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Abstract
This thesis is concerned with the problem of estimating sinusoidal parameters from
noisy observations. This field of research is applicable to solving problems in a large
number of areas such as music and speech processing, electrocardiography, seismology,
radar and sonar processing, astronomy, meteorology, and economics, and in this thesis
a number of rather diverse contributions are made to this field of research. These
contributions include new results and algorithms in relation to model comparison and
selection, fundamental frequency estimation, inference in dynamic sinusoidal models,
and filtering methods.

In the introductory part of this thesis, an overview over the modelling and inference
problem is given, and the most important methods for solving these problems are briefly
reviewed. During this introduction, the contributions are also stated and positioned in
relation to these previously proposed methods. The second part of this thesis contains
the contributions. First, the model comparison and selection problem is considered for
a general non-linear model. In this connection, a few new model comparison methods
are proposed and demonstrated to perform better than existing methods for both model
selection and prediction. Second, the joint fundamental frequency estimation and model
order detection problem is analysed within a Bayesian framework. A new method is
also suggested and its accuracy is evaluated and demonstrated to perform better than
a similar state-of-the-art method. Third, an efficient algorithm for performing inference
and interpolation in a dynamic sinusoidal model is proposed. This method is applied to
packet-loss concealment, and listening tests indicate that the proposed algorithm can
be used for this purpose. Fourth, the Capon filtering method for amplitude estimation
is extended in an interesting way by selecting the filter length of the Capon filter in
a data-adaptive fashion. Finally, the recently proposed sampling scheme called com-
pressed sensing is analysed in the context of estimating continuous parameter such as
the frequency parameter and the direction-of-arrival, and it is shown that compressed
sensing decreases the estimation accuracy of such parameters.

Although the estimation problems considered in this thesis are primarily analysed
in the context of speech and audio applications, the results are useful in a wider range
of applications. Along these lines, the main focus has not been on developing new algo-
rithms for specific applications, but rather on understanding the underlying estimation
problem and analysing it in a consistent fashion.
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Resumé
Nærværende afhandling omhandler forskellige problemstillinger i forbindelse med es-
timering af sinusparametre ud fra støjfyldte observationer. Dette forskningsområde er
anvendeligt i forbindelse med at løse en række problemer inden for mange områder
som for eksempel musik- og taleprocessering, elektrokardiografi, seismologi, radar- og
sonarprocessering, astronomi, metrologi og økonomi, og en række forskelligartede bidrag
til dette område beskrives i denne afhandling. Disse bidrag omfatter nye resultater og
algoritmer i relation til sammenligning af modeller, estimering af grundfrekvensen, anal-
yse og syntese med dynamiske sinusmodeller, og filtreringsmetoder.

I afhandlings introducerende del gives et overblik over estimerings- og modeller-
ingsproblemet, og de vigtigste metoder til at løse disse problemer beskrives kortfat-
tet. De videnskabelige bidrag, som beskrives i afhandlingens anden del, positioneres i
forhold til de eksisterende metoder undervejs i introduktionen. Afhandlingens anden
del indeholder de videnskabelige bidrag. I det første bidrag udvikles nogle nye metoder
til at sammenligne forskellige modeller og udvælge den bedste. Disse metoder sam-
menlignes med tilsvarende metoder, og det vises, at de foreslåede metoder giver bedre
resultater. Ved hjælp af bayesianske metoder, analyseres dernæst i det andet bidrag
den samtidige estimering og detektion af et periodisk signals grundfrekvens og mode-
lorden. En ny metode foreslås også og dens nøjagtighed evalueres. Det vises også, at
den foreslåede metode forbedrer en tilsvarende og førende metode. I det tredje bidrag
udvikles en effektiv algoritme til at foretage analyse og syntese af signaler ved hjælp
af en dynamisk sinusmodel. Algoritmen bruges til at rekonstruerede tabte lydpakker
i et pakkebaseret netværk, og lyttetests indikerer, at algoritmen kan bruges til dette
formål. I det fjerde bidrag udbygges Capon filtreringsmetoden på interessant vis ved
at vælge filterets længde på en selvjusterende måde. I det sidste bidrag analyseres den
nye samplingsteknik kaldet compressed sensing i forbindelse med estimering af kontin-
uerte parametre som frekvensen og ankomstvinklen, og det vises, at compressed sensing
forværrer estimeringsnøjagtigheden for disse parametre.

Selvom de estimeringsproblemer, der er behandlet i denne afhandling, primært er
analyseret i forbindelse med tale- og musikapplikationer, kan de præsenterede resultater
også bruges i mange andre sammenhænge. Det primære fokusområde har ikke været
på at udvikle én ny algoritme til én bestemt applikation, men snarere at forstå det
underliggende estimeringsproblem og analysere det på en konsistent måde.
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Part I

Introduction
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Sinusoids in Noise

1 Periodic Signals
Many natural and artificial phenomena exhibit some kind of cyclical behaviour. For
example, the human heart contracts and relaxes once per cardiac cycle, the sun rises
and sets once per day, crops are planted and harvested once per cropping season, the
temperature varies on a daily and yearly basis, the sunspot activity peaks once per
solar cycle, and the regent of Denmark gives a New Year’s speech once a year. Knowing
the duration of a cycle, also simply called the period, is therefore vital in order to be
able to make predictions about the future or to facilitate a better understanding of the
observed phenomena. Often, however, the period is unknown or varying with time,
and it must therefore be estimated from the available data. In Fig. 1, an example of a
famous data set known as the Wolf’s relative sunspot numbers is shown. The data set is
named after Rudolf Wolf who formalised the counting of the number of sunspots in 1848
and collected earlier scattered observations dated as far back as to the beginning of the
17th century [118]. From Fig. 1, we see that the number of sunspots exhibits a cyclical
behaviour with a period of approximately 11 years. Estimating this period can be useful
to understand some of the physical processes in the sun and to predict the Earth’s
climate, the financial periods, and the electromagnetic communication conditions in
the ionosphere [209]. Another data set originating from a completely different source
is shown in Fig. 2. The figure displays a segment of recorded female speech, and it
clearly reveals that the speech waveform or signal also exhibits a cyclical behaviour.
Estimating the period of the speech signal is useful in applications such as speaker
identification [11, 135], automatic speech recognition [78, 95, 129], speech coding and
compression [78, 137, 207, 227], speech enhancement [78, 137, 156, 227], and speech
separation [158, 194]. A plethora of other applications exists in which the cycle periods
must be estimated, and the estimation of these periods has therefore been subject to
extensive research for several decades [203]. In this thesis, some new results are presented
in relation to this estimation problem. Although the context is mainly that of speech
and audio applications, the methods are applicable to solving problems in other fields
as well. The first part of this thesis is concerned with a brief overview over some of
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the central sinusoidal models and existing estimation methods. In this connection, we
discuss their strengths and weaknesses, and list our contributions to the field. These
contributions are described in much greater detail in a number of papers constituting
the second part of the thesis.

1.1 Spectral Estimation
Due to the large scale applicability of finding cycle periods in data sets, the scientific
field of spectral estimation has emerged. In their book on spectral estimation, Stoica
and Moses defined the spectral estimation problem in the following way [215, p. 1].

From a finite record of a stationary data sequence, estimate how the total
power is distributed over frequency.

The frequency is the number of cycles per second and is thus the inverse of the cy-
cle period. The term stationary describes a technical requirement on the statistical
properties of the underlying process or signal from which a data set is observed. Specif-
ically, stationary should here be interpreted in the weak- or wide-sense, meaning that
the mean and the covariance functions of the signal must be time-invariant. Although
many signals are nonstationary, they are usually approximately stationary on a local
scale [131, p. 4]. A speech signal is an example of a nonstationary signal which may be
approximately wide-sense stationary (WSS) on a local scale as shown in Fig. 2.

The plot of the power as a function of the frequency is called the power spectral
density (PSD), and in Fig. 3, the simple periodogram estimate of the PSD is shown for
the speech segment in Fig. 2. The periodogram reveals two things. First, there are two
dominating positive cycles in the speech segment at approximately 230 Hz and 460 Hz.
Second, the frequencies of the dominating and the inferior cycles seem to be an integer
multiple of the longest cycle with the frequency of approximately 230 Hz. A signal with
this special structure in the frequency domain is called a periodic signal, and it has the
property that it exactly repeats itself for a time-shift equal to the longest cycle period.

1.2 Parametric Modelling
The periodogram is an example of a non-parametric approach to spectral estimation.
The non-parametric methods have the advantage that they do not assume anything
but wide-sense stationarity about the signal under study. However, the lack of the
model assumption means that the non-parametric methods are required to estimate the
infinite number of points constituting the PSD from a finite number of data point, and
this leads to a large variance or a poor resolution of the non-parametric methods [215,
pp. 217–218]. On the other hand, parametric approaches assume a parametric model
for the signal under study, and the spectral estimation problem therefore reduces to
the problem of estimating a number of model parameters which is usually much smaller
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Fig. 1: The daily International Sunspot Number since January 1, 1818. The data are collected and
provided by the Solar Influences Data Analysis Center in Belgium [205].
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Fig. 2: A 50 ms segment from a recorded speech signal of a female uttering, ‘Why where you away a
year, Roy?’
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Fig. 3: The periodogram estimate of the PSD of the speech segment shown in Fig. 2.

than the number of data points. The most popular models are the autoregressive (AR)
model, moving average model (MA), the autoregressive moving average model (ARMA),
and the sinusoidal model, and spectral estimation using these models have received
significant research attention (see, e.g., [25, 131, 215] for an overview). There exist many
versions and combinations of the different models to account for physical phenomena
such as amplitude and frequency modulation [52, 65, 143, 223, 224], transients [63, 105,
116, 127], and correlated noise [47, 75, 211]. Although many of these signal models
model nonstationary phenomena which do not have a PSD, parameter estimation is
still possible, and in this thesis, we focus on the estimation problem.

In relation to parametric modelling, the two data sets shown in Fig. 1 and Fig. 2 give
rise to two important questions. First, the underlying generating process is presumably
unknown which means that the true model is unknown. Since the data sets exhibit a
cyclical behaviour, it seems reasonable to represent the generative process by a sinusoidal
model, but how many cyclical components or sinusoids are there in the data? Second,
what should be assumed about the non-cyclical part which is often referred to as the
noise? Due to these two questions, inference in parametric models is not only a problem
of estimating the unknown model parameters, but also a problem of determining the
best model among a set of candidate models.

1.3 Speech and Music Applications
The methods presented in this thesis are applicable to solving problems in a large
number of areas such as speech and music processing, electrocardiography, seismology,
radar and sonar processing, astronomy, meteorology, and economics. However, we are
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here primarily concerned with applications involving speech and music signals, and
below a brief overview is given over a few of these applications.

Coding and compression: Speech and audio coding can be performed efficiently by
estimating, quantising, and encoding the parameters of a parametric model rather
than compressing the signal waveform directly.

Recognition and transcription: The parameters of a model can say something about
the information conveyed by the signal. For example, a computer can use this in-
formation to automatically transcribe or classify a piece of music or to convert
spoken words into text or commands.

Restoration and enhancement: Distorted or degraded signals can be enhanced by
extracting the signal part of the observed data. For example, the perceptual
artefacts caused by scratches on a CD, lost or corrupted packets on a packet-
based network, or bad sectors on a storage medium can be reduced [103].

Separation: A mixture of signals can be approximately separated from its parametric
representation. For example, the fundamental periods in a so-called multi-pitch
signal [51] can be used to separate a mixture of two speakers or musical instru-
ments.

Modification: Performing time-scale modifications of an audio signal becomes much
easier when a parametric model is used.

A more thorough overview over these and other applications can be found in [51,
Sec. 1.6].

Speech and audio signals are generated by complicated and non-linear physical pro-
cesses. Although both speech models [207, Ch. 2] and instrument-specific models [91]
have been constructed, effects such as reverberation, background noise and mixing make
it almost impossible to construct a single signal model that can take all such phenomena
into account. Moreover, very complicated models typically entail impractical estimators
with a high computational complexity. Therefore, a trade-off must be made between
the model complexity and algorithmic simplicity. In Sec. 2, we review some of the use-
ful and popular sinusoidal models, and in Sec. 3, several methods for estimating the
parameters of these models are discussed. A much more complete discussion on models
and estimation methods can be found in [51].
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2 Sinusoidal Models
A sinusoidal model is the most common way of modelling a signal exhibiting cyclical
behaviour, and it can in a very general form be written as

x(t) =
l∑
i=1

Ai(t) cos
(
θi(t)

)
+ e(t) . (1)

As the notation suggests, the variable t usually represents time in this thesis, but de-
pending on the application it may be any continuous (or discrete) quantity such as
length, pressure, or temperature. The functions Ai(t) and θi(t) are the amplitude and
angle, respectively, of the i’th sinusoidal component whose phase φi and frequency fi(t)
are defined as [21, 115]

φi , θi(0) (2)

fi(t) ,
1

2π
dθi(t)
dt

. (3)

The integer l is the total number of sinusoidal components in our model, and e(t) denotes
the non-sinusoidal part which is typically referred to as the noise. This noise term is
usually modelled as a time-varying ARMA (p, q) model or a special case thereof. One
such important special case is the ARMA (0, 0) model which is simply white Gaussian
noise (WGN).

2.1 Complex Sinusoidal Models
Although all physical signals are real-valued, it might be advantageous from an ana-
lytical, a notational, or an algorithmic point of view to work with the signals in their
analytic form which is complex-valued [94]. Moreover, complex-valued signals can ap-
pear due to for example complex demodulation of a real-valued signal [215, Ch. 6]. For a
real-valued continuous-time signal x(t), its analytic signal xa(t) is defined as [51, App. A]

xa(t) , x(t) + jH(x(t)) (4)

where j =
√
−1 is the imaginary unit and H(·) denotes the Hilbert transform operator

which is a convolution between the original signal and the function 1/(πt) [175]. The an-
alytic signal xa(t) has two fundamental properties. First, its real part is the same as the
original real-valued signal x(t), and, second, the signal spectrum of the analytic signal is
0 at all negative frequencies, the same at f = 0 Hz, and twice that of x(t) at the positive
frequencies [163]. As illustrated in Fig. 3, the negative side of the signal spectrum con-
tains redundant information for a real-valued signal and can therefore be removed. The
analytic signal is only defined for a continuous-time signal, but Marple derived in [163] a
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discrete-time "analytic" signal with many of the same properties as the continuous-time
analytic signal. Moreover, Marple also showed that the sampling rate can be reduced
by a factor of two when working with the discrete-time "analytic" signal since the re-
dundancy in the signal spectrum can be removed. This suggests that there might be an
algorithmic advantage of working with the "analytic" signal instead of the real-valued
signal although the algebra now involves complex-valued numbers [51, App. A]. How-
ever, it should be noted that if the original signal spectrum contains significant power
at the frequencies close to 0 or the Nyquist frequency (relative to N), spectral leakage
shifts the peaks of this signal spectrum. Moreover, the algorithm suggested in [163]
for computing the discrete-time "analytic" signal may have poor characteristics such as
excessive ripple between the frequency points of the signal [51, App. A]. Consequently,
estimates based on the signal spectrum of the discrete-time "analytic" signal are biased,
but for many practical applications the bias is insignificant [48], [51, App. A].

When we have either transformed a real-valued signal into its "analytic" form or are
working directly with complex-valued data, the complex-valued pendant to the real-
valued signal model in Eq. (1) is

xa(t) =
l∑
i=1

Ai(t) exp
(
jθi(t)

)
+ ea(t) . (5)

The noise term ea(t) is also complex-valued and can be modelled as a complex-valued
ARMA process.

2.2 Special Cases
The real-valued and complex-valued sinusoidal models in Eq. (1) and Eq. (5), respec-
tively, contain a lot of model parameters. Moreover, the numbers of sinusoids, autore-
gressive parameters, and moving average parameters are usually unknown and must
therefore also be inferred from the data along with the model parameters. This is in
general a very difficult task which typically require a lot of computational resources.
Therefore, simpler special cases of Eq. (1) and Eq. (5) are usually considered instead.
Besides the assumptions on the noise term e(t), these special cases are different ways of
selecting the amplitude function Ai(t) and the angle function θi(t), and we here review
some of the popular choices for these two functions. A more thorough review in the
context of audio modelling can be found in [106].

The Basic Model

The most popular sinusoidal model is the basic model which is obtained by making a
zeroth- and first-order Taylor expansion of Ai(t) and θi(t), respectively, around t = 0
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so that

Ai(t) = Ai (6)
θi(t) = 2πfit+ φi = ωit+ φi . (7)

where ωi , 2πfi is the angular frequency. This parametrisation allows the polar form
of the real-valued model in Eq. (1) to be rewritten into a rectangular form as

x(t) =
l∑
i=1

[
ai cos

(
ωit
)
− bi sin

(
ωit
)]

+ e(t) (8)

where ai , Ai cos(φi) and bi , Ai sin(φi) are the in-phase and quadrature components,
respectively. A similar form exists for the complex-valued model in Eq. (5), and it is
given by

xa(t) =
l∑
i=1

αi exp(jωit) + e(t) (9)

where αi , Ai exp(jφi) = ai + jbi is the complex amplitude. Although this model is
the simplest sinusoidal model, it is used in a wide range of practical applications such
as audio coding [59, 66, 90, 181, 228], speech coding [167, 168], packet-loss concealment
[154, 155], and direction of arrival estimation [93, 139]. The basic model is also used in
spectral estimation since it is WSS provided that the phase is assumed to be a uniform
random variable on any continuous interval of length 2π [131, 215].

Harmonic Models

The harmonic models are closely related to the basic model. As many signals are
approximately periodic, the frequency of the i’th sinusoidal component in Eq. (7) can
be modelled as the function ωi = h(i, ω0) where ω0 is the fundamental frequency. For a
perfectly periodic signal, the function is

h(i, ω0) = iω0 , (10)

and the sinusoidal components are called harmonics. Voiced speech and many musical
instruments have nearly this harmonic structure, and in Fig. 4, a spectrogram of a voiced
speech signal is shown. However, the frequencies of the harmonics in recordings from
plucked string instruments and pianos do not obey the simple relationship in Eq. (10),
and this is often referred to as inharmonicity. For stiff-stringed instruments, a more
accurate model is [91, p. 64]

h(i, ω0) = iω0
√

1 +Bi2 (11)
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Fig. 4: The spectrogram of a female uttering, “Why were you away a year, Roy?”. The spectrogram
reveals a clear harmonic structure of the speech data.

where B � 1 is an instrument-specific stiffness parameter. The model for pianos is
slightly more complex and can be found in [91, p. 363]. The instrument specific models
have been used in a number of settings such as audio analysis and coding [64, 89, 102,
170, 236]. To avoid having an instrument specific model, the so-called perturbed model
can be used as an alternative [51, 64, 74, 101]. It is given by

h(i, ω0) = iω0 + ∆i (12)

where ∆i models the deviation from the harmonic grid of the perfectly periodic signal.
Fundamental frequency estimation has received some attention particularly in the field
of speech and audio processing [50, 51, 53, 75, 76, 130, 191, 197, 198, 220] where the
fundamental frequency is often referred to as the pitch. Although the pitch refers to an
auditory sensation rather than a physical attribute [179], the two terms are often used
synonymously [51].

Models with Amplitude Modulation

For stationary signal segments, the constant amplitude assumption in the basic model
is reasonable accurate. Hovewer, for nonstationary signal segments such as transient
phenomena, the constant amplitude model is too simple. A remedy for this is to assume
an amplitude function of the form

Ai(t) = γi(t)Ai (13)

where γi(t) is an envelope function. The envelope function can be selected in a very
flexible way as a linear combination of basis functions [52], but the method suffers
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from a high computational cost [225]. A popular alternative is an exponential damping
function [27, 28, 105, 116, 127, 173] which involves a damping coefficient and an onset
parameter. Unfortunately, the model is not smooth due to the discontinuity at the onset,
and this may lead to some artefacts in for example audio processing where smoothness is
a desirable feature [58, 63]. In [62, 63], the exponential damping function was therefore
generalised to gamma functions which also model the smooth attack of the transients,
thus avoiding the discontinuity of the exponential damping function.

In addition to the polar form of the sinusoidal model, amplitude modulation can
also be modelled in the rectangular form of the sinusoidal model in Eq. (8) and Eq. (9).
In for example [75, 89, 101], the in-phase and quadrature components were modelled
as a linear combination of basis functions. Alternatively, these two components can be
modelled as first-order Gauss-Markov processes [182, 223] as we have done in Paper C
and Paper D where we have also shown that this is equivalent to a state space form
of a so-called dynamic sinusoidal model [40–42]. The main advantages of this model
are that it is physically more realistic [40] and makes the inference for the frequency
parameter more tractable [223]. Within the field of econometrics, dynamic sinusoidal
models are referred to as stochastic cyclical models, and they have also attracted some
research attention [111–113, 136].

Models with Frequency Modulation

In audio signals, vibrato [2] and glissando [117] are examples of naturally occurring phe-
nomena which can be modelled by frequency modulation. Other natural occurrences of
frequency modulation are encountered in quantum optics, human speech, the naviga-
tional signals emitted by bats, and oceanography [124, 208]. Frequency modulation can
be modelled by writing the angle function as [115, 161]

θi(t) = $i

∫ t

0
qi(τ)dτ + ωit+ φi (14)

for |qi(t)| ≤ 1 where $i is the maximum angular frequency deviation from ωi, and qi(t)
is the modulating signal. According to the definition of the frequency in Eq. (3), the
frequency function is therefore given by

ωi(t) = $iqi(t) + ωi , (15)

and $i is usually much smaller than ωi. Typical examples of the modulating signal qi(t)
are a sine wave [166, 183], an autoregressive process [49, 223, 224], and linear functions
(the so-called linear chirps or chirp signals) [17, 124, 166, 208].

Models for Sparse Decompositions

Estimating the nonlinear parameters such as the frequency or the stiffness parameter
from a data set {x(tn)}N−1

n=0 might be difficult or computationally costly. To overcome
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this issue, the sinusoidal models can be written as a sparse decomposition given by
[43, 159]

x = Ψs+ e (16)

where x, Ψ, s, and e are the N -dimensional data vector, the N ×D-dimensional basis
or dictionary, the D-dimensional S-sparse vector, and the N -dimensional noise vector,
respectively. By S-sparse, we mean that s contains S non-zero components and D − S
zeros or, equivalently, that the noiseless part of x is represented by a weighted sum
of S columns from the dictionary. The dictionary is assumed known and constructed
from a physical signal model by sampling all but the linear parameters on a grid. As
an example consider the model in Eq. (9). By sampling the frequency parameter on a
uniform N -point grid, the dictionary is simply the Fourier basis [138]. Another very
popular class of dictionaries are the wavelets bases [138, 159], but also a lot of other
dictionaries such as chirplet and Gabor bases are used [43]. Whereas the Fourier basis
works well for representing stationary signal segments, wavelet, chirplet, and Gabor
bases can represent nonstationary phenomena such as modulation and transients more
efficiently. The term physical model is here used to emphasise that the discretisation
of continuous parameters is often in direct contradiction with the physics behind the
generation of most real-world signals [60]. For example, frequencies and direction of ar-
rivals are usually continuous quantities in nature. Consequently, the models for sparse
decompositions are not necessarily as sparse as models based on the physical model
as exemplified in [88]. As we have demonstrated in Paper F and Paper G, this ef-
fect becomes even more pronounced when the popular sampling strategy referred to as
compressive sensing [34–36, 84] is used.

2.3 Models for the Noise Term
The noise term is usually modelled as either white Gaussian noise (WGN) or coloured
(or non-white) Gaussian noise. WGN is by far the most popular model for the noise
term, and most researchers and scientists attribute its ubiquitous use to the central limit
theorem, but also properties such as mathematical tractability, geometrical invariance,
and entropy maximisation favour the WGN model [134]. However, the WGN model
is also frequently criticised for being too simple and unrealistic [210]. This criticism
is usually based on a physical interpretation of the noise [124], and a noise model for
coloured noise such as an ARMAmodel is therefore used instead to model the correlation
in the noise. As argued by Jaynes and Bretthorst in [29, 30, 124], [125, ch. 7] and
exemplified in [164], however, the simple WGN model should be used instead of a
more complex noise model modelling correlations if it is not known whether the noise
contains a correlation structure or not. The argument is based on the maximum entropy
principle which states that the white Gaussian distribution has the largest entropy
among all distributions when the location and the scale of the noise are constrained to
some finite values [30, 134]. A related argument is that the white Gaussian distribution
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minimises the Fisher information [134] and, consequently, maximises the Cramér-Rao
lower bound [210]. Including constraints on the correlation structure lowers the entropy
of the noise distribution so the WGN model is therefore a more general noise model in
the sense that it is based on the least informative probability distribution [30].

An alternative to modelling coloured noise is to pass the data through a pre-whitening
filter and then use a WGN model in the analysis of the filtered data [51, pp. 84-85].
This approach is especially attractive in frequency estimation since linear filtering does
not change the frequency of a sinusoid.

2.4 Sampling Schemes
So far, most of the discussion has been applicable to both continuous-time and discrete-
time signals. In Sec. 3, however, we exclusively work with a finite data set {x(tn)}N−1

n=0
originating from either a discrete-time signal or a sampled continuous-time signal. For
the latter, the data set consists of N samples acquired at the times {tn}N−1

n=0 which
we without loss of generality assume are ordered in time. Usually, the sampling times
are uniformly spaced by a sampling period of Ts, whose reciprocal is the sampling
frequency fs, and this sampling scheme is referred to as uniform or periodic sampling.
According to the famous Nyquist–Shannon sampling theorem [174, 204], the continuous-
time signal can be exactly reconstructed from its discrete-time representation if its
bandwidth does not exceed the Nyquist frequency which is half the sampling frequency.
For nonuniform sampling, exact reconstruction is also possible provided that the average
sampling frequency is at least twice the bandwidth, the Nyquist rate, of the continuous-
time signal [31, 144, 165, 234]. Uniformly sampled signals are often written in terms of
the sampling index n instead of the sampling time tn. Since tn = Tsn+ t0, this change
of notation yields

ωitn = ω̃in+ ωit0 (17)

where ω̃i , ωi/fs is the so-called digital angular frequency measured in radians per
sample. The time t0 is usually selected arbitrarily since its value translates into a change
of the phase. Perhaps counter-intuitive, however, the value of t0 = −Ts(N − 1)/2 can
be shown to yield the lowest estimation bound on any unbiased estimator of the phase
of a sinusoidal signal [83].

The sampling strategy known as compressed sensing or compressive sampling [34–36,
84] has recently received a lot of attention since it allows perfect reconstruction of some
signals sampled at a significantly lower rate than the Nyquist rate. For noiseless signals,
which are S-sparse in a dictionary with D columns, perfect reconstruction is possible
for a down-sampling factor up to the order of (S/N) log(D/S) [33]. For most sparse
signals, S � N and the sampling rate can therefore be reduced dramatically. For noisy
signals or signals which are not exactly sparse in the dictionary, the reconstruction is
only approximate, and in Paper F we have quantified the reconstruction error in terms
of the down-sampling factor.
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3 Inference
Statistical inference is the art of extracting information about the parameters θk of a
hypothesised model Mk and about the model itself from a finite data set x. In this
section, a brief overview is given over some of the fundamental inference methods for
the sinusoidal models. Due to the large body of scientific literature published about this
inference problem, the overview is limited to the basic model and the harmonic model.
We have mainly focused on these two models since the inference methods for these two
models are often so fundamental that they are used as a component in the inference
methods for more complex models. Like most of the literature, the overview focuses on
the zero-mean complex sinusoidal model sampled at a uniform sampling frequency, but
most of the methods are applicable to both real- and complex-valued data.

3.1 Fourier-based Methods
Although astronomers in ancient times have tried to determine the length of the year or
the period of the moon, the history of modern spectral analysis has its roots in Newton’s
work on optics which in the middle of the nineteenth century spurred significant interest
in spectral analysis [133, 162, 190]. The first major advancement was made in the late
nineteenth century by the introduction of the Schuster’s periodogram [201] given by1

P̂X(ω) = 1
N

∣∣∣∣∣
N−1∑
n=0

x(tn) exp(−jωtn)
∣∣∣∣∣
2

(18)

which was based on the Fourier transform introduced by Fourier in the early nineteenth
century [92]. Until Yule in 1927 introduced his autoregressive method for spectrum anal-
ysis [235], the periodogram was the only numerical method for spectral analysis [190].
Despite its good resolution, the periodogram is an inconsistent estimator of the PSD
since its variance does not decrease with an increasing number of data points N [215,
Ch. 2]. To reduce this statistical variability, several modifications of the periodogram
have been proposed such as Bartlett’s method [9, 10], Welch’s method [232], Daniell’s
method [72], the cepstrum [22], and most famously the Blackman-Tukey method [20].
These methods are different ways of averaging the periodogram or applying smooth
lag-windows to the data. Due to the bias-variance trade-off of the non-parametric
methods [131, p. 4], the cost of reducing the variance is a coarser resolution. Despite
this trade-off, the Fourier-based methods have been and still are used extensively to
estimate periodicities in data sets [203]. One major reason for this is the fast Fourier
transforms (FFTs) [69] which have enabled very efficient implementations of the Fourier-
based methods for uniformly sampled data. For non-uniformly sampled data, several

1Note that this definition of the periodogram gives a PSD estimate measured in watts per cycles
per sample. If the periodogram estimate is divided by the sampling frequency fs, the unit will be
W/Hz [133].
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approximate algorithms exist which require the same order of floating point operations
as the FFTs [141, 180].

