the
possibility of storing previous models in conjunction to their
corresponding context information within a repository to
reuse them whenever a similar context reoccurs. This kind
of case-based reasoning approach [2] achieves a higher fore-
cast accuracy in less time, especially for complex models.

Research Directions

Our initial research results can be further extended and im-
proved in terms of model creation, usage and maintenance.
The creation time of models might not only be reduced by
inter-model parallelizing, but also by intra-model paralleliz-
ing, i.e., parallel parameter estimation of one model. Our
hierarchical forecasting approach can be further extended
to continuously adapt the model configuration to changing
time series characteristics and to globally optimize model
parameters over several system nodes. The usage of models
through publish-subscribe forecast queries might be further
improved by including context information to specify the
notification length. Finally, model maintenance should not
only include the context for adaption but also for evaluation,
e.g., to determine a dynamic error threshold.

6. SCHEDULING

Scheduling Component Overview

Each time there is a significant change in the forecasts or
in the pool of aggregated flex-offers, the scheduling compo-
nent is invoked. The scheduling component tries to find the
best schedule for the given aggregated flex-offers by taking

into account the forecast energy production and consump-
tion and the possibility of selling energy to (and buying en-
ergy from) the market (other BRPs).

More specifically, scheduling consists of fixing start times
and energy flexibilities of all given flex-offers and setting the
amount of energy that will be sold to (and bought from)
the market, while optimizing the total cost of the resulting
schedule. The schedule cost is calculated as the sum of (1)
costs of remaining mismatches, (2) costs of all given aggre-
gated flex-offers and (3) costs of energy sold to (and bought
from) the market. The lower the cost, the better the sched-
ule. Only schedules that respect all flex-offer constraints are
considered.

The MIRABEL scheduling problem differs from the schedul-
ing problems treated in the literature either in the con-
text of production systems [10] or energy sector [14]. Un-
like the usually scheduled activities, flex-offers are struc-
tured. In addition to the start time, flex-offer and market
energy amounts need to be determined, which substantially
increases the problem complexity in terms of the number
of candidate solutions. Furthermore, the objective function
is not related to a time measure, but is rather a composed
cost function. Finally, flex-offer constraints contribute to
the problem specificity. These characteristics and the ex-
pected large number of flex-offers to be processed make
the MIRABEL scheduling problem non-standard and highly
complex.

Research Results

The biggest challenge of scheduling is to efficiently find a
good approximation of the optimal schedule. When address-
ing this challenge, the following issues were faced.

Scheduling problem formulation. While scheduling
in MIRABEL is an optimization problem with the objective
of balancing energy supply and demand, the exact formula-
tion of the schedule evaluation function deals with the sched-
ules from the point of view of expenses for the BRP. Such a
formulation allows us to weight the remaining mismatches
according to their costs (mismatches at peak periods cost the
BRP more than at other periods) and differentiate among
flex-offers and among market energy with different prices.

Investigation of schedule optimality. When solving
any optimization problem it is advantageous to know its
optimal solution (so an assessment of the distance to the
optimum can be computed). Because energy amounts can
take on an infinite number of values and flex-offer energy
constraints construct dependences among different intervals
of a single flex-offer profile, an infinite number of possible so-
lutions may exist and thus the optimal solution of this prob-
lem is generally not known. Only if a few flex-offers need to
be scheduled or if there are no flex-offer energy constraints,
it is possible to find the true optimum. In a preliminary
experiment with 10 flex-offers without energy constraints it
took almost three hours to explore all (almost 850 million)
sensible solutions and find the optimal schedule.

Implementation of the scheduling algorithms. As
known scheduling heuristics cannot be applied to this prob-
lem, we used two stochastic metaheuristic algorithms to
solve it: randomized greedy search and an evolutionary algo-
rithm. The randomized greedy search constructs the sched-
ule gradually—at each step a randomly chosen flex-offer is
scheduled in the best possible position. This is repeated
until all flex-offers have been scheduled. While it is pos-



sible to schedule a single flex-offer in an optimal way, a
sequence of such optimal placements does not produce an
overall optimal schedule. Therefore, we also developed an
evolutionary algorithm [3] that starts with a population of
randomly created solutions and uses evolutionary principles
of selection, crossover and mutation to find progressively
better solutions. Results of an initial experiment with these
two methods are presented in Section 9.

