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Abstract—In this paper, the problem of fundamental frequency 
and direction-of-arrival (DOA) estimation for multi-channel 
harmonic sinusoidal signal is addressed. The estimation 
procedure consists of two stages. Firstly, by making use of the
subspace technique and Markov-based eigenanalysis, a multi-
channel optimally weighted harmonic multiple signal 
classification (MCOW-HMUSIC) estimator is devised for the 
estimation of fundamental frequencies. Secondly, the spatio-
temporal multiple signal classification (ST-MUSIC) estimator is 
proposed for the estimation of DOA with the estimated 
frequencies. Statistical evaluation with synthetic signals shows 
the high accuracy of the proposed methods compared with their
non-weighting versions.

Keywords-fundamental frequency estimation; DOA estimation;
subspace method; harmonic sinusoidal signal; Markov optimum 
weighting 

I. INTRODUCTION

The problem of fundamental frequency or pitch estimation
has been of interest to the signal processing community for
many years, finding applications in a wide range of areas such 
as audio and speech coding, classification of music, and speech 
analysis. Kinds of algorithms have been proposed for both the 
single-pitch and multi-pitch scenarios. The nonlinear least
squares (NLS) estimator [1] is statistically efficient for single 
pitch scenario, but performs poorly in the multi-pitch scenario
due to the decoupling difficulty [2]. In [2]-[3], the harmonic 
multiple signal classification (HMUSIC) algorithm is proposed
for single-pitch and multi-pitch estimation. However, the 
HMUSIC estimation is not statistically efficient, and its
accuracy cannot attain Cramér-Rao lower bound (CRLB) [4]. 

Recently, multi-channel approaches have attracted
considerable attention in both single-pitch and multi-pitch 
scenarios [5]-[7], where both direction-of-arrival (DOA)
estimation and fundamental frequency estimation are of
importance. In [8], the multi-channel multi-pitch harmonic 
multiple signal classification (MC-HMUSIC) is presented for 
solving the problem of joint fundamental frequency and DOA 
estimation. The simulations show its increased accuracy in 
DOA and fundamental frequency estimation compared with 
other state-of-the-art method. Nevertheless, the two-
dimensional search is utilized for the estimates of fundamental
frequency and DOA, which makes the computation complexity
high. Still, its fundamental frequency estimation is not
statistically efficient. 

To overcome the disadvantages of the MC-HMUSIC 
estimator, we propose to estimate the fundamental frequency
and DOA in two stages. At first, the multi-channel optimally 
weighted harmonic multiple signal classification (MCOW-
HMUSIC) estimator is devised, and the estimation of
fundamental frequency is conducted. The MCOW-HMUSIC
estimator is the extension of the HMUSIC estimator to the 
multi-channel scenario with optimum weighting. As mentioned,
the HMUSIC estimator is not statistically efficient, and there is 
a gap between its mean square error and CRLB. Therefore, a 
kind of Markov optimum weighting is utilized to improve its
accuracy. To facilitate the statistical analysis of orthogonality 
error, we modify the HMUSIC formulation. Then we analyze 
the perturbation of the orthogonality error, and derive the 
weighting matrix. The fundamental frequency estimates are 
calculated in an iterative manner. Simulation results show that
the MCOW-HMUSIC estimator performs better than its non-
weighting version. Especially in the single-pitch scenario, its 
performance can attain the CRLB. Secondly, we make use of 
the spatio-temporal multiple signal classification (ST-MUSIC) 
estimator to estimate the DOA with the estimated fundamental 
frequency. Since we estimate the frequency and DOA at two 
stages, the computationally intensive two-dimensional search 
in [8] is avoided. 

The rest of this paper is organized as follows. The 
proposed estimators for fundamental frequency and DOA,
MCOW-HMUSIC and ST-MUSIC, are developed in Section II.
The statistical properties of the orthogonality error is analyzed, 
and the optimum weighting matrix is derived. In Section III,
simulation results are included to show the performance of the 
proposed estimators by comparing with their non-weighting
versions as well as CRLB. Finally, conclusions are drawn in
Section IV. 

II. ALGORITHM DEVELOPMENT

A. Spatio-Temporal Signal Model

Without multi-path propagation of sources, the multi-
channel signal model is given as follows. The signal
received by the microphone element (channel) arranged in a 
uniform linear array (ULA) configuration, , is
given by [8]

,                           (1) 

,        (2) 



for , with , ,  and  denoting 
unknown fundamental frequency, scaled DOA, amplitudes 
and initial phases of the k-th source. The number of sources 
and the number of harmonics of each source , are
assumed to be known, or found in some way such as [9]. The 

 ( ) are assumed to be uncorrelated white
Gaussian noise with variance . The objective is to estimate
the nonlinear parameters  and . Once they are estimated, 
the remaining linear parameters can be estimated as a linear 
least squares (LLS) solution. 

