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ABSTRACT
In many state-of-the-art filtering methods for speech enhance-
ment, an estimate of the noise statistics is required. How-
ever, the noise statistics are difficult to estimate when speech
is present and, consequently, nonstationary noise has a detri-
mental impact on the performance of most noise reduction
filters. We propose a joint filtering scheme for speech en-
hancement which supports the estimation of the noise statis-
tics even during voice activity. First, we use a pitch driven
linearly constrained minimum variance (LCMV) filter to es-
timate the noise statistics. A Wiener filter is then designed
based on the estimated noise statistics, and it is applied for the
noise reduction of the speech. In experiments involving real
signals, we show that the proposed filtering scheme outper-
forms other existing speech enhancement methods in terms
of perceptual evaluation of speech quality (PESQ) scores in
different nonstationary noise scenarios.

Index Terms— Speech enhancement, time-domain filter-
ing, Wiener filter, LCMV filter, orthogonal decomposition,
harmonic decomposition, pitch, nonstationary noise.

1. INTRODUCTION

Speech is frequently encountered in numerous signal process-
ing applications such as telecommunications, teleconferenc-
ing, hearing-aids, and human-machine interfaces. The speech
picked up by a microphone can be very noisy. Unfortunately,
the noise will degrade the speech quality and intelligibility
which, eventually, has a detrimental impact on speech appli-
cations. It is therefore highly relevant to develop methods
for reducing the noise. In this paper, we consider filtering
methods for noise reduction of single-channel speech record-
ings. Several such methods have been developed in the past
decades. For an overview of such methods, we refer to [1]
and the references therein. Many existing noise reduction fil-
tering methods assume that the noise signal is directly avail-
able since they rely on the noise statistics. This is, of course,
not the case in practice, so the noise statistics could, for ex-
ample, be estimated when there is no voice activity. Some al-
ternative methods based on, e.g., harmonic tunneling [2] and
minimum statistics [3] have been proposed for estimating the
noise statistics during speech presence.

In this paper, we propose a novel joint filtering scheme
for nonstationary noise reduction of noisy quasi-periodic sig-
nals such as voiced speech. It is well-known that speech

can be both voiced and unvoiced, so the proposed filtering
scheme has to be combined with voiced/unvoiced speech de-
tection (see, e.g., [4, 5]) when applied to speech enhancement.
In the proposed scheme, we utilize two recently proposed
filters, namely the orthogonal decomposition based Wiener
(ODW) filter and the harmonic decomposition based linearly
constrained minimum variance (HDLCMV) filter [6, 7]. Fol-
lowingly, the proposed filtering scheme is described. First,
we use the HDLCMV filter to obtain a rough estimate of the
desired signal. In the HDLCMV filter, it is assumed that the
desired signal is quasi-periodic and thereby has a harmonic
structure which is a reasonable assumption for the voiced
parts of speech signals. Therefore, the HDLCMV filter is
designed using the pitch, the number of harmonics, and the
statistics of the observed signal, i.e., this filter does not rely
on noise statistics. Pitch and model order estimation is not
considered in this paper, but there exists a multitude of meth-
ods for this (see, e.g., [7] and the references therein). From
the rough estimate of the desired signal, we obtain an esti-
mate of the noise signal. That is, using this approach, we
can easily estimate the noise statistics even when speech is
present. The estimated noise statistics are used to design the
ODW filter which, finally, performs the noise reduction of the
observed speech signal. Besides proposing the joint filtering
scheme, we also provide a few important closed-form perfor-
mance measure expressions for the filters under the assump-
tion that the desired signal is quasi-periodic.

The remainder of the paper is organized as follows. In
Section 2, we introduce the signal model used in the paper,
the problem of designing noise reduction filters, and the or-
thogonal and harmonic decompositions. Based on this, we
derive the optimal ODW and HDLCMV filters in Section 3.
We then propose a joint filtering scheme for noise reduction
and evaluate its performance in Section 4. Finally, in Section
5, we conclude on the paper.

