

Aalborg Universitet

Comparison of Orthogonal Matching Pursuit Implementations

Sturm, Bob L.; Christensen, Mads Græsbøll

Published in:
Proceedings of the European Signal Processing Conference

Publication date:
2012

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Sturm, B. L., & Christensen, M. G. (2012). Comparison of Orthogonal Matching Pursuit Implementations.
Proceedings of the European Signal Processing Conference, 2012, 220-224.
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84869778651&partnerID=40&md5=03f164712a4d409cb56ebce8ed0d1c43

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 25, 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by VBN

https://core.ac.uk/display/60509078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://vbn.aau.dk/en/publications/817c3a19-acd2-47a3-8141-c36ca95f8229
http://www.scopus.com/inward/record.url?eid=2-s2.0-84869778651&partnerID=40&md5=03f164712a4d409cb56ebce8ed0d1c43
http://www.scopus.com/inward/record.url?eid=2-s2.0-84869778651&partnerID=40&md5=03f164712a4d409cb56ebce8ed0d1c43

COMPARISON OF ORTHOGONAL MATCHING PURSUIT IMPLEMENTATIONS

Bob L. Sturm and Mads Græsbøll Christensen

Dept. of Architecture, Design and Media Technology, Aalborg University, Denmark
E-mail: bst,mgc@create.aau.dk

ABSTRACT

We study the numerical and computational performance of
three implementations of orthogonal matching pursuit: one
using the QR matrix decomposition, one using the Cholesky
matrix decomposition, and one using the matrix inversion
lemma. We find that none of these implementations suf-
fer from numerical error accumulation in the inner products
or the solution. Furthermore, we empirically compare the
computational times of each algorithm over the phase plane.

Index Terms— Orthogonal matching pursuit, algorithms

1. INTRODUCTION
We wish to efficiently model a signal u by atoms defined in a
dictionary D := {ϕω ∈ CM : ω ∈ Ω := {1, 2, . . . , N}} by

u = Φx + n (1)

where Φ := [ϕ1|ϕ2| · · · |ϕN], and n is noise. We wish our
model x̂ to have s < M � N non-zero elements (sparsity),
such that ‖u − Φx̂‖ is on the order of ‖n‖. This problem
is sparse approximation or representation [1,2], and many al-
gorithms have been designed to solve it [1–3]. In this work,
we are concerned with only one: the orthogonal greedy algo-
rithm, orthogonal matching pursuit (OMP) [4]. OMP allows
one to directly tune the sparsity or order of the approximation,
and its performance is competitive with other more complex
algorithms, e.g., convex optimization [5, 6].

OMP is simple and straightforward to implement in a
naive manner, and its computational complexity can be re-
duced for a region of problem dimensions using matrix de-
composition, e.g., the QR or Cholesky decomposition [4,7,8].
The numerical behavior of OMP in its different implemen-
tations, however, have not been studied. In this paper, we
review three computationally efficient implementations of
OMP. We are not concerned with guarantees of sparse solu-
tions for OMP, but only with the numerical behavior and com-
putational complexity of each implementation as a function
of problem size. Furthermore, we do not consider approxi-
mate implementations of OMP, such as gradient pursuit [9],
or cyclic matching pursuit [10].

B. L. Sturm is supported in part by Independent Postdoc Grant 11-
105218 from Det Frie Forskningsråd.

Let Ωk ⊂ Ω denote an ordered set of k indices into D.
We denote the ith element of a set I by I(i). The matrix Φk

is composed of the ordered atoms indexed by Ωk. We denote
Pk := ΦkΦ

†
k, where we assume rank(Φk) = k, and thus

Φ†k := (ΦH
k Φk)−1ΦH

k . The projection matrix P⊥k := I−Pk

is the orthogonal projection onto space orthogonal to the span
of DΩk

, or equivalently, the left null space of Φk. We denote
the inner product between two vectors in CM as 〈u1,u2〉 :=
uH2 u1, where H denotes the complex conjugate transpose.
The vector ek is the kth element of the standard basis of RN ,
i.e., all zeros with a 1 in its kth row. Finally, unless explicitly
noted, all norms are the `2-norm, i.e., ‖x‖2 := 〈x,x〉.