3.2 Methods from Classical Estimation Theory
Parallel to the development of the Fourier-based methods, frequency estimation methods
based on probability theory were also developed [29]. The first methods were based on
the least squares (LS) principle first used by Legendre [149] and Gauss [96] to estimate
the orbit of astronomical objects. The LS principle is a method for estimating the model
parameters of a postulated model in noise, and in frequency estimation the model is the
sum of a number of sinusoids. For the complex basic model in Eq. (9), the model is in
matrix notation

x = Zkαk + e (19)

where αk contains the complex amplitudes and the i’th column of Zk is given by
zi,k =

[
exp(jωit0) · · · exp(jωitN−1)

]T . Since the frequencies of these sinusoids are
nonlinear parameters, the estimation of these frequencies using the LS principle is typi-
cally referred to as the nonlinear LS (NLS) method, and NLS estimates is given by [215,
pp. 157–162]

ω̂k = arg max
ωk∈Ωk

xHZk(ZHk Zk)−1ZHk x (20)

where (·)H denotes conjugate transposition and ωk contains the lk frequencies with
support Ωk. To ensure identifiability, the support can be structured such that 0 ≤
ω1 < ω2 < . . . < ωl < 2π. If just a single sinusoid is in the model, the NLS cost
function in Eq. (20) is equivalent to the periodogram, and one of the first to notice this
connection was Brunt in [32]. If the noise is white and has a Gaussian distribution,
the NLS estimate is the value that maximises the sampling distribution or observation
model p(x|θk,Mk) where θk and Mk denote a vector of unknown model parameters
and the postulated Mk, respectively. When the sampling distribution is viewed as a
function of the unknown model parameters, the sampling distribution is no longer a
probability distribution and is referred to as the likelihood function2. The maximiser
of this function is therefore the maximum likelihood (ML) estimate. The link between
the periodogram, the NLS principle, and ML enables an interesting interpretation of
the periodogram. If the signal consists of a single sinusoid in WGN, the maximiser
of the periodogram is the optimal estimator of the frequency in the absence of prior
information. If this model is not true, however, the periodogram may give misleading
answers [29, p. 20].

For multiple sinusoids, the NLS estimator is asymptotically the optimal unbiased
estimator even for coloured noise [215, pp. 157–162]. Despite these good statistical
properties, the NLS estimates of the frequencies are difficult to find in practice since

2Note that the two terms sampling distribution and likelihood function are often used synonymously.
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the search for them involves a multi-dimensional maximisation of a multi-modal cost-
function which is very sharply peaked around its global maximum [216]. The complexity
of the estimation problem can be significantly reduced by breaking the multi-dimensional
search into a cascade of lower-dimensional searches [59]. This can be done in various
ways by for example matching pursuit [105, 108, 160], the RELAX algorithm [152,
211], and the expectation-maximisation principle [61, 79]. The disadvantage of using
these simpler methods to find the frequency estimates is that they are suboptimal and
therefore have worse statistical properties than the NLS estimates. However, their use
can be justified by the fact that sinusoids are asymptotically orthogonal for any set of
distinct frequencies [51, p. 30]. That is, limN→∞N(ZHk Zk)−1 = I lk where I lk is the
lk × lk identity matrix3. If the lk frequencies lie on the Fourier grid, the equality holds
for any N , but for an arbitrary set of frequencies the relationship is only approximate
for a finite N . Under this approximation, the NLS estimates in Eq. (20) can be written
as

ω̂k ≈ arg max
ω̂k∈Ωk

xHZkZ
H
k x = arg max

ω̂k∈Ωk
‖ZHk x‖22 = arg max

ω̂k∈Ωk

l∑
i=1

P̂X(ωi) , (21)

and these estimates are sometimes referred to as the approximate NLS (ANLS) estimates
[51, Ch. 2]. From Eq. (21), we see that the ANLS estimates are simply the lk largest
peaks of the periodogram. Thus, provided that N is large and the frequencies are not
too close to each other, 0 and 2π, the periodogram can be used to find good estimates
of the frequencies. The ANLS estimates can also be used as initial values in a numerical
optimisation algorithm which finds the NLS estimates in Eq. (20) using a line search or
gradient methods [6, 26].

Optimal Estimators

Estimation theory is an area of statistics which is concerned with finding estimators
of unknown parameters from noisy observations which contain some information about
these parameters. An estimator is a function which maps the data x into an estimate
θ̂k = g(x) of the unknown parameters θk. The function can be selected in an infinite
number of ways and is usually selected as a trade-off between the statistical properties
and the computational complexity with some examples being the minimum variance
unbiased (MVU) estimators, best linear unbiased estimators (BLUE), ML estimators,
LS estimators, and method of moments estimators [132]. The statistical performance
of an estimator is usually quantified in terms of the risk function or the expected loss
function [125, p. 410]

R(θk, θ̂k) = E[L(θk, θ̂k)] =
∫
CN

L(θk, θ̂k)p(x|θk,Mk)dx (22)

3A similar limit holds in the real case.
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where E[·] is the statistical expectation operator and L(θk, θ̂k) is the loss incurred by
guessing at θ̂k when θk is the true value. Minimising the risk function with respect to the
estimator yields the useless result that the optimal unconstrained estimator is θ̂k = θk.
Therefore, a practical optimal estimator must be constrained to be independent of the
true parameter vector θk, but such an estimator may be hard to find or does not even
exist for all values of θk [132, Ch. 2]. The most popular way of measuring the loss is by
the squared error measure. This loss function results in the mean squared error (MSE)
risk function which can be decomposed as

R(θk, θ̂k) = E[‖θk − θ̂k‖22] = tr
(
C θ̂k

)
+ ‖bias(θ̂k)‖2 =

lk∑
i=1

[
Var(θ̂i) + bias2(θ̂i)

]
(23)

where the bias and variance of the estimator θ̂i are given by

bias(θ̂i) = E[θ̂i]− θi (24)

Var(θ̂i) = E
[
(θ̂i − E[θ̂i])2

]
= E[θ̂2

i ]− E2[θ̂i] . (25)

Since only the variance is independent of θk, the search for optimal estimators is usually
constrained to estimators having zero bias, the so-called unbiased estimators [132], and
such unbiased estimators are MVU estimators if they minimise the MSE for all values
of θk. Even if an MVU estimator exist, there exists no universal way to find it, but
several approaches have been suggested which might produce it [132, Ch. 2–6].

Theoretical optimal estimators dependence on the true parameter vector is a con-
sequence of the interpretation of probability in frequentist statistics. By interpreting
probability as the relative frequency of occurrence after repeating an experiment an
infinite number of times, the unknown parameters are deterministic variables [23, p. 5].
Consequently, the risk function’s dependence on it cannot simply be removed by in-
tegrating over it. Another consequence of treating the unknown parameters as fixed
quantities it that statistical statements cannot be made about the estimate, but only
about the estimator which is judged by considered the long run performance over an
infinite number of hypothetical repetitions of the experiment [23, pp. 5–6]. Although
this difference might seem subtle, it is important to keep in mind when interpreting con-
fidence intervals [193, p. 245], [172, p. 6] or performing hypothesis tests [157, Ch. 37].
In Sec. 3.5, the Bayesian approach to estimation is reviewed, and it does not suffer from
these problems.

Cramér-Rao Lower Bound

The Cramér-Rao lower bound (CRLB) [71, 184] is a lower bound on the variance of
any unbiased estimator, and it is frequently used as a benchmark tool. Provided that
the support of the sampling distribution does not depend on θk and that the sampling
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distribution is differentiable [132, p. 67], the CRLB of an estimator is the diagonal
elements of the Fisher information matrix (FIM) which is defined as [132, p. 529]

I(θk) , E
[
∂ ln p(x|θk)

∂θ∗k

(
∂ ln p(x|θk)

∂θ∗k

)H]
. (26)

An unbiased estimator is efficient if its variance attains the CRLB for all values of θ. An
example of an efficient estimator is the sample mean estimator of the mean of normally
distributed data. The sample mean estimator is also the MVU estimator, but an MVU
estimator is not necessarily efficient. For example, the sample variance estimator is the
MVU estimator of the variance of normally distributed data, but not efficient. The ML
estimator is asymptotically efficient if the CRLB exists and is finite. That is, for a large
enough N , the ML estimator satisfies [132, p. 167]

θ̂k ∼ N (θ̂k;θk,I−1(θk)) as N →∞ (27)

whereN (·) denotes the normal distribution. This result and the fact that ML estimators
can be found in a universal way explain the popularity of the ML estimator. However,
since the ML estimate is not always easy to compute, it might be better to use simpler
but suboptimal estimators in practical applications.

Unfortunately, the exact CRLB for the frequencies of lk sinusoids cannot be found
analytically, but only numerically. For a large N , uniformly sampled data, and WGN
with variance σ2, however, the CRLB of the frequencies of the complex basic model is
approximately [131, Sec. 13.4]

var(ω̂i) ≈
6σ2f2

s

N3A2
i

, (28)

and the CRLB of the fundamental frequency of the complex harmonic model of a per-
fectly periodic signal is approximately [55, 171]

var(ω̂0) ≈ 6σ2f2
s

N3∑lk
i=1A

2
i i

2
. (29)

3.3 Subspace-based Methods
Subspace-based methods are an attractive alternative to the ML-based estimation meth-
ods since they can attain nearly the same estimation performance for time-series4 as
the NLS estimator without being based on the intractable cost function in Eq. (20).
Consequently, the subspace-based methods might be significantly faster than the ML-
based methods. The subspace-based methods were primarily developed as a solution

4For multi-channel signals, the MUSIC method is an asymptotically efficient estimator of the direc-
tion of arrival [222, Sec. 9.3.2].
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to the direction of arrival (DOA) estimation problem in array signal processing [139],
but they have also been applied extensively to frequency estimation in univariate time-
series [51, 131, 215]. The first subspace-based method was Pisarenko’s harmonic decom-
position [178], which was later generalised in the multiple signal classification (MUSIC)
method [18, 200]. Other popular subspace-based methods include the estimation of sig-
nal parameters via rotational invariance techniques (ESPRIT) [177, 195], the min-norm
method [140], and weighted subspace fitting (WSF) [229]. The term subspace-based
refers to the partitioning of the observed data into a signal subspace and a noise sub-
space. For the complex basic model in Eq. (9) with WGN and uniformly sampled zero-
mean data partitioned into m-dimensional data vectors {x(n)}N−1

n=m−1 with m < N5,
the covariance matrix of x(n) is given by

CX = E[x(n)xH(n)] = AkP kA
H
k + σ2Im = UΛUH (30)

where UΛUH is the eigenvalue decomposition of CX , P k = E[αkαHk ], and the i’th
column of Ak is given by a(ωi) =

[
1 exp(jωi) · · · exp(jωi(m− 1))

]T . When the
phases of the sinusoids are assumed to be uncorrelated and uniform random variables6,
P k is a diagonal matrix and the decomposition in Eq. (30) is termed the covariance
matrix model. The eigenvectors in U are without loss of generality assumed to be sorted
according to the eigenvalues in descenting order. The orthogonal matrix U can then be
partitioned into U =

[
Sk Gk

]
where Sk and Gk are the M × lk-dimensional signal

subspace and the m × (m − lk)-dimensional noise subspace. Since the noise subspace
is orthogonal to the signal subspace, which is also spanned by Ak, the frequencies of
the lk sinusoids satisfy that AH

k Gk = 0 [215, p. 167]. In practice, Gk is unknown
and must be estimated from the data by computing the eigenvalue decomposition of a
covariance matrix estimate. The spectral-MUSIC [18, 200] estimates of the frequencies
are therefore the lk largest peaks of the so-called MUSIC pseudo-spectrum

P̃X(ω) = ‖ĜH

k a(ω)‖−2
2 . (31)

An example of the MUSIC pseudo-spectrum is shown in Fig. 5. Since the direct max-
imisation of the pseudo-spectrum is a non-convex problem, the MUSIC frequency es-
timates are sometimes found via the root-MUSIC method [8] which finds the MU-
SIC estimates via polynomial rooting methods. Pisarenko’s harmonic decomposition is
equivalent to MUSIC for M = lk + 1, but it is much less accurate than MUSIC for
lk � m < N [215, p. 169]. The standard MUSIC method may produce frequency esti-
mates which are far away from the true frequencies. Such spurious frequency estimates
are avoided in a variation of the standard MUSIC method called the modified MUSIC

5For multi-channel signals, m is the number of sensors and x(n) contains the data from these sensors
sampled at time index n

6Note that this assumption is not consistent with the interpretation of probability in frequentist
statistics.
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Fig. 5: The MUSIC pseudo-spectrum for the speech data in Fig. 2 when the signal subspace has seven
eigenvectors.

method [219], but its statistical properties are slightly worse than that of the standard
MUSIC method [215, p. 175].

The ESPRIT method is a very popular alternative to the MUSIC methods since
its statistical properties are slightly better than that of the standard MUSIC method
at a similar computational cost and, like the root-MUSIC method, it also finds the
frequency estimates without solving a non-convex maximisation problem [215, p. 175].
By exploiting the shift-invariance property of the matrix Ak, it can be shown that
the angle of the eigenvalues of (SH1,kS1,k)−1SH1,kS2,k are the frequencies which satisfy
AH
k Gk = 0. The matrices S1,k and S2,k are formed by removing the last and first

row of Sk, respectively, and in practice they must be computed from an eigenvalue
decomposition of an estimated covariance matrix. Note that ESPRIT may produce
spurious frequency estimates for real-world signals [54], [51, pp. 107–109].

Unlike the ML-based methods, the estimation accuracy of the subspace methods
depends critically on the WGN assumption. For coloured noise, the data should there-
fore be pre-whitened prior to estimating the frequencies [51, pp. 84–85]. The eigenvalue
decomposition of the estimated covariance matrix constitutes the major contribution to
the computational cost of running the subspace-based methods. Consequently, several
subspace tracking algorithms with a much lower computational complexity have been
proposed and an overview over some of these are given in [68] and [87].

3.4 Filtering Methods
Like the subspace-based methods, the filtering methods have their roots in array signal
processing where they are usually referred to as beamforming methods [139, 222, 226].
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The basic idea in the filtering methods is to pass the signal through a filter or a filter
bank which is designed to enhance or attenuate the sinusoids in the signal. Typically, the
frequency estimates are then the set of frequencies which either maximise or minimise
the power of the filtered output signal. The perhaps most popular filtering technique
for frequency estimation is the Capon beamforming algorithm which is also known as
the minimum variance distortionless response (MVDR) approach [37, 142]. For an FIR-
filter with them-dimensional impulse response vector h, the power of the filtered output
signal is

E[|hHx(n)|2] = hHCXh (32)

where CX is the covariance matrix of x(n). Minimising this power subject to the con-
straint that the filter passes the frequency content at the frequencies ωk unaltered leads
to the following equality constrained optimisation problem for the filter coefficients7

ĥ = arg min
h∈Cm

hHCXh s. t. hHAk = 1Tk (33)

where 1k is an lk-dimensional vector of ones. The optimisation problem is readily solved
using the method of Lagrange multipliers [6, 26] and leads to the frequency estimates [57]

ω̂k = arg max
ωk∈Ωk

1Tk
(
AH
k C

−1
X Ak

)−1
1k . (34)

Although the filtering methods generally do not result in efficient estimators, they
have good statistical properties and work well under adverse conditions such as closely
spaced sinusoids [61]. The computational complexity of the estimator in Eq. (34) may
be too high, primarily due to the multi-dimensional search over a non-convex cost func-
tion which may have very narrow peaks [51, p. 80]. However, the computational com-
plexity may be reduced considerably by replacing the matrix Ak with the vector a(ω)
in Eq. (34). In this case, the frequency estimates are the lk largest peaks of a one-
dimensional cost function. This method is the Capon method, and it works very well
in practice since the filter is designed in a data-adaptive way and thus suppresses in-
terfering sinusoids and coloured noise. An example of the amplitude response of the
Capon filter is shown in Fig. 6, and by comparing it to Fig. 3, we see that the Capon
filter places nulls at the positions of the interfering sinusoids. A very efficient implemen-
tations of the Capon filter have also been developed [100, 148]. The Capon methods
is often classified as a non-parametric estimator [215, Ch. 5], and for the special case
of m = 1 it reduces to the periodogram. In addition to frequency estimation, the
Capon method is also often used for PSD estimation [215, pp. 240–241] and ampli-
tude estimation [215, p. 258]. However, extensive analysis and simulation studies have
shown that the Capon estimates of the PSD and the amplitudes are biased towards

7The optimisation problem can also be formulated in terms of an entire filterbank instead of just a
single filter [57].
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Fig. 6: The amplitude response of the Capon filter for the speech data in Fig. 2. The vertical line
marks the frequency constraint. From Fig. 3, we see that the Capon filter places nulls in its amplitude
response at the location of interfering sinusoids to minimise the power of the filter output.

zero [147, 150, 151, 212, 213]. The alternative filtering method called the amplitude
and phase estimation (APES) method [151, 214] does not suffer from this bias and is
therefore often used instead. Since the frequency resolution of APES is slightly worse
than that of Capon, a combination of the two methods known as CAPES [120] can be
used for the joint estimation of the frequencies and amplitudes. The APES method
can also be used for the simultaneous estimation of multiple sinusoids analogue to the
estimator in Eq. (34) [128].

The estimation performance of the filtering methods depends on the choice of the
filter length m. For the Capon method, the filter length is chosen as a trade-off between
resolution and bias, and in [213] a filter length in the interval N/8 < m < N/4 is
recommended. Since the APES filter is unbiased, a maximum filter length of m =
bN/2c is therefore recommended to maximise the resolution. However, we have observed
that the APES amplitude spectrum for this maximum filter length suffers from ringing
artefacts and overshoots. These phenomena can be significantly reduced by reducing
the filter length or by using the so-called forward-backward estimate of the covariance
matrix [121]. This covariance matrix estimate also significantly reduces the bias of the
Capon method [150, 151]. Ideally, the filter length should be chosen in a data-adaptive
way so short filters are used in the case of simple signals, which can be approximately
described as a single sinusoid at a known candidate frequency in WGN, and long filters
for complex signals. In Paper E, we have proposed a very simple way of doing this,
and the resulting estimator is demonstrated to reduce the bias of the Capon method
significantly with only a slight decrease in the resolution.
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3.5 Bayesian Methods
None of the methods listed above give a direct indication of the accuracy of the fre-
quency estimate for the observed data set. Monte Carlo simulations [189] and bounds
such as the CRLB can be used to assess and benchmark the accuracy of an estimator
across an infinite number of similar data sets, but similar statements cannot be made
about the estimate itself. As discussed previously in Sec. 3.2, this is a consequence of
interpreting a probability as a long run relative frequency of occurrences. On the other
hand, the accuracy of estimates can be directly assessed in Bayesian statistics which is
based on an alternative interpretation of probabilities. This interpretation is the oldest
interpretation and was developed by Bernoulli, Bayes, and in particular by Laplace in
the eighteens and early nineteenth centuries [206, Sec. 1.4]. In his famous treatise from
1812 [145], Laplace developed many of the fundamental results of modern probability
theory [123]. Bayes and Laplace advocated interpreting a probability as an abstract
quantity representing a state of knowledge or a degree of belief. As a consequence
of this interpretation, unknown parameters were treated as random variables and not
fixed quantities. This is reflected in one of Laplace’s most important results, the Bayes’
theorem, which is given by

p(θk|x,Mk) = p(x|θk,Mk)p(θk|Mk)
p(x|Mk) (35)

where p(θk|x,Mk), p(θk|Mk), and p(x|Mk) are usually referred to as the posterior dis-
tribution, the prior distribution, and the evidence, respectively. However, the Bayesian
interpretation was initially rejected by many scientist as being too subjective and vague,
and they instead promoted the physical interpretation of a probability as a long run rel-
ative frequency [206, Sec. 1.4]. First when Jeffreys [126] and Cox [70] rediscovered and
promoted Bayes’ and Laplace’s rationale in the middle of the twentieth century, the
Bayesian interpretation of probabilities again gained some interest and spurred some
intense philosophical debates among statisticians [123].

In 1987, Jaynes [124] linked the periodogram with probability theory in a Bayesian
framework. In the absence of prior information, he showed that the posterior distribu-
tion on the frequency of a single sinusoid in WGN was linked in a simple way to the
periodogram. For complex data, this relationship is given by

p(ω|x,Mk) ∝
[

1− P̂X(ω)
xHx

]−(N−1)

(36)

where ∝ denotes proportional to. The posterior distribution is the complete answer to
the inference problem about the frequency, and it can be used to find point estimates,
compute probability intervals around these estimates, and test hypothesis. For exam-
ple, as we have shown in Paper B, the optimal frequency estimate is the peak of the
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periodogram and the variance of this frequency estimate is approximately

var(ω̂) ≈ 6σ̂2f2
s

N3Â2
i

(37)

where σ̂2 and Âi are the ML estimates of the noise variance and amplitude, respec-
tively. Note that the approximate variance of the frequency estimate is identical to
the approximate CRLB in Eq. (28) with the true values for the noise variance and the
amplitude replaced by their estimates. In Fig. 7, the posterior density of the frequency
is shown. It consists of a single important peak whose shape is very similar to that of a
Gaussian density. The work by Jaynes was extended significantly by Bretthorst in [29]
where he considered multiple sinusoids and model comparison. Since the main purpose
of the work by Jaynes and Bretthorst was to give insight into spectral estimation in a
Bayesian framework and to facilitate an easy interpretation of the results, they derived
their results using analytical approximations under the assumption that the sinusoids
were well-separated and enough data were available. In for example [4, 85, 86, 196] nu-
merical techniques were used instead of analytical approximations to get more accurate
results and to avoid making these simplifying assumptions. Unfortunately, the use of
numerical techniques often increases the computational complexity of the algorithms
significantly. Besides the basic sinusoidal model in Eq. (8) and Eq. (9), Bayesian in-
ference has been applied to numerous other sinusoidal models in various contexts. For
example the harmonic models have received some attention in [73, 75, 101, 102] and
models containing amplitude and/or frequency modulation have received some atten-
tion in [39, 40, 42, 113, 136, 223, 224]. In Paper B, we have extended the work by Jaynes
and Bretthorst to real- and complex-valued harmonic signals.

Optimal Bayesian Point Estimates

Through Bayes’ theorem in Eq. (35), the posterior distribution on a parameter θk
optimally combines the prior information about the parameter with the information
learned about the parameter by observing the data x [103, p. 75]. By optimal, we
mean that the posterior distribution contains all the information about the unknown
parameter. Moreover, for some loss function, a corresponding point on the posterior
distribution minimises the Bayes’ risk function and is therefore an optimal estimate.
The Bayes’ risk function is directly linked to the risk function previously considered in
Sec. 3.2. Since the unknown parameter is a random variable in a Bayesian framework,
it can be integrated out of the risk function to obtain the Bayes’ risk function

R(θ̂k) =
∫

Θk
R(θk, θ̂k)p(θk|Mk)dθk (38)

=
∫
CN

[∫
Θk
L(θk, θ̂k)p(θk|x,Mk)dθk

]
p(x|Mk)dx (39)
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Fig. 7: The posterior distribution with the density given by Eq. (36) and its Laplace approximation
for the speech data in Fig. 2. The standard deviation is approximately 0.5 Hz.

where Θk is the support of θk. In contrast to R(θk, θ̂k), the Bayes’ risk function R(θ̂k)
does not depend on the true parameter. Moreover, since p(x|Mk) ≥ 0, the Bayes’ risk
can be minimised by minimising the inner integral. For example, the mean, the mode
and the median of the posterior distribution minimises the Bayes’ risk for the squared
error loss function, the hit-or-miss loss function, and the absolute error loss function,
respectively [132, Sec. 11.3]. In a Bayesian framework, a universal method to find the
optimal estimator therefore exists, and it does not depend on the true value of the
parameter. However, despite that this optimal estimator is conceptually easy to find, it
might be hard or impossible in practice to find an analytical expression for the posterior
distribution and its moments, mode and median.

Practical Problems

Despite the conceptual simplicity of Bayesian inference, there are two main practical
problems associated with it. The first problem is the elicitation of the prior distribution.
How does one turn prior information into a probability distribution in a consistent way,
and is it possible to assign prior distributions in an objective fashion in the absence
of prior information? There are two popular answers to these questions with roots
in the objective Bayesian methods [12, 122, 125] and the subjective Bayesian meth-
ods [16, 77], respectively. In the objective view, two different researchers (and even
a robot) should assign the same prior distribution if they had the same information,
and the prior distributions are usually elicited using maximum entropy methods [122],
invariance of transformation groups [126], and reference analysis [16, Sec. 5.4], [13]. The
resulting prior distributions are often referred to as uninformative priors, and they are
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often improper as they do not integrate to one. A famous example of such a prior is the
Jeffreys’ prior [126]. Improper priors might pose significant problems for the purpose
of performing model comparison [14]. In the subjective view, prior distributions are
assigned by experts or according to one’s personal belief. However, in inference prob-
lems involving a lot of parameters and possibly several candidate models, it might be
infeasible or impractical to do the assignment in this way.

The second practical problem is the evaluation of high-dimensional and intractable
integrals which must be evaluated to remove nuisance parameters8, to find moments
such as the mean, and to find the evidence. Such an integral can be written as

E[f(y)] =
∫
Y

f(y)p(y)dy, (40)

and approximately evaluated using Monte Carlo integration in which T samples {y[τ ]}Tτ=1
are sampled from the distribution with density p(y) and inserted into the sum

E[f(y)] ≈ 1
T

T∑
τ=1

f(y[τ ]) . (41)

This sum converges with an increasing T to the integral in Eq. (40) if p(y) has a finite
variance. Note that the convergence speed does not depend on the size of y, but on
the correlation between the generated samples from p(y) [19, p. 524]. Often, however,
independent samples cannot easily be generated from the desired density p(y). In the
1980s, the Bayesian community therefore adopted the stochastic integration methods
known as Markov chain Monte Carlo (MCMC) methods which have their origin in
physics [19, p. 538]. Along with the rapid increase in computational power, the MCMC
methods revolutionised Bayesian statistics and made inference in high-dimensional prob-
lems feasible. The MCMC methods work by selecting the transition kernel of an ergodic
Markov chain9 such that the invariant distribution of the Markov chain is the desired dis-
tribution which we wish to draw samples from. After an initial transient period in which
the Markov chain converges, samples generated by the Markov chain are distributed ac-
cording to the desired distribution. The two most well-known MCMC methods are
the Metropolis-Hastings (MH) algorithm [46, 114, 169] and the Gibbs sampler [98], but
many other methods exist [19, 97, 99, 157, 189].

Despite the rapid development in the MCMC methods, the resulting algorithms of-
ten suffer from high computational complexity. A more efficient alternative to these
stochastic methods are the deterministic methods which are based on analytical ap-
proximations. The deterministic methods are sometimes called variational inference
techniques, and they work by assuming a particular parametrisation or factorisation of

8A nuisance parameter is an unknown parameter which we are not interested in.
9An ergodic Markov chain converges to the required invariant distribution for any initial configura-

tion [19, p. 540].
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the desired distribution [19, Ch. 10]. The most popular analytical approximation is the
Laplace approximation [146, 221] which can be used to approximate both single- and
multi-modal distributions with a single or a mixture of normal distributions [97, Ch. 12].
In Fig. 7, the density of the Laplace approximation to the posterior distribution on the
frequency is shown. Clearly, the true density has slightly heavier tails than its Laplace
approximation, but for most practical applications the difference between the two den-
sities is negligible.

3.6 Model Order Selection and Comparison
So far, the model Mk has been assumed to be known so that the inference problem
was to estimate the unknown parameters θk in this model. However, it is important to
keep in mind that a model is typically just an approximate description of a much more
complicated physical process which we might not even understand to its full extend. In
1987, Box stated this as, “Essentially, all models are wrong, but some are useful” [24,
p. 424]. Since the exact description of the physical process generating the data x is
typically unknown, several candidate models might be proposed. An important inference
problem is therefore to compare these models in the light of the observed data. Even
if we are fairly confident that our data set consist of a sum of sinusoids in WGN, we
often do not know how many sinusoids there are. For example, it is not obvious from
Fig. 2 and Fig. 3 how many sinusoids should be included in a model for the data.
It might be tempting to use a single model with a large number of sinusoids as this
model contains the simpler models as special cases, but this is clearly not an efficient
way of compressing a data set, and it might also lead to wrong estimates as we have
demonstrated in Example 3.1.