2. SIGNAL MODEL

In this paper, we consider nonstationary noise reduction of
single-channel speech recordings using filtering. The noise
reduction problem is to extract a zero-mean desired signal,
x(n), from a mixture signal

y(n) = x(n) + v(n) , (1)

where v(n) is a zero-mean noise source, and n is the discrete
time index. The noise source is assumed to be uncorrelated



with the desired signal. Moreover, in some parts of the pa-
per, we assume that the desired signal is quasi-periodic which
is indeed a reasonable assumption for, e.g., voiced speech.
When the desired signal is quasi-periodic, we can rewrite the
signal model in (1) as

y(n) =

L∑
l=1

(
ale

jlω0n + a∗l e
−jlω0n

)
+ v(n) , (2)

where ω0 is the fundamental frequency (aka the pitch), L is
the model order, al = Al

2 e
jφl is the complex amplitude of the

lth harmonic, Al is the real amplitude of the lth harmonic, φl
is the random phase of the lth harmonic, and (·)∗ denotes the
complex conjugation. Many real-life signals, however, have
some degree of inharmonicity. The problem of inharmonicity
is not considered in this paper, yet several methods dealing
with it exist (see, e.g., [7] and the references therein).

When designing optimal filters for noise reduction, we
need several consecutive samples of the observed signal,
y(n). Therefore, we use the vector signal model given by

y(n) = x(n) + v(n) , (3)

where

y(n) =
[
y(n) y(n− 1) · · · y(n−M + 1)

]T
, (4)

with (·)T denoting the transpose of a vector or matrix, M is
the number of samples, and the definitions of x(n) and v(n)
follow that of y(n). We know by assumption that the de-
sired signal and the noise are uncorrelated. Therefore, we can
obtain the following simple expression for the covariance ma-
trix,

Ry = E[y(n)yT (n)] = Rx +Rv , (5)

of the observed signal where E[·] is the mathematical expec-
tation operator, Rx = E[x(n)xT (n)] is the covariance matrix
of x(n), and Rv = E[v(n)vT (n)] is the covariance matrix
of v(n). When the desired signal is quasi-periodic, we can
model the covariance matrix of x(n) as

Rx ≈ ZPZH , (6)

where (·)H denotes the complex conjugate transpose of a ma-
trix or vector, and

P = diag
([
|a1|2 |a∗1|2 · · · |aL|2 |a∗L|2

])
, (7)

Z =
[
z(ω0) z∗(ω0) · · · z(Lω0) z∗(Lω0)

]
, (8)

z(lω0) =
[
1 e−jlω0 · · · e−jlω0(M−1)

]T
, (9)

with diag(·) denoting the construction of a diagonal matrix
from a vector.

The goal in noise reduction filtering methods is to design a
filter which extracts one or more samples of the desired signal

x(n) from y(n). That is, the filter should attenuate the noise
v(n) as much as possible while not distorting the desired sig-
nal too much. In this paper, we focus on optimal filtering
methods for extraction of a single sample of x(n). A filtering
operation which estimates x(n) from y(n) can be written as

x̂(n) =

M−1∑
m=0

hmy(n−m) = hTy(n) , (10)

where h =
[
h0 h1 · · · hM−1

]T
, and x̂(n) is an esti-

mate of x(n). The main difference between optimal filter-
ing methods for noise reduction is how the desired signal is
decomposed. In this paper, we consider the orthogonal and
harmonic decompositions [6, 7].

In the orthogonal decomposition, the signal vector x(n) is
decomposed into two parts being proportional and orthogonal
to x(n), respectively. That is, using this decomposition, x(n)
can also be written as

x(n) = x(n)ρxx + xi(n) = xd(n) + xi(n) , (11)

where

ρxx =
E[x(n)x(n)]

E[x2(n)]
(12)

is the normalized correlation vector between x(n) and x(n).
If we insert (11) into (10), we get

x̂OD(n) = hT [xd(n) + xi(n) + v(n)]

= xfd(n) + xri(n) + vrn(n) , (13)

where xfd(n) = hTxd(n) is the filtered desired signal,
xri(n) = hTxi(n) is the residual interference, and vrn(n) =
hTv(n) is the residual noise. Using the orthogonal decompo-
sition, we can define the following error signal

eOD(n) = x(n)− [xfd(n) + xri(n) + vrn(n)] . (14)

Optimal noise reduction filters based on the orthogonal de-
composition can then, for example, be derived by minimizing
e(n) or parts of e(n) subject to some constraints. Most com-
monly, the error is minimized in the mean-square error (MSE)
sense. Clearly, this design procedure ensures that the afore-
mentioned design goals are fulfilled.

