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FRAMES FOR DECOMPOSITION SPACES GENERATED BY A SINGLE FUNCTION

MORTEN NIELSEN∗

ABSTRACT. In this paper we present a construction of frames generated by a single band-
limited function for decomposition smoothness spaces on Rd of modulation and Triebel-
Lizorkin type. A perturbation argument is then used to construct compactly supported
frame generators.

1. INTRODUCTION

Sparse representations of signals relative to a fixed time-frequency system play an im-
portant role in approximation theory, numerical analysis, and for practical applications.
The most prominent example being sparse wavelet representation of signals, which is an
approach with many applications to modern technology. However, wavelets are not a uni-
versal fix for every sparse representation problem, and depending on the "nature" of the
signals to be analysed, it might be more advantageous to choose a representation system
with significantly different time-frequency properties such as Gabor systems or perhaps
curvelet-type frames.

Two aspects of sparse representations that will be in focus in this paper are the flexibility
to adapt the representation system to the signal and the fact that a discrete sparse represen-
tation of a function (signal) is often linked to some notion of smoothness of the function.
The fact that sparseness in general is linked to smoothness is an observation that that goes
all the way back to the study of Fourier series for C 1-functions, but the link is perhaps even
more transparant in the modern theory of function spaces based on Littewood-Paley the-
ory.

The path we follow here is to study the link between discrete sparse representations and
smoothness within the framework of so-called decomposition smoothness spaces. We also
insist that smoothness should be linked to sparseness using a simple representation system
generated by a single function similar to case for wavelet and Gabor systems.

Decomposition spaces were introduced by Feichtinger and Gröbner [10] and Feichtinger
[7], and are based on structured coveringsRd considered either as the direct (time-variable)
space or the frequency space. One major advantage of this set up is the flexibility. Very gen-
eral decompositions of the frequency space fit in this framework yielding flexibility that
also allows an anisotropic setup to be considered without much added complexity. For ex-
ample, classical Triebel-Lizorkin and Besov spaces fit nicely into the decomposition space
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FRAMES FOR DECOMPOSITION SPACES GENERATED BY A SINGLE FUNCTION 2

model and they correspond to dyadic coverings of the frequency space, see [25]. Modu-
lation spaces also fit into the model and they correspond to uniform coverings of the fre-
quency place, see [8]. In recent years, many authors have found the decomposition ap-
proach useful, see e.g. [5, 6, 12, 15, 16, 21, 22].

One of the advantages of the abstract decomposition space approach is the fact that tight
frames can easily be constructed for such smoothness spaces of both Besov and Triebel-
Lizorkin type in both an isotropic and an anisotropic setting, see [4]. In fact, in [4] an explicit
construction is proposed yielding frames of the form

(1.1)
{
ηk,n(x) = t

ν
2

k µk (δ>tk
x − π

a
n)e i x·ξk

}
k,n∈Zd

,

where {µk } is a sequence of smooth localized atoms (functions), {tk } is a sequence of dila-
tion parameters that depend on the particular covering of the frequency space, and {δt }t>0

is a one-parameter group of dilations that incorporate the possible anisotropic properties
of the setting. Frames for particular types of decomposition spaces have been considered
earlier, see e.g. [1, 5, 9, 11].

However, it was pointed out to us recently by Hans G. Feichtinger1 that frames of the type
(1.1) are somewhat problematic from a computational point of view due to the fact that we
have an infinite number of generators {µk } unlike e.g. wavelet or Gabor systems that are
generated by a small number of functions facilitating fast associated algorithms.

The main contribution of the present paper is to present a construction of frames for
decomposition spaces generated by a single function. Moreover, we show that the single
generator can in fact be chosen with compact support. We recall that compact support
is very desirable from an application point-of-view since it allows for calculation of frame
coefficient based only on local information about the signal.

The construction is through a two-stage process. First we construct a frame based on
a single band-limited generator. Any band-limited generator clearly lacks compact sup-
port, but the second step is to use an approximation procedure proposed for decomposi-
tion spaces in [18] to get our hands on a compactly supported generator.

Let us finally mention that we carry through the construction for Triebel-Lizorkin type
decomposition spaces. The construction can also be carried out for modulation type de-
composition space, and the proofs in the modulation case are in fact significantly simpler.
However, our agenda is also to try to increase the awareness of the option to study Triebel-
Lizorkin type spaces in the decomposition setup, and we are hopeful that some of the tools
that will be discussed in the present paper can also turn out to be useful for other purposes.

2. DECOMPOSITION TYPE SMOOTHNESS SPACES ON Rd

We begin by introducing some machinery needed for the definition of decomposition
spaces. First we study a homogeneous structure on Rd that will be used to generated gen-
eral coverings of the the frequency space, and moreover, it also offers the flexibility to in-
corporate anisotropy into the general construction.

1Private communication.
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2.1. A homoneneous structure on Rd . Here we define homogeneous type spaces on Rd

which will be used later to construct a suitable covering of the frequency space. These
spaces are created with a quasi-norm induced by a one-parameter group of dilations.
Let | · | denote the Euclidean norm on Rd induced by the inner product 〈·, ·〉. We assume
that A is a real d ×d matrix with eigenvalues having positive real parts. For t > 0 define the
group of dilations δt : Rd → Rd by δt := exp(A ln t ) and let ν := trace(A). The matrix A will
be kept fixed throughout the paper. Some well-known properties of δt are (see [24]),

• δt s = δtδs .
• δ1 = I d (identity on Rd ).
• δtξ is jointly continuous in t and ξ, and δtξ→ 0 as t → 0+.
• |δt | := det(δt ) = tν.

According to [24, Proposition 1.7] there exists a strictly positive symmetric matrix P such
that for all ξ ∈Rd ,

[δtξ]P := 〈Pδtξ,δtξ〉
1
2

is a strictly increasing function of t. This helps use introduce a quasi-norm | · |A associated
with A.

Definition 2.1. We define the function |·|A :Rd →R+ by |0|A := 0 and for ξ ∈Rd \{0} by letting
|ξ|A be the unique solution t to the equation [δ1/tξ]P = 1.

It can be shown that:

• There exists a constant C A > 0 such that

|ξ+ζ|A ≤C A(|ξ|A +|ζ|A), ξ,ζ ∈Rd .

• |δtξ|A = t |ξ|A.
• There exists constants C1,C2,α1,α2 > 0 such that

(2.1) C1 min(|ξ|α1
A , |ξ|α2

A ) ≤ |ξ| ≤C2 max(|ξ|α1
A , |ξ|α2

A ), ξ ∈Rd .

