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ON MUSIC GENRE CLASSIFICATION VIA COMPRESSIVE SAMPLING

Bob L. Sturm

Audio Analysis Lab, Dept. Architecture, Design and Media Technology
Aalborg University Copenhagen, A.C. Meyers Vænge 15, DK-2450

bst@create.aau.dk

ABSTRACT
Recent work [1] combines low-level acoustic features and
random projection (referred to as “compressed sensing” in
[1]) to create a music genre classification system showing an
accuracy among the highest reported for a benchmark dataset.
This not only contradicts previous findings that suggest low-
level features are inadequate for addressing high-level musi-
cal problems, but also that a random projection of features
can improve classification. We reproduce this work and re-
solve these contradictions.

Index Terms— Music genre classification, sparse ap-
proximation, random projection, compressive sampling

1. INTRODUCTION
We address the confusion arising from findings in music genre
classification (MGR) by Chang et al. [1] that contradict estab-
lished findings. First, their results (Fig. 4 in [1]) suggest that
the random projection of features can make them more dis-
criminative than the original features. Several works in ma-
chine learning research, however, observe random projection
can, at best, lower computational load while not significantly
hurting discriminability [2–6]. Second, the results of Chang
et al. suggest that low-level features of sampled musical audio
are imbued with musical meaning by a transformation devoid
of musical principles. Several works in music information
research, however, observe that low-level features do not ef-
fectively address a problem such as MGR, e.g., [7–11].

The MGR system of Chang et al. [1] is quite similar to that
of Panagakis et al. [12–14], and we see a close agreement be-
tween their classification accuracies on the benchmark dataset
GTZAN [15, 16]. Both use sparse representation classifica-
tion (SRC) [6], but while Panagakis et al. use as features
frequency-modulation rates from half-minute spectrograms,
Chang et al. use random projections of the statistics of low-
level features over 3 s. However, the classification accuracies
reported in [12–14] arise from a systematic mistake in evalu-
ation,1 inflating classification accuracies in GTZAN from 60-
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70% [17] to over 90%. While we have shown [10,11] that the
system of Panagakis et al. can be altered to produce classifi-
cation accuracies above 80% in GTZAN, and that evaluations
of MGR systems using features similar in nature to those of
Panagakis et al. find similar performance in GTZAN [11,18],
this is still 10 points below those reported by Chang et al.

MGR systems using features similar to those used by
Chang et al. [1], but without random projection, and taking
other approaches to machine learning, appear to perform in-
ferior to the 92.7% accuracy in [1]. The works from which
Chang et al. take their features [15, 19–21] all report accura-
cies far below 92.7%, but for different datasets. The system
appearing to perform closest to that of Chang et al. in GTZAN
is that of Bergstra et al. [22]. Using some of the same features
as Chang et al., but a different classifier and no random pro-
jection, its accuracies in GTZAN are reportedly 78–83% [10].

At least four works [23–26] make comparisons to the re-
sults of Chang et al. [1]; but only Aryafar et al. [23] repro-
duces a part of the system in [1]. Using SRC and a small
subset of features used by Chang et al. without random pro-
jection, they report a classification accuracy of 30.47% for the
HOMBURG dataset [27]. For the same dataset, Homburg et
al. [27] report a mean classification accuracy of 53.23% using
a k-nearest neighbor classifier and low-level features [28].

In light of all this work then, three practical questions
arise: 1) is our work in [10, 11, 17] incorrect?; 2) are the
results of Chang et al. [1] incorrect?; and 3) if these results
are correct, how does the random projection of low-level fea-
tures, which demonstrably lack high-level musical informa-
tion, significantly boost classification accuracy in GTZAN?
We answer these questions by first reproducing the system
of Chang et al., which we detail in the next section. In the
third section, we present our experimental results, and com-
pare them with those of Chang et al. We make available all
code to reproduce the figures and results contained herein:
http://imi.aau.dk/˜bst.

2. MGR VIA COMPRESSIVE SAMPLING
Two significant hurdles to reproducing the results of Chang et
al. [1], are implementing the feature extraction and the classi-
fier. We detail our attempts at these here, and make clear with
justification the numerous assumptions we must make.