2. COMPUTATIONAL VARIETIES OF OMP
If in (1) ‖n‖ = 0, OMP attempts to solve

min
x
‖x‖0 subject to u = Φx (2)

where ‖x‖0 counts the number of non-zeros in x. When there
is noise, OMP attempts to solve

min
x
‖x‖0 subject to ‖u−Φx‖2 ≤ ε2 (3)

where ε2 > 0. In its kth iteration, OMP augments Ωk−1 by
Ωk := Ωk−1 ∪ {nk} using the selection criterion

nk := arg min
β∈C,n∈Ω

‖rk−1 − βϕn‖ = arg max
n∈Ω

|〈rk−1,ϕn〉|
‖ϕn‖

.

(4)
OMP then orthogonalizes the residual, rk−1 := P⊥k−1u, and
updates the solution, initialized as x̂k := 0, becomes

[x̂k]Ωk
:= Φ†k−1u (5)

where [x̂k]Ωk
are those elements of x̂k at indices Ωk. OMP is

initialized Ω0 := ∅ and x̂0 := 0.
As has been shown before, e.g., [4, 7, 8], one can make

OMP efficient through matrix decomposition. After we re-
view the naive implementation of OMP, we review two ap-
proaches using matrix decomposition, and one approach em-
ploying the matrix inversion lemma. For our evaluations of
algorithmic complexity, we assume that multiplies and adds
have the same cost, as done in, e.g., [1, 9, 11]; but we keep
only dominating terms, and do not carry coefficients. Table

Algorithm Complexity Memory
Naı̈ve NM +Mk +Mk2 + k3 MN
Chol-1 NM +Mk + k2 N2 +NM + k + k2

Chol-2 Nk + k2 N2 +NM + k + k2

QR-1 NM +Mk; solve: K2 NM +Mk + k2

QR-2 Nk +Mk + k2 N2 +NM +Mk + k2

MIL Nk +Mk N2 +NM +Mk

Table 1. Summary of complexities and memory requirements
for each computational approach to OMP.

1 summarizes the computational complexities and memory
requirements of each implementation in terms of the parame-
ters. Since the complexity of these implementations are mul-
tivariate, big-O analysis of complexity is troublesome [12];
however, we find support from regression analysis for how the
parameters affect the computation times we observe. Since
we are concerned with practical implementations, we only
consider M < N < ∞, and assume we can compute and
store Φ, and its Gramian ΦHΦ.

2.1. OMP the Naive Way
In its kth iteration, a naive implementation of OMP creates
and searches through the set

Ik−1 := {〈rk−1,ϕn〉/‖ϕn‖}n∈Ω (6)

which has a complexity of O(MN). After selecting a new
atom, OMP orthogonalizes the residual rk := P⊥k u = u −
Φk(ΦH

k Φk)−1
1 (ΦH

k u). Assuming that the cost of inverting a
complex k × k matrix is at least O(k3), this procedure has a
complexity ofO(Mk+Mk2 + k3). We find this from evalu-
ating [u−(Φk[(ΦH

k Φk)−1
1 (ΦH

k u)2]3)4]5, with subscripts de-
noting the order of operations. Thus, the kth iteration of the
naive OMP implementation has complexityO(NM +Mk+
Mk2 + k3), which shows that orthogonalization dominates
complexity. The memory required for the naive approach is
O(NM) for the dictionary and inner products. While this im-
plementation has a higher computational complexity than the
approaches below, it has the lowest memory requirement.

2.2. OMP by the Cholesky Decomposition
This implementation is used in several software implementa-
tions of OMP, e.g., [13, 14].1 Consider that in its kth step,
OMP has the set of inner products in (6), the set of atom
norms {‖ϕn‖}n∈Ω, the set of initial inner products

I0 := {〈u,ϕn〉/‖ϕn‖}n∈Ω (7)

the set of Gramian products for l ∈ Ω

Γl := {〈ϕl,ϕn〉/‖ϕn‖}n∈Ω (8)

and, finally, the Cholesky decomposition of the Gramian
ΦH
k−1Φk−1 = Lk−1L

H
k−1. Being positive semidefinite, any

Gramian has a Cholesky decomposition.