B. Fundamental Frequency Estimation

Firstly, we focus on the single-pitch case, that is, . 
Construct the data matrix for each channel  [10]: 

,                                (3) 

where  is the data matrix with elements
, . The matrices 

 and are the noise-free and noise components of , 
respectively. It is straightforward that  can be factorized as: 

,                                  (4) 

where 

,                       (5) 

,                        (6) 

,                        (7) 

,                        (8) 

,                       (9) 

,                    (10) 

for , and . On the other hand,
can be decomposed using singular value decomposition

(SVD) as: 

,     

(11)

with  and spanning the signal and noise subspace, 
respectively. Comparing (4) and (11), the HMUSIC estimate of

 from channel , denoted by , is obtained by minimizing 
the orthogonality error between  and : 

,          (12) 

with the variable for , and denoting the Frobenius
norm. As demonstrated in [2]-[3], this kind of estimator is not
statistically efficient. To improve its accuracy, we introduce 
Markov optimum weighting. Due to the non-uniqueness of the 
columns of , that is any linear combination of these vectors 
still spans the noise space, it is impossible to analyze their
statistical properties. To overcome such difficulty, we 
reformulate the HMUSIC estimator to a different but 
equivalent form as follows:

,                       (13) 

where is the orthogonality error vector of the form 
 with being the vectorization

operator. According to the results of [11], and after some extra 
manipulations, the first-order approximation of  originating 
from  is derived as 

,   (14) 

where stands for the Kronecker product,  is the 
perturbation of , and ,  are defined as 

,                   (15) 

,                             (16) 

,              (17)

, for . Based on the above
perturbation analysis, the Markov optimum weighting matrix
for the channel , is determined as [12]

,                  (18) 

where stands for pseudoinverese. Then for each channel , 
is estimated as 

.         (19) 

When dealing with the multi-channel signal, we stack the error 
vectors  as , and the fundamental 
frequency estimate  is computed as 

,                         (20) 

where  due
to the uncorrelatedness among the channels. Then the 
fundamental frequency estimate  is expressed as 

.                        (21) 

As are functions of the unknown , the 
following iterative procedure is employed to solve for : 

� Step 1. Set which is the 
identity matrix. 

� Step 2. Find  by searching for the minimum of (21).

� Step 3. Compute  by (18). 

� Step 4. Repeat Steps 2 and 3 until a stopping criterion is 
reached. 

This estimator is termed as the MCOW-HMUSIC method.



We now proceed to focus on the multi-pitch case. 
Following the idea of the single-pitch case,  can be factorized 
as: 

,                                   (22) 

where , , 

, and .  and  can 

be found similarly. On the other hand, the left singular vectors 
of the data matrix associated with its ( ) 
smallest singular values span the noise subspace . Then the
orthogonality error vector for each source is given as

. Following the similar steps like 
finding the initial values of fundamental frequencies, 
constructing weighting matrices of (18) for each of them, and 
searching for its closest minimum of (21), we can solve the
MCOW-HMUSIC estimates of the multi-pitch fundamental 
frequencies in an iterative way. 

C. DOA Estimation

First, the time-domain data samples of the array output 
are collected to form the

 data matrix , which has the form of 

,                    (23) 

and can also be expressed as 

,                (24)

where is the noise part of , 
, , 

, , 

, , and 
the vector  contains the complex amplitudes 

,         (25) 

with . The multiple sources impinge on the 
array with different DOAs consisting of various frequency
components may, for certain frequency combinations, give 
the same array steering vector, which causes the matrix  to
be rank deficient. Here, the ambiguities and the rank-
deficiency are avoided by introducing temporal smoothness 
in order to restore the rank of . The temporally smoothed 
data matrix is obtained by stacking  times temporally
shifted versions of the original data matrix, given as [8] 

,      (26) 

where is the temporally smoothed data 
matrix, and is its noise part. On one hand,  can be
factorized as 

,       (27) 

where , whose submatrix for 
each individual source  is given by

.   (28) 

On the other hand,  can be decomposed using SVD as:

,               

           (29) 

with  and spanning the signal and noise subspace, 
respectively. Comparing (27) and (29), the DOA and
fundamental frequency for each source can be estimated 
jointly by minimizing the cost function 

,                         (30) 

with  and the variable for  and . Now that we obtain 
the estimate for the fundamental frequency in the last 
subsection, the DOA is estimated with the frequency estimate

 as 

.                           (31) 

Note that in the two-stage estimation, only two one-
dimensional searches are required and the two-dimensional
search in the joint estimation of DOA and fundamental 
frequency is avoided, which decreases the computation 
complexity. This DOA estimation method is termed as spatio-
temporal multiple signal classification (ST-MUSIC) estimator. 