Example 2.2. For A = diag(β1,β2, . . . ,βd ),βi > 0, we have δt = diag(tβ1 , tβ2 , . . . , tβd ), and one
can verify that

|ξ|A ³
d∑

j=1
|ξ j |

1
β j ,ξ ∈Rd .

We need an extension of the quantity 〈ξ〉 := (1+|ξ|2)1/2 to the non-isotropic setting. Let Ã
be the (d +1)× (d +1) matrix given by

[
1 0
0 A

]
,

and define D t = exp(Ã ln t ). For (ζ,ξ) ∈ R×Rd , we have D t (ζ,ξ) = (tζ,δtξ). We let |(ζ,ξ)|Ã
be the unique solution t to [[D1/t (ζ,ξ)]]P = 1, where [[(ζ,ξ)]]P := (ζ2 + [ξ]2

P )1/2. Notice that
|(1,0)|Ã = 1 and |(0,ξ)|Ã = |ξ|A. For ξ ∈Rd , we define the bracket 〈ξ〉A := |(1,ξ)|Ã.

Finally, we define the balls BA(ξ,r ) := {ζ ∈Rd : |ξ−ζ|A < r }. It can be verified that |BA(ξ,r )| =
r νωA

d , where ωA
d := |BA(0,1)|, so (Rd , | · |A,dξ) is a space of homogeneous type with homo-

geneous dimension ν.
The transpose of A with respect to 〈·, ·〉, B := A>, will be useful for generating coverings
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of the direct space Rd . Since the eigenvalues of B have positive real parts we can repeat the
above construction for the group δ>t := exp(B ln t ), t > 0. We let | · |B denote the quasi-norm
induced by δ>t , BB (x,r ), and 〈·〉B denote the quasi-distance and bracket corresponding to
the group δ>t . The balls associated with | · |B , and CB the equivalent of C A in (2.1). Fur-
thermore, we have that the constants α1 and α2 in (2.1) also hold with B and trace(B) = ν.
Notice that if gm(x) := mνg (δ>m x), g ∈ L2(Rd ), then ĝm(ξ) = ĝ (δ 1

m
ξ). We use the convention

that δt acts on the frequency space while δ>t acts on the direct space.
The following adaption of the Fefferman-Stein maximal inequality to the quasi-norm |·|B

will be essential for showing the boundedness of almost diagonal matrices. For 0 < r <∞,
the parabolic maximal function of Hardy-Littlewood type is defined by

(2.2) M B
r u(x) := sup

t>0

( 1

ωB
d · tν

∫

BB (x,t )
|u(y)|r d y

)1
r

,u ∈ Lr,loc(Rd ),

where ωB
d := |BB (0,1)|. We also need the vector-valued Fefferman-Stein maximal inequal-

ity. For 0 < p, q ≤∞, and a sequence f = { f j } j∈N of Lp (Rd ) functions, we define the norm

‖ f ‖Lp (`q ) :=
∥∥( ∑

j∈N
| f j |q

)1/q∥∥
Lp (Rd ).

With this notation, there exists C > 0 so that the following vector-valued maximal inequality
holds for r < q ≤∞ and r < p <∞ (see [23, Chapters I&II]),

(2.3)
∥∥{M B

r fk }k
∥∥

Lp (`q ) ≤C
∥∥{ fk }k

∥∥
Lp (`q ).

If q =∞, then the inner lq -norm is replaced by the l∞-norm.
We introduce the following Petree type maximal function. Let u(x) be a continuous func-

tion on Rd . We define

u∗(a,R; x) := sup
y∈Rd

〈y〉−a
B |u(x −δ−>R y)|, a,R > 0, x ∈Rd ,

where we use the notation δ−>R := (δ−1
R )>.

It is clear that u∗(a,R; x) is finite whenever u is bounded. However, for band-limited
functions we can obtain a much more interesting estimate of u∗(a,R; x) in terms of the
parabolic maximal function. It can be shown (see [25, Theorem 1.3.1]) that for r,R > 0, there
exist a constant C :=C (R,r ) such that for any function u(x) on Rd with supp(û) ⊂BA(0,R),
we have

(2.4) u∗(ν/r,R; x) ≤C M B
r u(x), ∀x ∈Rd .

This result can be considered in the vector-valued setting. Let Ω = {Ωn} be a sequence of
compact subsets of Rd , and let

LΩp (`q ) := {{ fn}n∈N ∈ Lp (`q ) | supp( f̂n) ⊆Ωn , ∀n}.

Then the following proposition holds.

Proposition 2.3. Suppose 0 < p <∞ and 0 < q ≤∞, and let Ω= {TkC }k∈N be a sequence of
compact subsets of Rd generated by a family {Tk = δtk ·+ξk }k∈N of invertible affine transfor-
mations on Rd , with C a fixed compact subset of Rd . If 0 < r < min(p, q), then there exists a
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constant K such that

(2.5)
∥∥∥
{

sup
z∈Rd

〈δ>tk
z〉−ν/r

B | fk (·− z)|}
∥∥∥

Lp (`q )
≤ K ‖{ fk }‖Lp (`q ),

for all f ∈ LΩp (`q ), where f = { fk }k∈N.

Finally we consider a result on vector-valued Fourier multipliers that will be needed to
study stability of smoothness spaces in the following section. For s ∈Rwe let

(2.6) ‖ f ‖H s
2

:=
(∫

|F−1 f (x)|2〈x〉2s
B d x

)1/2

denote the (anisotropic) Sobolev space norm. Notice that for f ∈ H s
2 , 0 < ε0 ≤ t <∞, and

ξk ∈ Rd , we have ‖ f (δt · +ξk )‖H s
2
≤ C t s−ν/2‖ f ‖H s

2
< ∞ with C depending only on ε0. For

f ∈S (Rd ) andΨ ∈S ′(Rd ), we defineΨ(D) f :=F−1(Ψ f̂ ).

Theorem 2.4. Suppose 0 < p <∞ and 0 < q ≤∞. LetΩ= {TkC }k∈N be a sequence of compact
subsets of Rd generated by a family {Tk = δtk · +ξk }k∈N of invertible affine transformations,
with C a fixed compact subset of Rd . Assume {ψ j } j∈N is a sequence of functions satisfying
ψ j ∈ H s

2 for some s > ν
2 + ν

min(p,q) . Then there exists a constant C <∞ such that

‖{ψk (D) fk }‖Lp (`q ) ≤C sup
j

‖ψ j (T j ·)‖H s
2
· ‖{ fk }‖Lp (`q )

for all { fk }k∈N ∈ LΩp (`q ).

2.2. Decomposition spaces and adapted frames. We now introduce so-called admissible
coverings and show how to generate them. These coverings are then used to construct a
suitable resolution of unity and next define Triebel-Lizorkin type smoothness spaces and
associated modulation spaces. Finally, we construct a frame which will be used in the fol-
lowing sections to generate compactly supported frame expansions.