1http://code.soundsoftware.ac.uk/projects/smallbox

OMP selects the new atom index nk from Ik−1 (6), and
updates the Cholesky factorization as follows. Notice

LkL
H
k = ΦH

k Φk =

[
ΦH
k−1Φk−1 ΦH

k−1ϕnk

ϕHnk
Φk−1 ‖ϕnk

‖2
]

=

[
Lk−1 0
vH b

] [
LHk−1 v

0 b∗

]
(9)

where ‖v‖2 + |b|2 = ‖ϕnk
‖2. Thus, we first need to solve

for v in the triangular system Lk−1v = ΦH
Ωk−1

ϕnk
— the

right-hand side coming from Γnk
in (8) — and then update

the Cholesky factor by adding a row and column, i.e.,

Lk :=

[
Lk−1 0
vH

√
‖ϕnk

‖2 − ‖v‖2

]
. (10)

Since solving a triangular system of size k has complexity
O(k2), the complexity of the search and update is O(N +

k2 + k). Defining the least squares solution xk := Φ†ku, then

ΦH
k Φkxk = LkL

H
k xk = ΦH

k u (11)

where the right-hand side comes from I0. OMP now only
needs to solve two triangular systems by back-substitution

Lky = ΦH
k u (12)

LHk xk = y (13)

with a complexity O(k2). The new residual energy is then

‖rk‖2 = ‖u‖2 − ‖y‖2. (14)

Finally, OMP can update the inner products (6) in one
of two ways. For the first (Chol-1), OMP explicitly com-
putes the residual signal rk := u − Φkxk with a cost of
O(Mk), and then directly computes the inner products Ik :=
{〈rk,ϕn〉/‖ϕn‖}n∈Ω with a cost ofO(NM). Thus, the total
complexity of the kth iteration isO(NM +Mk+k2). In the
second case (Chol-2), OMP updates the initial products (7)

Ik :=

{
〈rk,ϕn〉
‖ϕn‖

}
n∈Ω

=

{
I0(n)−

k∑
l=1

xlΓnl
(n)

}
n∈Ω

(15)

where xl is the lth element of xk. This entire update has a
complexity of O(Nk), and thus the total complexity of the
kth iteration in the second case is O(Nk+ k2). The iteration
when the second approach becomes more complex than the
first one is k ≈ MN/(N −M). In both cases, the memory
requirements of OMP is O(N2 +NM + k2 + k).

2.3. OMP by the QR Decomposition
This implementation is suggested in [8]. Consider that in the
kth step of OMP we have the set of current inner products (6),
initial inner products (7), as well as the QR decomposition

Φk−1 = Qk−1Rk−1. Any matrix can be decomposed into a
QR decomposition, with Q a unitary but not unique matrix.
Once OMP searches through Ik−1 (6) to find nk, it defines
w := QH

k−1ϕnk
. Thus, Qk−1w is the least squares projec-

tion of ϕnk
onto the span of the atoms indexed by Ωk−1, and

so ϕnk
−Qk−1w is the new direction contributed by the atom.

OMP updates Qk−1 by adding this unit-norm direction

Qk :=

[
Qk−1

ϕnk
−Qk−1w√

‖ϕnk
‖2−‖w‖2

]
. (16)

Since Φk = QkRk = [Φk−1|ϕnk
], we see that OMP can

update the other factor by

Rk :=

[
Rk−1 w
0T

√
‖ϕnk

‖2 − ‖w‖2

]
. (17)

With the search, updating these matrices has complexity
O(N +Mk). OMP computes the residual energy recursively

‖rk‖2 = ‖u−Qk−1Q
H
k−1u− qkq

H
k u‖2

= ‖rk−1‖2 − |〈u,qk〉|2 (18)

where qk is the last column of Qk.
OMP then updates the projections (6) in one of two ways.