Example 3.1 (Wrong Number of Harmonics)
Suppose a noisy periodic signal consisting of just the fundamental harmonic at the
frequency ω0 is observed. Moreover, assume that the noise is white and Gaussian
with variance σ2, that the number of harmonics is wrongly set to lk = 2, and that the
number of observationsN is large enough to justify the approximationN(ZHk Zk)−1 ≈
I lk . In Paper B, we have shown that the estimate of the fundamental frequency
maximises the cost function

C2(ω) ≈ N−1xHZ2(ω)ZH2 (ω)x = N−1
2∑
i=1
|zHi (ω)x|2 = N−1

2∑
i=1
|zH1 (iω)x|2 . (42)

It then follows from the covariance matrix model in Eq. (30) that the expected value
of the cost function at ω0 and ω0/2 is

E[C2(ω0)] ≈ N |α1|2 + σ2 + σ2 = N |α1|2 + 2σ2 (43)
E[C2(ω0/2)] ≈ σ2 +N |α1|2 + σ2 = N |α1|2 + 2σ2 . (44)
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In all other frequency points, we have that E[C2(ω)] ≈ 2σ2. Thus, since E[C2(ω0)] ≈
E[C2(ω0/2)], we would get the so-called pitch halving problem with a probability of
approximately 50 %. If we instead of lk = 2 harmonics wrongly assumed lk harmonics,
we would have that

E[Clk(ω0/i)] ≈ N |α1|2 + lkσ
2 (45)

so that the estimate of the pitch is wrong with a probability of approximately 100(lk−
1)/lk %. On the other hand, if we could estimate the true model order, we would not
suffer from problems with fractional estimates of the fundamental frequency.

For several decades, many model selection and comparison methods have been pro-
posed, and a few good overviews over most of them might be found in [67, 185, 215,
217, 218]. The methods are based on various principles such as probability theory,
cross-validation, prediction performance, coding theory, and principal component anal-
ysis. These methods can roughly be divided into three groups with the first group being
those methods which require an a priori estimate of the model parameters, the second
group being those methods which do not require such estimates, and the third group
being those methods in which the model parameters and model are estimated and de-
tected jointly [38]. In the rest of this section, we briefly review some of the methods in
these three groups, and in Fig. 8, we have compared three of the methods.

Information Criteria

The large number of information criteria is perhaps the most prominent type of model
selection method belonging to the first group of methods. They are used to find the
most probable model index by solving an optimisation problem of the form [217]

k̂ = arg max
k∈K

[
2 ln p(x|θ̂k,Mk)− νkh(νk, N)

]
(46)

where θ̂k, K, h(νk, N), and νk are the ML estimate of the model parameters, the set of
model indices, the penalty coefficient, and the number of real-valued and free parameters
in the model10, respectively. The various information criteria differ in terms of how the
penalty coefficient is selected. For example, for h(νk, N) = {2, 2N/(N−νk−1), lnN}, we
get the Akaike information criterion (AIC) [3], the corrected AIC (AICc) [119], and the
original minimum description length (MDL) [186, 187], respectively, but many others
exist [185]. The major advantage of the information criteria is that they are very simple
to implement and therefore lead to fast algorithms. However, the simplicity of the
criteria is often obtained by making approximations based on for example asymptotic
properties, and this degrades the model selection performance and leads to problems

10The number of free parameters is not always the same as the number of unknown parameters. For
an example, see [231].
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with under- or overestimation of the model order and consistency issues [80, 199, 217,
231].

Principal Component Analysis

The second group of model selection and comparison methods are typically based on
a principal component analysis of the covariance matrix of the data. An attractive
property of these methods is that they do not rely on that the distribution of the data
is known and that the ML estimate of the model parameters can easily be found, but
only on that a consistent estimate of the covariance matrix is available [56]. Since the
eigenvalues pertaining to the eigenvectors forming the noise subspace of the eigenvalue
decomposition in Eq. (30) are all equal to the noise variance and smaller than the remain-
ing eigenvalues, the model order can in principle be estimated by counting the number
of eigenvalues equal to the noise variance. In practice, however, it is not easy to separate
the eigenvalues of the estimated covariance matrix into signal and noise-subspace eigen-
values since the transition from one set to the other is often smooth. By comparing the
ratio between the arithmetic and geometric means of the eigenvalues [231], [51, Sec. 4.5],
an estimate of the model order can be found, but the estimator suffers from overesti-
mation problems in the case of coloured noise [153, 233]. As an alternative to the
eigenvectors, the eigenvalues can be used instead as in, e.g., the subspace-based auto-
matic model order selection (SAMOS) method [176] and the estimation error (ESTER)
method [7]. A related, but more general, idea is to measure how orthogonal the matrix
Ak of Eq. (30) is to the eigenvectors in the noise subspace Gk for various choices of
lk. This methods is called the angle between subspaces (ABS) method [56, 104], and it
selects the best model index by solving the following optimisation problem [56]

k̂ = arg min
k∈K

lk∑
k=1

min
ωk∈Ωk

‖ĜH

k a(ωk)‖22
min(lk,m− lk)m (47)

where the nominator is the same as the MUSIC cost function and the inverse of the
MUSIC pseudo-spectrum in Eq. (31).

Bayesian Methods

In the third group of methods, the Bayesian methods are found. These are conceptually
very simple as they compute the posterior distribution over the set of candidate models
via Bayes’ theorem

p(Mk|x) ∝ p(x|Mk)p(Mk) . (48)
The likelihood p(x|Mk) is the evidence in Eq. (35) and given by the integral

p(x|Mk) =
∫

Θk
p(x|θk,Mk)p(θk|Mk)dθk . (49)
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Fig. 8: Posterior distributions for the model order given the speech data in Fig. 2. The posterior
distributions for the AIC and MAP methods are found using the approach described in [218], and the
posterior distribution of the Bayesian method is the EB method from Paper B. The MUSIC methods
with ABS [56] does not produce a posterior distribution, but selects a model order of lk = 2.

Therefore, the evidence if often also referred to as the marginal likelihood. In addi-
tion the conceptual simplicity, the Bayesian methods also have numerous other ad-
vantages [14, 15]: Bayesian model comparison is consistent under very mild conditions,
naturally selects the simplest model which explains the data reasonably well (the princi-
ple of Occam’s razor [157, Ch. 28]), takes model uncertainty into account for estimation
and prediction, works for non-nested models, and enables a more intuitive interpretation
of the results. Unfortunately, these benifits are often dwarfed by the practical problems
mentioned in Sec. 3.5 which are even more problematic in the context of model compar-
ison. When several candidate models are considered, the MCMC methods must draw
samples for the model index and the model parameters across all candidate models.
The reversible jump MCMC method [107] is perhaps the most popular way of doing
this, but it might be very hard to select an efficient transition kernel of the underly-
ing Markov chain. Other popular stochastic integration techniques include importance
sampling [5] and Chib’s methods [44, 45], and in [109] and overview over some of the
popular methods is given. The elicitation of prior distributions is also very important in
the context of model comparison as the use of improper or uninformative prior distribu-
tions may lead to non-sensible answers. In Paper A, we have a more thorough discussion
of these issues. To circumvent these problems, analytic approximations and asymptotic
considerations can be used. The most popular example of this is the Bayesian informa-
tion criterion [202] and the asymptotic maximum a posteriori (MAP) criteria [81, 82].
They are both based on a Laplace approximation to the marginal likelihood in Eq. (49),
and they throw away first-order terms and use asymptotic consideration to avoid the
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specification of proper prior distributions. The BIC method is equivalent to the MDL
principle11, and the MAP criteria may be seen as a generalisation of the BIC method
to accommodate for the fact that every model parameter does not contribute with the
same penalty to the overall model complexity penalty term. In Paper A, we extend the
work by Djuric.

4 Contributions
As the title of this thesis suggests, the range of contributions is rather diverse. The
individual contributions are therefore sometimes only connected by the framework de-
scribed in this introductory part of the thesis. Paper A, Paper B, Paper E, and Paper G
all consider model selection and comparison in both general and specific models. Pa-
per A, Paper B, Paper C, and Paper D treat Bayesian inference in various parametric
sinusoidal models. Whereas Paper C and Paper D are based on stochastic integration
techniques, Paper B and Paper C are based on analytical approximations. The latter
usually leads to less accurate results, but faster algorithms. Finally, Paper F and Pa-
per G is concerned with quantifying the loss in estimation accuracy in the context of
compressed sensing. Below is a short description of the contributions in each of the
papers which constitute the main part of this thesis.

Paper A Performing model comparison and selection is in general very difficult, and,
therefore, many simplifications are usually made. However, it is not always clear
which assumptions these simplifications are based on, and how the simplifications
are made. This is in particular the case in Djuric’ asymptotic MAP criteria [82]
in which it is not always obvious which terms can be safely ignored. In Paper A,
we therefore extend the work by Djuric in several ways. First, we consider the
general model comparison problem in a Bayesian framework and discuss the dif-
ficult elicitation of the prior distribution. These results are not new, but are
scattered across mainly the statistical literature. Second, we derive a few new
model selection criteria in a fairly general model, and we give some new insight
into the implicit assumptions made in the various information criterion. Finally,
we demonstrate that the proposed model comparison methods outperform the
AIC, the BIC, and the MAP methods in terms of model selection accuracy and
prediction performance.

Paper B Joint fundamental frequency estimation and model order detection is an im-
portant problem which has received a lot of research attention. However, most
of the existing solutions are rather heuristic and very application specific. In
Paper B, the problem is solved in a consistent fashion as outlined in Paper A

11We here refer to the original form of the MDL principle proposed by Rissanen in 1978 in [186].
Rissanen and others have since refined this principle in, e.g., [110, 188, 192].
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when only a minimum of prior information is available. Moreover, the proposed
solution is demonstrated to improve on what we believe is the state-of-the-art
method [51, Sec. 2.6] for solving this problem. Although the method cannot be
used as a stand alone pitch detection and tracking system in speech or music ap-
plications, we believe that it might be a useful component in such systems as well
as in other application domains in which periodic signals must be analysed.

Paper C In this paper, we consider a dynamic sinusoidal model which is able to cap-
ture phenomena such as amplitude and frequency modulation. We show that
the dynamic sinusoidal model models the evolution of the in-phase and quadra-
ture components of the sinusoids by first-order Gauss-Markov processes. Using a
Gibbs sampler, we derive an efficient algorithm which can be used to make infer-
ence about the unknown model parameters and to interpolate missing or corrupted
observations. Finally, we use the algorithm for packet-loss concealment of both
speech and music signals. The proposed method works well for interpolating short
segments.

Paper D This paper is based on the results in Paper C, but also assess the quality of the
packet-loss concealment via a MUSHRA listening test [1, 230] for various packet-
loss probabilities and interpolation methods. These listening tests indicated that
the proposed algorithm can be used to increase the fidelity of the degraded audio
signals.

Paper E Although the Capon and APES filtering methods for amplitude estimation
have been analysed extensively, it is still an open question if the filter length can be
selected in some data-adaptive fashion. In Paper E, we have suggested a simple
way of estimating the length of the Capon filter in a data-adaptive way. The
method is based on Djuric’ MAP criteria [82], and it is demonstrated to reduce
the bias in the amplitude estimate significantly while still achieving nearly the
same resolution.

Paper F Recently, compressed sensing has received a lot of research attention. The
main reason for this is that it allows perfect reconstruction of under-sampled sig-
nals provided that they are sparse enough in some finite dictionary. However,
when compressed sensing is used to sample for example sinusoidal signals, then
perfect reconstruction is only possible if the true frequencies is exactly on the fre-
quency grid defined by the dictionary. As the frequencies are typically continuous
in nature, a loss in the reconstruction performance might be expected when signals
are acquired using compressed sensing. In Paper F, we have quantified this loss
for various sensing matrices in terms of the Cramér-Rao lower bound. The results
show that the popular sensing matrices all lead to an expected loss in estimation
accuracy proportional to the under-sampling factor.
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Paper G This paper is an example of the points made in Paper F since compressed
sensing is applied to the problem of joint direction-of-arrival and order estimation.
The results are consistent with the observations in Paper F. They show that the
estimation problem can be solved efficiently using compressed sensing, but that
the estimation accuracy decreases with the down-sampling factor.

5 Conclusion
In this thesis, several new results within the framework of sinusoidal parameter esti-
mation have been documented. The main contributions have been the analysis of the
fundamental frequency and the model comparison problems in Paper B and Paper A
which have resulted in a few new algorithms and facilitated a better understanding of
the problems. We believe that these algorithms can be used as useful components in
larger algorithms solving more complex problems in several application domains. More-
over, we have also demonstrated that these methods outperform similar state-of-the-art
algorithms on synthetic signals while still having a tractable computational complexity.

Our analysis of the problems has primarily been performed in a Bayesian framework.
Although some practical problems must be resolved when working in this framework,
its conceptual simplicity, intuitive results, and ability to include prior information in a
consistent way provide some strong arguments in favour of it. With the constant in-
crease in computing power, the practical problem regarding the evaluation of intractable
integrals will become less of an issue and allow us to use even more complex models.

Although the estimation of sinusoidal parameters from noisy observations has been
subject to extensive research for several decades, we believe that more can be done in
this area. For example, it would be interesting to use the Bayesian framework in connec-
tion with frame based processing of signals since this framework allows us to incorporate
interframe dependencies in a consistent manner via the prior distribution. Another in-
teresting extension for audio application would be to incorporate a perceptual distortion
measure when doing, e.g., model comparison. For example, it is well-known that the
human brain perceives a pitch at the same frequency as the fundamental frequency even
though the first harmonic is missing.
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Abstract
Model comparison and selection is an important problem in many model-based signal
processing applications. Often, very simple information criteria such as the Akaike in-
formation criterion or the Bayesian information criterion are used despite their short-
comings. Compared to these methods, Djuric’s asymptotic MAP rule was an improve-
ment, and in this paper we extend the work by Djuric in several ways. Specifically, we
consider the elicitation of proper prior distributions, treat the case of real- and complex-
valued data simultaneously in a Bayesian framework similar to that considered by Djuric,
and develop new model selection rules for a regression model containing both linear and
non-linear parameters. Moreover, we use this framework to give a new interpretation
of the popular information criteria and relate their performance to the signal-to-noise
ratio of the data. By use of simulations, we also demonstrate that our proposed model
comparison and selection rules outperform the traditional information criteria both in
terms of detecting the true model and in terms of predicting unobserved data.

1 Introduction
Essentially, all models are wrong, but some are useful [1, p. 424]. This famous quote
by Box accurately reflects the problem that scientists and engineers face when they
analyse data originating from some physical process. As the exact description of a
physical process is usually impossible due to the sheer amount of complexity or an
incomplete knowledge, simplified and approximate models are often used instead. In this
connection, model comparison and selection methods are vital tools for the elicitation
of one or several models which can be used to make inference about physical quantities
or to make predictions. Typical model selection problems are to find the number of
non-zero regression parameters in linear regression [2–4], the number of sinusoids in a
periodic signal [5–9], the orders of an autoregressive moving average (ARMA) process
[10–15], and the number of clusters in a mixture model [16–18]. For several decades,
a large variety of model comparison and selection methods have been developed (see,
e.g., [3, 19–22] for an overview). These methods can basically be divided in three groups
with the first group being those methods which require an a priori estimate of the model
parameters, the second group being those methods which do not require such estimates,
and the third group being those methods in which the model parameters and model are
estimated and detected jointly [15]. The widely used information criteria such as the
Akaike information criterion (AIC) [23], the corrected AIC (AICc) [24], the generalised
information criterion (GIC) [25], the Bayesian information criterion (BIC) [26], the
minimum description length (MDL) [27, 28], the Hannan-Quinn information criterion
(HQIC) [10], and the predictive least squares [29] belong to the first group of methods.
The methods in the second group typically utilise a principal component analysis of the
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data by analysing the eigenvalues [11, 15, 30], the eigenvectors [31, 32], or the angles
between subspaces [33]. In the third group, the Bayesian methods are found. Although
these methods are widely used in the statistical community [3, 34–37], their use in
the signal processing community has only been limited (see, e.g., [7, 8, 14] for a few
notable exceptions) compared to the use of the information criteria. The main reasons
for this are the high computational costs of running these algorithms and the difficulty
of specifying proper prior distributions. A few approximate methods have therefore
been developed circumventing most of these issues. Two examples of such approximate
methods are the BIC [26] and the asymptotic maximum a posteriori (MAP) rule [38, 39].

The BIC and the original MDL principle are equivalent, but they are derived using
very different arguments [22, App. C]. Although this type of rule is one of the most pop-
ular model selection methods, it suffers from that every model parameter contributes
with the same penalty to the overall model complexity penalty term in the model se-
lection method. Djuric’s asymptotic MAP rule [38] improves on the BIC method by
accounting for that the magnitude of the penalty should depend on the type of models
and model parameters being used. For example, the frequency parameter of a sinusoidal
signal is shown to contribute with a three times larger penalty term than the sinusoidal
amplitude and phase. Like the BIC method, the asymptotic MAP rule is derived in
a Bayesian framework. However, in order to get very simple expressions, Djuric uses
asymptotic considerations and improper priors, and he also neglects lower order terms
during the derivations. The latter is a consequence of the use of improper priors.

In this paper, we extend the work by Djuric in several ways. First, we treat the
difficult problem of eliciting proper and improper prior distributions on the model pa-
rameters. In this connection, we use a prior of the same form as the Zellner’s g-prior [40],
discuss its properties, and re-parametrise it in terms of the signal-to-noise ratio (SNR)
to facilitate a better understanding of it. Second, we treat real- and complex-valued
signals simultaneously and propose a few new model selection rules, and third, we de-
rive the most common information criteria in our framework. The latter is useful for
assessing the conditions under which the, e.g., AIC and BIC are accurate. As opposed
to the various information criteria which are generally derived from cross-validation us-
ing the Kullback-Leibler (KL) divergence, we analyse the model comparison problem
in a Bayesian framework for numerous reasons [34, 35]; Bayesian model comparison
is consistent under very mild conditions, naturally selects the simplest model which
explains the data reasonably well (the principle of Occam’s razor), takes model uncer-
tainty into account for estimation and prediction, works for non-nested models, enables
a more intuitive interpretation of the results, and is conceptually the same, regardless
of the number and types of models under consideration. The two major disadvantages
of Bayesian model comparison are that the computational cost of running the resulting
algorithms may be too high, and that the use of improper and vague prior distributions
only leads to sensible answers under certain circumstances. In this paper, we discuss
and address both of these issues.
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The paper is organised as follows. In Sec. 2, we give an introduction to model
comparison in a Bayesian framework and discuss some of the difficulties associated
with the elicitation of prior distributions and the evaluation of the marginal likelihood.
In Sec. 3, we propose a general regression model consisting of both linear- and non-
linear parameters. For known non-linear parameters, we derive two model comparison
algorithms in Sec. 4 and give a new interpretation of the traditional information criteria.
For unknown non-linear parameters, we also derive two model comparison algorithms
rules in Sec. 5. Through simulations, we evaluate the proposed model comparison
algorithms in Sec. 6, and Sec. 7 concludes this paper.

2 Bayesian Model Comparison

We assume that we observe some real- or complex-valued data {x(tn)}N−1
n=0 which we

write as the vector
x =

[
x(t0) x(t1) · · · x(tN−1)

]T
, (A.1)

and we assume that these data originate from some unknown model. Since we are unsure
about the true model, we select a set ofK candidate parametric modelsM1,M2, . . . ,MK

which we wish to compare in the light of the data x. Each modelMk is parametrised
by the model parameters θk ∈ Θk where Θk is the parameter space of dimension dk.
The relationship between the data x and the model Mk is given by the probability
distribution with density1 p(x|θk,Mk) which is called the observation model. When
viewed as a function of the model parameters, the observation model is referred to as the
likelihood function. The likelihood function plays an important role in statistics where
it is used for parameter estimation. However, model selection cannot be solely based
on comparing candidate models in terms of their likelihood as a complex model can
be made to fit the observed data better than a simple model. The various information
criteria are alternative ways of resolving this by introducing a term that penalizes more
complex models. This is a manifestation of the well known Occam’s razor principle
which states that if two models explain the data equally well, the simplest model should
always be preferred [41, p. 343].

In a Bayesian framework, the model parameters and the model are random variables
with the pdf p(θk|Mk) and pmf p(Mk), respectively. We refer to these distributions
as the prior distributions as they contain our state of knowledge before any data are
observed. After observing data, we update our state of knowledge by transforming the
prior distributions into the posterior pdfs p(θk|x,Mk) and pmf p(Mk|x). The prior
and posterior distributions for the model parameters and the model are connected by

1In this paper, we have used the generic notation p(·) to denote both a probability density function
(pdf) over a continuous parameter and a probability mass function (pmf) over a discrete parameter.
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Bayes’ theorem

p(θk|x,Mk) = p(x|θk,Mk)p(θk|Mk)
p(x|Mk) (A.2)

p(Mk|x) = p(x|Mk)p(Mk)
p(x) (A.3)

where
p(x|Mk) =

∫
Θk
p(x|θk,Mk)p(θk|Mk)dθk (A.4)

is called the marginal likelihood or the evidence. For model comparison, we often
compare the odds of two competing modelsMj andMi. In this connection, we define
the posterior odds which are given by

p(Mj |x)
p(Mi|x) = BF[Mj ;Mi]

p(Mj)
p(Mi)

(A.5)

where the Bayes’ factor is given by

BF[Mj ;Mi] = p(x|Mj)
p(x|Mi)

, mj(x)
mi(x) (A.6)

wheremk(x) is an unnormalised marginal likelihood whose normalisation constant must
be the same for all models. Working with mk(x) rather than the normalised marginal
likelihood p(x|Mk) is usually much simpler. Moreover, p(x|Mk) does not even exist if
improper priors are used. We return to this in Sec 2.1. Since the prior and posterior
distributions of the model are discrete, it is easy to find the posterior odds and the
posterior distribution once the Bayes’ factors are known. For example, we may rewrite
the posterior distribution for the models in terms of the Bayes’ factors as

p(Mk|x) = BF[Mk;Mb]p(Mk)∑K
i=1 BF[Mi;Mb]p(Mi)

(A.7)

whereMb is some user selected base model which all other models are compared against.
Therefore, the main computational challenge in Bayesian model comparison is to com-
pute the unnormalised marginal likelihoods, constituting the Bayes’ factor for competing
pairs of models. We return to this in Sec 2.2. The posterior distribution on the models
may be used to select the most probable model. However, as the posterior distribution
contains the probabilities of all candidate models, all models may be used to make infer-
ence about the unknown parameters or to predict unobserved data points. This is called
Bayesian model averaging. For example, assume that we are interested in predicting a
future data vector xp using all models. The predictive distribution then has the density

p(xp|x) =
K∑
k=1

p(Mk|x)p(xp|x,Mk) . (A.8)
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Thus, the model averaged prediction is a weighted sum of the predictions from every
model.

2.1 On the Use of Improper Prior Distributions
Like Djuric [38, 39], we might be tempted to use improper prior distributions when
we have no or little prior information before observing any data. Whereas this usually
works for the inference about model parameters, it usually leads to indeterminate Bayes’
factors. To see this, let the prior distribution on the model parameters of the k’th
model have the joint density p(θk|Mk) = c−1

k h(θk|Mk) where ck =
∫

Θk h(θk|Mk)dθk
is the normalisation constant. In the limit ck → ∞, the prior distribution is said to
be improper. An example of a popular improper prior pdf is h(θk|Mk) = 1 so that
p(θk|Mk) ∝ 1 where ∝ denotes proportional to. The posterior distribution on the
model parameters has the pdf

p(θk|x,Mk) = p(x|θk,Mk)p(θk|Mk)
p(x|Mk) (A.9)

= p(x|θk,Mk)h(θk|Mk)∫
Θk p(x|θk,Mk)h(θk|Mk)dθk

. (A.10)

Thus, provided that the integral

p̃(x|Mk) =
∫

Θk
p(x|θk,Mk)h(θk|Mk)dθk (A.11)

converges, the posterior pdf p(θk|x,Mk) is proper even for an improper prior distribu-
tion. For two competing modelsMj andMi, the Bayes’ factor is

BF[Mj ;Mi] = ci
cj

p̃(x|Mj)
p̃(x|Mi)

. (A.12)

The ratio p̃(x|Mj)/p̃(x|Mi) is well-defined if the posterior distributions on the model
parameters θj and θi are proper. For proper prior distributions, the scalars ci and cj
are finite, and the Bayes’ factor is therefore well-defined. However, for improper prior
distributions, the Bayes’ factor is in general indeterminate. Specifically, for the popular
improper prior distribution with h(θj |Mj) = h(θi|Mi) = 1, it can be shown that [42]

ci
cj

=


0 , dj > di

1 , dj = di

∞ , dj < di

(A.13)

where dj and di are the number of model parameters in θj and θi, respectively. That
is, the simplest model is always preferred over more complex models, regardless of the
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information in the data. This phenomenon is known as the Bartlett’s paradox2 [43].
Due to the Bartlett’s paradox, the general recommendation is that one should use
proper prior distributions for model comparison. However, there exists one important
exception to this rule which we consider below. From (A.12), we also see that vague prior
distributions may give misleading answers. For example, a vague distribution such as
the normal distribution with a very large variance leads to an arbitrary large normalising
constant ck which strongly influences the Bayes’ factor [35]. Therefore, the elicitation
of proper prior distributions is very important for Bayesian model comparison.

Common Model Parameters

Consider the case where one model, the null model MN , is a sub-model3 of all other
candidate models. That is MN ⊆ Mk for k = 1, . . . ,K. We denote the null model
parameters as θN and the model parameters of the k’th model as θk =

[
θTN ψTk

]T
where (·)T denotes matrix transposition. The prior distribution on θk now has the pdf

p(θk|Mk) = p(ψk|θN ,Mk)p(θN |Mk) . (A.14)

If the null model parameters have the same meaning4 inMk andMN , then p(θN |Mk) =
p(θN |MN ). Thus, using the prior pdf p(θN |MN ) = c−1

b h(θN |MN ), the Bayes’ factor
is

BF[Mk;MN ] =
∫

Θk p(x|θk,Mk)p(ψk|θN ,Mk)h(θN |MN )dθk∫
Θb p(x|θN ,MN )h(θN |MN )dθN

(A.16)

which is proper if the posterior distribution on the null model parameters and the prior
distribution with pdf p(ψk|θN ,Mk) are proper. That is, the Bayes’ factor is well-defined
since cb = ci = cj even if an improper prior distribution is selected on the null model
parameters, provided that they have the same meaning across all candidate models.

2.2 Computing the Marginal Likelihood
As alluded to earlier, the main computational difficulty in computing the posterior
distribution on the models is the evaluation of the marginal likelihood in (A.4). The
integral may not have a closed-form solution, and direct numerical evaluation may be

2Bartlett’s paradox is also called the Lindley’s paradox, the Jeffreys’ paradox, and various combi-
nations of the three names.

3Instead of the null model, the full model, which contains all other candidate models, can also be
used [4].

4If one set of parameters θN has the same meaning in two nested models MN and Mk with
MN ⊂Mk, the Fisher information matrix of the model parameters θk is diagonal. That is,

I(θk) = I(ψk, θN ) =
[

I(ψk) 0
0 I(θN )

]
. (A.15)
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infeasible if the number of model parameters is too large. Numerous solutions to this
problem have been proposed and they can broadly be categorised as stochastic methods
and deterministic methods. In the stochastic methods, the integral is evaluated using
numerical sampling which are also known as Monte Carlo techniques [44]. Popular
techniques are importance sampling [45], Chib’s methods [46, 47], and reversible jump
Markov chain Monte Carlo [48]. An overview over and comparison of several methods
are given in [49]. An advantage of the stochastic methods is that they in principle can
generate exact results. However, it might be difficult to assess the convergence of the un-
derlying stochastic integration algorithm. On the other hand, the deterministic methods
can only generate approximate results since they are based on analytical approximations
which make the evaluation of the integral in (A.4) possible. These methods are also
sometimes referred to as variational Bayesian methods [50], and a simple and widely
used example of these methods is the Laplace approximation [51]. In order to derive
the BIC and the MAP rule and since the Laplace approximation is used later in this
paper, we briefly describe it here.