2.1. Feature Extraction
The system of Chang et al. [1] (SRCRP) uses six short-
term features: octave-based spectral contrast (OSC) [19];
Mel-frequency cepstral coefficients (MFCCs); spectral cen-
troid, rolloff, and flux; zero-crossings [15]; and four long-
term features: octave-based modulation spectral contrast
(OMSC) [20]: “low-energy” [15]; modulation spectral flat-
ness measure (MSFM); and modulation spectral crest mea-
sure (MSCM) [21]. Chang et al. imply they compute features
from analysis frames of 93 ms (they do not specify the shape
of analysis window, so we assume a Hann window), translated
half their duration along a 30 s excerpt. Then, they compute
“the statistics” of the short-term features in 3 s texture win-
dows. We assume this means SRCRP disjointly partitions the
set of analysis frames into subsets of 63 consecutive frames,
i.e., the texture window of 3 s. Since Chang et al. describe
computing the mean and variance of “the 13-dimensional
MFCCs,” we assume “the statistics” for the other short-term
features are mean and variance as well. From [15, 20, 21],
we assume SRCRP computes long-term features by process-
ing the analysis frames, or by comparing the statistics of the
analysis frames to the texture window of sound. We now ex-
plicitly describe how we compute each feature.

Although MFCCs are widely used in audio signal pro-
cessing, there are often differences between implementations
[29], and which coefficients are used. Chang et al. [1] do not
specify how they compute their MFCCs, and which 13 co-
efficients they keep. Thus, we compute for each frame 40
MFCCs using [30], and retain the first thirteen including the
zeroth coefficient. For each coefficient, we compute its mean
and variance in a texture window starting at frame index t,
thus producing the feature MFCC(t) having 26 dimensions.

The zero-crossings of a frame is the number of times the
time-domain signal amplitude changes sign. For the spec-
tral centroid of the frame at index t, we compute its magni-
tude Fourier spectrum by a length-F DFT, and keep the mag-
nitudes of the positive frequencies to create X(ω; t), where
ω ∈ F := {n/(F/2) : n = 0, 1, . . . F/2}. We normal-
ize X(ω; t) such that it sums to one, to produce the prob-
ability mass function pX(ω; t) and cumulative distribution
function PX(ω; t). In terms of these, we compute the spec-
tral centroid by expectation E[ω], and the spectral rolloff is
arg minω PX(ω; t) ≥ 0.85. We compute the spectral flux
of consecutive frames by ‖X(ω; t)−X(ω; t− 1)‖2/

√
F/2,

where ‖ · ‖2 is the Euclidean length. Over a texture window,
we compute the mean and variance of each feature, produc-
ing features of 2 dimensions each, e.g., starting at index t:
zcr(t), sc(t), sr(t), sf(t). For the spectral flux of the first tex-
ture window, we ignore the spectral flux of the first frame.

The remaining short-term feature Chang et al. [1] com-
pute is OSC, defined by Jiang et al. [19]. We compute this
feature by partitioning the magnitude spectrum of a frame into
low- and high-pass bands, and six octave-width frequency
bands in-between. First, define δW(ω) as 1 if ω ∈ W , and

zero otherwise; and define the following sets:

W0 := F ∩ [0, 100/22050) (1)
W6 := F ∩ [3200/22050, 8000/22050) (2)
W7 := F ∩ [8000/22050, 1) (3)

Wk := F ∩ 100/22050 · [2k−1, 2k), k ∈ {1, . . . , 5}. (4)

With these, we define the partitioned spectrum of a frame as
fk(ω; t) := X(ω; t)δWk

(ω), k ∈ K = {1, . . . , 8}. Define
the set of frequencies Ωk ordering from largest to smallest the
magnitudes of the kth band, i.e., fk(Ωk(l); t) ≥ fk(Ωk(l +
1); t) for l ∈ {1, . . . , |Ωk| − 1}; and the set fk that orders
from smallest to largest the non-zero values in the same band.
Jiang et al. define the OSC of the kth band

OSC(k; t) := peak(k; t)− valley(k; t) (5)

where

peak(k; t) := log

 1

dα|Ωk|e

dα|Ωk|e∑
l=1

fk(Ωk(l); t)

 (6)

valley(k; t) := log

 1

dα|Ωk|e

dα|Ωk|e∑
l=1

fk(fk(l); t)

 (7)

and the parameter α ∈ [|Ωk|−1, 1) determines how many of
the largest and smallest values of each band are considered.