Definition 2.5. A set Q := {Qk }k∈Zd of measurable subsets Qk ⊂ Rd is called an admissible
covering if Rd =∪k∈Zd Qk and there exists n0 <∞ such that #{ j ∈Zd : Qk ∩Q j 6= ;} ≤ n0 for
all k ∈Zd .

To generate an admissible covering we will use a suitable collection of | · |A-balls, where
the radius of a given ball is a so-called moderate function of its center.

Definition 2.6. A function h :Rd → [ε0,∞) for ε0 > 0 is called (| · |A-)moderate if there exists
constants ρ0,R0 > 0 such that |ξ−ζ|A ≤ ρ0h(ξ) implies R−1

0 ≤ h(ζ)/h(ξ) ≤ R0.

Remark 2.7. Since we consider the quasi-distance | · |A fixed, we will slightly abuse notation
and refer to a | · |A–moderate function simply as a moderate function.

Example 2.8. Let 0 ≤α≤ 1. Then

(2.7) hα(ξ) := (1+|ξ|A)α

is moderate.

With a moderate function h, it is then possible to construct an admissible covering by
using balls (see [7, Lemma 4.7] and [4, Lemma 5]):



FRAMES FOR DECOMPOSITION SPACES GENERATED BY A SINGLE FUNCTION 6

Lemma 2.9. Given a moderate function h with constants ρ0,R0 > 0, there exists a countable
admissible covering C := {BA(ξk ,ρh(ξk ))}k∈Zd for ρ < ρ0/2, and there exists a constant 0 <
ρ′ < ρ such that the sets in C are pairwise disjoint.

ä
By using that {BA(ξk ,ρ′h(ξk ))} are disjoint it can be shown that {BA(ξk ,2ρh(ξk ))} also

give an admissible covering. Notice that the covering C from Lemma 2.9 is generated by a
family of invertible affine transformations applied to BA(0,ρ) in the sense that

BA(ξk ,ρh(ξk )) = TkBA(0,ρ), Tk := δρh(ξk ) ·+ξk .

An important property of the covering we will need is that whenever BA
(
ξ j ,2ρh(ξ j )

)∩
BA

(
ξk ,2ρh(ξk )

) 6= ; then h(ξ j ) ³ h(ξk ) uniformly in j and k which follows from the fact
that h is moderate and 2ρ < ρ0. We deduce that there exists a uniform constant K such that

(2.8) ‖δ−1
h(ξk )δh(ξ j )‖`2(Rd2 ) ≤ K whenever BA

(
ξ j ,2ρh(ξ j )

)∩BA
(
ξk ,2ρh(ξk )

) 6= ;.

We are now in a position to generate a suitable resolution of unity which additionally
(due to technical reasons) has to satisfy the following conditions.

Definition 2.10. Let C := {TkBA(0,ρ)}k∈Zd be an admissible covering of Rd from Lemma
2.9. A corresponding bounded admissible partition of unity (BAPU) is a family of functions
{Ψk }k∈Zd ⊂S satisfying:

• supp(Ψk ) ⊆ TkBA(0,2ρ), k ∈Zd .
• ∑

k∈Zd Ψk (ξ) = 1, ξ ∈Rd .
• supk∈Zd ‖Ψk (Tk ·)‖H s

2
<∞, s > 0,

where the H s
2-norm is defined in (2.6).

A standard trick for generating a BAPU for C is to pick φ ∈ C∞(Rd ) non-negative with
supp(φ) ⊆BA(0,2ρ) such that there is δ> 0 satisfying φ(ξ) ≥ δ for ξ ∈BA(0,ρ). We define

(2.9) φk (ξ) :=φ(T −1
k ).

One can show that

Ψk (ξ) := φk (ξ)∑
j∈Zd φk (ξ)

defines a BAPU for C . For later use, we introduce

(2.10) Φk (ξ) := φk (ξ)

G(ξ)
,

with

(2.11) G(ξ) :=
√ ∑

j∈Zd

φ2
k (ξ).

Notice that {Φk } in a certain sense defines a square root of the BAPU. We also notice that
there exists a constant 0 < L <∞ such that

L−1 ≤
∑

k
φ(T −1

k ·) ≤ L, and L−1 ≤G(·) ≤ L,

since C is a covering and {TkBA(0,2ρ)}k is admissible.
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Remark 2.11. For a BAPU {Ψk }k∈N associated with the admissible covering {TkBA(0,2ρ)}k∈N
we define

(2.12) Ψ∗
k :=

∑

j∈k̃

Ψ j ,

where k̃ := { j ∈ Zd : supp(Ψ j )∩TkBA(0,2ρ) 6= ;}. We will use extensively that ΨkΨ
∗
k =Ψk

and that theere exists M independent of k such that #k̃ ≤ M , see [7, 10].

With a BAPU in hand we can now define the T-L type spaces and the associated modula-
tion spaces. For f ∈S ′(Rd ) andΨ ∈S (Rd ), we defineΨ(D) f :=F−1(Ψ f̂ ).

Definition 2.12. Let h be a moderate function satisfying

(2.13) C1(1+|ξ|A)γ1 ≤ h(ξ) ≤C2(1+|ξ|A)γ2 , ξ ∈Rd ,

for some 0 < γ1 ≤ γ2 < ∞. Let Q be an admissible covering generated by h of the type
considered in Lemma 2.9, and suppose T = {Tk }k∈N, Tk = δρh(ξk ) ·+ξk , is the induced family
of invertible affine transformations, and let {Ψk }k∈N be a corresponding BAPU. Put tk :=
ρh(lξk ).

• For s ∈ R, 0 < p <∞, and 0 < q ≤∞ we let F s
p,q (h) denote the set of functions f ∈

S ′(Rd ) satisfying

‖ f ‖F s
p,q (h) :=

∥∥∥
( ∑

k∈Zd

t sq
k [Ψk (D) f ]q

)1/q∥∥∥
Lp (Rd )

<∞.

• For s ∈ R, and 0 < p, q ≤ ∞ we let M s
p,q (h) denote the set of functions f ∈ S ′(Rd )

satisfying

‖ f ‖M s
p,q (h) :=

( ∑

k∈Zd

‖t sq
k Ψk (D) f ‖q

Lp (Rd )

)1/q
<∞.

Remark 2.13. It can be shown that F s
p,q (h) depends only on h up to equivalence of the

norms (see [4, Proposition 5.3]), so the T-L type spaces are well-defined. Similar for the
modulation spaces. Furthermore, they both constitute quasi-Banach spaces, and for p, q <
∞, S is dense in both (see [4, Proposition 5.2]).