The Laplace Approximation

Denote the integrand of an integral such as in (A.4) by f(ξk) where ξk =
[
Re(θTk ) Im(θTk )

]T
is a vector of d̃k real parameters with support Ξk. Moreover, suppose there exists a suit-
able one-to-one transformation ξk = h(ϕk) such that the logarithm of the integrand

q(ϕk) =
∣∣∣∣∂h(ϕk)
ϕk

∣∣∣∣ f (h(ϕk)) (A.17)

can be accurately approximated by the second-order Taylor expansion around a mode
ϕ̂k of q(ϕk). That is,

ln q(ϕk) ≈ q(ϕ̂k) + 1
2(ϕk − ϕ̂k)TH(ϕ̂k)(ϕk − ϕ̂k) (A.18)

where
H(ϕk) = ∂2 ln q(ϕk)

∂ϕk∂ϕ
T
k

(A.19)

is the Hessian matrix. Under certain regularity conditions [39], the Laplace approxima-
tion is then given by∫

Φk
q(ϕk)dϕk ≈ q(ϕ̂k)(2π)d̃k/2| −H(ϕ̂k)|−1/2 (A.20)

where Φk is the support of ϕk. The main difficulty in computing the Laplace approx-
imation is to find a suitable parametrisation of the integrand so that the second-order
Taylor expansion of ln q(ϕk) is accurate. If q(ϕk) consists of multiple, significant, and
well-separated peaks, an integral can be approximated by a Laplace approximation to
each peak at their respective modes [52].
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BIC and Asymptotic MAP

The BIC [26] and the asymptotic MAP rule [39] are based on the Laplace approximation
with h(·) being the identity function so that

f(ξk) = q(ϕk) = p(x|ξk,Mk)p(ξk|Mk) . (A.21)

By neglecting terms of order O(1) and assuming a flat prior around ξ̂k, the marginal
likelihood in the asymptotic MAP rule is∫

Ξk
f(ξk)dξk ≈ p(x|ξ̂k,Mk)| −H(ϕ̂k)|−1/2 . (A.22)

In the MAP rule, the determinant of the observed information matrix −H(ϕ̂k) is eval-
uated using asymptotic considerations, and the asymptotic result therefore depends on
the specific structure of H(ϕ̂k). For the BIC, however, this determinant is assumed to
grow linearly in the sample size N so that

| −H(ϕ̂k)| =
∣∣∣∣−Nα α

N
H(ϕ̂k)

∣∣∣∣ =
(
N

α

)d̃k
O(1) (A.23)

where α is an arbitrary constant. In the BIC, α = 1 and the BIC is therefore∫
Ξk
f(ξk)dξk ≈ p(x|ξ̂k,Mk)N−d̃k/2 , (A.24)

but α can be selected arbitrarily which we find unsatisfactory. In [39], Djuric shows that
the MAP rule and the BIC coincide for autoregressive models and sinusoidal models with
known frequencies. However, he also shows that that they differ for polynomial models,
sinusoidal models with unknown frequencies, and chirped signal models.

3 Model Comparison in Regression Models
Bayesian model comparison as outlined in Sec. 2 is applicable to any model, but we have
to work with a specific model to come up with specific algorithms for model comparison.
In the rest of this paper, we therefore focus on regression models of the form

Mk : x = sk(φk,ψ,αk) + e = Bψ +Zk(φk)αk + e (A.25)

where sk(φk,ψ,αk) and e form a Wold decomposition of the real- or complex-valued
data x into a predictable part and a non-predictable part, respectively. Since the model
parameters are treated as random variables, the predictable part sk(φk,ψ,αk) is also
stochastic like the non-predictable part. All models include the same null model

MN : x = Bψ + e (A.26)
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whereB and ψ are a known N×lN system matrix and a known or unknown vector of lN
linear parameters, respectively. Usually, the predictable part of the null model is either
taken to be a vector of ones so that ψ acts as an intercept or not present at all. In the
latter case, the null model is simply the noise-only model. The various candidate models
differ in terms of the lk linear parameters in the vector αk and the N× lk system matrix
Zk(φk), which is parametrised by the ρk real-valued and non-linear parameters in the
vector φk. These non-linear parameters may be either known, unknown or not present
at all. We discuss the first and latter case in Sec. 4 and the case of unknown non-linear
parameters in Sec. 5. Without loss of generality, we assume that the columns of B and
Zk(φk) are orthogonal to each other so that ψ has the same interpretation in all models
and therefore can be assigned an improper prior if ψ is unknown. If the columns of
B and Zk(φk) are not orthogonal to each other, s(φk,ψ,αk) can be re-parametrised
so that the columns of the two system matrices are orthogonal [53]. We focus on the
regression model in (A.25) for several reasons. First of all, many common signal models
used in signal processing can be written in the form of (A.25). Examples of such models
are the linear regression model, the polynomial regression model, the autoregressive
signal model, the sinusoidal model, and the chirped signal model, and these five signal
models were also considered by Djuric in [39]. Second, the regression model in (A.25) is
analytically tractable and therefore results in computational algorithms with a tractable
complexity. Moreover, the analytical tractability facilitates insight into, e.g., the various
information criteria. Finally, the regression model in (A.25) can be viewed as a simple
approximation to more complex models [3].

3.1 Elicitation of Prior Distributions
In the Bayesian framework, the unknown parameters are random variables. In addition
to specifying a distribution on the noise vector, we therefore also have to elicit prior
distributions on these unknown parameters. The elicitation of prior distributions is
a controversial aspect in Bayesian statistics as it is often argued that subjectivity is
introduced into the analysis. We here take a more practical view at this philosophical
problem and consider the elicitation as a consistent and explicit way of stating our
assumptions. In addition to the philosophical issue, we also face two practical problems
in the context of eliciting prior distributions for model comparison. First, if we assume
that lk ≤ L, we can select a subset of columns from Zk(φk) in K = 2L different ways.
A careful elicitation of the prior distribution for the model parameters in each model
is therefore infeasible if L is too large, and we therefore prefer to do the elicitation in
a more generic way. Second, even if we have only a vague prior knowledge, the use of
improper or vague prior distributions in an attempt to be objective may lead to bad or
non-sensible answers [35]. As we discussed in Sec. 2, this approach usually works for
making inference about model parameters, but may lead to the Bartlett’s paradox for
model selection.
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The Noise Distribution

In order to deduce the observation model, we have to select a model for the non-
predictable part e of the model in (A.25). As it is purely stochastic, it must have
zero mean, and we assume that it has a finite variance. As advocated by Jaynes and
Bretthorst [54–56], we select the distribution which maximises the entropy under these
constraints. It is well-known, that this distribution is the (complex) normal distribution
with pdf

p(e|σ2) =
[
rπσ2]−N/r exp

(
−e

He

rσ2

)
(A.27)

=
{
CN (e; 0, σ2IN ) , r = 1
N (e; 0, σ2IN ) , r = 2

(A.28)

where (·)H denotes conjugate matrix transposition, IN is the N×N identity matrix, and
r is either 1 if x is complex-valued or 2 if x is real-valued. To simplify the notation, we
use the non-standard notation Nr(·) to refer to either the complex normal distribution
with pdf CN (·) for r = 1 or the real normal distribution with pdf N (·) for r = 2. It is
important to note that the noise variance σ2 is a random variable. As opposed to the
case where it is simply a fixed but unknown quantity, the noise distribution marginalised
over this random noise variance is able to model noise with heavy tails and is robust
towards outliers. Another important observation is that (A.28) does not explicitly
model any correlations in the noise. However, including correlation constraints into the
elicitation of the noise distribution lowers the entropy of the noise distribution which
is therefore more informative [55, Ch. 7], [56]. This leads to more accurate estimates
when there is genuine prior information about the correlation structure. However, if
nothing is known about the correlation structure, the noise distribution in (A.28) is the
best choice since it is the least informative distribution and is thus able to capture every
possible correlation structure in the noise [56, 57].

The Gaussian assumption on the noise implies that the observed data are distributed
as

p(x|αk,ψ,φk, σ2,Mk) = Nr(x;Bψ +Zk(φk)αk, σ2IN ) . (A.29)

The Fisher information matrix (FIM) for this observation model is derived in App. A
and given by (A.77). The block diagonal structure of the FIM means that the common
parameters ψ and σ2 have the same meaning in all models and can therefore be assigned
improper prior distributions.

The Noise Variance

The noise variance is a common parameter and has the same meaning in all models,
and it can therefore be assigned an improper prior. The Jeffreys’ prior p(σ2) = (σ2)−1
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is a widely used improper prior for the noise variance which we also adopt in this paper.
The popularity primarily stems from that the prior is invariant under transformations of
the form σm for all m 6= 0. Thus, the Jeffreys’ prior includes the same prior knowledge
whether we parametrise our model in terms of the noise variance σ2, the standard
deviation σ, or the precision parameter λ = σ−2.

The Linear Parameters

Since we have assumed that BHZk(φk) = 0, the linear parameters ψ of the null
model have the same meaning in all models. We can therefore use the improper prior
distribution with pdf p(ψ) ∝ 1 for ψ. This prior is often used for location parameters
as it is translation invariant. As the dimension of the vector αk of linear parameters
varies between models, a proper prior distribution must be assigned on it. For linear
regression models, the Zellner’s g-prior given by [40]

p(αk|g, σ2,φk,Mk) = Nr(αk; 0, gσ2[ZHk (φk)Zk(φk)]−1) (A.30)

has been widely adopted since it leads to analytically tractable marginal likelihoods and
is easy to understand and interpret [4]. The g-prior can be interpreted as the posterior
distribution on αk arising from the analysis of a conceptual sample x0 = 0 given the
non-linear parameters φk, a uniform prior on αk, and a scaled variance gσ2 [58]. Given
φk, the covariance matrix of the g-prior also coincides with a scaled version of the inverse
Fisher information matrix. Consequently, a large prior variance is therefore assigned to
parameters which are difficult to estimate. We can also make a physical interpretation
of the scalar g when the null model is the noise-only model. In this case, the average
signal-to-noise ratio (SNR) of the data is

η = E{αHk ZHk (φk)Zk(φk)αk}
E{eHe} (A.31)

= E{tr[Zk(φk)E{αkαHk }ZHk (φk)]}
Nσ2 = glk

N
(A.32)

where E{·} and tr(·) denote the statistical expectation operator and the matrix trace,
respectively. Thus, the value of g has a very simple relationship to the average SNR
when the null model is the noise-only model.

If the hyperparameter g are treated as a fixed but unknown quantity, its value must
be selected carefully. In, e.g., [2, 4, 59], the consequences of selecting various fixed
choices of g have been analysed and evaluated, and as we also show in Sec. 4, the
popular information criteria such as the AIC and BIC can be viewed as different ways
of selecting a particular value of g. In [4, 60], the hyperparameter g was also treated
as a random variable and integrated out of the marginal likelihood, thus avoiding the
selection of a particular value for it. For the prior distribution on g, a special case of
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the beta prime or inverted beta distribution with pdf

p(g|δ) = δ − r
r

(1 + g)−δ/r , δ > r . (A.33)

was used. The hyperparameter δ should be selected in the interval r < δ ≤ 2r [4].
Besides having some desirable analytical properties, p(g|δ) reduces to the Jeffreys’ prior
and the reference prior for a linear regression model when δ = r [61]. However, since
this prior is improper, it can only be used when the prior probability of the null model
is zero.

The non-linear Parameters

The elicitation of the prior distribution on the non-linear parameters φk is hard to do
in general. In this paper, we therefore treat the case of fixed but unknown non-linear
parameters and the case of non-linear parameters with a uniform prior of the form

p(φk|Mk) = W−1
k IΦk(φk) (A.34)

where IΦk(·) is the indicator function on the support Φk. This uniform prior is often
used for the non-linear parameters of sinusoidal and chirped signal models.

The Models

For the prior on the model, we select a uniform prior of the form p(Mk) = K−1IK(k)
where K = {1, 2, . . . ,K}. For a finite number of models, however, it is easy to use a
different prior in our framework through (A.7).

3.2 Bayesian Inference
So far, we have elicited our probability model consisting of the observation model in
(A.29) and the prior distributions on the model parameters. These distributions con-
stitute the integrand of the integral representation of the marginal likelihood in (A.4),
and we now evaluate this integral. After some algebra, the integrand can be rewritten
as

p(x|αk,ψ,φk, σ2,Mk)p(αk|g, σ2,φk,Mk)
× p(ψ)p(σ2)p(g|δ)p(φk|Mk)

∝ Nr(α; cmk, gσ
2[ZHk (φk)Zk(φk)]−1/(1 + g))

×Nr(ψ;mN , σ
2[BHB]−1)Inv-G

(
σ2; N − lN

r
,
Nσ̂2

k

r

)
×mN (x)(1 + g)−lk/r

(
σ̂2
N

σ̂2
k

)(N−lN )/r

p(g|δ)p(φk|Mk) (A.35)
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where Inv-G is the inverse gamma distribution. Moreover, we have defined

mk , [ZHk (φk)Zk(φk)]−1ZHk (φk)x (A.36)
mN , (BHB)−1BHx (A.37)

σ̂2
k ,

xH(IN − PB − g
1+gPZ)x

N
(A.38)

mN (x) , Γ((N − lN )/r)
(Nπσ̂2

N )(N−lN )/r|BHB|1/r
(A.39)

where PB and PZ are the orthogonal projection matrices of B and Zk(φk), respec-
tively, and σ̂2

k is asymptotically equal to the maximum likelihood (ML) estimate of the
noise variance in the limit σ̂2

ML = limg→∞ σ̂2
k. The estimate σ̂2

N is the estimated noise
variance of the null model, and it is defined as σ̂2

k for PZ = 0. Finally, mN (x) is the
unnormalised marginal likelihood of the null model. The linear parameters and the
noise variance is now easily integrated out of the marginal likelihood. Doing this, we
obtain that

p(x|g,φk,Mk) ∝ mN (x)
(1 + g)lk/r

(
σ̂2
N

σ̂2
k

)(N−lN )/r

(A.40)

= mN (x)(1 + g)(N−lN−lk)/r

(1 + g[1−R2
k(φk)])(N−lN )/r (A.41)

which we define as the unnormalised marginal likelihoodmk(x|g,φk) of modelMk given
g and φk. Moreover,

R2
k(φk) , xHPZx

xH(IN − PB)x (A.42)

resembles the coefficient of determination from classical linear regression analysis where
it measures how well the data set fits the regression. Depending on whether we assume
the hyperparameter g and non-linear parameters φk to be fixed parameters or random
variables, we also have to find values for them or integrate them out of the marginal
likelihood in (A.41). We look into this issue in the next two sections.

4 Known System Matrix
In this section, we consider the case where there are either no non-linear parameters or
they are known.
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4.1 Fixed Choices of g
We first assume that g is a fixed quantity. From (A.6) and (A.40), the Bayes’ factor is
therefore

BF[Mk;MN |g,φk] = (1 + g)−lk/r
(
σ̂2
N

σ̂2
k

)(N−lN )/r

. (A.43)

With a uniform prior on the models, it follows from (A.7) that the Bayes’ factor is
proportional to the posterior distribution with pdf p(Mk|x, g,φk) on the models. The
model with the highest posterior probability is the solution to

k̂ = arg max
k∈K

p(Mk|x, g,φk) (A.44)

= arg max
k∈K

[
−(N − lN ) ln σ̂2

k − lk ln(1 + g)
]
. (A.45)

As alluded to in Sec. 3.1, the value of g is vital in model selection. From (A.41), we
see that if g →∞, the Bayes’ factor in (A.43) goes to zero. The null model is therefore
always the most probable model, regardless of the information in the data (Bartlett’s
paradox). Another problem occurs if we assume that the least squares estimatemk →∞
or, equivalently, that R2

k(φk)→ 1 so that the null model cannot be true. Although we
would expect that the Bayes’ factor would also go to infinity, it converges to the constant
(1 + g)(N−ln−lk)/r, and this is called the information paradox [4, 35, 62]. For these two
reasons, the value of g should depend on the data in some way. A local empirical
Bayesian (EB) estimate is a data-dependent estimate of g, and it is the maximum of
the marginal likelihood w.r.t. g [4]

gEB
k = arg max

g∈R+
p(x|g,φk,Mk) (A.46)

= max
(

(N − lN )R2
k(φk)− lk

(1−R2
k(φk))lk

, 0
)

(A.47)

where R+ is the set of non-negative real-valued numbers. This choice of g clearly resolves
the information paradox. Inserting the EB estimate of g into (A.45) yields

k̂ = arg max
k∈K

[
− (N − lN ) ln (N − lN )σ̂2

ML
N − lN − lk

− lk ln(1 + gEB
k )
]

(A.48)

whose form is similar to most of the information criteria. When the null model is the
noise-only model so that lN = 0, these information criteria can be written as [20]5

k̂ = arg max
k∈K

[
−2N ln σ̂2

ML − rνkh(νk, N)
]

(A.49)

5The cost function must be divided by 2r when the information criteria are used for model averaging
and comparison in the so-called multi-modal approach [21].
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where νk is the number of real-valued independent parameters in the model, and h(νk, N)
is a penalty coefficient. For h(νk, N) = {2, lnN}, we get the AIC and the BIC, respec-
tively. Note that νk is not always the same as the number of unknown parameters [30].
Moreover, if the penalty coefficient is a linear function of νk or independent of it, νk may
be interpreted as the number of independent parameters which are not in all candidate
models. In nested models with white Gaussian noise such as the linear regression model
considered in this section, this means that the noise variance parameter does not have to
be counted as an independent parameter. Thus, selecting νk as either νk = 2lk/r+ 1 or
νk = 2lk/r does not change, e.g., the AIC and the BIC. Rewriting (A.48) into the form
of (A.49) and using (A.32) to show that ηEB

k = lkg
EB
k /N give the penalty coefficient

h(νk, N) = 2
rνk

[lk ln(1 +NηEB
k /lk)−N ln(1− lk/N)] (A.50)

which when inserted into (A.49) gives a model selection criterion we will refer to as the
empirical BIC (EBIC).

Interpretation of the EBIC

To gain some insight into the behaviour of the EBIC, we here compare it to the AIC
and the BIC in the context of a linear regression model with N � lk and lN = 0. The
number of independent parameters is therefore set to νk = 2lk/r so that

h(νk, N) = ln(1 +NηEB
k /lk)−N ln(1− lk/N)/lk (A.51)

≈ ln(1 +NηEB
k /lk) + 1 (A.52)

where the approximation follows from the assumption thatN � lk so that ln(1−lk/N) ≈
−lk/N . From this approximation, several interesting observations can be made. When
the SNR is large enough to justify that NηEB

k � lk, the EBIC is basically a corrected
BIC which takes the estimated SNR of the data into account. The penalty coefficient
grows with the estimated SNR and the chance of over-fitting thus becomes very low,
even under high SNR conditions where the AIC, but also the BIC tend to overestimate
the model order [63]. When the estimated SNR on the other hand becomes so low
that NηEB

k � lk, the EBIC reduces to an AIC-like rule which has a constant penalty
coefficient. In the extreme case of an estimated SNR of zero, the EBIC reduces to the
so-called no-name rule [20]. Interestingly, empirical studies [39, 64] have shown that
the AIC performs better than the BIC when the SNR in the data is low, and this is
automatically captured by the EBIC. The EBIC therefore performs well across all SNR
values as we demonstrate in Sec. 6.

4.2 Integration over g
Another way to resolve the information paradox is by treating g as a random variable
and integrate it out of the marginal likelihood. For the prior distribution on g in (A.33)
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and the unnormalised marginal likelihood in (A.41), we obtain a Bayes’ factor given by

BF[Mk;MN |φk] =
∫ ∞

0

mk(x|g,φk)
mN (x) p(g|δ)dg

= δ − r
lk + δ − r 2F1

(
N − lN

r
, 1; lk + δ

r
;R2

k(φk)
)

(A.53)

where 2F1 is the Gaussian hypergeometric function [65, p. 314]. When N is large or
R2
k(φk) is very close to one, numerical and computational problems with the evaluation

of the Gaussian hypergeometric function may be encountered [66]. From a computa-
tional point of view, it may therefore not be advantageous to marginalise (A.53) w.r.t.
g analytically. Instead, the Laplace approximation can be used as a simple alternative.
Using the procedure outlined in Sec. 2.2 and the results in App. B, we get that

BF[Mk;MN |φk] ≈ BF[Mk;MN |ĝ,φk] ĝ(δ − r)
r(1 + ĝ)δ/r

√
2πγ(ĝ|φk) (A.54)

where ĝ = exp(τ̂) and γ(ĝ|φk) can be found from (A.84) and (A.85), respectively, with
v = 1, w = (N − lN − lk − δ)/r, and u = (N − lN )/r. Since the marginal posterior
distribution on g does not have a symmetric pdf and in order to avoid edge effects near
g = 0, the Laplace approximation was made for the parametrisation τ = ln g [4]. This
parametrisation suggests that the posterior distribution on g is approximately a log-
normal distribution. The model with the highest posterior probability can be found by
maximising (A.54) w.r.t. the model index and this yields the Laplace BIC (LP-BIC)

k̂ = arg max
k∈K

[
− (N − lN ) ln σ̂2

k − lk ln(1 + ĝ)− δ ln(1 + ĝ) + r ln ĝ− rγ(ĝ|φk)/2
]
(A.55)

Compared to the maximisation in (A.45), (A.55) differs in terms of the estimate of g
and the last three terms. These terms accounts for the uncertainty in our point estimate
of g.

5 Unkown Non-linear Parameters
In this section, the non-linear parameters φk are also assumed unknown. First, φk
is considered an unknown but fixed quantity, and second, φk is considered a random
variable with the uniform prior in (A.34).
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5.1 Estimating the non-linear Parameters
As in Sec. 4.1, we derive an EB estimator of the non-linear parameters given by

φ̂
EB
k = arg max

φk∈Φk
p(x|g,φk,Mk) = arg max

φk∈Φk
p(x|φk,Mk)

= arg max
φk∈Φk

R2
k(φk) = arg max

φk∈Φk
Ck(φk) (A.56)

where we have defined
Ck(φk) , xHPZx . (A.57)

Note that Ck(φk) does not depend on the hyperparameter g so the EB estimator φ̂EB
k

is independent of what we assume about g. Depending on the structure of Zk(φk), it
might be hard to perform the maximisation of Ck(φk). In App. C, we have derived
the first and second order differentials of an orthogonal projection matrix as these are
useful in numerical optimisation algorithms for maximising Ck(φk). For the non-linear
regression model in (A.25), the EB estimator is identical to the ML estimator. Once
an estimate of φk has been found, the Bayes’ factor can be computed by inserting this
estimate into either (A.43), (A.53), or (A.54).

5.2 Integrating over the Non-linear Parameters
When we treat the ρk real-valued and non-linear parameters φk as random variables,
we must integrate them out of the marginal likelihood in (A.41). Since an analytical
marginalisation is usually not possible, we here consider doing the joint integral

BF[Mk;MN ] =
∫ ∞
−∞

∫
Φk
q(φk, τ)dφkdτ (A.58)

using the Laplace approximation with the change of variables τ = ln g. The integrand
is given by

q(φk, τ) = BF[Mk;MN | exp(τ),φk]p(φk|Mk)p(τ |δ) (A.59)
where

p(τ |δ) = exp(τ)p(g|δ)
∣∣
g=exp(τ) . (A.60)

For the uniform prior on φk in (A.34), the mode of q(φk, τ) w.r.t. φk is the EB estimate
in (A.56). Evaluated at this mode, the Hessian matrix H(φk) is given by

H(φ̂EB
k ) = exp(τ)(N − lN )

rN [1 + exp(τ)]σ̂2
k

D (A.61)

where we have defined
D , ∂2Ck(φk)

∂φk∂φ
T
k

∣∣∣∣
φk=φ̂EB

k

. (A.62)
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Using the results in App. C, the (n,m)’th element of D can be written as

[D]nm = 2Re
{
wH

[
Λnm − T nS−1

k Z
H
k (φ̂EB

k )Tm

− TmS−1
k Z

H
k (φ̂EB

k )T n
]
mk +wHT nS

−1
k T

H
mw

−mH
k T

H
n (IN − PZ)Tmmk

}
(A.63)

where we have defined

w , x−Zk(φ̂EB
k )mk (A.64)

Sk ,
[
ZHk (φ̂EB

k )Zk(φ̂EB
k )
]−1

(A.65)

T i ,
∂Zk(φk)
∂φi

∣∣∣∣
φk=φ̂EB

k

(A.66)

Λnm ,
∂2Zk(φk)
∂φn∂φm

∣∣∣∣
φk=φ̂EB

k

. (A.67)

Since φ̂EB
k does not depend on the value of τ , the mode and variance of q(φk, τ) w.r.t. τ

is the same as in Sec. 4.2 and can be found in App. B with v = 1, w = (N−lN−lk−δ)/r,
and u = (N − lN )/r. Thus, the Laplace approximation of the Bayes’ factor in (A.58) is

BF[Mk;MN ] ≈ BF[Mk;MN |ĝ, φ̂
EB
k ] ĝ(δ − r)

r(1 + ĝ)δ/r×W
−1
k (2π)(ρk+1)/2

√
γ(ĝ|φ̂EB

k )|−H(φ̂EB
k )|−1/2 .

(A.68)
When q(φk, τ) consists of multiple, significant, and well-separated peaks, the integral in
(A.58) can be approximated by a Laplace approximation to each peak at their respective
modes [52]. In this case, the Bayes’ factor in (A.68) will be a sum over each of these
peaks.

6 Simulations
We demonstrate the applicability of our model comparison algorithms by two simulation
examples. In the first example, we compare the penalty coefficient of our proposed
algorithms with the penalty coefficient of AIC, AICc, and BIC. In the second example,
we consider model comparison in a periodic signal model which consists of a single
non-linear parameter, the fundamental frequency. The simulation code can be found at
http://kom.aau.dk/~jkn/publications/publications.php.

http://kom.aau.dk/~jkn/publications/publications.php
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Fig. A.1: Interpretation of the various information criteria for lk = 5. The plots show the penalty
coefficient h(lk, N) as a function of the coefficient of determination R2

k(φk) and the number of data
points N . In the left plot, N = 95, and in the right, R2

k(φk) = 0.95 for the EBIC, the aEBIC, and the
LP-BIC.

6.1 Penalty Coefficient
In Sec. 4.1, we considered the interpretation of the AIC and the BIC for a regression
model with a known system matrix when the null model is the noise-only model and
N � lk. Here, we give some more insight by use of a simple simulation example in which
the penalty coefficients of the AIC, the AICc, the BIC, the EBIC, the approximate EBIC
(aEBIC), and the Laplace (LP-BIC) methods were found as a function of the coefficient
of determination R2

k(φk) and the number of data points N . The penalty coefficient of
the aEBIC is given by (A.52). We fixed the number of linear parameters to lk = 5, and
Fig. A.1 shows the results.

In the left plot, the penalty coefficients h(lk, N) were computed as a function of the
coefficient of determination for N = 95. Since the AIC, the AICc and the BIC do not
depend on the data, their penalty coefficients are constant. On the other hand, the
penalty coefficients of the EBIC, the aEBIC, and the LP-BIC are data dependent and
increase with the coefficient of determination.

In the right plot, the penalty coefficients h(lk, N) were computed as a function of
the number of data points N for R2

k(φk) = 0.95. Note that BIC has the same trend as
the EBIC, the aEBIC, and the LP-BIC although shifted. The vertical distance between
BIC and EB or LP depends on the particular value of R2

k(φk). In Fig. A.1, we set
R2
k(φk) = 0.95, but if R2

k(φk) ≈ 0.648 was selected instead, the EBIC and the BIC
would coincide for large values of N .

6.2 Periodic Signal
We consider a complex periodic signal model given by

Mk : x(n) =
L∑
i=1

αi exp(jωin)ILk(i) + e(n) (A.69)
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Fig. A.2: Percentage of correctly detected models, overestimated models, underestimated models,
and the MSE of the estimated model versus the SNR. The model was a periodic signal model with a
maximum of L = 10 harmonics resulting in 210 − 1 = 1023 different models. The curves corresponding
to BIC and MAP are almost coinciding.
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Fig. A.3: Prediction performance versus the SNR (top row) and versus the prediction step at an SNR
of 0 dB (bottom row) for a periodic signal model. In the plots in the left column, only the model
with the highest posterior probability is used. In the plots in the right column, all models are used for
making the prediction. The curves corresponding to BIC and MAP are almost coinciding.

for n = 0, 1, . . . , N − 1 where ILk(i) indicates whether the i’th harmonic component is
included in the modelMk or not. This model is a special case of the model in (A.25)
with the null model being the noise-only model, φk = ω, and αk being the complex
amplitudes. Since no closed-form solution exists for the posterior distribution on the
models for the periodic signal model, we consider the two approximations suggested
in Sec. 5. We refer to the approximation based on (A.43) as the EB method and the
approximation based on (A.68) as the Laplace (LP) method. The methods are compared
to the AIC, the BIC, and the asymptotic MAP rule by Djuric with the latter having
the penalty coefficient [9]

h(lk, N) = lnN + 3
2lk

lnN . (A.70)

For the periodic signal model, the Hessian matrix in (A.61) is a scalar which can be
approximated by [67]

H(ω̂EB
k ) = − ĝN(N2 − 1)

∑L
i=1 |[mk]i|2i2ILk(i)

6(1 + ĝ)σ̂2
k

. (A.71)

In the simulations, we set the maximum number of harmonic components to L = 10
and considered K = 2L − 1 = 1023 models. Zero prior probability was assigned to
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the noise-only model as the model comparison performance was evaluated against the
SNR. Moreover, this permits the use of the improper prior p(g|δ = r = 1) since g
is now a common parameter in all models. For each SNR from −10 dB to 20 dB
in steps of 1 dB, we ran 1000 Monte Carlo runs. As recommended in [21], a data
vector x consisting of N = 50 samples was generated in each run by first randomly
selecting a model from a uniform prior on the models. For this model, we then randomly
selected the fundamental frequency and the phases of the complex amplitudes from
a uniform distribution on the interval [(2π)−1, 2π/max(Lk)] and [0, 2π], respectively.
The amplitudes of the harmonics in the selected model were all set to one. Finally a
complex noise vector was generated and normalised so that the data had the desired
SNR. Besides generating a data vector, we also generated a vector xp of unobserved
data for n = N,N + 1, . . . 2N − 1.