Chang et al. [1] do not state the value of α they use;
however, Jiang et al. [19] claim, with respect to music clas-
sification performance, they find little difference for α ∈
[0.02, 0.2]. Chang et al. use a sampling rate 44.1 kHz, and
so a 93 ms analysis frame consists of 4101 samples. Since
Chang et al. do not state the size of the DFT they use to com-
pute X(ω; t), we zeropad each frame to length F = 8192,
which means for us |Wk| ≥ 19, and α > 0.053. We thus
set α = 0.2. Finally, Chang et al. only mention that the di-
mension of the OSC feature is 32. We assume that, like Jiang
et al., Chang et al. create a feature for each frame using the
8 values of OSC(k; t) and the 8 values of valley(k; t), and
then compute the mean and variance of the dimensions for 63
consecutive frames, creating a 32-dimensional feature.

The “low-energy” feature appears verbatim in [1,21]: “the
percentage of analysis windows that have energy less than the
average energy across the texture window;” however, “en-
ergy” and “average energy” are not clearly defined. Tzane-
takis and Cook [15] define this feature “as the percentage of
analysis windows that have less RMS energy than the average
RMS energy across the texture window.” We assume “aver-
age RMS energy” is the same as “RMS energy.” Since the
RMS energy of a discrete set of N time-domain samples y is
defined RMS(y) := ‖y‖2/

√
N , we compute the percentage

of 63 consecutive RMS frames energies that are below the
RMS energy of the associated 3 s portion of the signal. This
creates the scalar le(t).



The OMSC feature is described by Lee et al. [20], but in
a way inconsistent with that of Chang et al. [1]. While Lee
et al. define this feature over all texture windows, Chang et
al. appear to not compute any feature beyond the length of a
texture window. Hence, we proceed as follows. We first build
the octave-resolution magnitude spectrogram starting at t

X
(p)
t :=


‖f0(ω; t)‖pp · · · ‖f8(ω; t)‖pp
‖f0(ω; t+ 1)‖pp · · · ‖f8(ω; t+ 1)‖pp

...
. . .

...
‖f0(ω; t+ 62)‖pp · · · ‖f8(ω; t+ 62)‖pp

 (8)

where time increases with row, and band increases with col-
umn. We the apply from the left the appropriately sized DFT
matrix W, which creates the amplitude modulation spectrum:
M

(1)
t := |[I|0]WHX

(1)
t |, where [I|0] retains only the posi-

tive frequencies. The first column of M
(1)
t is the amplitude

spectrum of the variations in the sum magnitudes of the first
band across the 63 frames of the texture window. We then dis-
jointly partition M

(1)
t into J equal-sized sets of rows, where

we define PjM
(1)
t to retain the jth set of rows of M

(1)
t ,

j ∈ J = {1, . . . , J}. Finally, we compute OMSC(j; t) :=

peak(PjM
(1)
t )−valley(PjM

(1)
t ), where peak(B) is the log

of the maximum element in B, and valley(B) is the log of the
minimum element in B. While Chang et al. do not mention
this, we append zeros to each column of X

(1)
t such that it has

512 rows. Thus, W is 512-square, and M
(1)
t is 257× 8.

Chang et al. [1] state their OMSC feature has 32 dimen-
sions, but do not make clear what dimensions those are. Lee
et al. [20] compute {OMSC(j; t), valley(PjM

(1)
t )} for all

texture windows over a music excerpt, and then build a fea-
ture vector for the entire excerpt by computing the mean and
variance of each modulation band across all texture windows.
If Chang et al. do this, then some features come from only 3
s, while others come from 30 s. Since Chang et al. do not de-
scribe computing the statistics for an excerpt from the statis-
tics of the texture windows, we assume that all features come
from windows no longer than 3 s. Hence, we assume SRCRP
retains both {OMSC(j; t)} and {valley(PjM

(1)
t )}, and uses

the entire modulation bandwidth. We thus set J = 16 so that
these features together have 32 dimensions.