Research Directions

As shown by the experiment in Section 9, the number of flex-
offers to be scheduled importantly influences the efficiency of
the applied scheduling algorithms. However, the complexity
of the search space heavily depends also on the start time
flexibilities of the included flex-offers. As this influence was
not researched in detail yet, it shall be explored in the fu-
ture. Moreover, we will consider implementing and testing
additional scheduling algorithms as well as hybridizing the
existing ones to improve their efficiency.

7. NEGOTIATION
Each flex-offer potentially increases the profit of the BRP.

He can avoid costs on the reserve energy market or trade
capacities. Negotiation in MIRABEL finds an agreement
between the prosumer and its BRP about the price for flex-
offers. Depending on the business strategy of the BRP var-
ious price setting schemes are possible:

Monetize Flexibility

Potential cost savings and trading opportunities result from
different flexibilities offered by the prosumer:

Assignment flexibility is the time left for re-scheduling
a flex-offer. The BRP needs a minimum of time to process a
flex-offer. Any Assignment flexibility that exceeds the time
until the next trading period of the day-ahead market is
marginalized by the option for the BRP to trade on the
day-ahead market.

Scheduling flexibility is the time range within a flex-
offer can be scheduled. If the earliest start time and lat-

est start time, parameter, see figure 3, of a flex-offer are
equal there is no Scheduling flexibility for the BRP. Such a
flex-offer may still provide a benefit for the BRP if it offers
Energy flexibility.

Energy flexibility is the amount of energy which is dis-
patchable by the BRP. The Energy flexibility per time pe-
riod must be above zero and the grid capacity. Any other
parameters have no additional value for the BRP.

Each of the described flexibility parameters can be nor-
malized to flexibility potentials by applying a function, e.g.
the sigmoid function, that maps the flexibility parameter to
value between 0 and 1. The total value of each flex-offer
is the weighted sum of its flexibility potentials and can be
computed before execution time.

Share Realized Profit

An alternative price setting scheme takes the context of an
executed flex-offer into account. As a consequence the value
of a flex-offer can only be computed after the execution time.
Here the BRP calculates the realized profit that this flex-
offer has generated and shares it with the Prosumer.

The advantage over a price setting before execution time
is that incentives for the Prosumer are based on the realized

value for the BRP. Any price setting after execution time
can not be used as an acceptance criteria, in contrast to the
price setting described before.

FlexOffer Acceptance

Before taking a flex-offer into account the BRP has to de-
cide whether it is potentially profitable. The BRP must be
able to reject a flex-offer that generate loss or can not be
processed in time. It is important to note that the rejection
of a flex-offer does not imply that the Prosumer is not al-
lowed to produce or consume the energy based on his tariff.
The BRP just waives the option to control the load in the
energy grid.

Research Directions

Future research will evaluate price setting strategies for the
BRP. Due to the complexity of the planning and the large
number of flex-offers it is necessary to develop better heuris-
tics to estimate the value of individual flex-offers before ex-
ecution time.

8. COMPONENT INTERPLAY

Interaction of Aggregation and Scheduling

The first major interaction between the components is be-
tween aggregation and scheduling. Here, two major con-
cerns, time and flexibility loss, must be balanced. The total
time spent on these two tasks is very important to fit within
the available time window. As explain earlier, scheduling is
computationally heavy. Thus, aggregation is first used to
reduce the number of flex-offers substantially. The aggre-
gation parameters must thus be set to achieve a sufficiently
high compression ratio. As seen in the next section, more
aggressive aggregation (higher compression ratio) will take
somewhat more time, but this is (much) more than offset
by the savings in scheduling time. However, more aggres-
sive aggregation will often lead to a considerably higher loss
of flexibility in the aggregate result, in comparison to the
flexibility in the original flex-offers, unless the flex-offers are
very similar. This leads to an interesting two-dimensional
optimization problem: how do we choose the best aggrega-
tion result size (number of aggregated flex-offers), and the
corresponding aggregation parameters, to preserve as much
as possible of the flexibility, while still keeping the overall
run time within the limits?