Next, we construct a frame for the T-L type spaces and the associated modulation spaces.
Consider the system {Φk }k∈Zd from (2.10) which in a sense is a square root of a BAPU. Let Ka

be a cube in Rd which is aligned with the coordinate axes and has side-length 2a satisfying
BA(0,2ρ) ⊆ Ka . For the sake of convenience, put

(2.14) tk := ρh(ξk ),

with ρ given by Lemma 2.9. We first push forward the Fourier basis on Ka using the trans-
formations {Tk }k to obtain the functions

ek,n(ξ) := (2a)−
d
2 t

− ν
2

k χKa (T −1
k ξ)e−i

π
a n·T −1

k ξ, n,k ∈Zd ,

and

(2.15) η̂k,n :=Φk ek,n , n,k ∈Zd .
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One can verify that {ηk,n}k,n∈Zd is a tight frame for L2(Rd ), see [4]. By defining µ̂k (ξ) :=
Φk (Tkξ), we get an explicit representation of ηk,n in direct space

(2.16) ηk,n(x) = (2a)−
d
2 t

ν
2

k µk (δ>tk
x − π

a
n)e i x·ξk .

From a computational point-of-view it is not very satisfactory to have an infinite number
of generators for the system given by (2.16). To address this problem, we define an associ-
ated unnormalized system by

(2.17) ψ̂k,n :=φk ek,n .

Notice that {ψk,n} is generated by a single function. In fact, let ψ := φ̌. Then

(2.18) ψk,n(x) = (2a)−
d
2 t

ν
2

k ψ(δ>tk
x − π

a
n)e i x·ξk ,

which is considerably simpler than the system given by (2.16). As a candidate for dual sys-
tem to {ψk,n}, we define

(2.19) ̂̃ψk,n = φk ek,n∑
k φ

2
k (·) .

By defining

γ̂k (ξ) := φk (Tkξ)
∑

j φ
2
j (T jξ)

,

we get an explicit representation of ψ̃k,n in direct space analog to (2.18),

(2.20) ψ̃k,n(x) = (2a)−
d
2 t

ν
2

k γk (δ>tk
x − π

a
n)e i x·ξk .

The generators {γk } are in fact uniformly well-localized, which will be verified in the proof
of Lemma 2.17.

2.3. Stability of the frame system generated by a single function. We now turn to the task
of showing that the system

{ψk,n}k,n∈Zd

is stable in the smoothness spaces F s
p,q (h) and M s

p,q (h). To show that {ψk,n}k,n∈Zd consti-
tutes a frame for F s

p,q (h) and M s
p,q (h), we need to introduce associated sequence spaces.

The following point sets will be useful for that,

(2.21) Q(k,n) =
{

y ∈Rd : δ>tk
y − π

a
n ∈BB (0,1)

}
.

Notice that Q(k,n) can be considered the ”effective” support ofψk,n . It can easily be verified
that there exists n0 < ∞ such that uniformly in x and k,

∑
n∈Zd χQ(k,n)(x) ≤ n0. With this

property in hand, we can define the associated sequence spaces.

Definition 2.14. Let s ∈ R, 0 < p <∞, and 0 < q ≤∞. We then define the sequence space
f s

p,q (h) as the set of sequences {sk,n}k,n∈Zd ⊂C satisfying

‖sk,n‖ f s
p,q (h) :=

∥∥∥
( ∑

k,n∈Zd

(
t

s+ ν
2

k |sk,n |
)q
χQ(k,n)

)1/q∥∥∥
Lp

<∞.
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Let s ∈ R, 0 < p ≤∞, and 0 < q <∞. We then define the sequence space ms
p,q (h) as the set

of sequences {sk,n}k,n∈Zd ⊂C satisfying

‖sk,n‖ms
p,q (h) :=

∥∥∥t
s+ ν

2 − ν
p

k

( ∑

n∈Zd

|sk,n |p
)1/p∥∥∥

lq
<∞.

If p =∞ or q =∞, then the lp -norm or lq -norm, respectively, is replaced by the l∞-norm.

We now show that the system {ψk,n}k,n∈Zd and {ψ̃k,n}k,n∈Zd given by (2.17) and (2.19) gen-
erate stable frame decomposition of F s

p,q (h).

Remark 2.15. We mention that Theorem 2.16 below also holds for the modulation spaces
M s

p,q (h) and the associated sequence space ms
p,q (h). The proof in the modulation case runs

parallel with the proof presented below, but it is in fact significantly simpler due to the fact
that one does not have to call on results for vector valued maximal functions. We leave the
details to the reader (see also the approach in [3]).

Theorem 2.16. Let h : Rd → (0,∞) be a moderate function satisfying the conditions in Defi-
nition 2.12, and let C := {TkBA(0,ρ)}k∈Zd be an associated admissible covering of Rd of the
type considered in Lemma 2.9. Let {ψk,n}k,n∈Zd and {ψ̃k,n}k,n∈Zd be the function systems given
by (2.17) and (2.19), respectively. Then

i. The coefficient operators defined formally by

C f = {〈 f ,ψk,n〉}k,n and C̃ f = {〈 f ,ψ̃k,n〉}k,n

extend to bounded operators

C : F s
p,q (h) → f s

p,q (h) and C̃ : F s
p,q (h) → f s

p,q (h).

ii. The reconstruction operators defined formally by

R : {ck,n}k,n →
∑

k,n
ck,nψ̃k,n , and R̃ : {ck,n}k,n →

∑

k,n
ck,nψk,n

extend to bounded operators

R : f s
p,q (h) → F s

p,q (h), R̃ : f s
p,q (h) → F s

p,q (h).

Moreover, it holds true that

RC = IdF s
p,q (h) and R̃C̃ = IdF s

p,q (h) .

All of the above results also hold for the spaces M s
p,q (h) and ms

p,q (h) in place of F s
p,q (h) and

f s
p,q (h).

The proof of Theorem 2.16 is completely parallel for the two cases: C and R and C̃ and R̃,
so we only give the details for C and R. However, before we get to the details of the proof,
we need to prove three lemmas of independent interest. Moreover, the proof in the modu-
lation space case for the pair M s

p,q (h) and ms
p,q (h) is somewhat simpler that for F s

p,q (h) and
f s

p,q (h), so we only give the argument in the Triebel-Lizorkin case.