First (QR-1), notice OMP need not compute the residual since
rk = rk−1 − qkq

H
k u. Thus, the updated projections are

Ik :=

{
〈rk,ϕn〉
‖ϕn‖

}
=

{
Ik−1(n)− 〈u,qk〉

〈qk,ϕn〉
‖ϕn‖

}
(19)

for {n ∈ Ω}. This has complexity O(NM). OMP thus
avoids explicitly computing the solution and residual during
decomposition. Only after the final iteration K does OMP
find the solution. Since the least squares solution satisfies
ΦH
KΦKxK = ΦH

Ku, we see that by substituting the QR de-
composition on the left side, OMP finds xK by solving

RH
Ky = ΦH

Ku (20)
RKxK = y (21)

where the right hand side of the first system comes from
I0 (7). Solving these with back-substitution has complexity
O(K2). In this way, the total complexity of the kth iteration
of QR-1 is O(NM + Mk). Its memory requirements are
O(NM +Mk + k2) since it need not store the Gramian.

In the second approach (QR-2), OMP updates the pro-
jections (6) using (15) after solving (20) and (21). It can
also update the residual energy using (14) with the solution
of (20). This reduces the complexity at the cost of comput-
ing the solution at each iteration and storing the dictionary
Gramian (8). Thus, the total complexity of the kth of QR-2
is O(Nk +Mk + k2). The cross-over point where the com-
plexity of this approach exceeds QR-1 is k(k + N) ≈ NM .
Its memory requirements are O(N2 +NM +Mk + k2).

2.4. OMP by the Matrix Inversion Lemma
This implementation is suggested in [4]. Consider that in its
kth iteration, OMP has the set of current inner products (6),
initial inner products (7), the set of Gramian products (8), the
current solution xk−1, and the biorthogonal basis of Φk−1,
i.e., the columns of the matrix

Ψk−1 := Φk−1(ΦH
k−1Φk−1)−1. (22)

This means that ΨH
k−1Φk−1 = ΦH

k−1Ψk−1 = I. OMP guar-
antees that Φk has full column rank when k ≤M , and so Ψk

always exists when k ≤ M . When it selects the new atom
index nk from Ik−1 (6) OMP must update the biorthogonal
basis and solution. Using the matrix inversion lemma, we see

(ΦH
k Φk)−1 =

[
(ΦH

k−1Φk−1)−1 + λhhH −λh
−λhH λ

]
(23)

where h := ΨH
k−1ϕnk

, and λ−1 := ‖ϕnk
‖2 − ‖Φk−1h‖2.

OMP thus computes the new biorthogonal basis by

Ψk := Φk(ΦH
k Φk)−1 =

[
Ψk−1 − (λv)hH |λv

]
(24)

where v := ϕnk
−Φk−1h. To update the biorthogonal basis

then, OMP need only compute h and λ at a complexity of
O(N + Mk), including the search. It is not necessary until
the last step, but OMP can compute the new solution by

xk = ΨH
k u =

[
xk−1

0

]
−∆

[
h
−1

]
(25)

where

∆ := λvHu =λ(ϕnk
−Φk−1h)Hu

=λ

[
I0(nk)−

k−1∑
l=1

h∗l I0(nl)

]
. (26)

OMP can then update the set of projections for {n ∈ Ω} by

Ik :=

{
〈rk,ϕn〉
‖ϕn‖

}
= {〈u−Φkxk,ϕn/‖ϕn‖〉} (27)

which becomes

Ik =

{
Ik−1(n)−∆Γnk

(n) + ∆

k−1∑
l=1

hlΓnl
(n)

}
. (28)

OMP can also use xk in (15) at the same computational cost.
Updating the residual energy is simply done by

‖rk‖2 = ‖u−Φkxk‖2 =

∥∥∥∥u−Φk

([
xk−1

0

]
−∆

[
h
−1

])∥∥∥∥2

= ‖rk−1‖2 +
|∆|2

λ
− 2Re{∆Ik−1(nk)} (29)

since rk−1 is orthogonal to all selected atoms except the last.
In total, the kth iteration of OMP with the matrix inversion
lemma has a complexity of O(Nk + Mk), and memory re-
quirements of O(N2 +MN +Mk).