The MSFM and MSCM features are both defined in [21].
Though Chang et al. [1] mention using both of these features,
only MSFM appears in their table listing the features they
use. We assume that they use both. Here, we evaluate the
DFT of X

(2)
t , and keep the positive modulation frequencies:

M
(2)
t := |[I|0]WHX

(2)
t |. Then, for each band k ∈ K

MSFM(k; t) :=
geom(M

(2)
t ek)

mean(M
(2)
t ek)

(9)

MSCM(k; t) :=
‖M(2)

t ek‖∞
mean(M

(2)
t ek)

(10)

where geom(y) is the geometric mean of the elements of y,
mean(y) is the arithmetic mean, and ek is the k standard vec-
tor. Though Chang et al. do not mention this, we append zeros
to the columns of X

(2)
t such that it has 512 rows.

To conclude, from a texture window that begins at index
t, we create by concatenation the 115-dimensional feature:

vt :=
{

MFCC(t), zcr(t), sc(t), sr(t), sf(t), le(t),

{OMSC(j; t), valley(PjM
(1)
t )}j∈J , {OSC(k; t),

valley(k; t),MSFM(k; t),MSCM(k; t)}k∈K
}

(11)

For a music excerpt longer than 3 s, we create a feature vector
for each disjoint 3 second segment. For the 30 s excerpts of
GTZAN, this produces 10 feature vectors for each excerpt.

2.2. Classification

SRCRP classifies an observation v by SRC [6], which is a
non-parametric method for machine learning, and was first
applied to MGR by Pangakis et al. [12]. SRCRP first creates
a “dictionary” matrix of N features computed from training
signals in |C| classes, D := [V1|V2| · · · |V|C|], where the
columns of the matrix Vc are from the set of class-c unit-
norm feature vectors {vt/‖vt‖2 : t ∈ Tc}. Chang et al. [1]
do not say how they construct D, but we assume they use all
10 feature vectors from every excerpt in the training set, i.e.,
|Tc| = 10 for all classes.

With the dictionary built, SRCRP then solves for a v

arg min
s
‖s‖1 subject to Φv = ΦDΣs (12)

where every element of Φ ∈ Rm×115 is iid Normal, and Σ
is diagonal and defined such that each column of ΦDΣ has
unit `2-norm. The role of Φ here is exactly that of random
projection, which has been applied in machine learning be-
fore [2–5]. Chang et al. [1] refer to this as “compressive sam-
pling” [31], which is not entirely appropriate. According to
the theory of compressive sampling [31], the solution to (12)
is guaranteed with high probability to be the “true solution,”
as long as ΦDΣ satisfies some special conditions, and the
sparsity s of the “true solution” (its number of non-zero el-
ements) is less than Qm[log(115/s)]−1 for some scalar Q
depending on ΦDΣ. For our problem, however, we make no
assumption of there being a “true solution,” and furthermore
we are concerned with efficient signal description, not signal
acquisition — the application domain of compressed sensing.

From the solution to (12), SRCRP builds a set of class-
restricted weights {sc}c∈C defined by

[sc]i =

{
[s]i, i ∈ I(Tc)
0, else

(13)

where [s]i is the ith row of s, and I(Tc) indexes the columns
of D from class c. Hence, s2 are the weights in s related to the



training features from class 2. Finally, SRCRP selects a class
for the texture window by a minimum distortion criterion:

ĉ = arg min
c∈C
‖Φv −ΦDΣsc‖2. (14)

Chang et al. do not say how SRCRP classifies music excerpts
instead of texture windows, e.g., voting methods [10, 11, 21].
We make further assumptions about this below.

Finally, Chang et al. [1] do not explicitly specify m. They
show in one table that their feature dimension is 64, and write
in another table, “The sampling rate takes 67%”, which would
make m = 77 (assuming that is to what they refer). Hence,
we define m = 64.

3. EXPERIMENTS

We now present our experimental results, and compare them
to those of Chang et al. [1]. Since we wish to validate their
results, we use the same dataset — GTZAN [15] — though it
is now known to have serious faults [16]. Chang et al. men-
tion setting up their “experimental parameters to be as close
as possible to those used in [32]. In particular, the recognition
rate is obtained from 10-fold cross validation.” We find no
overlap between the work of Chang et al. and of Sainath et
al. [32] — who do not apply SRC, address musical signals,
or use 10-fold cross validation (10fCV). Nonetheless, we use
10fCV for training, and sample Φ anew in each fold.