Lemma 2.17. Let {Tk = δtk ·+ξk }k∈Zd be a family of invertible affine transformations on Rd

generated by Lemma 2.9 based on the moderate function h. Suppose s ∈ R, 0 < p <∞, and
0 < q ≤∞. Then

‖Ss
q ( f )‖Lp ≤C‖ f ‖F s

p,q (h), f ∈ F s
p,q (h),
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where

Ss
q ( f ) :=

(∑

k

∑

n∈Zd

t s+ν/2
k |〈 f ,ψ̃k,n〉|χQ(k,n))

q
)1/p

,

where Q(k,n) is defined by (2.21), and tk is given by (2.14).

Proof. Take f ∈ F s
p,q (h). According to Eq. (2.16),

tν/2
k |〈 f ,ψ̃k,n〉| = (2a)−d/2

∣∣(γk ∗ f )(
π

a
δ−>tk

n)
∣∣,

where we let tk = h(ξk ). Moreover, if Q(k,n)∩Q(k,n′) 6= ; and u ∈Q(k,n), v ∈Q(k,n′) then
|u − v |B ≤ K t−1

k for some uniform constant K . Hence,
∑

n∈Zd

(|〈 f ,ψ̃k,n〉|tν/2
k χQ(k,n)(x))q ≤C

∑

n∈Zd

( sup
y∈Q(k,n)

|(γk (D) f )(y)|χQ(k,n)(x))q

≤C ′ sup
z∈BB (0,K t−1

k )

(〈δ>tk
z〉−ν/r

B |(γk (D) f )(x − z)|)q · 〈δ>tk
z〉νq/r

B

≤C ′′( sup
z∈Rd

〈δ>tk
z〉−ν/r

B |(γk (D) f )(x − z)|)q .(2.22)

We would like to apply Proposition 2.3 and then Theorem 2.4 to (2.22), so we have to verify
that {γk }k are uniformly localized. To see this, we first notice that,

∑

k
φ2(T −1

k ξ) =
∑

k∈Fξ

φ2(T −1
k ξ),

with Fξ := {k ∈ N : ξ ∈ TkBA(0,2ρ)}, where the cardinality if Fξ is uniformly bounded in ξ.
We have

γ̂ j (ξ) = φ(ξ)
∑

k φ
2(T −1

k T jξ)
= φ(ξ)∑

k φ
2(δt−1

k
δt j ξ+δt−1

k
ξ j −δt−1

k
ξk )

.

Now consider ∂αγ̂ j . For f (ξ) := φ2(δt−1
k
δt j ξ+ δt−1

k
ξ j − δt−1

k
ξk ), the chain rule shows that

∂η f = ∑
β:|β|=|η| pβ∂

β[φ2], where pβ are monomials of degree |η| in the entries of δt−1
k
δt j . It

follows from the estimate (2.8) that

(2.23) |∂βγ̂ j (ξ)| ≤CβK |β|χBA(0,2ρ)(ξ), β ∈Nd
0 ,

with Cβ a constant that does not depend on j . Thus, we have for any N ∈N,

|F−1γ̂k (x)| ≤C (1+|x|)−N
∣∣∣

∑

|β|≤N
xβF−1γ̂k (x)

∣∣∣≤C (1+|x|)−N
∑

|β|≤N
‖∂β

ξ
γ̂k‖L1

≤CN (1+|x|)−N ≤C ′
N 〈x〉−Nα1

B .(2.24)

So, in particular, Theorem 2.4 applies to the multipliers induced by {γk }k since supp(γ̂k ) ⊂
TkBA(0,2ρ). We let {Ψk }k∈Zd be a BAPU associated with F s

p,q (h), and recall the system {Ψ∗
k }

given by (2.12). Hence, by Proposition 2.3, Theorem 2.4, and the estimate above,

‖Ss
q ( f )‖Lp ≤C‖h(ξk )sγk (D) f ‖Lp (`q )

=C‖h(ξk )sγk (D)Ψ∗
k (D) f ‖Lp (`q )

≤C ′‖h(ξk )sΨ∗
k (D) f ‖Lp (`q )

≤C ′′‖ f ‖F s
p,q (h).
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�
The following technical lemma estimates the absolute value of an expansion on a fixed

scale relative to a well-localized system in terms of the maximal function. The lemma is a
slight variation on a well-known result, see [4, 17].

Lemma 2.18. Let 0 < r ≤ 1. Suppose there is a constant C such that the system {ψ̃k,n}k,n∈Zd

defined on Rd satisfies

|ψ̃k,n(x)| ≤C tν/2
k (1+|πa n +δ>tk

x|B )−N , ∀k,n ∈Zd ,

for some N > ν/r . There exists a constant C ′ such that for any sequence {sk,n}k,n ⊂C, we have
∑
n
|sk,n ||ψ̃k,n | ≤C ′tν/2

k M B
r

(∑
n
|sk,n |χQ(k,n)

)
.

Proof. We may without loss of generality suppose x ∈Q(k,0). Let A0 = {n ∈ Zd : |πa n|B ≤ 1},

and for j ∈N, let A j = {n ∈Zd : 2 j−1 < |πa n|B ≤ 2 j }. Notice that ∪n∈A j Q(k,n) is a bounded set

contained in the ball BB (0,c2 j+1t−1
k ). Now,

∑
n∈A j

|sk,n |(1+|πa n +δ>tk
x|B )−N ≤C 2− j N

∑
n∈A j

|sk,n | ≤C 2− j N
( ∑

n∈A j

|sk,n |r
)1/r

≤C 2− j N tν/r
k

(∫ ∑
n∈A j

|sk,n |rχQ(k,n)(y)d y
)1/r

≤C n1−r
0 2− j N tν/r

k

(∫

BB (0,c2 j+1t−1
k )

( ∑
n∈A j

|sk,n |χQ(k,n)(y)
)r

d y
)1/r

≤C ′2− j (N−ν/r )M B
r

( ∑

n∈Zd

|sk,n |χQ(k,n)

)
(x).

The result now follows by summing over j ∈N0. �
Next we use Lemma 2.18 to study the reconstruction operator R̃.

Lemma 2.19. Suppose s ∈R, 0 < p <∞, and 0 < q ≤∞. Then for any finite sequence {sk,n}k,n ,
we have ∥∥∥

∑

k,n
sk,nψ̃k,n

∥∥∥
F s

p,q (h)
≤C‖{sk,n}‖ f s

p,q
.