III. SIMULATION RESULTS

In this section, we perform Monte Carlo simulations to
evaluate the fundamental frequency and DOA estimation 
performance of the proposed method. The estimation accuracy 
is evaluated using the mean square error (MSE): 

 and 

, with ,  and , 

being the true fundamental frequency, DOA and their 
estimates, respectively, and being the number of trials. We
use the number of iterations as the stopping criterion in the
MCOW-HMUSIC algorithm, which is assigned as 3. In the 



fundamental frequency estimation, the row number of the data
matrix for each channel is set as  with
denoting the smallest integer larger than . In the DOA 
estimation, the row number of the data matrix is set as

. Such row number settings are found to result
in good performance empirically. The microphone array size is
set as . All the results are averages of 100 independent
runs. 

First, we provide an example of single-pitch estimation. 
The harmonic signal consists of  sinusoids with
fundamental frequency of and DOA of . 
The parameter setting is listed in Table 1. Fig.1 shows the 
MSEs of fundamental frequency estimates by MCOW-
HMUSIC and its non-weighting version (which is termed as
MC-HMUSIC here) as well as CRLB, with  and , 
respectively. It is seen that the MCOW-HMUSIC estimate
attains the optimum accuracy when . However,
there is about 3 dB gap between the MSE of MC-HMUSIC and 
CRLB. Fig.2 shows the corresponding MSEs of DOA
estimates by ST-MUSIC with frequency estimate from
MCOW-HMUSIC and MC-HMUSIC as well as CRLB. For
the DOA estimation, the results are the same with frequency 
estimates from any method, and there are about 3 dB and 5 dB
gaps from CRLB when  and , respectively.

TABLE 1. SIMULATION SETTING OF SINGLE-PITCH ESTIMATION

DOA l Frequency Amplitude Initial Phase

1 0.5 2.0 1 

2 1.0 1.5 2 

3 1.5 2.5 3 
0.4

4 2.0 4.0 4 

The next example is about multi-pitch estimation. The 
harmonic signal consists of pitches, each with 
tones. The parameter setting is listed in Table 2. Fig.3 and 
Fig.4 show the MSEs of fundamental frequency and DOA,
respectively. From Fig.3, we can still see that the MCOW-
HMUSIC estimator is superior to MC-HMUSIC by 5–10 dB,
and its MSE can be close to CRLB. In addition, when the data
length is larger, the MCOW-HMUSIC estimator performs with
better accuracy. For the DOA estimation, the results are the
same with frequency estimates from any method, and there are 
about 5 dB and 3 dB gaps from CRLB when  and , 
respectively. 

TABLE 2. SIMULATION SETTING OF TWO-PITCH ESTIMATION

k DOA lk Frequency Amplitude Initial Phase

1 0.3 2.0 1 
1 0.4

2 0.6 1.0 2 

1 0.5 2.0 3 
2 0.6 

2 1.0 1.0 4 

IV. CONCLUSION

The two stage estimation of the fundamental frequency and 
DOA for the multi-channel harmonic signal is proposed. In the 
fundamental frequency estimation, the MCOW-HMUSIC
estimator is developed, where the perturbation of orthogonality 
error is analyzed, and the Markov optimum weighting is
utilized. Then the DOA is estimated with the ST-MUSIC and 
the estimated frequency. The two-dimensional search in the 
joint DOA and fundamental frequency estimation is replaced 
with two one-dimenional searches, which saves the
computational complexity. Simulation results show that the 
MCOW-HMUSIC method improves the accuracy of the
conventional HMUSIC method, and its performance can attain
CRLB for single-pitch estimation. Moreover, the ST-MUSIC
method provides accurate estimation for the DOA. Further 
works include dealing with more complicated multi-pitch
estimation problems, adaptive pitch estimation, and their 
application to speech and audio signal processing. 
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(b) 
Figure 3. MSEs of two-pitch fundamental frequency 
estimation versus SNR for: (a) N = 50 and (b) N = 100.
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(b) 
Figure 4. MSEs of two-pitch DOA estimation versus SNR 
for: (a) N = 50 and (b) N = 100.
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Figure 2. MSEs of single-pitch DOA estimation versus
SNR for: (a) N = 50 and (b) N = 100.
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(a) 

Figure 1. MSEs of single-pitch fundamental frequency 
estimation versus SNR for: (a) N = 50 and (b) N = 100. 
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