In Fig. A.2, the percentage of correctly detected models, overestimated models,
underestimated models, and the mean-squared-error (MSE) of the estimated model
versus the SNR is shown. The MSE is defined as

E(L̂k) =
L∑
i=1

(ILk(i)− IL̂k(i))2 (A.72)

where L̂k is the set containing the harmonic numbers of the most likely model. For
an SNR above 0 dB, the EB and LP methods have almost identical performance with
the LP method performing slightly better. The BIC and the MAP method are visually
indistinguishable and perform generally worse than the EB and LP methods. AIC
performs much worse than all other methods. For SNRs below 0 dB, the BIC and
the MAP method have a strong tendency to underestimate the model whereas the
underestimation tendency is only weak for the other methods. In terms of the MSE,
the BIC and the MAP method performs worse than the other methods for low SNRs.
However, it should be noted that the percentage of correctly detected models is not
necessarily the best way of benchmarking model selection methods. As exemplified
in [21], the true model does not always give the best prediction performance, and it
may therefore be advantageous to either over- or underestimate the model order.

We have therefore also investigated the prediction performance, and the results are
shown in Fig. A.3. In the plots in the left column, only the single model with the
largest posterior probability was used for making the predictions of the predictable part
sp whereas all models were used as in (A.8) in the plots in the right column. The
prediction based on a single model and all models was the mean of p(xp|x,Mk) and
p(xp|x), respectively, where the latter depends on the former as in (A.8) with

p(xp|x,Mk) =
∫

Θk
p(xp|θk,Mk)p(θk|x,Mk)dθk . (A.73)

We have evaluated this integral by treating the fundamental frequency as a fixed and
unknown variable and by using the normal approximation on τ = ln g. In the top row,
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the MSE of the total prediction error versus the SNR is shown, and in the bottom row,
the MSE of the prediction error for each prediction step at an SNR of 0 dB is shown. In
the four plots, the oracle knows the true model but not the model parameters. From the
four figures, we see again that EB and LP outperform the other methods with AIC being
the overall worst. For low SNRs, we also see that the MSE of the prediction errors is
significantly lower when model averaging is used. Moreover, we see that the performance
is also better than the oracle performance and this demonstrates, as discussed above,
that the true model does not always give the best prediction performance. For high
SNRs, only AIC performs slightly worse than the other methods which performs almost
as well as the oracle. Moreover, there is basically no difference between the single and
multi-model predictions since a single model receives all posterior probability.

7 Conclusion
Model comparison and selection is a difficult and important problem and a lot of meth-
ods have therefore been proposed. In this paper, we first gave an overview over how
model comparison is performed for any model in a Bayesian framework. We also dis-
cussed the two major issues of doing the model comparison in a Bayesian framework,
namely the elicitation of prior distributions and the evaluation of the marginal likeli-
hood. Specifically, we reviewed the conditions for using improper prior distributions,
and we briefly discussed approximate numerical and analytical algorithms for evaluating
the marginal likelihood. In the second part of the paper, we analysed a general regres-
sion model in a Bayesian framework. The model consisted of both linear and non-linear
parameters, and we used and motivated a prior of the same form as the Zellner’s g-
prior for this model. Many of the information criteria can be interpreted in a new light
using this model with known non-linear parameters. These interpretations also gave
insight into why the AIC and the AICc often overestimate the model complexity for a
high SNR, and why the BIC underestimate the model complexity for a low SNR. For
unknown non-linear parameters, we proposed an approximate way of integrating them
out of the marginal likelihood using the Laplace approximation, and we demonstrated
through a simple simulation example that our proposed model comparison and selection
algorithms outperform other algorithms such as the AIC, the BIC and the asymptotic
MAP rule both in terms of detecting the true model and in making predictions.

A Fisher Information Matrix for the Observation Model
Let γ denote a mixed parameter vector of complex-valued and real-valued parameters.
Using the procedure in [68, App. 15C], it can be shown that the (n,m)’th element of
the Fisher information matrix (FIM) for the normal distribution Nr(x;µ(γ); Σ(γ)) is
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given by

[I(γ)]nm = 1
r

(
∂µ∗(γ)
∂γ∗n

)T
Σ−1(γ)

(
∂µ∗(γ)
∂γ∗m

)∗
+ 1
r

(
∂µ(γ)
∂γ∗n

)H
Σ−1(γ)

(
∂µ(γ)
∂γ∗m

)
+ 1
r

tr
(

Σ−1(γ)∂Σ(γ)
∂γ∗n

Σ−1(γ)
(
∂Σ(γ)
∂γ∗m

)H)
. (A.74)

For the observation model in (A.29), the parameter vector is given by γ =
[
ψT αTk φTk σ2]T ,

and the mean vector and covariance matrix are given by

µ(γ) = Bψ +Zk(φk)αk (A.75)
Σ(γ) = σ2IN . (A.76)

Computing the derivatives in (A.74) for the observation model in (A.29) yields the FIM
given by

I(γ) = 1
σ2

BHB 0 0
0 I(αk,φk) 0
0 0 N

rσ2

 (A.77)

where

I(αk,φk) =
[
ZHk (φk)Zk(φk) ZHk (φk)Qk(φk)
QH
k (φk)Zk(φk) 2

r Re
(
QH
k (φk)Qk(φk)

)] (A.78)

Qk(φk) , ∂(Zk(φk)αk)
∂φk

. (A.79)

Note that I(γ) is block diagonal which follows from the assumption that BHZk(φk) =
0.

B Laplace Approximation with the Hyper-g Prior
For the hyper-g prior in (A.33), the integral in (A.53) with the change of variables to
τ = ln g can be written in the form∫ ∞

0
gv−1(1+g)w[1+g(1−R2

k(φk))]−udg =
∫ ∞
−∞

exp(vτ)(1+exp(τ))w[1+exp(τ)(1−R2
k(φk))]−udτ .

(A.80)
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Taking the derivative of the logarithm of the integrand and equating to zero leads to
the quadratic equation

0 = ατ exp(2τ) + βτ exp(τ) + v (A.81)

where we have defined

ατ , (1−R2
k(φk))(v + w − u) (A.82)

βτ , (u− v)R2
k(φk) + 2v + w − u (A.83)

For u− w > v, the only positive solution to this quadratic equation is

τ̂ = ln
(
βτ +

√
β2
τ − 4ατv

−2ατ

)
(A.84)

which is the mode of the normal approximation to the integrand. The corresponding
variance at this mode with ĝ = exp(τ̂) is

γ(ĝ|φk) =
[
ĝu(1−R2

k(φk))
(1 + ĝ)2 − ĝw

[1 + ĝ(1−R2
k(φk))]2

]−1

. (A.85)

C Differentials of a Projection Matrix

Let P = G(GHG)−1GH denote an orthogonal projection matrix, and let S = GHG
denote an inner matrix product. The differential of S is then given by

dS = (dG)HG+GH(dG) . (A.86)

This result can be used to show that

dS−1 = −S−1[(dG)HG+GH(dG)]S−1 , (A.87)

and that
dP = P⊥(dG)S−1GH +GS−1(dG)HP⊥ (A.88)

where P⊥ = I − P is the complementary projection of P . Let δ denote another
differential operator. From the above results, we obtain after some algebra that

δ(dP ) = P⊥(δ(dG))S−1GH +GS−1(δ(dG))HP⊥

+ P⊥
[
(dG)S−1(δG)H + (δG)S−1(dG)H

]
P⊥

− P⊥
[
(δG)S−1GH(dG) + (dG)S−1GH(δG)

]
S−1GH

−GS−1 [(δG)HGS−1(dG)H + (dG)HGS−1(δG)H
]
P⊥

+GS−1
[
(dG)HP⊥(δG) + (δG)HP⊥(dG)

]
S−1GH . (A.89)
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Abstract
Joint fundamental frequency and model order estimation is an important problem in
several applications. In this paper, a default estimation algorithm based on a minimum
of prior information is presented. The algorithm is developed in a Bayesian framework,
and it can be applied to both real- and complex-valued discrete-time signals which may
have missing samples or may have been sampled at a non-uniform sampling frequency.
For the elicitation of a prior distribution, a prior of the same form as the Zellner’s
g-prior is demonstrated to be a good approximation to a default prior distribution, and
several approximations of the posterior distributions on the fundamental frequency and
the model order are derived. Moreover, one of the state-of-the-art joint fundamental
frequency and model order estimators is shown to be a special case of one of these
approximations. The performance of the approximations are evaluated in a small-scale
simulation study on both synthetic and real world signals. The simulations indicate that
the proposed algorithm yields more accurate results than previous algorithms.

1 Introduction
An important and basic problem in time-series analysis is the estimation of the funda-
mental frequency and the number of harmonic components of a periodic signal. The
problem is encountered in a wide range of science and engineering applications such as
music processing [1, 2], speech processing [3, 4], sonar [5], electrocardiography (ECG) [6],
and seismology [7]. In particular for musical applications, fundamental frequency esti-
mation has been subject to extensive research for several decades [2]. This is primarily
due to that a musical note is composed of the sum of a fundamental partial and a num-
ber of overtone partials. For harmonic instruments, these overtone partials are called
harmonics since their frequencies {ωi}li=2 are approximately related to the fundamental
frequency ω of the fundamental partial by ωi ≈ iω for i = 2, · · · , l [1, 8]. Since the
fundamental frequency is such an important physical attribute to musical applications,
the more elegant term pitch is often used instead [2]. Therefore, the problem considered
in this paper is often referred to as (single-)pitch estimation in the context of musical
applications.

The problem of estimating the fundamental frequency is typically defined in the
following way. A data set {x(tn)}N−1

n=0 originating from a discrete-time signal is observed
and modelled as

x(tn) = s(tn) + e(tn) , n = 0, 1, · · · , N − 1 (B.1)

where {tn}N−1
n=0 , {s(tn)}N−1

n=0 , and {e(tn)}N−1
n=0 are the sampling times, the predictable

part of the signal, and the non-predictable part of the signal, respectively. Usually, the
sampling period T is assumed to be constant so that tn = nT for t0 = 0. However, in
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order to allow for a non-uniform sampling scheme or missing samples, this assumption
is not made here. The predictable part consists of l harmonic components and is at
time tn given by

s(tn) =


l∑
i=1

αi exp(jiωtn), x(tn) ∈ C

l∑
i=1

ai cos(iωtn) + bi sin(iωtn), x(tn) ∈ R
(B.2)

where C and R denote the set of complex and real numbers, respectively, and j =
√
−1

is the imaginary unit. For the i’th harmonic component, the complex amplitude αi, the
in-phase component ai, the quadrature components bi, the amplitude Ai, and the phase
φi are related by

αi = ai + jbi = Ai exp(jφi) . (B.3)

Note that a real-valued signal of the form in (B.2) can be cast into the form of a complex-
valued signal in (B.2) by computing its down-sampled analytic signal [9]. Provided that
the frequencies of the first and last harmonics are not too close to zero and the Nyquist
frequency (relative to N), respectively, the solution to the estimation problem using
the down-sampled analytic signal yields nearly the same result as for the real-valued
signal [2, 10]. In this paper, the focus is on the complex-valued signal model since it
leads to simpler notation and faster algorithms [2, 11]. However, the results for the real-
valued signal model is also given since the transformations from real-valued to analytic
signals and vice versa under non-uniform sampling or with missing samples are more
time consuming.

Numerous fundamental frequency estimation algorithms have been suggested in the
literature. The simplest algorithms are the non-parametric methods based on, for ex-
ample, the auto-correlation function [12, 13] or the cepstrum [14] (See [15, 16] for other
non-parametric methods). The more advanced algorithms are based on a signal model
of the observed signal and are therefore referred to as parametric methods. These
are typically maximum likelihood-based (ML) methods [17, 18], subspace-based meth-
ods [11, 19], filtering methods [20, 21], or Bayesian methods [8, 22, 23]. We refer the
interested reader to [2] for a review of many of the non-Bayesian methods. Only a few
of the suggested methods assume that the number of harmonics is unknown. In order to
perform model selection, these methods typically add an order dependent penalty term
to the log-likelihood function [24–26], use the eigenvalues [27] or eigenvectors [28, 29],
or compare the angle between subspaces [30]. A good overview over these and other
methods can be found in [2]. In contrast to model comparison in which a probability
for each model is computed, these methods are typically only designed for detecting
the most likely model. On the other hand, model comparison enables us to account
for model uncertainty in the estimation of unknown model parameters and the predic-
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tion of missing data points by using all models instead of just the most likely one. As
demonstrated in, e.g., [31], model averaging increases the prediction performance.

In this paper, inference about the fundamental frequency and the number of har-
monics are made in a Bayesian framework. The Bayesian framework is used for model
comparison since it leads to consistent estimates under very mild conditions, naturally
selects the simplest model which explains the data reasonably well (the principle of
Occam’s razor [32]), takes model uncertainty into account for estimation and predic-
tion, and enables a more intuitive interpretation of the results [33, 34]. In a Bayesian
framework, prior distributions on the unknown quantities must be elicited and their hy-
perparameters must be selected. In general, this is not a trivial problem since the prior
information is usually not in the form of probability distributions, and prior informa-
tion must therefore be turned into one or several probability distributions. For model
comparison, this prior elicitation is very important since improper or vague priors may
lead to indeterminate or bad answers [34]. Another difficulty of the Bayesian methods is
that closed-form analytical solutions usually do not exist. Various numerical algorithms
such as Markov chain Monte Carlo sampling [35] can overcome this limitation, but the
computational load of running these algorithms is typically very high.

The primary aim of this paper is to develop a default estimation scheme for estimat-
ing the fundamental frequency and the number of harmonics. Note that even though
the number of harmonics might not be of interest by itself, it is still vital to estimate it
in order to avoid problems with for example pitch halving [11]. By the word default, we
mean that an almost user-parameter free algorithm is developed which automatically
follows from a minimum of prior information and a few minor approximations. The
approximations are made so that closed-form expressions are obtained which have a
computational load comparable to the methods suggested in [2]. Moreover, we show
that a special case of the proposed approach is identical to the algorithm proposed
in [2, Sec. 2.6]. Finally, we demonstrate through simulation examples that the proposed
method is superior to the state-of-the-art ML-based and subspace-based methods. Note
that we are here not concerned with the development of a full pitch detection and track-
ing system for speech or music applications such as YIN [12], RAPT [36], or NDF [37].
However, we believe that our estimator may be a useful component in such systems as
well as in similar systems for other application domains.

The paper is organised as follows. The primary aim and the inference method are
presented in Sec. 2. In Sec. 3, the default observation model and prior distributions
are developed, and it is shown that these can be approximated by a prior distribution
with the same form as the Zellner’s g-prior. The observation model and the prior
distributions are turned into posterior distributions on the fundamental frequency and
the model order in Sec. 4. In Sec. 5, various approximations of varying accuracy and
computational load are developed, and in Sec. 6 it is demonstrated that a state-of-the-
art ML-based algorithm is a special case of one of these approximations. In Sec. 7,
the approximations are evaluated on a synthetic signal, and the applicability of the
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algorithm is demonstrated for the spectral analysis of a speech signal. Finally, Sec. 8
concludes this paper.

2 Problem Formulation and Background
The primary aim is to make inference about the fundamental frequency ω and the model
order l given the prior information I and the N data points collected in the vector x.
That is, we wish to find the posterior densities

p(ω, l|x, I) = p(ω|x, l, I)p(l|x, I) (B.4)

and some of their statistics such as the mode, the mean, and the variance. In (B.4)
and the rest of the paper, the generic notation p(·) is used to denote both a probability
density function (pdf) over a continuous parameter and a probability mass function
(pmf) over a discrete parameter. The model order l labels a unique model Ml with
model parameters θl ∈ Θl. For the problem at hand, ω is one of these parameters, and
the remaining model parameters such as the noise parmeters and the complex amplitudes
are nuisance parameters. The observation model p(x|θl, l, I) describes the relationship
between the data and the model. When viewed as a function of the model parameters,
the observation model is referred to as the likelihood function, and it plays an important
role in statistics where it is mainly used for parameter estimation. However, model
comparison cannot only be based on comparing the likelihoods of the candidate models
as more complex models can always fit the observed data better than simpler models. In
a Bayesian framework, the model parameters and the model order are random variables
with the prior pdf p(θl|l, I) and pmf p(l|I), respectively. After observing some data, the
state of knowledge is updated by transforming these prior pdfs into the posterior pdfs
p(θl|x, l, I) and p(l|x, I) which are connected by Bayes’ theorem

p(θl|x, l, I) = p(x|θl, l, I)p(θl|l, I)
p(x|l, I) (B.5)

p(l|x, I) = p(x|l, I)p(l|I)
p(x|I) (B.6)

where
p(x|l, I) =

∫
Θl
p(x|θl, l, I)p(θl|l, I)dθl (B.7)

is called the marginal likelihood or the evidence. For model comparison, the odds of two
competing model orders k and i are often compared. In this connection, the posterior
odds are often used, and they are given by

p(k|x, I)
p(i|x, I) = BF[k, i]p(k|I)

p(i|I) (B.8)
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where the Bayes’ factor is
BF[k, i] = p(x|k, I)

p(x|i, I) . (B.9)

Since the prior and posterior pdfs on the model order are discrete, it is easy to find the
posterior odds and the posterior distribution once the Bayes’ factors are known. For
example, the posterior pmf on the model order is

p(l|x, I) = BF[l; k]p(l|I)∑L
i=1 BF[i; k]p(i|I)

(B.10)

where the model order k labels some user selected base model which we compare all
other models against. Therefore, the main challenge in Bayesian model comparison is
to compute the Bayes’ factor for competing pairs of models. However, before Bayes’
theorem can be used to make inference about the fundamental frequency and the model
order in Sec. 4, the prior information I must first be turned into an observation model
and prior distributions on the model parameters.

3 A Default Probability Model
As alluded to previously, we are here concerned with the development of an inference
scheme which automatically follows from a minimum of prior information I. Thus, a
fundamental problem in the inference scheme is to specify a probability model which
reflects I. The amount of prior information that is assumed can be stated in the following
way.

Assumption 3.1
We are given N data points {x(tn)}N−1

n=0 from a zero-mean real- or complex-valued signal
which has been sampled at the known time instances {tn}N−1

n=0 . The signal is wide-sense
stationary (WSS) and consists of a predictable part which is periodic, corrupted by
additive noise, and bandlimited to the known angular frequency interval [ωa, ωb].

For a given application, more prior information may be available which should be in-
cluded in this assumption. For example in a pitch tracking system, the estimates of the
last frame is known, and we might also know something about the correlation structure
of the amplitudes of the harmonics and the noise based on, e.g., physical properties.
However, we are here concerned with a default and application independent inference
scheme so only the information I in Ass. 3.1 is assumed. From I, the observation model
and the prior distributions on the model parameters are deduced, and together they con-
stitute the probability model. For the deduction, the principles of maximum entropy
and transformation groups is used [38, 39]. Using a few minor approximations, the prob-
ability model is later slightly altered so that it becomes more analytically tractable. For
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notational convenience, the following vectors and matrix are defined

x ,
[
x(t0) · · · x(tN−1)

]T (B.11)

e ,
[
e(t0) · · · e(tN−1)

]T (B.12)

αl ,


[
α1 · · · αl

]T
, x ∈ CN[

a1 · · · al b1 · · · bl

]T
, x ∈ RN

(B.13)

zi ,
[
exp(jiωt0) · · · exp(jiωtN−1)

]T (B.14)

Zl ,


[
z1 · · · zl

]
, x ∈ CN[

Re(z1) · · · Re(zl) Im(z1) · · · Im(zl)
]
, x ∈ RN

(B.15)

where (·)T denotes matrix transposition, and Re(·) and Im(·) take the real and imaginary
part, respectively, of a complex number.

3.1 The observation model
In order to deduce the observation model, a model for the non-predictable part or the
noise must be selected in (B.1) which in vector notation is given by

x = Zlαl + e . (B.16)

That is, which distribution should be selected for the noise vector e given the prior
information I? Obviously, the distribution must integrate to one and have zero-mean,
and the average power of the noise process must be finite since the signal has been
sampled. Thus, the noise variance σ2 is therefore finite, and the WSS property implies
that σ2 does not change with time. As advocated in [38, 39], the pdf which maximises
the entropy under these constraints should be selected, and this pdf is the (complex)
normal distribution with density

p(e|σ2, I) =
[
rπσ2]−N/r exp

(
−e

He

rσ2

)
(B.17)

=
{
CN (e; 0, σ2IN ) , r = 1
N (e; 0, σ2IN ) , r = 2

(B.18)

where (·)H denotes conjugate matrix transposition, IN is the N × N identity matrix,
and r is either 1 for x ∈ CN or 2 for x ∈ RN . To simplify the notation, the non-standard
notation Nr(·) is used to refer to either the complex normal pdf CN (·) for r = 1 or the
real normal pdf N (·) for r = 2. It is important to note that the noise variance σ2 is
a random variable. As opposed to the case where it is simply a fixed and unknown
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quantity, the noise distribution marginalised over this random noise variance is able
to model noise with heavy tails and is robust towards outliers. In Sec. 3.2, the prior
distribution on the noise variance is elicited. Note that (B.18) does not explicitly model
any correlation structure in the noise. If prior information about such a structure is
available, it should be included in the constraints to enable more accurate estimation
results. However, including these constraints lowers the entropy so if nothing is known
about a correlation structure, (B.18) is the least informative distribution on the noise
since it maximises the entropy and is thus able to capture any correlation structure in
the noise [40, 41].

From (B.18), it follows that the observation model is

p(x|αl, σ2, ω, l, I) = Nr(x;Zlαl, σ2IN ) . (B.19)

In most of the literature on fundamental frequency estimation, the same observation
model is used. However, the derivation presented here facilitates a different interpreta-
tion of this model. Namely, when nothing is known about the noise except that it is WSS
and has a finite power, the white Gaussian noise assumption is the least informative or
most conservative noise distribution.

3.2 The Prior Distributions
When the parametrisation is not given by the problem, the maximum entropy method
cannot be used for the elicitation of a default prior distribution [42, Sec. 5.6.2]. For exam-
ple, the noise variance σ2 has so far been used in the parametrisation, but the standard
deviation σ or the precision parameter λ = σ−2 could have been used instead. Applying
the maximum entropy principle to either of these three common representations leads
to the unsatisfactory situation that the prior distribution is not invariant under the
choice of parametrisations. In order to cope with the different representations, the in-
variances which the prior distribution must obey are often considered [38, 39]. That is,
which transformations of the parameters do not change the prior knowledge? Another
useful question to consider is which parameters are logically connected. That is, if the
value of one parameter is known, would that change the state of knowledge about the
other parameters? Although this is not a necessary question to consider, selecting a
representation in which the parameters are not logically connected simplifies the prior
elicitation [43, App. A]. In our representation, the parameters are the complex ampli-
tudes αl, the noise variance σ2, the fundamental frequency ω, and the model order l.
The fundamental frequency is clearly logically connected to the model order since it
must be below ωb/l. However, other dependencies between the parameters cannot be
extracted from our prior information I, and the prior pdf is therefore factored as

p(αl, σ2, ω, l|I) = p(αl|I)p(σ2|I)p(ω|l, I)p(l|I) . (B.20)
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The Noise Variance

Since the choice of parametrisation is not obvious, the prior distribution on the noise
variance is selected such that it does not depend on whether the noise variance, the
precision parameter, or the standard deviation is used. For invariance under either of
these representations, it is therefore required that

p(σ|I)dσ = p(σm|I)dσm , ∀ m 6= 0 (B.21)

which is satisfied for p(σ|I) ∝ σ−1. This improper prior pdf is very famous and known
as the Jeffreys’ prior [44]. It is improper since it does not integrate to one. In practice,
however, the noise variance cannot go all the way to zero due to, for example, quanti-
sation noise, and the noise variance is always upper bounded so a normalised prior pdf
on the noise variance is

p(σ2|I) =
{[

ln(w/v)σ2]−1
v < σ2 < w

0 otherwise
. (B.22)

The bounds on the noise variance have almost no influence on the inference so they are
often selected as v → 0 and w →∞ to simplify the analysis [43, App. A].

The Fundamental Frequency

For the elicitation of the prior distribution on the fundamental frequency, the arguments
from Sec. 3.2 can be repeated. Whether the (angular) fundamental frequency ω, the
ordinary fundamental frequency f = ω/(2π), or the fundamental period τ = f−1 is
used, does not change the prior knowledge. That is, the prior distribution should be
invariant under any transformation of the form kωm for any positive constant k. From
the prior information I, the signal is bandlimited to the interval [ωa, ωb]. Given the
model order l, ω must therefore lie on the interval Ωl = [ωa, ωb/l]. Thus, using the same
arguments as for the noise variance, the posterior pdf on the fundamental frequency is

p(ω|l, I) =
{

(Flω)−1 ω ∈ Ωl
0 otherwise

(B.23)

where Fl = ln(ωb) − ln(lωa). This prior was also derived in [43, App. A] for a single
sinusoid using a more ingenious argument.

The Complex Amplitudes

The sinusoidal model is typically parametrised by the Cartesian coordinates (ai, bi) or
the polar coordinates (Ai, φi). Since neither of these representations change the state
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of knowledge, the prior pdf on the complex amplitudes is required to be invariant under
the transformation between these two representations. That is,

p(ai, bi|I)daidbi = q(Ai, φi|I)AidAidφi (B.24)

for i = 1, · · · , l where p(ai, bi|I) and q(Ai, φi|I) are the pdfs on the Cartesian and polar
coordinates, respectively. From the prior information I, the signal is assumed to be
zero mean and WSS. In terms of the Cartesian coordinates, this implies that ai and bi
are uncorrelated and both have zero mean and the same expected power σ2

α/2. For the
polar coordinates, it implies that the phase is uniformly distributed on any continuous
interval of length 2π and uncorrelated with the amplitude. Finally, since the phases
{φi}li=1 are independent and uniformly distributed, the l harmonic components are
uncorrelated [45, Ch. 4]. We note in passing that many of the same arguments are
also used for the derivation of the covariance matrix model for a time series. For the
marginal pdfs f and g, (B.24) can therefore be written as

f(ai)f(bi) = (2π)−1g(Ai) , i = 1, · · · , l . (B.25)

For ai = c and bi = 0, this reduces to g(c) = 2πf(c)f(0) so that (B.25) becomes

f(ai)f(bi) = f

(√
a2
i + b2i

)
f(0) , i = 1, · · · , l . (B.26)

The only possible solution to this functional equation is that f is a normal pdf [39, Ch. 7]
so that

p(ai, bi|σ2
α, I) = N2([ai, bi]T ; 0, (σ2

α/2)I2) . (B.27)

Turning this bivariate real normal pdf into a univariate complex normal pdf on the
complex amplitude αi gives [46, Ch. 15]

p(αi|σ2
α, I) = N1(αi; 0, σ2

α) . (B.28)

The joint pdf on αl is therefore

p(αl|σ2
α, I) = Nr(αl; 0, (σ2

α/r)Irl) . (B.29)

The derivation of the normal pdf given above is often called the Herschel-Maxwell deriva-
tion [39]. Since σ2

α is unknown, this hyperparameter is treated as a random variable. By
using the same arguments as for the noise variance, the following hyperprior is obtained

p(σ2
α|I) =

{[
ln(w/v)σ2

α

]−1
v < σ2

α < w

0 otherwise
. (B.30)
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The Model Order

Since the model order is a discrete parameter, the maximum entropy principle can be
applied without worrying about the parametrisation. Under the constraint that the
prior pmf of the model order must integrate to one, p(l) is the uniform pmf on the set
l ∈ {1, 2, · · · , L}. As model orders larger than bωb/ωac have zero support, L should
not be chosen larger than this value. Note that the model order l = 0 is not in the
support set since the prior information I states that a predictable part is present in the
signal. However, later on, it is discussed how the proposed algorithm can cope with the
detection of a predictable part.