Proof. Let {Ψk }k∈N be a BAPU associated with F s
p,q (h). By Remark 2.11 and Theorem 2.4 we

get
∥∥∥
∑

k,n
sk,nψ̃k,n

∥∥∥
F s

p,q

=
∥∥∥
{

t s
k ·Ψk (D)

(∑

`,n
s`,nψ̃`,n

)}
k

∥∥∥
Lp (`q )

≤C
∥∥∥
{

t s
k

∑

`∈N (k)

∑
n

s`,nψ̃`,n

}
k

∥∥∥
Lp (`q )

,

where N (k) = {` ∈N : supp(Ψk )∩ supp(ψ̃`) 6= ;}. According to [10] on equivalence for ad-
missible coverings, it holds true that #N (k) is uniformly bounded. Moreover, h is a moder-
ate weight, so it follows that we obtain

∥∥∥
{

t s
k

∑

`∈N (k)

∑
n

s`,nψ̃`,n

}
k

∥∥∥
Lp (`q )

≤C
∥∥∥
(∑

`

(
t s
`

∑
n
|s`,n ||ψ̃`,n |

)q)1/q∥∥∥
Lp

.
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Fix 0 < r < min(1, p, q). Then Lemma 2.18 and the Fefferman-Stein maximal inequality (2.3)
yields

∥∥∥
{

t s
k

∑
n
|sk,n ||ψ̃k,n |

}
k

∥∥∥
Lp (`q )

≤C
∥∥∥
{

t s+ν/2
k M B

r

(∑
n
|sk,n |χQ(k,n)

)}
k

∥∥∥
Lp (`q )

≤C ′
∥∥∥
{

t s+ν/2
k

∑
n
|sk,n |χQ(k,n)

}
k

∥∥∥
Lp (`q )

.

The result now follows since the sum over n is locally finite with a uniform bound on the
number of non-zero terms, which implies that

(∑
n
|sk,n |χQ(k,n)

)q
³

∑
n
|sk,n |qχQ(k,n),

uniformly in k. �
We can now finally proceed and prove Theorem 2.16.

Proof of Theorem 2.16. Lemma 2.19 shows that R extends to a bounded operator

R : f s
p,q (h) → F s

p,q (h),

while Lemma 2.17 shows that C extends to a bounded operator

C : F s
p,q (h) → f s

p,q (h).

Hence RC is bounded on Fp,q (h). For f ∈ L2(Rd ), we let K f := [ f̂ /G]∨, with G defined by
(2.11). It is easy to check that K is self-adjoint and invertible on L2(Rd ) using the fact that
G and G−1 are bounded real-valued functions. Hence, for f ∈ S (Rd ) ⊂ L2(Rd ), we have in
L2-sense,

f = K K −1 f

= K
∑

k,n
〈K −1 f ,ηk,n〉ηk,n

=
∑

k,n
〈 f ,K −1ηk,n〉Kηk,n

=
∑

k,n
〈 f ,ψk,n〉ψ̃k,n

= RC f .

From the boundedness of R and C it follows that the identify RC f = f also holds true in
F s

p,q (h). Hence it holds on the dense subset S (Rd ) ⊂ F s
p,q (h), and the result now follows by

extension. �
Example 2.20. Let us expand on Example 2.8. Fix 0 < α < 1. Define bk = k|k|α/(1−α),
k ∈ Zd \ {0}, and let T = {Tk }k∈Zd \{0} be given by Tkξ = |k|α/(1−α)ξ+bk . This type of “poly-
nomial” covering was first considered by Päivärinta and Somersalo in [19] to study pseu-
dodifferential operators, and Gröbner [14] used such coverings to define α-modulation
spaces. It is not difficult to verify that on the modulation side we obtain the so-called

α-modulation spaces Mβ
p,q (hα) = Mβ,α

p,q (Rd ). Consequently Fβ
p,q (hα,〈·〉) can be considered

a Triebel-Lizorkin equivalent of the α-modulation spaces. The α-Triebel-Lizorkin spaces
were first considered in a rather rudimentary form in [2].
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In this case we have an explicitly given covering, so we can also write out an explicit
norm equivalence that follows immediately from Theorem 2.16. Let {ψk,n} be the frame for

Fβ
p,q (hα,〈·〉) given by (2.17). We have

‖ f ‖
F
β
p,q (hα)

³
∥∥∥
{
〈k〉 s

1−α+ 1
2
αd

1−α
( ∑

n∈Zd

|〈 f ,ψk,n〉|qχQ(k,n)

)1/q}
k

∥∥∥
Lp (`q )

,

where Q(k,n) is given by (2.21).

3. COMPACTLY SUPPORTED GENERATORS

We now consider a construction of frames for decomposition spaces with a single com-
pactly supported generator. The idea is to obtain a perturbation of the system (2.18) which
we control using the notion of almost diagonal matrices for the sequence space f s

p,q (h) de-
veloped in [18].

Before we get to the construction of a compactly supported frame generator, we need
to introduce some notation and machinery introduced in [18]. First we add a few general
restrictions to the moderate function h used to generate admissible coverings:

(3.1)

{
There exist β,R1,ρ1 > 0 such that h1+β is moderate and

|ξ−ζ|A ≤ ah(ξ) for a ≥ ρ1 implies h(ζ) ≤ R1ah(ξ).

A rich body of functions h satisfying these conditions can be generated by using functions
s :R+ →R+ which satisfy s(2t ) ≤C s(t ), t ∈R+, and

(1+ t )γ ≤ s(t ) ≤ (1+ t )
1

1+β , t ∈R+,

for some γ> 0. We assign h = s(| · |A) and use that s is weakly sub-additive to get the results
(see [7]). Notice that s(t ) = (1+ t )α,0 ≤ α < 1, gives Example 2.8 and fulfills the mentioned
conditions.

We begin by considering the following notion of a well-localized frame adapted to the
general structure of the systems given by Eqs. (2.16), (2.18), and (2.20). The compactly sup-
ported frame constructed below will satisfy Definition 3.1.

Definition 3.1. Let h : Rd → [0,∞) be a moderate function satisfying (3.1), and let {Tk =
δρh(ξk ) ·+ξk }k∈Zd be a family of invertible affine transformations onRd generated by Lemma
2.9 based on h. Put tk := ρh(ξk ). Assume that the system Θ := {θk,n}k,n∈Zd is a frame for

L2(Rd ). Let 0 < p, q <∞ and s ∈ R. We say that Θ is (p, q, s)-localized, 0 < p, q ≤∞, s ∈ R,
provided there exist constants C ,δ> 0 such that for any k,n ∈Zd ,

|θk,n(x)| ≤C t
ν
2

k (1+ tk |xk,n −x|B )−2
(
ν
r +δ

)
,(3.2)

|θ̂k,n(ξ)| ≤C t
− ν

2
k (1+ t−1

k |ξk −ξ|A)
−2

(
ν
r +δ

)− 2
β

(
|s|+ 2ν

r + 3δ
2

)
,(3.3)

where r := min(1, p, q), and

(3.4) xk,n = δ>
t−1

k

π

a
n, k,n ∈Zd .
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Closely related to localized frames is the following notion of an almost diagonal matrix
for f s

p,q (h) and ms
p,q (h). It turns out that ”change-of-frame” matrices between two localized

frames are almost diagonal in the following sense.