In the harmonic decomposition approach, it is assumed
that the desired signal is quasi-periodic which makes it use-
ful for signals produced by voiced speech and musical instru-
ments [7, 8]. Due to this assumption, the signal vector, x(n),
can be written as

x(n) = Za(n) = x′d(n) , (15)

where

a(n) =
[
a1e

jω0n a∗1e
−jω0n · · · (16)

aLe
jLω0n a∗Le

−jLω0n
]T
.



From the above expression, we can see that there is no inter-
ference in this decomposition as opposed to in the orthogonal
decomposition. This is because all information in x(n) can be
used to describe the desired signal when we know the signal
model. We can obtain an estimate of x(n) using a harmonic
decomposition filter by inserting (15) into (10). This yields

x̂HD(n) = hT [x′d(n) + v(n)] . (17)

We define the following error function for the harmonic de-
composition approach to filter design

eHD(n) = x(n)− [x′fd(n) + vrn(n)] , (18)

where x′fd(n) = hTx′d(n). We can then design a harmonic
decomposition based filter for noise reduction by minimizing
the effects of eHD(n) or parts of eHD(n) perhaps subject to
some constraints (e.g., to avoid undesired distortion).

3. OPTIMAL FILTERS

In this section, we derive the ODW filter and the HDLCMV
filter. Furthermore, we provide expressions for the filters and
some of their performance measures; the performance mea-
sure expressions are closed-form when the desired signal is
periodic.

3.1. Orthogonal Decomposition Wiener

The ODW filter is found by minimizing E{|eOD(n)|2} with
respect to the unknown filter response. This yields

hW = σ2
xR
−1
y ρxx , (19)

where σ2
x is the variance of x(n). When the desired signal is

periodic, we can also write the normalized correlation vector,
ρxx, as

ρxx =
Rxi

iTRxi
=

ZP1

σ2
x

, (20)

where 1 =
[
1 · · · 1

]T
and i is the first column of the

M ×M identity matrix. That is, for periodic signals, the OD
Wiener filter is given by

hW = R−1y ZP1 . (21)

The output signal-to-noise ratio (oSNR) of an orthogonal de-
composition based filter is defined as the ratio between the
variance of the filtered desired signal and the sum of the vari-
ances of the residual interference and noise [6]. It can be
shown that the ODW filter achieves the maximum output SNR
[6]. The output SNR of the ODW filter for periodic signals
therefore equals

oSNROD(hW) =
1TPZHR−1in ZP1

σ2
x

, (22)

where Rin = Rxi +Rv and Rxi is the covariance matrix of
xi(n). The harmonic distortion measure is useful when the
desired signal is periodic. This measure is defined as the sum
of the absolute differences between the harmonics before and
after filtering. The harmonic distortion of the ODW filter can
be show to be

ξhd(hW) = 2

L∑
l=1

Pl

∣∣∣1− |1TPZHR−1y z(lω0)|2
∣∣∣ . (23)

3.2. Harmonic Decomposition LCMV

This filter is designed for noise reduction of periodic signals.
The HDLCMV filter is designed such that the variance of the
residual noise is minimized under the constraint that the har-
monics of the desired signal are not distorted. This design can
also be written as the following optimization problem

min
h

hTRvh s.t. ZHh = 1 . (24)

The solution to the quadratic optimization problem above is
well-known and given by

hHDLCMV = R−1v Z
(
ZHRvZ

)−1
1 (25)

= R−1y Z
(
ZHRyZ

)−1
1 . (26)