3.3 The g-Prior
In the previous sections, the prior information I has been turned into a default proba-
bility model. Unfortunately, the prior probability model renders the inference problem
analytically intractable. However, if a re-parametrisation and a few minor approxima-
tions are made, a prior on the same form as the Zellner’s g-prior [47] is obtained, and
this prior has some tractable analytical properties [34, 48]. For the re-parametrisation,
the power of the i’th harmonic component is written as

σ2
α

r
= rgσ2

N
⇐⇒ g = Nσ2

α

r2σ2 = Nη

rl
(B.31)

where the signal-to-noise ratio (SNR) is defined as

η , E[|s(tn)|2]
E[|e(tn)|2] =

l∑
i=1

σ2
α

rσ2 = lσ2
α

rσ2 . (B.32)

Thus, g may be interpreted as N/r times the average SNR. Note that although any prior
dependency between the complex amplitudes and the noise variance was included in the
factorisation in (B.20), the dependency automatically appears through g. As reviewed
in [48], the hyperparameter g can be set to a fixed value or treated as a random variable.
When g is a random variable, the prior pdf of g can be derived from (B.31), (B.30), and
(B.22) to

p(g|I) =
{

ln(w/v)−| ln(r2g/N)|
ln2(w/v)g , g ∈

[
Nv
r2w ,

Nw
r2v

]
0 , otherwise

(B.33)

which in the limit of v → 0 and w →∞ reduces to the prior p(g|I) ∝ g−1 for g > 0.
To justify the approximations, which we introduce below, the following assumption

is made.
Assumption 3.2
The number of data points N is large enough to justify that (N/r)(ZHl Zl)−1 ≈ Irl.
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Ass. 3.2 is often used in connection with sinusoidal frequency estimation to lower the
computational complexity of the inference algorithm significantly. It holds for a uni-
form sampling scheme and for sufficiently random non-uniform sampling schemes, and
it stems from that sinusoids are asymptotically orthogonal for any set of distinct fre-
quencies. That is,

lim
N→∞

r

N
ZHl Zl = Irl . (B.34)

For a fixed N , the approximation gets progressively worse as the frequencies become
smaller and closer [2]. Under Ass. 3.2 and the re-parametrisation in (B.31), the prior
pdf on the complex amplitudes becomes

p(αl|σ2, ω, g, I) = Nr(αl; 0, gσ2(ZHl Zl)−1) . (B.35)
Another consequence of Ass. 3.2 is that the likelihood function for the fundamental
frequency is very sharply peaked around the ML estimate of ω. Therefore, the prior
distribution on ω only has negligibly effect on the posterior distribution [43, App. A],
and it is therefore approximated by a uniform pdf on the interval Ωl. That is,

p(ω|l) = W−1
l Iωl(ω) (B.36)

where Wl = ωb/l − ωa and Iωl(ω) is the indicator function on the interval Ωl.
As noted in Sec. 3.2, the bounds on the noise variance have almost no influence on

the inference. They are therefore selected as v → 0 and w → ∞ so that the improper
Jeffreys’ prior p(σ2|I) ∝ (σ2)−1 is obtained for the noise variance. For Bayesian compar-
ison of models with parameter spaces of different dimensions, proper prior distributions
must be selected on the model parameters to make the Bayes’ factor well-defined [34].
However, since the noise variance is a common parameter in all models, an improper
prior may be used on it [49]. Since g is also a common parameter in all models, the
prior p(g|I) ∝ g−1 may be used for g > 0. For example, this prior has been used in [50].
Although simple, this prior does not allow marginalisation w.r.t. g in the inference step.
However, the prior is a limiting case of the beta prime or inverted beta distribution with
density

p(g|ε, δ, I) = (δ − 1)Γ(ε+ δ)
εΓ(ε)Γ(δ) gε(1 + g)−δ−εIR+(g) (B.37)

which is proper for δ > ε + 1 > 0. Although this prior pdf enables analytical inference
w.r.t. g, the special case for ε = 0 is only used in the sequel to keep the results simpler.
Moreover, this special case was also suggested in [48], and it involves only the single
hyperparameter δ > 1. Since it is proper, it can be used to detect if a predictable
part is present. In the limit of δ → 1, the improper and user-parameter free prior
p(g|I) ∝ (1 + g)−1 is obtained, and it has been shown in [51] that the joint prior
p(g, σ2|I) ∝ [σ2(1 + g)]−1 is the Jeffreys’ prior and the reference prior [52] for a linear
regression model. As this improper prior is a special case of the proper prior on g,
the algorithm is derived in the next section for the proper prior. This means that the
developed algorithm is able to cope with the detection of predictable part.
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4 Bayesian Inference
So far, a default probability model has been developed for the estimation problem based
on the prior information I. Based on this model, Bayes’ theorem is now used to com-
pute the posterior distributions on the quantities of interest which are the fundamental
frequency for every candidate model and the model order. In order to cope with the
detection of a predictable part in the signal, the proper prior distribution on g is used.
The joint posterior pdf on all model parameters and the number of harmonics is1

p(αl, σ2ω, g|x, l) ∝ p(x|αl, σ2, ω, g, l)p(αl|σ2, ω, g, l)
× p(σ2)p(ω|l)p(g)

∝ Nr(αl; cα̂l, σ2Cl)Inv-G(σ2;N/r,Nσ̂2
l /r)

× Γ(N/r)IΩl(ω)IR+(g)
(πNσ̂2

l )N/rWl(1 + g)l+δ (B.38)

where Inv-G is the inverse gamma pdf. Moreover, we have defined

α̂l , (ZHl Zl)−1ZHl x (B.39)
c , g(1 + g)−1 (B.40)

Cl , c(ZHl Zl)−1 (B.41)

σ̂2
l ,

xH(IN − cP l)x
N

(B.42)

R2
l (ω) , x

HP lx

xHx
. (B.43)

When the ML estimate of the fundamental frequency is used and c = 1, σ̂2
l is the

ML estimate of the noise variance. The matrix P l is the orthogonal projection matrix
onto the space spanned by the columns of Zl, and R2

l (ω) resembles the coefficient of
determination from linear regression analysis where it is used to measure the prediction
performance. Integrating (B.38) over the noise variance and the complex amplitudes
gives

p(ω, g|x, l) ∝ m0(x)(δ − 1)fl(ω, g, δ)IΩl(ω)IR+(g)
Wl

(B.44)

where

m0(x) , Γ(N/r)(πxHx)−N/r ∝ p(x|l = 0) (B.45)
fl(ω, g, δ) , (1 + g)N/r−l−δ[1 + g(1−R2

l (ω))]−N/r (B.46)
1To keep the notation uncluttered, the explicit dependence on the prior information I is omitted in

the rest of the paper.
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are the unnormalised marginal likelihood for the noise-only model and a very important
function in the sequel, respectively. In the case where g is a known parameter, the
marginal posterior pdf on ω under model order l is proportional to this function

p(ω|x, g, l) = p(ω, g, l|x)
p(g)p(l) ∝ fl(ω, g, 0)IΩl(ω) . (B.47)

When g is an unknown parameter and l > 1 − δ, it can be integrated out of (B.44) so
that the marginal posterior pdf on ω under model order l is obtained as

p(ω|x, l) =
∫ ∞

0

p(ω, g, l|x)
p(l) dg ∝

∫ ∞
0

fl(ω, g, δ)IΩl(ω)dg

∝ 2F1(N/r, 1; l + δ;R2
l (ω))IΩl(ω) (B.48)

where 2F1 is the Gaussian hypergeometric function [53, p. 314]. The condition l > 1− δ
ensures that the integral in (B.48) converges, and it is satisfied for all l when the prior
on g is proper, i.e., δ > 1, and for any l > 0 even for the improper prior on g with δ → 1.
The marginal pmf on the model order is given by

p(l|x) = p(x|l)p(l)
p(x) = BF[l, 0]p(l)∑L

i=0 BF[i, 0]p(i)
(B.49)

where p(x|l, I) is the marginal likelihood and

BF[l, 0] = p(x|l)
p(x|l = 0) = ml(x)

m0(x) (B.50)

is the Bayes’ factor. Here, the noise-only model is used as the base model so the prior
distribution on g must be proper. When the noise-only model is not in the set of
candidate models, the model with a single harmonic component is used as the base
model. In this case, the prior on g can be improper, and the Bayes’ factor is given by

BF[l, 1] = lim
δ→1

BF[l, 0]
BF[1, 0] . (B.51)

When g is a known parameter, the Bayes’ factor has the following integral representation

BF[l, 0|g] =
p(l = 0)

∫
Ωl p(ω, g, l|x)dω

p(l = 0|x)p(g)p(l)

= 1
Wl

∫
Ωl
fl(ω, g, 0)dω , (B.52)
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and when g is an unknown parameter, the Bayes’ factor is

BF[l, 0] = δ − 1
Wl

∫
Ωl

∫ ∞
0

fl(ω, g, δ)dgdω (B.53)

= δ − 1
Wl(l + δ − 1)

∫
Ωl

2F1(N/r, 1; l + δ;R2
l (ω))dω . (B.54)

Unfortunately, the modes and the moments of the posterior pdf on the fundamental
frequency are not available in closed-form due to the non-linear way that ω parametrises
the pdfs in (B.47) and (B.48). Moreover, the posterior model order probabilities are not
available in closed-form since the integrals in (B.52) and (B.54) cannot be computed
analytically. In Sec. 5, various approximate ways of finding these modes, moments, and
posterior probabilities are discussed.

4.1 Selecting a Value for g

In order to facilitate an easier evaluation of the posterior pdfs for the fundamental fre-
quency and the model order, the parameter g is often assumed to be a deterministic
parameter rather than a random variable when it is unknown. Thus, instead of marginal-
ising over g, a value for g is selected or estimated. There exist several ways of selecting
the value of g, and two popular choices are considered here. Selecting gBIC = N approx-
imately corresponds to the Bayesian information criterion (BIC) [48]. Alternatively, an
empirical Bayesian method can be used in which the unknown hyperparameter g is esti-
mated from the data. The value of g can then be estimated as the maximum likelihood
estimate of the joint pdf p(x,αl, σ2, ω|g, l) integrated w.r.t. the unknown parameters.
However, since the marginalisation over the fundamental frequency cannot be done in
closed-form, the marginalisation is only carried out over the complex amplitudes and
the noise variance, and the fundamental frequency is simply replaced with its MAP
estimate ω̂ which is derived in the next section. That is,

gEB
l = arg max

g∈R+
p(x, ω̂|g, l) = arg max

g∈R+
p(ω̂|x, g, l)

= arg max
g∈R+

fl(ω̂, g, 0) = max
(
NR2

l (ω̂)− rl
(1−R2

l (ω̂))rl , 0
)
. (B.55)

There are several other ways of selecting the value of g, and the interested reader is
referred to the excellent review in [48] and the references therein.

5 Approximations
As stated in the previous section, the goal is to find the modes and the variances
of the fundamental frequency for every candidate model as well as the posterior model
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probabilities. In this section, several approximations for various choices of g are derived.
The accuracy of these approximations is evaluated in a small-scale simulation study in
Sec. 7.

5.1 Numerical Integration
Since the integrals in (B.52) and (B.54) are one dimensional integrals, they can easily be
evaluated using numerical integration techniques. For example, the integrals in (B.52)
and (B.54) can be approximately evaluated by computing

BF[l, 0|g] ≈ 1
K

K∑
k=1

fl(ωk, g, 0) (B.56)

BF[l, 0] ≈ (δ − 1)
K(l + δ − 1)

K∑
k=1

2F1(N/r, 1; l + δ;R2
l (ω)) , (B.57)

respectively, where {ωk}Kk=1 are K equidistant candidate frequencies from the set Ωl
with Wl/K = ωk+1 − ωk, ω1 = ωa, and ωK = ωb/l −Wl/K. However, the functions
fl(ω, g, 0) and 2F1(N/r, 1; l+δ;R2

l (ω)) are usually very sharply peaked around the mode
of the fundamental frequency so the pdfs have to be evaluated over a fine frequency grid
to make the approximation accurate. Moreover, the computation of fl(ωk, g, 0) and, in
particular, 2F1(N/r, 1; l + δ;R2

l (ωk)) is quite costly since either xHP lx or 2F1 has to
be computed for all K candidate frequencies. Even under Ass. 3.2, the limit in (B.34)
cannot be used to justify the approximation

xHP lx ≈
r

N
‖ZHl x‖2 (B.58)

since the value of fl(ω, g, δ) is very sensitive to even small perturbations in R2
l (ω) when

it is close to one and the SNR is large. Thus, the numerical integration of (B.52) and
(B.54) may entail a too high computational load, and some analytical approximations
are therefore also considered since they can reduce this computational load significantly.

5.2 The Distribution on the Fundamental Frequency
Although a closed-form expression has been derived for the pdf of the fundamental fre-
quency for both a known and an unknown g in (B.47) and (B.48), respectively, neither
its moments nor its mode can be found in closed-form. The pdf of the fundamental
frequency is therefore approximated by a normal pdf whose mean, mode, and variance
are easily accessible. This approximation is also useful for the evaluation of the inte-
grals in (B.52) and (B.54). The normal approximation is accurate when the following
assumption is true.
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Assumption 5.1
The SNR is high enough to justify that the posterior pdfs p(ω|x, g, l) and p(ω|x, l) of
the fundamental frequency for a known and an unknown g, respectively, consist only of
a single important symmetric peak.

Under adverse signal conditions such as a low SNR, Ass. 5.1 is false since the pdfs
p(ω|x, g, l) and p(ω|x, l) are multi-modal. In this case, the distribution on the fundamen-
tal frequency may be approximated by a Gaussian mixture model instead [54, Ch. 12].
However, this is not explored any further in this paper. In Sec. 7, the accuracy of
Ass. 5.1 is evaluated. The normal approximation of p(ω|x, g, l) is

p(ω|x, g, l) ≈ N2(ω; ω̂, sl(ω̂|g)) (B.59)

where ω̂ is the mode of p(ω|x, g, l) corresponding to the MAP estimate of the funda-
mental frequency, and

sl(ω̂|g) = −
[
∂2 ln p(ω|x, g, l)

∂ω2

∣∣∣∣
ω=ω̂

]−1

. (B.60)

The normal approximation

p(ω|x, l) ≈ N2(ω; ω̂, sl(ω̂)) (B.61)

has the same mean, but the variance is

sl(ω̂) = −
[
∂2 ln p(ω|x, l)

∂ω2

∣∣∣∣
ω=ω̂

]−1

. (B.62)

As stated above, the MAP estimate of the fundamental frequency under model order l
does not depend on whether the value of g is known or not. It is given as the solution
to

ω̂ = arg max
ω∈Ωl

p(ω|x, g, l) = arg max
ω∈Ωl

p(ω|x, l)

= arg max
ω∈Ωl

R2
l (ω) = arg max

ω∈Ωl
xHP lx , (B.63)

and it is the same as the ML estimate [45, Ch. 4]. Unfortunately, it is costly from a
computational point of view to find the ML estimate since the cost-function in (B.63)
has a complicated multi-modal shape and is very sharply peaked around ω̂, especially for
a high SNR. Typically, the ML estimate is found by first evaluating the cost-function
on a fine grid and then performing a local optimisation around the maximum value
of the cost-function on this grid. However, the computational complexity of this pro-
cedure may be too high since the projection matrix P l must be evaluated for every
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candidate frequency. The computational cost can be significantly reduced by making
the approximation in (B.58). This leads to the following approximate MAP-estimate

ω̂ ≈ arg max
ω∈Ωl

xHZlZ
H
l x = arg max

ω∈Ωl
‖ZHl x‖22 (B.64)

which under a uniform sampling frequency can be computed efficiently using a single
FFT [2]. To get the MAP estimate in (B.63), the approximate MAP estimate in (B.64)
may be used as the starting point of a local optimisation using the exact cost-function
in (B.63). The local optimisation can also be substituted for faster and approximate
techniques based on, e.g., interpolation [55].

In order to find the variances sl(ω̂|g) and sl(ω̂) of the fundamental frequency, the
second order derivatives of ln p(ω|x, g, l) and ln p(ω|x, l) must be found and evaluated
at the mode ω̂. The first order derivatives are given by

∂ ln p(ω|x, g, l)
∂ω

= c

rσ̂2
l

∂Cl(ω)
∂ω

(B.65)

∂ ln p(ω|x, l)
∂ω

= 2F1(N/r + 1, 2; l + δ + 1;R2
l (ω))

rσ̂2
0(l + δ)2F1(N/r, 1; l + δ;R2

l (ω))

× ∂Cl(ω)
∂ω

(B.66)

where
Cl(ω) , xHP lx . (B.67)

Note that for l = 1, Cl(ω) is the periodogram. Evaluated at the mode, the second-order
derivatives are

∂2 ln p(ω|x, g, l)
∂ω2

∣∣∣∣
ω=ω̂

= c

rσ̂2
l

d2 (B.68)

∂2 ln p(ω|x, l)
∂ω2

∣∣∣∣
ω=ω̂

= 2F1(N/r + 1, 2; l + δ + 1;R2
l (ω̂))

rσ̂2
0(l + δ)2F1(N/r, 1; l + δ;R2

l (ω̂))
× d2 . (B.69)

where
d2 ,

∂2Cl(ω)
∂ω2

∣∣∣∣
ω=ω̂

. (B.70)

Both of these second order derivatives consist of the second-order derivative of Cl(ω).
It is given by

d2 = 2Re
[
êHD2α̂l − 2êHD1(ZHl Zl)−1ZHl D1α̂l

]
+ 2êHD1(ZHl Zl)−1DH

1 ê− 2α̂Hl DH
1 P

⊥
l D1α̂l (B.71)
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where P⊥l = IN − P l and

ê , x−Zlα̂l (B.72)

D1 ,
∂Zl
∂ω

∣∣∣∣
ω=ω̂

= jr(1Tr ⊗ tlT )�Zl(Jr ⊗ I l) (B.73)

1r ,

1 , r = 1[
1 −1

]T
, r = 2

(B.74)

D2 ,
∂2Zl
∂ω2

∣∣∣∣
ω=ω̂

= −(1Tr ⊗ tlT )� (1Tr ⊗ tlT )�Zl (B.75)

t ,
[
t0 t1 · · · tN−1

]T (B.76)

l ,
[
1 2 · · · l

]T
. (B.77)

The operators ⊗ and � are the Kronecker and Hadamard products, respectively, and
Jr is the r× r exchange matrix. In order to decrease the computational cost of finding
the variance of the fundamental frequency, a simpler, but only approximate, expression
for the second-order derivative of Cl(ω) is also derived. Under Ass. 5.1 and at the mode
ω̂, it follows that

‖α̂l‖2 � ‖ê‖2 . (B.78)

Thus, the second order derivative of Cl(ω) can be approximated by only the last term
in (B.71). That is,

d2 ≈ −2α̂Hl DH
1 P

⊥
l D1α̂l . (B.79)

If the limit in (B.34) is used as an approximation, d2 reduces to

d2 ≈ − 2α̂Hl DH
1 D1α̂l + 2r

N
α̂Hl D

H
1 ZlZ

H
l D1α̂l

≈ − 2
r
α̂Hl diag(1r ⊗ l)2α̂l

N−1∑
n=0

t2n

+ 2
rN
α̂Hl diag(1r ⊗ l)2α̂l

[
N−1∑
n=0

tn

]2

= 2
r

l∑
i=1

Â2
i i

2

 1
N

[
N−1∑
n=0

tn

]2

−
N−1∑
n=0

t2n

 (B.80)
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where diag(·) transforms a vector into a diagonal matrix. The second approximation
follows from the limits

lim
N→∞

rDH
1 Zl

[
N−1∑
n=0

tn

]−1

= (−j)rdiag(1r ⊗ l)(Jr ⊗ I l) (B.81)

lim
N→∞

rDH
1 D1

[
N−1∑
n=0

t2n

]−1

= diag(1r ⊗ l)2 . (B.82)

Under a uniform sampling frequency with no missing samples, tn = nT and the second-
order derivative of Cl(ω) at ω̂ can be simplified even further since [46, p. 42]

N−1∑
n=0

tn = T

N−1∑
n=0

n = TN(N − 1)
2 (B.83)

N−1∑
n=0

t2n = T 2
N−1∑
n=0

n2 = T 2N(N − 1)(2N − 1)
6 . (B.84)

Inserting this into (B.80) leads to the approximation

d2 ≈ −
T 2N(N2 − 1)

6r

l∑
i=1

Â2
i i

2 . (B.85)

For a known g, this result has an interesting interpretation since the variance of the
fundamental frequency under this approximation is

sl(ω̂|g) ≈ 6r2σ̂2
l

cT 2N(N2 − 1)
∑l
i=1 Â

2
i i

2
(B.86)

which for c = 1 is the same as the asymptotic Cramér-Rao lower bound of the funda-
mental frequency with the true values of the complex amplitudes and the noise variance
replaced by their maximum likelihood estimates [11]. For a single real-valued sinusoidal
signal, the approximate variance in (B.86) was also derived in [41] using a different
approach.

In summary, an exact expression in (B.71) and an approximate expression in (B.80)
have been derived for the second-order derivative of Cl(ω) at ω̂. These expressions are
used for computing the variances sl(ω̂|g) in (B.60) and sl(ω̂) in (B.62) of the normal
approximation to the pdfs p(ω|x, g, l) and p(ω|x, l), respectively. Note that for a known
g, the variance of the fundamental frequency is proportional to the estimate σ̂2

l of the
noise variance. Thus, the worse the data fit the model, the larger the variance of the
estimated fundamental frequency is.
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5.3 Model Comparison
By approximating p(ω|x, g, l) and p(ω|x, l) by the normal pdfs derived in the previ-
ous section, the integrals in (B.52) and (B.54) can be evaluated analytically. An ap-
proximation of this form is known as the Laplace approximation. Under the Laplace
approximation, the Bayes’ factors in (B.52) and (B.54) are

BF[l, 0|g] ≈W−1
l f(ω̂, g, 0)

√
2πsl(ω̂|g) (B.87)

BF[l, 0] ≈ (δ − 1)2F1(N/r, 1; l + δ;R2
l (ω̂))

√
2πsl(ω̂)

Wl(l + δ − 1) . (B.88)

5.4 The Gaussian Hypergeometric Function
Unfortunately, the Gaussian hypergeometric function is slow to evaluate so from a com-
putational point of view it might not be advantageous to marginalise g analytically in
(B.48) and (B.54). Moreover, the use of other priors over g than the hyper-g prior
may prohibit analytical marginalisation. Using the Laplace approximation, an approx-
imate way of marginalising (B.48) and (B.54) w.r.t. g is therefore derived [48]. Since
the marginal posterior pdf over g is not symmetric and in order to avoid edge effect
near g = 0, the re-parametrisation τ = ln g with the Jacobian dg/dτ = exp(τ) [48]
is first made. This re-parametrisation suggest that the posterior distribution over g
is approximately a log-normal distribution. With this re-parametrisation, the Laplace
approximation of the integral in (B.53) is∫

Ωl

∫ ∞
0

f(ω, g, δ)dgdω

=
∫

Ωl

∫ ∞
−∞

exp(τ)f(ω, exp(τ), δ)dτdω (B.89)

= 2π exp(τ̂)f(ω̂, exp(τ̂), δ)
√
sl(ω̂| exp(τ̂))γl(τ̂ |ω̂) (B.90)

where the mode τ̂ and the variance γl(τ̂ |ω̂) are given by

τ̂ = ln
[√

β2
τ − 4ατ + βτ
−2ατ

]
(B.91)

γl(τ̂ |ω̂) =
[

N(1−R2
l (ω̂)) exp(τ̂)

r[1 + exp(τ̂)(1−R2
l (ω̂))]2

− (N − rl − rδ) exp(τ̂)
r(1 + exp(τ̂))2

]−1

(B.92)
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with

ατ , (1−R2
l (ω̂))(1− l − δ) (B.93)

βτ , (N/r − 1)R2
l (ω̂)− l − δ + 2 . (B.94)

Thus, for ĝ , exp(τ̂), the Bayes’ factor in (B.54) is approximately

BF[l, 0] ≈ 2π(δ − 1)ĝf(ω̂, ĝ, δ)
√
sl(ω̂|ĝ)γl(τ̂ |ω̂)

Wl
, (B.95)

and the normal approximation of the pdf of the fundamental frequency in (B.48) is
approximately

p(ω|x, l) ≈ N2(ω; ω̂, sl(ω̂|ĝ)) . (B.96)

6 Comparison to an ML Estimator
Before evaluating the proposed inference scheme, it is compared to what we believe is
one of the state-of-the-art joint fundamental frequency and model order estimators [2,
Sec. 2.6] which is based on the asymptotic MAP rule in [56, 57] and is similar to the
rules in, e.g, [25, 26]. Although derived in a ML framework, the method can also be
interpreted as an optimal filtering method [21]. Moreover, the same algorithm can be
obtained as a special case of one of our approximations based on the BIC model selection
rule. As stated earlier, the MAP estimate of the fundamental frequency coincides with
the ML estimate of the fundamental frequency. Thus, the proposed point estimator of
the fundamental frequency is the same as the suggested point estimate in [2]. However,
as we treat the fundamental frequency as a random variable, we have also been able to
calculate an approximate variance of the fundamental frequency. For model comparison,
[2] does not explicitly work with a Bayes’ factor. However, it is easy to rewrite their
model order estimator as a Bayes’ factor. In our notation, it is given by

BF[l, 0] ≈ (σ̂2
0)N

(σ̂2
l |c=1)N

√
N3N l

. (B.97)

where σ̂2
0 = xHx/N . This Bayes’ factor has been derived for complex-valued data

using the asymptotic MAP rule proposed in [56, 57]. For a fixed g, a uniform sampling
frequency, a complex-valued signal, T = 1, and the expression for the variance sl(ω̂) in
(B.86), our expression for the Bayes’ factor may be written as

BF[l, 0|g] ≈ (σ̂2
0)N
√

2π
(1 + g)lWl(σ̂2

l )N

√
(1 + g)6σ̂2

l

gN(N2 − 1)
∑l
i=1 Â

2
i i

2
. (B.98)
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For gBIC = N and N � 1, BF[l, 0|g] is

BF[l, 0|g] ≈
√

12π
W 2
l

∑l
i=1 Â

2
i i

2

(σ̂2
0)N

(σ̂2
l |c=1)N

√
N3N l

. (B.99)

Comparing this result with (B.97), it is seen that the model order estimator in [2]
implicitly assumes the BIC rule and that√

12π
W 2
l

∑l
i=1 Â

2
i i

2
≈ 1 (B.100)

which is hard to justify in general.

7 Simulations
In this section, the accuracy of the various approximations introduced in Sec. 5 is first
evaluated on a synthetic signal. All possible combinations of the approximations are
not evaluated, but only the most important ones. These are the various approximations
of the posterior pdfs on the fundamental frequency and model order, respectively, for
an unknown value of g. Second, the proposed inference scheme is evaluated on a female
speech signal.

7.1 Synthetic Signal
To evaluate the accuracy of the various approximations introduced in Sec. 5, Monte
Carlo simulations was used for various SNRs. Every Monte Carlo realisation consisted
of N = 100 data points and was sampled uniformly from a complex-valued, periodic,
and synthetic signal. The SNR of the signal was varied in steps of 1 dB from -10 dB to
10 dB, and 500 realisations were generated for every SNR. The fundamental frequency
ω was assumed to be smaller than ωb = π(lT )−1 so that the frequency of the highest
harmonic component was below the Nyquist frequency. For numerical reasons, ω was
also assumed to be larger than ωa = 2π(NT )−1.

An overview over the various approximations are given in Table B.1. In the rows
marked with �, an estimate of g is used whereas g is treated as a random variable in
the rows marked with •. The rows marked with N are used for reference and compar-
ison to other algorithms. For the first five rows, either the exact or the approximate
expressions can be used for the second order derivative of Cl(ω) given by (B.71) and
(B.80), respectively.
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ID type p(ω|x, l) BF[l, 1] g

c = 1 � (B.59) ∞
BIC � (B.59) (B.87), (B.51) N − 1
EB � (B.59) (B.87), (B.51) (B.55)
FL • (B.59) (B.95), (B.51) (B.91)
GHF • (B.61) (B.88), (B.51)
NI • (B.57), (B.51)
UNI N W−1

l L−1

ML N (B.97), (B.51)
SUB N [2, Sec. 4.6]

Table B.1: Overview over the various approximations.
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Fig. B.1: The accuracy of the normal approximation of the fundamental frequency under the variance
calculations in (B.71) and (B.80), respectively, for various SNRs and choices of g. Note that ’EB’, ’FL’,
and ’GHF’ are almost coinciding in the two plots.
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The Distribution on the Fundamental Frequency

In order to measure the distance between p(ω|x, l) and its normal approximation, the
relative entropy or Kullback-Leibler (KL) divergence was used. It is given by [58]

KL(p‖q) =
∫

Ωl
p(ω|x, l) log2

[
p(ω|x, l)
q(ω|x, l)

]
dω (B.101)

where q(ω|x, l) is an approximation of p(ω|x, l). The KL divergence is finite only if
the support of p(ω|x, l) is contained in Ωl. Moreover, the KL divergence satisfies that
KL(p‖q) ≥ 0 with equality if and only if p(ω|x, l) = q(ω|x, l). For the true pdf, (B.54)
was used, and the KL divergence was evaluated using numerical integration on a fine uni-
form grid consisting of 10,000 points. Fig. B.1 shows the average KL divergence between
p(ω|x, l) and q(ω|x, l) for a known model order of l = 4. The normal approximation
is clearly inaccurate for low SNRs. When the SNR is increased, the approximation be-
comes better. Below an SNR of approximately -4 dB, the KL divergence is insensitive
to the choice of the variance for the normal approximation. However, above -4 dB,
the choice matters. For the approximate variance, the KL divergence seems to exhibit
a thresholding effect caused by the use of the approximations in (B.58), (B.81), and
(B.82). This threshold will be lowered if N is increased.