Definition 3.2. With the same notation as in Definition 3.1, assume that s ∈R, 0 < p, q ≤∞,
p <∞ for f s

p,q (h), and q <∞ for ms
p,q (h). Let r := min(1, p, q). A matrix A := {a( j ,m)(k,n)} j ,m,k,n∈Zd

is called almost diagonal on f s
p,q (h) and ms

p,q (h) if there exists C ,δ> 0 such that

|a( j ,m)(k,n)| ≤C [D(xk,n , x j ,m})+D(xk,n , xk,−n)],

where

D(x, y) :=
( tk

t j

)s+ ν
2

min
(( t j

tk

) ν
r + δ

2
,
( tk

t j

) δ
2
)
cδj k × (1+min(tk , t j )|x − y |B )−

ν
r −δ,

and

cδj k := min
(( t j

tk

) ν
r +δ

,
( tk

t j

)δ)
(1+max(tk , t j )−1|ξk −ξ j |A)−

ν
r −δ

with tk := ρh(ξk ), k ∈ Zd , and xk,n defined by (3.4). We denote the set of almost diagonal
matrices on f s

p,q (h) and ms
p,q (h) by ads

p,q (h).

Remark 3.3. Two important results from [18] that will be needed below are the following.

• Suppose that A ∈ ads
p,q (h). Define the action on a sequence s = {sk,n}k,n∈Zd by

(As)( j ,m) :=
∑

k,n∈Zd

a( j ,m)(k,n)sk,n .

Then A is bounded on f s
p,q (h) and ms

p,q (h), see [18, Proposition 3.3].

• Suppose the two systems {θk,n}k,n∈Zd and {ψ j ,m} j ,m∈Zd defined onRd are both (p, q, s)-
localized. Then it follows that the ”change-of-frame” matrix [〈θk,n ,ψ j ,m〉](k,n)( j ,m) ∈
ads

p,q (h), see [18, Lemma 3.1].

Now suppose that Θ := {θk,n} is a (p, q, s)-localized system on Rd . We remark that θk,n

might not be a Schwartz function – unlike the case of the frame system considered in (2.18)
and (2.20). Hence, we have to be careful not to try to use the pairing between S (Rd ) and
S ′(Rd ) to calculate the frame coefficient relative to the system Θ. In fact, for general f ∈
S ′(Rd ) we cannot calculate the expansion coefficients, but if we restrict our attention to
the subclass f ∈ F s

p,q (h) the situation improves. In this case, we define [ f ,θ j ,m] as

(3.5) [ f ,θ j ,m] :=
∑

k,n∈Zd

〈ψ̃k,n ,θ j ,m〉〈 f ,ψk,n〉, f ∈ F s
p,q (h),

where ψk,n and ψ̃k,n are defined in (2.18) and (2.20), respectively. It follows from Remark
3.3 that [ · ,θ j ,m] is a bounded linear functional on F s

p,q (h); in fact we have

∑

k,n∈Zd

|〈ψ̃k,n ,θ j ,m〉||〈 f ,ψk,n〉| ≤
∥∥∥
{ ∑

k,n∈Zd

|〈ψ̃k,n ,θ j ,m〉||〈 f ,ψk,n〉|
}

j ,m∈Zd

∥∥∥
f s

p,q (h)

≤C‖〈 f ,ψk,n〉‖ f s
p,q (h) ≤C‖ f ‖F s

p,q (h).(3.6)
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Clearly [ f ,θ j ,m] coincides with the usual inner product whenever f ∈ L2(Rd ). Now let S
denote the frame operator given by

S f =
∑

k,n∈Zd

[ f ,θk,n]θk,n , f ∈ L2(Rd ).

We now turn to the perturbation approach mentioned earlier. Let {ψk,n}k,n∈Zd be the

frame given by (2.18), and for given (p, q, s) suppose that {θk,n}k,n∈Zd ⊂ L2(Rd ) is a system
that is close to {ψk,n}k,n∈Zd in the sense that there exists ε,δ> 0 such that

|ψk,n(x)−θk,n(x)| ≤ εt
ν
2

k (1+ tk |xk,n −x|B )−2
(
ν
r +δ

)
,(3.7)

|ψ̂k,n(ξ)− θ̂k,n(ξ)| ≤ εt
− ν

2
k (1+ t−1

k |ξk −ξ|A)
−2

(
ν
r +δ

)− 2
β

(
|s|+ 2ν

r + 3δ
2

)
,(3.8)

where we have used the notation from Definition 3.2. Notice the dependence on (p, q, s).
We can now state a general result on perturbation of the frame given by (2.18).

Proposition 3.4. Assume that {θk,n}k,n∈Zd ⊂ L2(Rd ) is a frame for L2(Rd ) and satisfies (3.2)
and (3.3) for some 0 < p, q < ∞ and s ∈ R. Then there exists ε0 > 0 such that whenever
{θk,n}k,n∈Zd also satisfies (3.7) and (3.8) for some 0 < ε≤ ε0 there exist C1,C2 > 0 such that

(3.9) C1‖ f ‖F s
p,q (h) ≤ ‖[ f ,θk,n]‖ f s

p,q (h) ≤C2‖ f ‖F s
p,q (h)., f ∈ F s

p,q (h).

Moreover, for f ∈ F s
p,q (h) we have

f =
∑

k,n∈Zd

〈 f ,θk,n〉S−1θk,n

in the sense of S ′. A similar result holds for M s
p,q (h) and ms

p,q (h).

Proof. Follows by a straightforward adaptation of Theorem 4.1, Proposition 4.2, and Lemma 4.5
in [18] to the setup with the frame given by (2.18). �
3.1. Two specific constructions of a compactly supported generator. With Proposition 3.4
in hand, all that remain is to find a compactly supported generator that satisfy (3.7) and
(3.8). Throughtout this section, we assume that the moderate function h is fixed and satis-
fies (3.1).

We will present two possible approaches. First a straightforward approximation approach
with limited flexibility and then a more sophisticated approximation procedure where one
can pick the function as a linear combination of translates and dilates of any reasonable
function.