Interaction of Forecasting and Scheduling

The second major interaction can be found between fore-
casting and scheduling. First, the time spent on parame-
ter estimation as well as maintenance parameters influence
forecast accuracy and thus scheduling results. As shown
in the next section, the more time we spent on parameter
estimation the higher the resulting forecast accuracy (un-
til convergence). In addition, model maintenance param-
eters (e.g., when to trigger parameter re-estimation) influ-
ence maintenance time and forecast accuracy as well. Sec-
ond, the forecast horizon, i.e., the number of values provided
to scheduling, has a major impact on scheduling time and
costs. A higher forecast horizon allows scheduling to plan
for a longer time horizon (and maybe achieve lower costs)
but might also require rescheduling. As shown in the next
section, the higher the forecast horizon the lower the fore-



cast accuracy. However, with each new measurement the
forecast models can be maintained and accuracy can be im-
proved. Thus, if new forecast values significantly differ from
previous ones, we need to re-execute the computationally
expensive scheduling component. In contrast, a low forecast
horizon achieves a higher accuracy but requires constantly
restarting the scheduling component to plan appropriately.
This implies higher scheduling time as well. We address
this trade off with our concept of publish-subscribe forecast
queries explained in Section 5.

Global Distribution of Time

Following these considerations, the distribution of time be-
tween the three components strongly influences the imbal-
ance costs and has to be set accordingly. Higher aggregation
time might allow higher compression ratios, higher forecast-
ing time might allow higher forecast accuracy and higher
scheduling time might allow lower total costs. The detailed
time assignment is challenging and depends on many fac-
tors like the desired flexibility loss and forecast accuracy
as well as the convergence characteristics of scheduling and
forecasting algorithms. However, in a parallel setting, we
do not need to exactly assign the available time to all com-
ponents, but we can exploit asynchronous approaches. For
example, forecast models might already start maintenance
even if production and consumption measurements are not
up-to-date yet, accepting a slightly lower accuracy. Finally,
the global time consumption obviously impacts on the re-
activity of the system. Indeed, the smaller the time to per-
form aggregation, scheduling and disaggregation, the more
last-minute generated flex-offers could be considered in time.
This point is of crucial importance since we aim at designing
a highly reactive EDMS. Experiment results reported in the
next section show that our objective is realistic.

9. EXPERIMENTAL RESULTS
The previous section was dedicated to describe the compo-

nent interactions and ended up by discussing timing aspects.
We now present some experimental results to support this
discussion. All the experiments were run on a standard PC.

Aggregation Experiments. An experiment was per-
formed to evaluate the aggregation component in term of
the compression, efficiency, and flexibility loss. We used a
flex-offer dataset with around 800000 artificially generated
flex-offers. Only flex-offer inserts and no deletes were used in
the experiment. The bin-packer was disabled. Two aggrega-
tion parameters and four different their value combinations
were used in the experiment. A combination P0 ensures
that Start After Time and Time Flexibility values are equal
for all flex-offers being aggregated together. A combination
P1 allows the small variation of Time Flexibility attribute
values, but requires identical Start After Time values. On
contrary, a combination P2 allows the small variation of
Start After Time values, but requires identical Time Flexi-
bility values. And finally, a combination P3 allows the small
variations of both attribute values.