The step from (25) to (26) can be shown by using the matrix
inversion lemma. From this expression, we can see that if we
know the pitch ω0 and the number of harmonics L then we
only need the statistics of the observed signal Ry to design
the HDLCMV filter. Note that these parameters can be esti-
mated using the very same HDLCMV filtering method [7]. In
the ODW filter, we need to know either the statistics of the
desired signal ρxx or of the noise ρvv . When the filter order
M becomes large and the desired signal is indeed periodic,
it can be shown that the ODW and HDLCMV filters become
identical. In the harmonic decomposition, there is is no inter-
ference term. The output SNR of a harmonic decomposition
based filter is therefore simply defined as the ratio between
the variances of the filtered desired signal and the residual
noise. Therefore, the output SNR of the HDLCMV filter is
given by

oSNRHD(hHDLCMV) =
σ2
x

1T (ZHR−1v Z)−11
, (27)

where B = R−1y Z and C = ZHB. The harmonic distor-
tion in (23) of the HDLCMV filter is always 0 due to its con-
straints.

4. JOINT ODW AND HDLCMV FILTERING

In this section, we propose to use the ODW and HDLCMV
filters jointly for noise reduction in voiced speech segments.
The joint use of the filters is relevant since they have com-
plementary advantages and disadvantages. The ODW filter
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Fig. 1. Average PESQ scores (a) for the joint filtering scheme
as a function of M for an iSNR of 5 dB, and (b) for several
enhancement methods as a function of the iSNR forM = 110
with 95% confidence intervals. In (c), the average differences
in PESQ scores between the joint filtering scheme and the
spectral subtraction and MMSE-based methods, respectively,
are plotted with 95% confidence intervals.

is in practice reliant on the noise statistics. The noise sig-
nal is, however, not available directly in practice, so the noise
statistics are relatively difficult to estimate. That is, nonsta-
tionary noise has a detrimental impact on the performance
of the ODW filter. The HDLCMV filter, on the other hand,
is driven by the pitch, and the observed signal statistics. It
should therefore be more robust against nonstationary noise

since the noise statistics are not needed directly in the filter
design. The HDLCMV filter, however, assumes that the de-
sired signal is quasi-periodic which is not exactly true for all
parts of speech. As a result of that, distortion will be intro-
duced by the HDLCMV filter due to model mismatch. There-
fore, it should be beneficial to use the filters jointly. In the
joint filtering scheme, the HDLCMV filter is used to obtain
a rough estimate of the desired signal. This estimate is then
subtracted from the observed signal to obtain an estimate of
the noise. The estimated noise is used to find the noise statis-
tics which, eventually, are applied in the design of the ODW
filter. Finally, the ODW filter is utilized for estimating the
desired signal.

The proposed joint filtering scheme was evaluated
by measuring “Perceptual Evaluation of Speech Quality”
(PESQ) scores [9]. The PESQ score is an objective mea-
sure that reflects the subjective quality of a speech signal,
and the score can be measured relative to an original speech
signal or not. That is, by evaluating the proposed scheme
using PESQ scores, we evaluate the perceptual performance
of the scheme. We compared the PESQ scores of the sig-
nals enhanced using the joint filtering scheme with those en-
hanced using the ODW filter only, the HDLCMV filter only,
a spectral subtraction based method [10], and a method us-
ing MMSE spectral amplitudes [11]. In the design of the
ODW filter, the noise signal is assumed available, so the per-
formance of this method can be thought of as an upper bound
on the performance of the proposed method. Followingly, we
describe how the enhancement methods were set up for the
evaluation. The statistics needed for the filter designs were
replaced by the respective sample covariance matrices calcu-
lated from the past 400 samples. The filters in the joint filter-
ing scheme were reguralized using [12]