0 0.2 0.4 0.6 0.8 1
−310

−300

−290

−280

−270

−260

−250

−240

−230

Iteration (× sparsity ρ = 0.5)

In
n
e
r

p
ro

d
u
c
ts

 e
rr

o
r

(d
B

)

Normal

Rademacher

Chol

QR

MIL

(a) Mean error in inner products

0 0.2 0.4 0.6 0.8 1
−310

−305

−300

−295

−290

Iteration (× sparsity ρ = 0.5)

S
o
lu

ti
o
n
 e

rr
o
r

(d
B

)

Chol

QR

MIL

(b) Mean error in solution

Fig. 1. Errors (30) and (31) of the three approaches with re-
spect to the naive one, for signals distributed Rademacher and
Normal, as a function of algorithm iteration (N = M = 400).

3. NUMERICAL EXPERIMENTS
We now test the numerical performance and computational
time of the three implementations (QR-1, Chol-2, MIL), and
compare with the naive implementation.2 In every experi-
ment, we sample Φ from the uniform spherical ensemble,
meaning we sample each entry independently from a Nor-
mal distribution, and then normalize each column. We test
sparse vectors with non-zero entries sampled from either a
Rademacher distribution, i.e., equiprobable in {−1, 1}, or a
Normal distribution. We use MATLAB on a 64-bit machine.

In our first experiment, we investigate the accumulation
of numerical errors in the recursive computation of the inner
products and solution, compared to the values given by the
naive implementation. We perform 50 independent trials for
signals with sparsity K = 200 in ambient dimension N =
400, and projected into a space of dimension M = 400. In
this experiment, M = N = 400, but smaller values of M
produce the same results. For each iteration, we compute the

2Our experiments and the figures in this paper can be reproduced with the
code at http://imi.aau.dk/˜bst.

mean relative error of the inner products, e.g., we compute for
the ith trial of the Cholesky approach the normalized squared
kth difference

h
(Chol)
i (k) :=

∑N
n=1 |I

(Chol)
k (n)− I(Naive)

k (n)|2∑N
n=1 |I

(Naive)
k (n)|2

(30)

and find the mean of {hChol
i (k)} over several trials.

Figure 1(a) shows how the mean relative error of the inner
products slightly increases as a function of iteration in terms
of the sparsity of the signal. At the iteration k/K = 1, the
algorithm has performed as many iterations as there are non-
zero elements in the true solution. It is clear that the differ-
ences between implementations are inconsequential, but we
see a small difference between signal distributions. In Fig.
1(b) we plot the mean relative error in the solutions (between
the implementations and not between the true and the solution
built by OMP), e.g., for the ith trial of the Cholesky approach
the normalized squared kth difference

e
(Chol)
i (k) := ‖x(Chol)

k − x
(Naive)
k ‖2/‖x(Naive)

k ‖2 (31)

We see little difference between the approaches and the dis-
tributions. Furthermore, we see little differences between dif-
ferent sparsities ρ or signal dimension N .

In our second experiment, we measure for each imple-
mentation the computation time of 10 independent runs of K
iterations (sparsity) for Φ of size M ×N . We use as similar
code as possible to be fair in the comparisons, and measure
times using tic/toc in MATLAB. For two differentN , Fig.
2 shows log10(Timp(K,M,N)/Tnaive(K,M,N)). For small
N , M and K the naive approach is the fastest; but as N in-
creases, the other implementations become faster. For small
numbers of iterations, the Cholesky implementation appears
the fastest; but at larger iterations, the QR approach is faster.

Finally, to evaluate the results in Table 1, we find predic-
tors for each implementation of the mean computation times
for N ∈ {100, 200, . . . , 800}, and 15 different M and K (as
in Fig. 2). We perform least squares regression with a non-
negativity constraint solving

min
w
‖T− [1|X]w‖2 subject to w � 0 (32)

where T is a matrix of measurements Timp(K,M,N), and X
is a predictor matrix with values from each test, such as M ,
Mk, and Nk2, with each column made to have unit variance.
Figure 3 shows the weights of the various terms for Naive,
QR-1, Chol-2, and MIL. We see the naive implementation is
dominated by k2,MNk2, (kM)2 and MNk3. For Chol-2,
we see only Nk2, (Nk)2 and k3 are the strong predictors.
QR-1 is dominated by Mk2,MNk2 and (kM)2. And MIL
appears dominated by k2 and (kM)2. The differences be-
tween these complexities and those in Table 1 are possibly a
result of assuming big-O complexity applies to multivariable
processes [12].