The fact that we are looking for a single generator actually simplifies the conditions given
in (3.7) and (3.8). In fact, it suffices to find a generator τ ∈ L2(Rd ) which is close enough to
ψ considered in (2.20) in the following sense,

|ψ(x)−τ(x)| ≤ ε(1+|x|B )−2
(
ν
r +δ

)
,(3.10)

|ψ̂(ξ)− τ̂(ξ)| ≤ ε(1+|ξ|A)
−2

(
ν
r +δ

)− 2
β

(
|s|+ 2ν

r + 3δ
2

)
.(3.11)

Then the frame {θk,n} can be generated from τ in the obvious way adapting the structure of
the system (2.18), i.e.,

(3.12)
{
θk,n := t

ν
2

k τ
(
δ>tk

x − π

a
n

)
e i x·ξk

}
k,n∈Zd

.
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Let us consider the following simple approximation of ψ. Take any nonnegative η ∈
C∞(Rd ) with compact support satisfying |η| ≤ 1 and η(x) = 1 for |x|B ≤ 1. Then we define for
j ∈N,

η j (x) = η(δ>
2− j x) and τ j (x) = η j (x)ψ(x).

Clearly each τ j is compactly supported. We have the following result.

Proposition 3.5. Let 0 < p, q < ∞ and s ∈ R. Given ε > 0 there exists n0 ∈ N such that the
compactly supported function τ j satisfies both (3.10) and (3.11) for j ≥ n0.

Proof. Clearly ψ ∈S (Rd ) so for fixed δ> 0 there exists C <∞ such that

|ψ(x)| ≤C (1+|x|B )−2
(
ν
r +δ

)−1.

Hence, ψ(x)−η j (x)ψ(x) = 0 for |x|B ≤ 2 j and for |x|B > 2 j ,

|ψ(x)−η j (x)ψ(x)| ≤C (1+2 j )−1(1+|x|B )−2
(
ν
r +δ

)
≤ ε(1+|x|B )−2

(
ν
r +δ

)
,

whenever j ≥ j0 with 2 j0 >Cε−1.
Now we turn to the estimate on the Fourier side. Notice that η̂ j (ξ) = 2 jνη̂(δ2 j ξ) is an

approximation of the identity, and that τ̂ j = η̂ j ∗ ψ̂. Since η,ψ ∈S (Rd ), we can find C ′ such
that

|η̂(ξ)|, |ψ̂(ξ)| ≤C ′(1+|ξ|A)
−2

(
ν
r +δ

)− 2
β

(
|s|+ 2ν

r + 3δ
2

)
−1

.

By standard estimates for convolutions, see [13, Appendix K], there is a constant C ′′ such
that

|η̂ j ∗ ψ̂(ξ)| ≤C ′′(1+|ξ|A)
−2

(
ν
r +δ

)− 2
β

(
|s|+ 2ν

r + 3δ
2

)
−1

.

As before, we can find j1 ≥ j0 such that for j ≥ j1 and |ξ|A > 2 j1 we have,

|η̂ j ∗ ψ̂(ξ)| ≤ ε(1+|ξ|A)
−2

(
ν
r +δ

)− 2
β

(
|s|+ 2ν

r + 3δ
2

)
.

Now, on the compact set {ξ : |ξ|A ≤ 2 j1 } we have η̂ j ∗ ψ̂→ ψ̂ uniformly as j →∞ since {η̂ j } j

is an approximation of the identity. Then we choose j ≥ j1 large enough to ensure that

|η̂ j ∗ ψ̂(ξ)− φ̂(ξ)| ≤ ε(1+2 j1 )
−2

(
ν
r +δ

)− 2
β

(
|s|+ 2ν

r + 3δ
2

)
,

on {ξ : |ξ|A ≤ 2 j1 }. This completes the proof. �

The reader will notice that the proof of Proposition 3.5 is a variation on the proof that
compactly supported test functions are dense in S (Rd ). However, we included the proof to
emphasize the constructive nature of the approximation procedure.

Next we turn to a more sophisticated approximation procedure introduced for decompo-
sition spaces in [18]. The result in [18] was in turn inspired by Petrushev and Kyriazis [17,20].

The idea is to take any g ∈C 1(Rd )∩L2(Rd ), ĝ (0) 6= 0, which for fixed N , M > 0 satisfies

|g (κ)(x)| ≤C (1+|x|B )−N−α1 , |κ| ≤ 1,(3.13)

|ĝ (ξ)| ≤C (1+|ξ|A)−M−α2 .,(3.14)
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whereα1 andα2 are given by (2.1). Then for m ∈N, we define gm(x) :=Cg mνg (δ>m x), where
Cg := ĝ (0)−1. It follows that

|g (κ)
m (x)| ≤C mν+α2|κ|(1+m|x|B )−N−α1 , |κ| ≤ 1,

∫

R
gm(x)d x = 1,(3.15)

|ĝm(ξ)| ≤C mM+α2 (1+|ξ|A)−M−α2 .

To construct a compactly supported generator τ based on g , we will need the set of finite
linear combinations of translated and dilates of g ,

ΘK ,m = {η : η(·) =
K∑

i=1
ai gm(·+bi ), ai ∈C,bi ∈Rd }.

We are now ready to show that any function with sufficient decay in both direct and fre-
quency space can be approximated to an arbitrary degree by a finite linear combination of
another function with similar decay.

Proposition 3.6. Let N ′ > N > ν and M ′ > M > ν. If g ∈ C 1(Rd )∩L2(Rd ), ĝ (0) 6= 0, fulfills
(3.13) and (3.14) and ψ ∈C 1(Rd )∩L2(Rd ) fulfills

|ψ(x)| ≤C (1+|x|B )−N ′
,

|ψ(κ)(x)| ≤C , |κ| ≤ 1,

|ψ̂(ξ)| ≤C (1+|ξ|A)−M ′
,

then for any ε> 0 there exists K ,m ≥ 1 and τ ∈ΘK ,m such that

|ψ(x)−τ(x)| ≤ ε(1+|x|B )−N ,(3.16)

|ψ̂(ξ)− τ̂(ξ)| ≤ ε(1+|ξ|A)−M .(3.17)

As before, the resulting frame is then given by (3.12).

3.2. Some concluding remarks on numerical calculations. There is one major advantage
for numerical calculation of the construction given by Proposition 3.6; this is the fact that
we can choose the initial function g as we please only subject to some very mild constraints.

We can use this to make the final frame generated by τ from Proposition 3.6 better adapted
to numerical calculations. For example, we can choose g to be a compactly supported
spline or a compactly supported orthonormal scaling function for a multiresolution analy-
sis. Then we generate τ by Proposition 3.6. We can clearly write

τ=
K∑

i=1
ai g (δmi ·+bi ).

Then for any f ∈ L1,loc(Rd ),

〈 f ,τ〉 =
K∑

i=1
ai m−τ

i

∫

Rd
f (δ>1/mi

x −δ>1/mi
bi )g (x)d x,(3.18)

and we can use the properties of g to estimate the integrals in (3.18). The same type of
reasoning applies to dilated, translated, and modulated versions of τ, so this way we can
estimated any frame coefficient of the system (3.12) generated by τ.
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