We might assume the experimental results of Chang et
al. [1] come from training and testing using only one 3 s tex-
ture window from each 30 s music excerpt; however, since
more data for training typically leads to better performance,
we create D from all 10 observations of each excerpt of the
training set, and test on only one randomly-selected observa-
tion from each excerpt of the testing set. The final problem
to address is how to solve (12). Chang et al. do not state the
methods of convex optimization [33] they use. We use the
SPGL1 solver [34] since in our work [10, 11, 17] we find it
works well with reasonable efficiency. We set the maximum
iterations to find a solution to 200.

We first validate that our implementation of SRCRP is
working by testing it on the USPS handwritten digits dataset
[35]. We use 10fCV, and test random projections to subspaces
of various dimensions. The features are length-256 vectors
of pixel values. Figure 1(a) shows the results for randomly
projected features, which agree closely with those of Das-
gupta [2] for the same dataset and random projection. We find
by a McNemar’s test on the contingency table of every pair of
algorithms that only for m = 141 and m = 256 there is no
significant difference (statistical significance α = 0.05). We
are thus satisfied that our implementation of SRCRP is work-
ing as expected. We also see that the classification accuracy
is highest without random projection, i.e., for m = 256.

We next test whether our music features are discrimina-
tive for GTZAN. Using the same experimental design above,
we test a quadratic discriminate classifier (QDC) [36] using

(a) SRCRP on USPS
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Fig. 1. Accuracies of classifiers for two datasets using various
amounts of dimension reduction by random projection.

as training data the columns of ΦDΣ, and making unit norm
each test feature Φv/‖Φv‖2. Figure 1(b) shows an accuracy
0.69 when m = 64. This increases to 0.73 without random
projection. With a McNemar’s test, we find significant differ-
ences in performance between every pair of m. We are thus
satisfied that our features are discriminative.

Figure 1(b) shows the classification accuracies of SRCRP
in GTZAN using several m. For m = 64, which we as-
sume was used by Chang et al. [1], we find SRCRP obtains
a classification accuracy 0.576, which is far below the 0.927
reported. Furthermore, we find with a McNemar’s test that
QDC performs significantly better than SRCRP at this m, as
well as at m = 115.

Figure 2 shows several figures of merit from our tests of
SRCRP at these two m. These confusion behaviors are rel-
atively comparable — though “worse” — with those of the
SRC system we test in [10, 11]. Unlike in [1], our confu-
sion table is not perfectly symmetric. While we find that SR-
CRP misclassifies Rock observations most often as Metal and
Country, Chang et al. find SRCRP misclassifies Rock most
often as Reggae and Pop. While we see SRCRP misclassi-
fies Country observations rarely as Disco, Chang et al. find
SRCRP misclassifies Country most often as Disco. Further-
more, we see SRCRP misclassifies Disco observations most
often as Pop and Hip hop, but Chang et al. find SRCRP never
misclassifies Disco as those. Compared to Fig. 2(b), we see
random projection does not help many of the figures of merit.

4. CONCLUSION

We have reproduced, to the furthest extent possible, the MGR
system SRCRP described by Chang et al. [1], as well as the
attendant references [15, 19–21]. We make clear the con-
siderable number of assumptions we have had to make, and
have provided justifications for our decisions. Our experi-
ments show that our implementation of SRC is working cor-



(a) m = 64 (b) m = 115 (no random projection)

Fig. 2. Confusions of SRCRP in GTZAN. Columns: “true” genres, with mean precision (Pr ×100) shown in last column.
Rows: predicted genres, with mean F-measure (F ×100) in last row. Bottom right corner is classification accuracy. Classes:
Blues (bl), Classical (cl), Country (co), Disco (di), Hip hop (hi), Jazz (ja), Metal (me), Pop (po), Reggae (re), Rock (ro).

rectly, and that the features we extract are indeed discrimina-
tive. Furthermore, we see that a simple classifier and the same
features performs significantly better than SRCRP solving the
high-computation problem in (12).

In conclusion, since we are unable to reproduce the high
results reported by Chang et al. [1], and since our results com-
port with findings that are challenged by their results [2–11],
the contradictions arising from their work no longer appear
real. Our results and attendant code clearly show that low-
level features of sampled musical audio are not magically im-
bued with high-level musical meaning just from projecting
them randomly onto even lower-dimensional subspaces.
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