(a) N = 200 (b) N = 800

Fig. 2. Computation times of each implementation as a function of problem sizes for two ambient dimensions N .

4. CONCLUSION

We have investigated three different matrix factorization im-
plementations of OMP, and compared them to the naive im-
plementation. We find that, though their variables are up-
dated recursively, the accumulation of error is insignificant
in each implementation. Depending on the problem size, any
of the four implementations can be the fastest. However, as
the ambient dimension N increases, the computation time of
the naive approach becomes much longer than for the other
three. For particularly large problem sizes, as the number of
iterations increases, the QR implementation appears to be the
fastest. Future work will explore to what extents the QR im-
plementation decreases the computational complexity of the
Cholesky implementation.

5. REFERENCES

[1] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse
Way, Academic Press, Elsevier, Amsterdam, 3rd edition, 2009.

[2] M. Elad, Sparse and Redundant Representations: From Theory
to Applications in Signal and Image Processing, Springer, New
York, NY, USA, 2010.

[3] J. A. Tropp and S. J. Wright, “Computational methods for

−10

−8

−6

−4

−2

0

2

1

M N

N
M k

M
k

N
k

M
N
k

M
2

N
2

k
M

2

k
N

2

k
2

M
k
2

N
k
2

M
N
k
2

(k
M

)2

(k
N
)2 k
3

M
k
3

N
k
3

M
N
k
3

lo
g

1
0
 P

re
d
ic

ti
o
n
 W

e
ig

h
t

 Naive

Chol

QR

MIL

Fig. 3. Prediction weights for the regression on the mean
computation times for N ∈ {100, 200, . . . , 800}.

sparse solution of linear inverse problems,” Proc. IEEE, vol.
98, no. 6, pp. 948–958, June 2010.

[4] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal match-
ing pursuit: Recursive function approximation with applica-
tions to wavelet decomposition,” in Proc. Asilomar Conf. Sig-
nals, Syst., Comput., Pacific Grove, CA, Nov. 1993, pp. 40–44.

[5] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic de-
composition by basis pursuit,” SIAM J. Sci. Comput., vol. 20,
no. 1, pp. 33–61, Aug. 1998.

[6] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete fre-
quency information,” IEEE Trans. Info. Theory, vol. 52, no. 2,
pp. 489–509, Feb. 2006.

[7] M. Gharavi-Alkhansari and T. Huang, “A fast orthogonal
matching pursuit algorithm,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 1998.

[8] S. F. Cotter, J. Adler, B. D. Rao, and K. Kreutz-Delgado, “For-
ward sequential algorithms for best basis selection,” IEEE
Proc. Vision, Image, Signal Process., vol. 146, no. 5, pp. 235–
244, 1999.

[9] T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE
Trans. Signal Process., vol. 56, no. 6, pp. 2370–2382, June
2008.

[10] B. L. Sturm, M. G. Christensen, and R. Gribonval, “Cyclic
pure greedy algorithms for recovering compressively sampled
sparse signals,” in Proc. Asilomar Conf. Signals, Systems, and
Computers, Pacific Grove, CA, Nov. 2011.

[11] S. Krstulovic and R. Gribonval, “MPTK: Matching pursuit
made tractable,” in Proc. IEEE Int. Conf. Acoust., Speech, Sig-
nal Process., Toulouse, France, Apr. 2006, vol. 3, pp. 496–499.

[12] R. R. Howell, “On asymptotic notation with multiple vari-
ables,” Tech. Rep., Kansas State University, Manhattan, KS,
USA, Jan 2008.

[13] D. Donoho, V. Stodden, and Y. Tsaig, “Sparselab,”
http://sparselab.stanford.edu/, 2007.

[14] I. Damnjanovic, M. E. P. Davies, and M. D. Plumbley, “Small-
box - an evaluation framework for sparse representations and
dictionary learning algorithms,” in Proc. Latent Variable Anal-
ysis/Independent Component Analysis, St. Malo, France, Sep.
2010, pp. 418–425.