Model Comparison

In order to evaluate the accuracy of the posterior pmf on the model order, we used the
same procedure as in the previous section. Moreover, the model selection properties
of the proposed inference scheme was also evaluated and compared to the ML-based
algorithm in [2, Sec. 2.6] and the subspace-based algorithm in [2, Sec. 4.6]. The discrete
version of the KL divergence is given by [58]

KL(p‖q) =
L∑
l=1

p(l|x) ln
[
p(l|x)
q(l|x)

]
, (B.102)

and it is used to assess the accuracy of the posterior pmf q(l|x) on the model order for the
various approximations in Table B.1. For the true pmf p(l|x), the ’NI’ approximation
based on the numerical integration on a very fine frequency grid was used. For the
prior pmf p(l) over the model order, a uniform prior was used so that the posterior
pmf on the model order is proportional to the Bayes’ factor. The same Monte Carlo
simulation setup as above was used but with an unknown model order. Specifically, for
each Monte Carlo run, the model order was generated from its prior with the minimum
and maximum model order being 1 and L = 10, respectively. Since the all-noise model
was not in the set of candidate models, the improper prior was used on g, and it is
obtained by letting δ = 1. The top row of Fig. B.2 shows the results of measuring the
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Fig. B.2: The accuracy of the various approximation of the posterior pdf on the model order under
the variance calculations in (B.71) and (B.80), respectively, for various SNRs and choices of g. Note
that the curve labelled ’UNI’ and the curves labelled ’ML’ and ’SUB’ are only in the plots in the top
and bottom row, respectively.
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Fig. B.3: The estimation of the fundamental frequency and the model order for a speech signal. Plot
(a) and (b) show the estimated fundamental frequency f̂ and its standard deviation, respectively, for
the estimated model order l̂ which is shown in plot (c). Plot (d) shows the spectrogram of the speech
signal. The spectrogram has been overlaid with the estimated frequencies for the fundamental and
largest harmonic components, respectively.

average KL divergence between p(l|x) and q(l|x). For all SNRs, the full Laplace ’FL’
and the ’GHF’ approximations performs slightly better than the approximation based
on the emperical bayes ’EB’ estimate of g. All of these three approximations perform
much better than the ’ML’ and the ’BIC’ approximations. As shown in Sec. 6, the ’ML’
approximations is a special case of the ’BIC’ approximation which explains why the
’ML’ and the ’BIC’ approximations seem to have the same accuracy. In each Monte
Carlo run, the most probable model was selected and compared to the true model, and
the bottom row of Fig. B.2 shows the proportion of correctly selected model orders for
the various SNRs. For SNRs below -2 dB, the ’FL’, ’GHF’, and ’NI’ approximations
were better than the other approximations. However, from -2 dB to approximately 3
dB, the ’ML’ and ’BIC’ approximations were slightly better at finding the true model
order. For an SNR above 3 dB, all of the models performed equally well.

Thus, for model selection purposes, there is no best method for all SNRs. However,
for problems such as model averaging and estimation in which all models are used, the
approximations based on a random g seem to outperform the other approximations for
all SNRs.
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7.2 Speech Signal
In the last simulation, the applicability of the proposed algorithm was demonstrated
to the problem of estimating the fundamental frequency and model order of a speech
signal. The speech signal originates from a female voice uttering "Why were you away
a year, Roy?" which has been sampled at a uniform sampling frequency of 8 kHz. Since
the signal is real, the down-sampled analytic signal was first computed as described
in the introduction. Subsequently, the signal was partitioned into consecutive frames
of 20 ms corresponding to N = 80 samples. The minimum and maximum candidate
model order were set to 1 and L = 20, respectively, and the bandwidth of the signal
was set to the interval [85 Hz, 4000 Hz] where the lower limit is the typical lower limit
of human voiced speech [59, Ch. 6]. For the estimation of the fundamental frequency,
the approximate MAP estimate was first estimated using (B.64). Second, a refined
estimate was found using a Dichotomous search with the exact cost-function in (B.63).
The posterior pmf for the model order was estimated using the ’FL’ approximation
(see Table B.1) with the approximate variance in (B.86). We have found that the
above algorithm provides a good balance between computational load and estimation
accuracy2. The results of running the algorithm is shown in Fig. B.3. Plot (a) and (b)
show the MAP estimate and the standard deviation, respectively, of the fundamental
frequency for the estimated model order which is shown in plot (c). In plot (a), the
estimated fundamental frequency is also shown for a fixed model order of l = 5. We
clearly see that the estimator based on a fixed model order suffers from pitch halving,
and this illustrates why model order selection is important even if only the estimate of
the fundamental frequency is interesting. In plot (d), the frequencies of the fundamental
and largest harmonic components are shown on top of the spectrogram of the speech
signal. We clearly see that the algorithm provided accurate estimates of the fundamental
frequency and the model order even though the signal is not perfectly periodic.

8 Conclusion
In the first part of this paper, we have argued for and derived a default probability
model for both a real- and complex-valued periodic signal in additive noise. Using
Jaynes’ principles of maximum entropy and transformation groups, the scanty prior
information in Ass. 3.1 was turned into an observation model and prior distributions on
the model parameters. Subsequently, the prior distributions were turned into a more
convenient prior of the same form as the g-prior using a few minor approximations on the
signal-to-noise-ratio (SNR) and the number of observations. The g-prior is parametrised
by the parameter g which is very important for performing model comparison. Several
ways of estimating a value for it was given, and it was also treated as a random variable.

2A Matlab implementation of the algorithm is available at http://kom.aau.dk/~jkn/publications/
publications.php

http://kom.aau.dk/~jkn/publications/publications.php
http://kom.aau.dk/~jkn/publications/publications.php
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In the second part of this paper, a closed-form posterior distribution was derived for
the fundamental frequency, and an integral representation of the posterior distributions
on the model order was derived for both a known and an unknown value of g. Several
approximations to these posterior distributions was also suggested, and it was shown
that the state-of-the-art ML estimator is a special case of the approximation based on
the Bayesian information criterion.

In the last part of this paper, the various approximations were compared in the sim-
ulation section on a synthetic signal. The simulations indicated that the value of g is
not important for the posterior distribution on the fundamental frequency. For model
comparison, the value of g was very important, and the most accurate approximations
was obtained when g was treated as a random variable. The BIC approximation is much
worse than the other approximations. For model selection, however, the BIC approxi-
mation performed slightly better than the other approximations for an SNR larger than
approximately -2 dB. It was also demonstrated that one of the approximations was able
to accurately estimate the fundamental frequency and model order of a voiced speech
segment which was not perfectly periodic.
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Abstract
In this paper, we propose a method for restoring the missing or corrupted observations
of non-stationary sinusoidal signals which are often encountered in music and speech
applications. To model non-stationary signals, we use a time-varying sinusoidal model
which is obtained by extending the static sinusoidal model into a dynamic sinusoidal
model. In this model, the in-phase and quadrature components of the sinusoids are
modelled as first-order Gauss-Markov processes. The inference scheme for the model
parameters and missing observations is formulated in a Bayesian framework and is
based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on
the parameter estimation in the dynamic sinusoidal model since this constitutes the core
of model-based interpolation. In the simulations, we first investigate the applicability of
the model and then demonstrate the inference scheme by applying it to the restoration
of lost audio packets on a packet-based network. The results show that the proposed
method is a reasonable inference scheme for estimating unknown signal parameters and
interpolating gaps consisting of missing/corrupted signal segments.

1 Introduction
The interpolation of missing, corrupted and future signal samples is an important task
in several applications. For example, speech and audio signals are often transmitted
over packet-based networks in which packets may be lost, delayed or corrupted. If
the contents of neighbouring packets are correlated, the erroneous packets can be ap-
proximately reconstructed by using suitable interpolation techniques. The simplest
interpolation techniques employ signal repetition [1] and signal stretching [2]. More ad-
vanced interpolation techniques are based on filter bank methods such as GAPES and
MAPES [3, 4] or based on signal models such as autoregressive models [5, 6], hidden
Markov models [7], and sinusoidal models [8–10]. An integral part of the techniques
based on signal modelling is the estimation of the signal parameters. Given estimates of
these parameters, signal samples are interpolated by simulating data from the model.

Within the applied speech and audio processing field, the sinusoidal signal model
is one of the more popular parametric signal models because voiced speech and signals
originating from several musical instruments can be accurately modelled as a sum of
sinusoids [11]. In this paper, we initially consider the dampened sinusoidal signal model
in its real form given by

xn =
L∑
l=1

ρnl [il cos(ωln) + ql sin(ωln)] + wn (C.1)

where the sampling indices n = 1, . . . , N label the uniform sampled data. In the model,
il, ql, ωl ∈ [0, π] and ρl > 0 denote the undampened in-phase component, the undamp-
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ened quadrature component, the (angular) frequency, and the damping coefficient of
the l’th sinusoid, respectively. The observed sample xn at time index n is the sum of L
such dampened sinusoids and a white Gaussian noise term wn with variance σ2

w. The
model in (C.1) is also sometimes written in its polar form given by

xn =
L∑
l=1

ρnl αl cos(ωln− ϕl) + wn (C.2)

where αl =
√
i2l + q2

l and ϕl = arctan(ql/il) are the undampened amplitude and phase
of the l’th sinusoid, respectively. In this paper, we refer to the models in (C.1) and (C.2)
as static sinusoidal models. This naming convention is adopted in order to distinguish
it from the dynamic sinusoidal model, which we introduce later.

The static sinusoidal model and its variations have been subject to extensive research
for many years. This is primarily due to the large-scale applicability of the model,
and because frequency parameters and damping coefficients enter the model in a non-
linear fashion. The latter complicates the estimation problem significantly and several
methods for solving this problem have therefore been devised. Most of these estimators
are aimed at estimating the frequency parameters. Well-known estimators comprise the
Min-Norm method [12], non-linear least squares estimators [13, 14], and the high-order
Yule-Walker method [15]. Other well-known estimators are the subspace-based methods
such as MUSIC [16], root-MUSIC [17], ESPRIT [18], and weighted subspace fitting [19].
A thorough review of most of these estimators is given in [20]. The theoretical foundation
of these estimators is based on classical statistics which is also known as frequentist or
orthodox statistics. The other major approach to statistics is Bayesian statistics which
offers some conceptual advantages to classical statistics (see, e.g., [21] and [22]). For
instance, the Bayesian approach copes with nuisance parameters and signal interpolation
in a highly standardised way. However, the history of Bayesian frequency estimators
is much shorter because the Bayesian methods often struggle with practical problems
such as the evaluation of high-dimensional and intractable integrals. In recent years,
various developments in Markov chain Monto Carlo (MCMC) methods (see, e.g., [23])
have largely overcome these problems. Nevertheless, the methods still suffer from a high
computational complexity.

Bayesian frequency estimation was first considered by Jaynes and Bretthorst in [24]
and [25], respectively. In the pioneering work of the latter, the existence of analytical
solutions to the Bayesian frequency estimation problem was demonstrated only in the
case of a few sinusoids. Moreover, the general inference problem with multiple sinusoids
was solved using suitable analytical approximations, under the assumptions that the
sinusoids were well-separated and enough data were available. This was not assumed
in [26] and [27] in which the general frequency estimation problem was solved by use of
an approximate MCMC technique which led to improved performance for closely spaced
sinusoids. The performance was improved even further by Andrieu and Doucet in [28],



1. Introduction 121

where the case of unknown model orders was also considered and solved using reversible
jump MCMC [29]. Recently, this work has been extended to the case of complex and
dampened sinusoidal signals in [30]. In [31], Bayesian inference in the sinusoidal model
was applied to the analysis of western tonal music.

In the static model in (C.2), the undampened amplitude αl and the phase ϕl are
assumed to be constant over a segment of N samples. Although this model is widely
applicable, the model assumption violates the behaviour of many real world tonal sig-
nals. To better model these signals, the model in (C.2) has been modified in various
ways. Typical modifications comprise amplitude and/or phase modulation [32, 33], the
representation of the amplitudes and/or phases as a linear combination of atoms from
a suitable basis [34], and autoregressive (AR) frequency parameters [10]. In this paper,
we use a dynamic sinusoidal model formulation in which the in-phase and quadrature
components in (C.1) evolve as a first-order Gauss-Markov process. Within the field of
econometrics, this class of dynamic models is referred to as stochastic cyclical mod-
els [35, 36]. Two slightly different stochastic cyclical models were given a fully Bayesian
treatment using MCMC inference techniques in [37] and [38]. Independently, Cemgil
et al. introduced a dynamic sinusoidal model for the application of polyphonic music
transcription in [39–41]. In this model, the frequency parameters were discrete random
variables, and significant attention was given to the problem of estimating note onset
and offset. In the more recent papers [42, 43], Bayesian inference schemes for dynamic
sinusoidal models were also considered. Like the proposed inference scheme by Cemgil
et al., they base their inference schemes on analytical approximations.

In this paper, we first analyse the dynamic model and discuss its interpretation. In
this connection, we show that the in-phase and quadrature components of the dynamic
sinusoidal model evolve as first-order Gauss-Markov processes. We also extend the cited
work in the previous paragraph by developing an inference scheme for the dynamic
sinusoidal model on basis of MCMC inference techniques. Moreover, we consider the
more general case in which the frequency parameters are continuous random variables
and some of the observations are missing. To achieve this, we develop a Gibbs sampler
whose output can be used to form the histograms of the unknown parameters of interest.
These histograms have the desirable property that they converge towards the probability
distribution of these unknown parameters when the number of generated samples is
increased, enabling us to extract statistical features for the model parameters and to
perform the interpolation of the missing observations.

The paper is organised as follows. In Sec. 2, we present and analyse the dynamic
sinusoidal model. We set up the Bayesian framework for the model in Sec. 3, and
the proposed inference scheme based on a Gibbs sampler is derived in Sec. 4. Four
simulations are performed in Sec. 5 illustrating the applicability of the model as well as
the performance of the sampler and interpolator, and Sec. 6 concludes this paper. The
Appendix contains a list of the relevant probability distributions.
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2 Dynamic Signal Model
In the static sinusoidal model in (C.1), the undampened in-phase and quadrature com-
ponents are constant throughout the segment of N samples. In the dynamic sinusoidal
model, however, this restriction is no longer imposed. Similar to, e.g., [38, 39], we
consider a dynamic sinusoidal model given by

yn = bTsn + wn (observation equation)
sn+1 = Asn + vn (state equation)

(C.3)

where sn is a state vector and vn is a zero-mean Gaussian state noise1 vector with
covariance matrix

Σv = diag(σ2
v,1I2, . . . , σ

2
v,lI2, . . . , σ

2
v,LI2) . (C.4)

The state noise vectors are mutually independent and independent of the observation
noise. Furthermore, we have that

b =
[
1 0 · · · 1 0

]T (C.5)
A = diag(A1, . . . ,Al, . . . ,AL) (C.6)

Al = ρl

[
cosωl sinωl
− sinωl cosωl

]
. (C.7)

Notice that the state equation of (C.3) decouples into L independent state equations of
the form

sn+1,l = Alsn,l + vn,l (C.8)
due to the block-diagonal structure of A and Σv,

The dynamic model reduces to the static model if there is no state noise. For
non-zero state noise, however, the dynamic model models the in-phase and quadrature
components as first-order Gauss-Markov processes. In order to see this, we recursively
insert the state equation into the observation equation and obtain

yn = bTsn + wn (C.9)
= bT (Asn−1 + vn−1) + wn (C.10)

= bTAn

(
A−1s1 +A−n

n−1∑
k=1

Ak−1vn−k

)
+ wn (C.11)

=
L∑
l=1

[in,l cos(ωln) + qn,l sin(ωln)] + wn (C.12)

1In this paper, noise is not an unwanted component but a random process of interest. We use the
term noise for wn and vn since this is common practice when working with the state space model in
(C.3).
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where we have defined[
in,l
qn,l

]
, ρnl

(
A−1
l s1,l +A−nl

n−1∑
k=1

Ak−1
l vn−k,l

)
. (C.13)

Eq. (C.12) is of the same form as (C.1) with one important difference: The in-phase
and quadrature components are now time-varying which means that the amplitude and
the phases of the polar form of (C.12) are also time-varying. We analyse the statistical
behaviour of the time-varying in-phase and quadrature components by introducing the
stochastic process defined by zn,l , [in,l qn,l]T . First, we write zn,l for n = 1, . . . , N in
a recursive way given as

zn+1,l = ρlzn,l +
(
ρ−1
l Al

)−(n+1)
vn,l (C.14)

with z1,l = ρlA
−1
l s1,l. If we select a Gaussian distribution for the initial state, i.e., s1,l ∼

N (µs1,l
, σ2
s1,l
I2), then zn,l is a first-order Gauss-Markov process. Second, we notice

that, the transformation ṽn,l =
(
ρ−1
l Al

)−(n+1)
vn,l is an orthogonal transformation,

and we therefore have that

p(ṽn,l) = p(vn,l) = N (0, σ2
v,lI2) . (C.15)

Thus, the statistical behaviour of

zn+1,l = ρlzn,l + ṽn,l (C.16)

is the same as that of (C.14). Therefore, zn,l is a very simple first-order Gauss-Markov
process evolving independently of the frequency parameter. Further, if we select the
mean and variance of the initial state to be µs1,l

= 0 and σ2
s1,l

= σ2
v,l/(1− ρ2

l ), respec-
tively, zn,l is a stationary first-order Gauss-Markov process, i.e., a first order autore-
gressive process (AR). Also, our model for the observations in (C.3) reduces to a simple
AR(1) process if ωl = 0. In summary, the statistical behaviour of the dynamic model
in (C.3) is equivalent to that of the model given by2

ỹn =
L∑
l=1

[
cos(ωn) sin(ωn)

] [ĩn,l
q̃n,l

]
+ wn[

ĩn+1,l
q̃n+1,l

]
= ρl

[
ĩn,l
q̃n,l

]
+ vn,l .

(C.17)

in which the in-phase and quadrature components are explicitly evolving as a first order
Gauss-Markov process. In the model in (C.3), however, the frequencies have been

2Here, we have introduced ·̃ meaning that, e.g., ỹn 6= yn for the same noise realisations although
they share the same statistical behaviour.



124 Paper C.

separated from the time indices. This makes the inference problem for the frequencies
more tractable.

We have shown that the in-phase and quadrature components are modelled as first
order Gauss-Markov processes in the dynamic model. Unfortunately, it is not easy to
make a statistical analysis of the time-varying amplitude and phase since the relation-
ship between these and the in-phase and quadrature components are highly non-linear.
Instead, we make a simulation in Sec. 5 which give some insight into this.

3 Problem Formulation
As stated in the introduction, we take a Bayesian approach to performing the interpo-
lation and making inference about the unknown parameters of the dynamic sinusoidal
model in (C.3). In the Bayesian approach, these variables are all random variables, and
for the model in (C.3) they are all real and given by

Observations: y =
[
y1, y2, · · · , yN

]T
Latent variables: S =

[
s1, s2, · · · , sN

]
Model parameters: θ = {ω,ρ,σ2

v, σ
2
w}

ω =
[
ω1 ω2 · · · ωL

]T
ρ =

[
ρ1 ρ2 · · · ρL

]T
σ2
v =

[
σ2
v,1 σ2

v,2 · · · σ2
v,L

]T
where sn =

[
sTn,1, · · · , sTn,L

]T consists of L two-dimensional state vectors pertaining to
the L sinusoids. The evolution of these L two-dimensional state vectors is given by
(C.8). We also assume that R of the elements in y are missing or corrupted, and that
we know their indices I ⊂ {1, . . . , N}. Using this set of indices, we define the vectors
ym , yI and yo , y\I containing the R missing or corrupted observations and the
N −R valid observations, respectively. The notation (·)\∗ denotes ’without element ∗’.

3.1 Inference Aims
The primary aim is to perform the interpolation of the missing or corrupted samples,
i.e., to reconstruct the elements of ym given the valid observations in yo. In classi-
cal statistics, this interpolation task is often solved by using an EM-algorithm which
iteratively maximises the likelihood function p(yo|ym), whereas the MAP or MMSE
estimate of the posterior distribution p(ym|yo) is often used in Bayesian statistics. For
the purpose of interpolating music and speech, however, both of these methods tend
to produce over-smoothed interpolants in the sense that they do not agree with the
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stochastic part of the valid observations [6, 44, 45]. In a Bayesian framework, a much
more typical interpolant can be obtained by simply drawing a sample from the posterior
distribution p(ym|yo).

3.2 Bayesian Inference
The posterior distribution for the missing samples given the valid samples is given by

p(ym|yo) =
∫
p(ym,S,θ|yo)dSdθ (C.18)

Unfortunately, we are not able to draw a sample directly from p(ym|yo) since we are
not able to integrate the nuisance parameters S and θ out analytically. However, we
can obtain a sample from p(ym|yo) by taking a single sample from the joint posterior
distribution p(ym,S,θ|yo) and simply ignore the generated values for S and θ. The
joint posterior distribution can be written as

p(ym,S,θ|yo) = p(ym|S,θ,yo)p(S,θ|yo) (C.19)

where p(ym|S,θ,yo) is known from the observation equation of (C.3). Thus, in order
to generate a sample for ym the only problem left is computing p(S,θ|yo). By Bayes’
theorem we may write it as

p(S,θ|yo) =
p(yo,S\1|s1,θ)p(s1,θ)

p(yo) (C.20)

where p(yo,S\1|s1,θ), p(s1,θ) and p(yo) are referred to as the likelihood, the prior and
the model evidence, respectively. The likelihood can be factored as

p(yo,S\1|s1,θ) =p(yo|S\I ,θ)
N−1∏
n=1

p(sn+1|sn,θ) (C.21)

which from (C.3) is seen to be a product of normal distributions. Since the state equation
of (C.3) decouples into L independent state equations as in (C.8), we can factor the
normal distribution p(sn+1|sn,θ) into L bivariate normal distributions given by

p(sn+1|sn,θ) =
L∏
l=1

p(sn+1,l|sn,l, σ2
v,l, ωl, ρl) . (C.22)

The form of the prior is considered in Section 3.4. Implicit in the formulation of (C.20)
is the model assumption which we consider as known (including its order L)3. The

3This assumption is quite common although not very realistic.
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model evidence in the denominator of (C.20) acts therefore as a mere scale factor since
it is independent of S and θ. To reflect this, we simply write Bayes’ theorem as

p(S,θ|yo) ∝ p(yo,S\1|s1,θ)p(s1,θ) (C.23)

where ∝ denotes ’proportional to’.
The joint posterior distribution encapsulates all knowledge about the states and

model parameters by combining the prior knowledge with the information in the ob-
served data through Bayes’ theorem. Theoretically, it is also possible to derive posterior
distributions, moments, probability intervals and other posterior characteristics for the
individual variables by use of marginalisation and various transformations. In practice,
however, it is often either infeasible or impossible to compute these posterior character-
istics, and we have to rely on numerical inference methods. The stochastic numerical
methods offer various ways of generating samples from the posterior distribution. These
samples are then used to form histograms which converge to the true posterior distri-
butions for an increasing sample size. For an overview of some of the methods see,
e.g., [22, 23, 46].

3.3 Markov Chain Monto Carlo Sampling
Markov chain Monto Carlo (MCMC) methods are currently a very popular class of
stochastic sampling methods adopted by the Bayesian community in the late 1980s [47].
They work by selecting the transition kernel of an ergodic Markov chain such that the
invariant distribution of the Markov chain is the desired posterior distribution which
we wish to draw samples from. After an initial transient period in which the Markov
chain converges, samples generated by the Markov chain are distributed according to
the desired distribution. The two most well-known MCMC sampling schemes are the
Metropolis-Hastings (MH) algorithm [48–50] and the Gibbs sampler [51]. In the MH
algorithm, samples generated from the desired posterior distribution, say p(x), which
we know up to some normalising constant Z with p(x) = p̃(x)/Z, are generated by
use of a user-defined proposal distribution q(x|x[τ ]) where x[τ ] is the current state of
the Markov chain. By construction, q(x|x[τ ]) is selected as a trade-off between how
similar it is to p(x) and how easy it is to generate samples from. A candidate sample
x′ ∼ q(x|x[τ ]) is accepted as the next state x[k+1] with probability

α(x[τ ],x′) = min
[
1, p̃(x

′)q(x[τ ]|x′)
p̃(x[τ ])q(x′|x[τ ])

]
. (C.24)

Otherwise, the current state of the Markov chain is retained. The Gibbs sampler is a
special case of the MH-algorithm in which sampling from the multivariate distribution
p(x) = p(x1, . . . ,xK) is broken up into alternating sampling from the K lower dimen-
sional conditional distribution p(xk|x\k). Specifically, for the k’s iteration, we sample
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for k = 1, . . . ,K from

x
[k+1]
k ∼ p(xk|x[k+1]

1 , . . . ,x
[k+1]
k−1 ,x

[τ ]
k+1, . . . ,x

[τ ]
K ) . (C.25)

The generated samples from these conditional distributions are always accepted.

3.4 Prior Distributions
To complete the Bayesian setup, we need to specify prior distributions on the initial
state as well as on the model parameters. In this paper, we assume that we have only
vague prior information about the parameters whose joint prior distribution factor as

p(s1,θ) = p(s1)p(ω)p(ρ)p(σ2
v)p(σ2

w)

=
[
L∏
l=1

p(s1,l)p(ωl)p(ρl)p(σ2
v,l)
]
p(σ2

w) . (C.26)

For the joint distribution of the l’th frequency parameter and damping coefficient, we
use the Jeffreys’ prior for the likelihood in (C.22), i.e., p(ωl, ρl) = p(ωl)p(ρl) ∝ ρl for
ωl ∈ [0, π] and ρl > 0. It is common to restrict the damping coefficient to be smaller than
one since this ensures that the evolution of the in-phase and quadrature components
in (C.14) is stable. This yields a beta prior distribution with parameters 2 and 1 on
the damping coefficient. In this paper, however, we do not impose this restriction since
we wish to model non-stationary signal segments. The selected prior on the frequency
parameters causes symmetry in the likelihood of the model parameters which leads to
the problem of label switching [52]. More precisely, the joint posterior distribution is a
mixture distribution of L! similar distributions up to a permutation of labels [28]. For
the interpolation of missing samples, which is the primary focus of this paper, this is not
a problem. For making inference about the unknown parameters, however, the problem
can be addressed by ensuring identifiability of the frequency parameters through a joint
prior distribution on the frequency parameters given by

p(ω) ∝ I[0≤ω1≤ω2≤···≤ωL≤π](ω) (C.27)

where I[A](·) is the indicator function on the region A. Alternatively, the generated
samples can also be postprocessed by applying various clustering techniques to the
generated frequency parameters [52].

For the observation and state noise variances, we use inverse gamma distributions,
i.e., p(σ2

w) = Inv-G(αw, βw) and p(σ2
v,l) = Inv-G(αv,l, βv,l). These distributions can be

made diffuse by choosing small values for the hyperparameters. They can also be used
for preventing the noise variances from collapsing to zero which is often a necessary
requirement in MCMC based inference [5]. For the initial state distribution, we assume
a normal distribution, i.e., p(s1) = N (µ,P ).
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Fig. C.1: A directed graphical model for the parameter estimation and interpolation problem. Shaded
nodes denote observed variables (notice that yn+1 is a missing observation), open circles denote latent
variables, and smaller solid circles denote deterministic hyperparameters. The box denotes a plate, and
it is labelled with l = 1, . . . , L indicating that there are L copies of the nodes inside.

4 Derivation of Inference Scheme
The Bayesian model considered in the previous section is summarised in the directed
graphical model in Figure C.1. The figure clearly reveals the assumptions, the condi-
tional dependency between the variables, and the hierarchical structure to the setup
also given by likelihood in (C.21) and (C.22), and the prior in (C.26). In our inference
scheme for the variables of the model, we draw samples from the joint posterior distri-
bution p(S,θ|yo) by means of a Gibbs sampler. As detailed in Section 3.3, we therefore
have to group the variables into suitable blocks and derive conditional distributions for
them. In this paper, we consider the following two conditional distributions given by

States: p(S|θ,yo) (C.28)
Model parameters: p(θ|S,yo) (C.29)

The selected grouping of variables in (C.28) and (C.29) leads to a set of conditional
distributions which are fairly easy to sample from. Further, by sampling all model
parameters in a single step, we increase the mixing properties of the sampler, i.e., we
decrease the correlation of the generated samples leading to faster convergence of the
underlying Markov chain. In the next section, we derive the particular form of these
conditional distributions.
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4.1 States
The conditional state distribution in (C.28) is a multivariate Gaussian distribution.
However, the dimension of a sample from this distribution is 2LN × 1 which would
render direct sampling from it infeasible for most applications. Instead, we use the
simulation smoother for drawing samples from (C.28). The simulation smoother is an
efficient sampling scheme using standard Kalman smoothing, and it is easily modified
to handle the case of missing observations since this corresponds to skipping the update
step of the build-in Kalman filter for these samples. The simulation smoother exists in
several versions of which we use the version in [53] (see, e.g., [54–56] for other versions
of the simulation smoother).

4.2 Model Parameters
Since the model parameter σ2

w of the observation equation and the L sets of model
parameters (ωl, ρl, σ2

v,l) of the state equation are mutually independent conditioned on
the states S, we can factor (C.29) as

p(θ|S,yo) =
[
L∏
l=1

p(ωl, ρl, σ2
v,l|S)

]
p(σ2

w|S,yo) . (C.30)

Thus, sampling from the conditional distribution in (C.29) can be done by sampling the
L+ 1 conditional distributions on the right hand side of (C.30) independently.