Results of the experiment are depicted in Figure 5(a-d).
As it is seen in the figures, different aggregation parame-
ter values lead to different compression ratios, aggregation
times, and time flexibility losses. The combination P0 offers
no time flexibility losses, leads to an efficient aggregation,
but does not yield a good compression ratio (it is still above
4). The P1 leads to a better compression ratio, efficient ag-

gregation, and increased time flexibility loss, which occurs
due to the allowed variations of Time Flexibility values. The
P2 offers a very good compression ratio, low time flexibil-
ity loss, but results in slower aggregation. This can be ex-
plained by the need to traverse flex-offer energy profiles with
increased number of intervals every time a new flex-offer has
to be aggregated. Finally, P3 results into an increased flexi-
bility loss and a worse aggregation performance, but offers a
good compression ratio. Moreover, from Figure 5(d), it can
be seen that the disaggregation is approx. 3 times faster
than aggregation regardless of the flex-offer count and ag-
gregation parameter settings.

Forecasting Experiments. In our first experiment, we
compared the error development of three important global
search algorithms that are used in our forecasting compo-
nent for an initial parameter estimation. The experiment
was conducted using the Holt-Winters Triple Seasonal Ex-
ponential Smoothing (HWT), a forecast model tailor-made
for the energy domain [13]. We performed our tests on the
publicly available UK energy demand dataset from UK Na-
tionalGrid [7]. As it can be seen in Figure 4(a) all algorithms
converge to a result having similar accuracy, with Random
Restart Nelder Mead having a slight advantage. Overall
Random Restart Nelder Mead also slightly beats both other
algorithms namely Simulated Annealing and Random Search
in the error development over time. For this reason, we em-
ploy Random Restart Nelder Mead as our main global search
algorithm, when estimating forecast model parameters from
scratch.
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Figure 4: Results of Forecasting Experiments.

In a second experiment, we measured the forecast accu-
racy according to different forecast horizons. Again, we used
the demand data set described above as well as the HWT
forecast model. In addition, we used a supply data set,
which contains wind energy data and is publicly available
[9]. Naturally with increasing forecast horizon the forecast
error increases (Figure 4(b)). For both data sets, we achieve
a very high accuracy with forecast horizons covering only a
few hours. As supply data is in general harder to forecast
and contains less seasonal effects, the supply data set shows
a much higher decrease in accuracy with increasing hori-
zon. Note that we did not include any external information
(e.g., wind speed) in this experiment. To conclude, the fore-
cast horizon has a high impact on the forecast accuracy and
needs to be set accordingly to achieve robust and efficient
scheduling results.

Scheduling Experiments. An experiment was per-
formed to test how scheduling deals with various numbers
of aggregated flex-offers. Both scheduling algorithms were
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Figure 6: Results of the scheduling experiment with an evolutionary algorithm (EA) and randomized greedy
search (GS).

run five times on four different intra-day scheduling scenar-
ios with 10, 100, 1000 and 10000 aggregated flex-offers. The
averaged results are presented in Figure 6. We can see that a
large number of flex-offers considerably slows down the con-
vergence of the algorithms. While the problem with 1000
flex-offers can still be solved efficiently, to deal with larger
problems, a proper degree of flex-offer aggregation needs to
be performed.

10. CONCLUSION AND FUTURE WORK
We have described the MIRABEL system that facilitates

the more efficient utilization of RES supply by taking bene-
fit from flexibilities. In particular, our attention was focused
on the LEDMS components: (1) the aggregation component
can group similar flex-offers and guarantees minor flexibil-
ity loss; (2) the forecasting component provides forecasts for
traditional energy demand and supply and flex-offers and
offers some nice optimizations; (3) the scheduling compo-
nent uses either a randomized greedy algorithm or an evo-
lutionary one to balance energy supply and demand; (4) a
negotiation component finds an agreement between the pro-
sumer and its BRP about the price for flex-offers. Finally,
the component interactions are discussed and supported by
some satisfactory initial experimental results.

Additionally to component-specific future directions, in-
teresting data management future directions that we are
considering for future work are (1) seamless integration of
past, current and forecast data, (2) design of highly scal-
able, tailor-made data management and query processing
techniques and (3) capture of uncertainty levels in the re-
sult of queries.
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