R̂reg = (1− γ)R̂+ γTr
{
R̂
}
M−1I , (28)

where Tr{·} is the trace operator and γ is the regularization
factor. Regularization was necessary due to estimation er-
ror on the signal statistics and model mismatch. We chose
γ = 0.7 which gave consistently good results in terms of
PESQ scores. At each time instance, the model order was set
to L = min{[15, bπ/ω0c − 1}. The speech signals used for
the evaluation contains both voiced and unvoiced parts, how-
ever, the HDLCMV filter in the proposed filtering scheme is
suited for voiced speech enhancement only. Therefore, in the
simulations, we updated the HDLCMV filter as follows; for
voiced speech segments the HDLCMV filter was designed us-
ing (26) while, for unvoiced speech segments, it was updated
as

h(n) = (1− λ)0+ λh(n− 1) , (29)

when ‖h(n − 1)‖2 > 0.1 with λ = 0.95 and 0 is the zero
vector. The spectral subtraction and MMSE based methods



are available in the VOICEBOX toolbox1 for MATLAB in
which they are implemented using noise power spectral den-
sity estimates calculated using optimal smoothing and mini-
mum statistics [3]. We used the defaults settings in the tool-
box for these enhancement methods.

We conducted a number of experiments where we used
the joint filtering scheme for nonstationary noise reduction.
For these experiments, we used two female and two male
speech excerpts of length 4-6 seconds taken from the Keele
database [13]. In this paper, we treat the pitch and the har-
monic model order as known parameters to evaluate the maxi-
mum achievable performance of the proposed method. There-
fore, we used the pitch information from the Keele database
to design the HDLCMV filter. Moreover, we do not consider
voiced/unvoiced speech detection in this paper. The pitch
track from the Keele database contains zeros when the speech
signal is unvoiced or no speech is present, so this informa-
tion was used to circumvent the detection problem. We then
generated observed signals by adding different noise types
to the different speech excerpts; the added noise types were
white Gaussian noise, car noise, babble noise, exhibition hall
noise, and street noise. All noise sources except the white
noise were taken from the AURORA database [14]. First, we
enhanced the noisy signals at an iSNR of 5 dB at different
filter lengths, and the PESQ scores were measured and aver-
age across the different excerpts. The resulting PESQ scores
are shown in Fig. 1a. It can be seen that the perceptual per-
formance is highest around M = 110. We then enhanced
the noisy signals for different iSNRs when the filter length
was M = 110. The average PESQ scores with 95 % confi-
dence intervals are depicted in 1b. These results indicate that
the proposed scheme outperforms the spectral subtraction and
MMSE-based methods for iSNRs of 0 and 5 dB on average
in terms of perceptual confidence. To investigate this further,
we measured the average difference in PESQ scores between
the proposed scheme and the two other methods; the average
differences are shown in Fig. 1c. From these results, we can
conclude that the proposed scheme outperforms the spectral
subtraction and MMSE-based methods in terms of average
PESQ scores with 95 % confidence for low SNRs.

5. CONCLUSIONS

In this paper, we proposed a joint filtering scheme for nonsta-
tionary noise reduction of quasi-periodic signals. The joint
scheme consists of the ODW and HDLCMV filters. The
ODW filter is driven only by the noise statistics and is there-
fore appropriate for enhancement of any desired signal. How-
ever, in practice the noise is not available directly, so the noise
statistics are difficult to estimate. As a consequence of that,
the performance of the ODW filter is deteriorated by nonsta-
tionary noise. The HDLCMV filter assumes that the desired
signal is periodic and thereby has a harmonic structure. This

1http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/
voicebox.html

is a good assumption for voiced parts of speech signals. Us-
ing this assumption, the HDLCMV filter is designed using
the pitch and the model order of the desired harmonic sig-
nal, and the statistics of the observed signal, i.e., this filter
is not dependent on the noise statistics. The HDLCMV fil-
ter is therefore more robust against nonstationary noise, but
it will introduce some distortion in practice due to the peri-
odicity assumption. The advantages and disadvantages of the
ODW and HDLCMV filter are complementary, and we there-
fore proposed to use the filters jointly. In the joint scheme, the
HDLCMV filter is used to estimate the noise statistics which
are then used to design the ODW filter. The noise reduction
is then performed by the ODW filter. We showed that the
proposed joint filtering method outperforms existing speech
enhancement methods in terms of average PESQ scores with
95 % confidence for relatively low iSNRs (≤ 5 dB).
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