Frequency, Damping and State Noise Variance

The main difficulty of our Gibbs sampler is to draw samples from the joint conditional
distribution of the frequency parameter, the damping coefficient, and the state noise
variance given the states, i.e., p(ωl, ρl, σ2

v,l|S). To our knowledge, it is not possible
to sample directly from p(ωl, ρl, σ2

v,l|S) - although we come close in this paper. A
Gibbs sampling scheme on the individual parameters is also not straight-forward since
it suffers from poor mixing and since the l’th damping coefficient conditioned on the
l’th frequency parameter and state noise variance has a non-standard distribution. In
order to improve mixing, we therefore propose sampling all parameters at once from
p(ωl, ρl, σ2

v,l|S) by use of an MH-sampler previously discussed in Section 3.3. For the
proposed MH-sampler the candidate samples are easy to generate and the acceptance
probability turns out to be very easy to evaluate.

Given the states, the posterior distribution for the l’th set of model parameters of
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the state equation can be written as

p(ωl, ρl, σ2
v,l|S) ∝

[
N−1∏
n=1

p(sn+1,l|sn,l, σ2
v,l, ωl, ρl)

]
× p(ωl, ρl, σ2

v,l) (C.31)

where p(ωl, ρl, σ2
v,l) is the prior distribution which, as stated in Section 3.4, factors into

p(ωl, ρl, σ2
v,l) = p(ωl)p(ρl)p(σ2

v,l)

The distribution for p(sn+1,l|sn,l, σ2
v,l, ωl, ρl) is a bivariate normal distribution and the

product over n of N − 1 of these can therefore be written as

N−1∏
n=1

p(sn+1,l|sn,l, σ2
v,l, ωl, ρl) ∝ σ2

v,l
−(N−1)

× exp
{
−1

2σ2
v,l

N−1∑
n=1

(sn+1,l −Alsn,l)T (sn+1,l −Alsn,l)
}

. (C.32)

In order to write this distribution in a useful way in terms of the frequency parameter
and the damping coefficient, we rewrite Alsn,l into

Alsn,l =
[
sn,l s⊥n,l

]
al (C.33)

where s⊥n,l is obtained by a 90◦ clockwise rotation of sn,l and

al , ρl
[
cosωl sinωl

]T
. (C.34)

Inserting this into (C.32) and replacing the summation with an inner product yield

N−1∏
n=1

p(sn+1,l|sn,l, σ2
v,l, ωl, ρl) = N (ϕl; Φlal, σ

2
v,lI2(N−1))

where we have defined

ϕl ,
[
sT2,l sT3,l · · · sTN,l

]T (C.35)

φl ,
[
sT1,l sT2,l · · · sTN−1,l

]T (C.36)

φ̃l ,
[
(s⊥1,l)T (s⊥2,l)T · · · (s⊥N−1,l)T

]T (C.37)
Φl ,

[
φl φ̃l

]
. (C.38)
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Now, by assuming a non-informative prior for al of the form

p(al|σ2
v,l) = N (0, σ2

v,lδI2) with δ →∞ (C.39)

and by using standard Bayesian inference for the linear model [21], we obtain after some
algebra

p(al, σ2
v,l|S) ∝ p(S|al, σ2

v,l)p(al|σ2
v,l)p(σ2

v,l) (C.40)
∝ NIG(µa,l, σ2

a,lI2, αq,l, βq,l) . (C.41)

where the parameters of the normal-scaled inverse gamma distribution are defined by

σ2
a,l , (φTl φl)−1 (C.42)
µa,l , σ2

a,lΦT
l ϕl (C.43)

ασ2
v,l
, αv,l +N − 1 (C.44)

βσ2
v,l
, βv,l + (ϕTl ϕl − σ−2

a,lµ
T
a,lµa,l)/2 . (C.45)

The Jacobian determinant of the transformation from al to (ωl, ρl) is given by∣∣∣∣∂al∂ρl

∂al
∂ωl

∣∣∣∣ =
∣∣∣∣cosωl −ρl sinωl
sinωl ρl cosωl

∣∣∣∣ = ρl ,

which is proportional to the prior distribution on the damping coefficient. Therefore,
we may write (C.41) as

q(ωl, ρl, σ2
v,l|S) ∝ p(ρl)p(al, σ2

v,l|S) (C.46)

with al replaced by the expression in (C.34). Thus, the distribution q(ωl, ρl, σ2
v,l|S) is

nearly identical to the desired distribution p(ωl, ρl, σ2
v,l|S) in (C.31). The only difference

between the two distributions is that the frequency parameter of q(ωl, ρl, σ2
v,l|S) is

uniform on [−π, π] whereas is it uniform on [0, π] in p(ωl, ρl, σ2
v,l|S). In order to remedy

for this, we use q(ωl, ρl, σ2
v,l|S) as a proposal distribution in an MH-sampler. We draw

a sample from this proposal by first sampling a set (a′l, σ2
v,l
′) from the bivariate normal-

scaled inverse gamma distribution in (C.41). Sampling from the bivariate normal-scaled
inverse gamma distribution can be done in various ways. Here, we sample from its
marginal densities given by

p(σ2
v,l|S) = Inv-G(ασ2

v,l
, βσ2

v,l
) (C.47)

p(al|S) = T
(
µa,l,

βσ2
v,l

ασ2
v,l

σ2
a,lI2, 2ασ2

v,l

)
. (C.48)
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This is done by sampling from [46]

σ2
v,l
′ ∼ Inv-G(ασ2

v,l
, βσ2

v,l
) (C.49)

τ ′l ∼ Inv-G(ασ2
v,l
, 1/2) (C.50)

a′l =
[
a′1,l a′2,l

]T ∼ N (µa,l, 2βσ2
v,l
τ ′lσ

2
a,lI2) . (C.51)

Second, we transforms the generated sample (a′l, σ2
v,l
′) into (ω′l, ρ′l, σ2

v,l
′) by use of the

transformation

ω′l = arctan(a′2,l/a′1,l) (C.52)

ρ′l =
√
a′Tl a

′
l . (C.53)

Finally, the samples generated by this proposal distribution are accepted with proba-
bility

α
(
(ωl, ρl, σ2

v,l), (ω′l, ρ′l, σ2
v,l
′)
)

= min
[

1,
p(a′l, σ2

v,l
′|S)p(ω′l)p(ρ′l)q(ωl, ρl, σ2

v,l|S)
p(al, ql|S)p(ωl)p(ρl)q(ω′l, ρ′l, σ2

v,l
′|S)

]

= min
[
1, p(ω

′
l)

p(ωl)

]
= I[0,π](ω′l) . (C.54)

If the sample is not accepted, the previous values (ωl, ρl, σ2
v,l) are retained. In the case

where we use the structured prior on the frequency parameters, the indicator function
should be changed to I[ωl−1,ωl+1](ω′l).

Observation Noise Variance

By Bayes’ theorem, we can write p(σ2
w|S,yo) as

p(σ2
w|S,yo) ∝ p(yo|S\I , σ2

w)p(σ2
w) (C.55)

where p(yo|S\I , σ2
w) is the likelihood of the observation equation in (C.3) and p(σ2

w) is
the prior distribution for σ2

w. Since p(yo|S\I , σ2
w) = N (ST\Ib, σ2

wIN−R) and p(σ2
w) =

Inv-G(αw, βw), the posterior distribution p(σ2
w|S\I ,yo) is an inverse gamma distribu-

tion, Inv-G(σ2
w;ασ2

w
, βσ2

w
), with parameters

ασ2
w

= αw +N/2 (C.56)

βσ2
w

= βw + 1
2(yo − ST\Ib)T (yo − ST\Ib) . (C.57)
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Table C.1: Summary of proposed Gibbs sampler for generating samples from p(S, θ|yo).

1. Select hyperparameters and initialise the Gibbs sampler.

2. Repeat for k = 0, 1, 2, . . . ,K

(a) S[k+1] ∼ p(S|θ[k],yo) (simulation smoother)
(b) Repeat for l = 1, 2, . . . , L

i. σ2
v,l
′ ∼ Inv-G(α[τ ]

σ2
v,l

, β
[τ ]
σ2

v,l

)

ii. τ ′l ∼ Inv-G(α[τ ]
σ2

v,l

, 1/2)

iii. a′l ∼ N (µ[τ ]
a,l, 2β

[τ ]
σ2

v,l

τ ′lσ
2
a,l

[τ ]
I2)

iv. ω′l = arctan(a′2,l/a′1,l)

v. ρ′l =
√
a′Tl a

′
l

vi. if ω′l > 0
• (ω[k+1]

l , ρ
[k+1]
l , σ2

v,l
[k+1]) = (ω′l, ρ′l, σ2

v,l
′)

else
• (ω[k+1]

l , ρ
[k+1]
l , σ2

v,l
[k+1]) = (ω[τ ]

l , ρ
[τ ]
l , σ2

v,l
[τ ])

(c) σ2
w

[k+1] ∼ Inv-G(ασ2
w
, β

[τ ]
σ2
w

)

4.3 Summary of Inference Scheme
Table C.1 summarises our proposed Gibbs sampler for generating samples from p(S,θ|yo).
The computational complexity of the algorithm is fairly high primarily due to the gen-
eration of the states by the simulation smoother. In our implementation with N = 600
observations and L = 6 sinusoids, it takes approximately 40 ms for generating a state
sample S[τ ]. This corresponds to nearly 97 % of the time consumption of one iteration
of the Gibbs sampler. For the application of interpolation, we only need a single sample
for the states and model parameters from the invariant distribution of the underlying
Markov chain of the sampler. Once these have been generated, we may perform the
interpolation by simulating from the observation equation of (C.3). Therefore, the com-
putational complexity of the algorithm heavily depends on proper initialisation and the
convergence speed of the chain.
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Fig. C.2: Synthetic signal with both amplitude and phase modulation. The shaded area indicates a
missing section of the signal. Plot (a) shows the signal (dashed line), a state generated by our Gibbs
sampler, and the average amplitude. Plot (b) shows the true (dashed lines) and the average in-phase
and quadrature components. Plot (c) and (d) show the true (dashed lines) and the average phase and
time-varying part of the frequency.

5 Simulations
In this section, we first demonstrate that the dynamic signal model is able to model
signals with amplitude and frequency modulation. These phenomena are encountered
in real world signals. Second, we illustrate the proposed inference scheme on a synthetic
signal and apply it to the application of reconstructing missing or corrupted audio pack-
ets on a packet-based network4. In our simulations, we use the following common setup
for our Gibbs sampler. We use non-informative prior distributions with hyperparameters[

µ P αi βi
]

=
[
0 10I2 0 10−5] .

where i = {v, w}. The small non-zero value for βi is selected in order to prevent the
noise variances from collapsing to zero. The Gibbs sampler is iterated 10, 000 times and
samples from the first 1, 000 iterations are discarded as burn-in samples. The initial
values for the frequency and observation noise variance are found by using a simple
matching pursuit algorithm [57]. The initial value for the damping coefficient and state
noise variance are set to 1 and σ2

w
[0]
/10, respectively. For the model order, we use L = 1

in the two examples with synthetic signals and L = 6 in the two examples with real
world signals.

4The MATLAB code and audio samples used in the simulations can be obtained from http://kom.
aau.dk/~jkn/publications/publications.php

http://kom.aau.dk/~jkn/publications/publications.php
http://kom.aau.dk/~jkn/publications/publications.php
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5.1 Applicability of the Model
The static model in (C.2) is very useful for modelling the periodic parts of a signal.
However, since the phase and frequency are modelled as constants and the amplitude
with an exponentially decaying envelope, the static model is in general not able to
capture common phenomena such as amplitude and frequency modulation [10]. As
discussed in Sec. 2, the dynamic model allows the in-phase and quadrature components
to develop as a first order Gauss-Markov process. Thus, the model also allows the
amplitude, the phase and hence the frequency to be time-varying. These are given by

αn,l = ρnl

√
i2n,l + q2

n,l (C.58)

ϕn,l = arctan(qn,l/in,l) (C.59)
ωn,l = ωl + dϕt,l/dt

∣∣
t=nT (C.60)

where the time-varying frequency ωn,l is a sum of the frequency ωl from the dynamic
model in (C.3) and the sampled derivative of the continuous-time phase ϕt,l.

In Fig. C.2.a, we have shown a synthetic signal consisting of a single sinusoid with
both sinusoidal amplitude and frequency modulation (dashed line). The signal consists
of N = 500 samples and is given by

xn = αn cos(θn) + wn (C.61)
αn = 0.5 + 0.25 sin(4πn/N − π/2) (C.62)

θn = 0.15n− 0.05
n∑

m=1
sin(2πm/N − π/2) (C.63)

where wn is white Gaussian noise with variance 10−6. The samples from index 300 to
index 350 were removed and considered to be missing samples. We used the proposed
inference scheme for analysing the signal xn, and the full line on top of the dashed line in
Fig. C.2.a shows a state vector generated by our Gibbs sampler. For all generated state
samples, we also demodulated the states in order to obtain the samples for the in-phase
and quadrature components. Based on these samples, we calculated the average am-
plitude αn,l, the average in-phase and quadrature components, the average phase ϕn,l
and the average derivative of the phase as ϕn,l−ϕn−1,l. The latter is an approximation
to the derivative of the phase. These averages (full lines) are compared against their
true values (dashed lines) in Fig. C.2.a, Fig. C.2.b, Fig. C.2.c and Fig. C.2.d, respec-
tively. Clearly, the model is able to capture both amplitude and frequency modulation.
However, the figures also reveal a potential problem for the application of interpolat-
ing missing samples; In this example, the in-phase and quadrature components do not
evolve as a typical Gauss-Markov process. Therefore, we cannot expect the interpola-
tion to be very successful since our interpolation scheme, on average, will reconstruct
the missing samples in the in-phase and quadrature components with a straight line.
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Fig. C.3: Traces of 10,000 generated samples for the (a) frequency, (b) damping coefficient, (c) state
noise variance, and (d) observation noise variance. The histograms in the right margin of plot (a)-(d)
are computed based on the last 9,000 samples. Only 50 % of the signal is observed and the three
missing sections are indicated by a shaded background. In the three interpolation sections, the 95 %
credible interval for the posterior distribution p̂(ym|yo) of the interpolated samples are shown along
with interpolated samples based on the mean of p̂(ym|yo) (last section), a sample from p̂(ym|yo) (middle
section) and both (first section).
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5.2 Synthetic Signal
We consider a simple synthetic signal generated by the static sinusoidal model. We do
this in order to illustrate some of the features of the proposed Bayesian inference scheme
and interpolator. Specifically, we generated N = 500 observations from the static model
in (C.1) with a single sinusoidal component with parameters[

α β ω ρ σ2
w

]
=
[
1/
√

2 1/
√

2 0.2 0.997 0.01
]
.

We also removed 50 % of the observations distributed over three sections as illustrated
in Fig. C.3.e. Fig. C.3 shows the results of running the Gibbs sampler. In Fig. C.3.a-
C.3.d, the traces of the 10, 000 generated samples for the model parameters are shown,
and Fig. C.3.e shows the results of interpolating the sections of missing observations.
The underlying Markov chain seems to have converged to its invariant distribution
after approximately 500 samples. The histograms in the margin of the first four plots
are based on the last 9, 000 generated samples. They are an approximation to the
marginal distribution for the individual model parameters, and they converge to it for
an increasing number of iterations of the Gibbs sampler. As previously discussed in
Section 4, the histograms can be used for summarising various posterior features such
as point and interval estimates. For example, computing their means yields the estimates
ω̂ = 0.1999, ρ̂ = 0.997 · 10−3, q̂ = 7.044 · 10−6, and σ̂2

w = 9.606 · 10−3.
In Fig. C.3.e, the three interpolation sections are shown with a shaded background.

In all three simulation sections, we have shown the 95 % credible interval for the missing
observations5. In the last interpolation section, we have used the mean estimate of the
interpolated samples whereas the interpolation in the middle section is a random sample
from the posterior distribution. Both methods are shown in the first interpolation
section. Clearly, sampling from the posterior distribution yields a much more typical
sample than using the mean estimate. The latter has higher probability, but it does not
model the noise.

5.3 Music Signal
In the third simulation, we considered a segment of observations from a downsampled
trumpet signal whose spectrogram can be seen in Fig. C.4.b. The considered snapshot
corresponds to 75 ms of audio and is shown in Fig. C.4.d. The periodogram of the
N = 660 observations in the snapshot is shown in Fig. C.4.c. Prior to running the
Gibbs sampler, we removed the middle section thus emulating a lost audio packet of 25
ms on a packet-based network. In Fig. C.4.a, we have shown the six traces of samples for
the frequencies. We see that the sampler reached a stationary point after approximately

5The credible intervals were computed by assuming that the missing observations were normally
distributed. More precise, but also more complex, methods for estimating the credible interval can be
found in, e.g., [58].



138 Paper C.

0 0.2 0.4 0.6 0.8 1

·104
0

1,000

2,000

3,000

k

f
[H

z]

(a) Traces of samples for the frequencies

0.5 1 1.5
0

1,000

2,000

3,000

4,000

t [s]
f

[H
z]

(b) Spectrogram

0 1,000 2,000 3,000 4,000
−80

−60

−40

−20

0

f [Hz]

10
lo
g
P
(ω

)
[d

B
]

(c) Periodogram

690 700 710 720 730 740 750
−0.1

0

0.1

t [ms]

y t

(d) Observed signal and results of the interpolation

Fig. C.4: Plot (a) shows the six traces for the frequencies each consisting of 10,000 samples. Plot
(b) shows the spectrogram for the complete trumpet signal whereas plot (c) shows the periodogram
for the section indicated in plot (b). The time series corresponding to this section is shown in plot (d)
with the middle section of 25 ms audio missing. The plot also shows the result of the interpolation
in terms of 95 % probability interval, a sample for the posterior distribution p̂(ym|yo) and the true
missing observations (dotted).
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(e) Observed signal and results of simple linear sinusoidal interpolation

Fig. C.5: Plot (a) shows the six traces for the frequencies each consisting of 10,000 samples. Plot
(b) shows the spectrogram for the complete speech signal whereas plot (c) shows the periodogram for
the section indicated in plot (b). The time series corresponding to this section is shown in plot (d)
with the middle section of 25 ms audio missing. The plot also shows the result of the interpolation
in terms of 95 % probability interval, a sample for the posterior distribution p̂(ym|yo) and the true
missing observations (dotted). For comparison, the missing packet was also interpolated in plot (e) by
use of a simpler interpolator.

500 iterations after which samples for the dominating six frequency components were
generated. The results of the interpolation are shown in Fig. C.4.d. It is observed,
that the 95 % credible interval was very tight and that the generated sample from the
posterior distribution for the missing observations therefore almost coincided with the
true missing observations. An informal listening test also confirmed that the music
segment had been restored with almost no perceptual loss.
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5.4 Speech Signal
In the fourth and final simulation, we considered a more challenging segment of obser-
vations originating from a speech signal; where the frequency spectrum and amplitudes
of the trumpet signal in the previous simulation were approximately constant, the snap-
shot shown in Fig. C.5.d is clearly non-stationary. Additionally, as can be seen from
the spectrogram in Fig. C.5.b, some of the frequencies are non-constant in the snap-
shot. The speech signal originates from a female voice uttering "Why were you away a
year, Roy?", and it was downsampled to 8, 000 Hz. As in the previous simulation, we
removed the middle section of 25 ms prior to running the Gibbs sampler. The traces
of samples for the frequencies are shown in Fig. C.5.a. The sampling scheme seemed to
have reached a stationary point after approximately 1500 iterations. The interpolated
samples in Fig. C.5.d follows the same increasing trend as the true signal. Compared
against the interpolation of the trumpet signal, the 95 % confidence interval is wider
reflecting the more complex structure of the signal. Despite this, an informal listening
test revealed that the music segment had been restored with only little perceptual loss.
For comparison, we have also performed the interpolation of the missing packet by use
of a simpler interpolater based on [9]. In this interpolation scheme, the amplitudes
and frequencies are estimated on both sides of the missing packet which is recovered
by linearly interpolating these amplitudes and frequencies. The result of this interpo-
lation is shown in Fig. C.5.e. In order to compare the two methods, we have measured
the reconstruction signal-to-noise ratio (SNR) for both methods. For the simple linear
sinusoidal interpolater, the SNR was 7.7 dB whereas a sample from the posterior distri-
bution p(ym|yo) resulted in an SNR of 10.8 dB. If we instead used the posterior mean
as an interpolant, the SNR was 15.8 dB. It should be noted, however, that SNR cannot
be used as an objective measure for the reconstruction performance since the human
auditory system does not perceive sound degradation in the two norm.

6 Conclusion
In this paper, we have presented a Bayesian interpolation and parameter estimation
inference scheme based on a dynamic signal model hypothesis for the observed segment
of data. The dynamic model enables modelling of real world signals with non-stationary,
but smooth evolution since the in-phase and quadrature components were modelled as
first order Gauss-Markov processes. The proposed inference scheme for the dynamic
model was developed in a Bayesian framework and comprised two stages. In the first
stage, a two state Gibbs sampler alternated between sampling from the conditional
distribution for the hidden states given the model parameters and sampling from the
conditional distribution for the model parameters given the hidden states. In the second
stage, a single draw from the posterior distribution for the missing observations given
the last sample for the hidden states and model parameters was obtained. This sample
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was used for replacing the missing sample with a typical interpolant for the underlying
process.

In the simulations, we demonstrated that the inference scheme can be used for gen-
erating histograms for the unknown parameters from which, e.g., point and interval
estimates can be derived. We also demonstrated the applicability of the proposed in-
ference scheme to audio restoration. For a simple segment from a trumpet signal and
a more complex segment from a speech signal, we recovered a 25 ms packet by use
of the two neighbouring packets. Informal listening tests revealed that the restoration
procedure restored the audio signal segments with a slight perceptual loss.

A Probability Distributions
In the following list, τ is a scalar positive random variable and x is an N -dimensional
random vector.

Exponential Distribution

The exponential distribution with rate parameter λ has the probability distribution

p(τ |λ) = λ exp{−λτ}

and is denoted by Exp(τ ;λ).

Inverse Gamma Distribution

The inverse gamma distribution with shape parameter α and scale parameter β has the
probability distribution

p(τ |α, β) = [βα/Γ(α)]τ−(α+1) exp{−β/τ}

and is denoted by Inv-G(τ ;α, β).

Multivariate Normal Distribution

The multivariate normal distribution with the mean vector µ and covariance matrix Σ
has the probability distribution

p(x|µ,Σ) =
[
(2π)N |Σ|

]−1/2 exp{−1
2 (x− µ)TΣ−1(x− µ)}

and is denoted by N (x;µ,Σ).
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Multivariate Normal-Scaled Inverse Gamma Distribution

The multivariate normal-scaled inverse gamma distribution with the location vector µ,
covariance scale matrix C, shape parameter α and scale parameter β has the probability
distribution

p(x, τ |µ,C, α, β) = N (x;µ, τC)Inv-G(τ ;α, β)

and is denoted by NIG(x, τ ;µ,C, α, β).

Multivariate Student’s t-Distribution

The multivariate student’s t-distribution with the mean vector µ, covariance matrix Σ
and ν degrees of freedom has the probability distribution

p(x|µ,Σ, ν) = Γ(N/2 + ν/2)
Γ(ν/2)

√
(πν)N |Σ|

[
1 + ∆2

ν

]−N+ν
2

∆2 = (x− µ)TΣ−1(x− µ)

and is denoted by T (x;µ,Σ, ν).

Uniform Distribution

For N = 1, the uniform distribution with lower and upper boundary parameters a and
b has the probability distribution

p(x|a, b) =
{

(b− a)−1 for a ≤ x ≤ b
0 otherwise

and is denoted by U(x; a, b).
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Abstract
In this paper, we consider Bayesian interpolation and parameter estimation in a dynamic
sinusoidal model. This model is more flexible than the static sinusoidal model since it
enables the amplitudes and phases of the sinusoids to be time-varying. For the dynamic
sinusoidal model, we derive a Bayesian inference scheme for the missing observations,
hidden states and model parameters of the dynamic model. The inference scheme is
based on a Markov chain Monte Carlo method known as Gibbs sampler. We illustrate
the performance of the inference scheme to the application of packet-loss concealment of
lost audio and speech packets.

1 Introduction
Interpolation of missing, corrupted and future samples in signal waveforms is an im-
portant task in several applications. For example, speech and audio signals are often
transmitted over packet-based networks in which packets may be lost, delayed or cor-
rupted. If the contents of neighbouring packets are correlated, the erroneous packets
can be approximately reconstructed by using suitable interpolation techniques. The
simplest interpolation techniques employ signal repetition [1] and signal stretching [2],
whereas more advanced interpolation techniques are based on filter bank methods such
as GAPES and MAPES [3], and signal modelling such as autoregressive models [4, 5],
hidden Markov models [6], and sinusoidal models [7]. An integral part of the techniques
based on signal modelling is the estimation of the signal parameters. Given estimates
of these parameters, the interpolation task is simply a question of simulating data from
the model. In this paper, we develop an interpolation and parameter estimation scheme
by assuming a dynamic sinusoidal model for an observed signal segment. This model
can be written as a linear Gaussian time-invariant state space model given by

yn = bTsn + wn (observation equation)
sn+1 = Asn + vn (state equation)

(D.1)

where n = 1, . . . , N label the uniform sampled data in time, and

b =
[
1 0 · · · 1 0

]T (D.2)
A = diag(A1, · · · ,Al, · · ·AL) (D.3)

Al = exp(−γl)
[

cosωl sinωl
− sinωl cosωl

]
, (D.4)

with ωl ∈ [0, π] and γl > 0 denoting the (angular) frequency, and the log-damping
coefficient of the l’th sinusoid, respectively. Further, sn is the state vector, and vn and
wn are white Gaussian state and observation noise sequences with covariance matrix
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Q and variance σ2
w, respectively. We also assume a Gaussian prior for the initial state

vector s1 with mean vector µ and covariance matrix P . For a non-zero state covariance
matrix, the dynamic sinusoidal model in (D.1) is able to model non-stationary tonal
signals such as a wide range of speech and audio signal segments. We are here concerned
with the problem of performing interpolation and parameter estimation in the model in
(D.1) from a Bayesian perspective which offer some conceptual advantages to classical
statistics (see, e.g., [8]). For example, the Bayesian approach offers a standardised way
of dealing with nuisance parameters and signal interpolation [4]. The downside of using
the Bayesian methods is that they struggle with practical problems such as evaluation of
high-dimensional and intractable integrals. Although various developments in Markov
chain Monte Carlo (MCMC) methods (see, e.g., [9]) in recent years have overcome these
problems to a great extend, the methods still remain very computational intensive.

Within the field of econometrics, the dynamic sinusoidal model in (D.1) is well-known
and referred to as the stochastic cyclical model [10]. Two slightly different stochastic
cyclical models were given a fully Bayesian treatment using MCMC inference techniques
in [11] and [12]. Neither of these, however, considered the case where some observations
are missing. In the audio and speech processing field, the dynamic sinusoidal model
has also been considered by Cemgil et al. in [13–15]. However, they considered the
frequency parameter as a discrete random variable and based their inference on approx-
imate variational Bayesian methods.

In this paper, we extend the above work by developing an inference scheme for the
dynamic sinusoidal model based on MCMC inference techniques. We consider the fre-
quency parameter as a continuous random variable and allow some of the observations
to be missing. To achieve this, we develop a Gibbs sampling scheme. The output of
this sampler can be used for forming histograms of the unknown parameters of inter-
est. These histograms have the desirable property that they converge to the probability
distribution of these unknown parameters when the number of generated samples is
increased, and they therefore enable us to extract statistical features for the model
parameters as well as for performing the interpolation of the missing observations. It
should be noted that although this inference scheme can be used for estimating pa-
rameters of signals with no missing observations, the primary focus of this paper is on
the application of reconstructing missing observations from signal segments which are
assumed to have been generated by a dynamic sinusoidal model.

The paper is organised as follows. In Sec. 2, we formalise the problem by setting
up the Bayesian framework. This enables us in Sec. 3 to develop the interpolation and
inference scheme. In Sec. 4, we illustrate the performance of the interpolating scheme
by use of simulations, and Sec. 5 concludes this paper.
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2 Problem Formulation
In the Bayesian approach, all variables of the model in (D.1) are random variables, and
we partition them as

Observations: y =
[
y1, y2, · · · , yN

]T
Latent variables: S =

[
s1, s2, · · · , sN

]
Model parameters: θ = {ω,γ, q, σ2

w}
where ω, γ and q are L-dimensional vectors consisting of the L frequencies, the L log-
damping parameters and the L state noise variances, respectively. The nth state vector
sn =

[
sTn,1, · · · , sTn,L

]T consists of L two-dimensional state vectors pertaining to the L
sinusoids. Conditioned on the previous state vector, each of these L two-dimensional
state vectors has isotropic covariance matrix qlI2, where I2 is the 2×2 identity matrix, so
that Q = diag(q)⊗I2 where ⊗ is the Kronecker product. We also assume that R of the
elements in y are missing or corrupted, and that we know their indices I ⊂ {1, . . . , N}.
Using this set of indices, we define the vectors ym , yI and yo , y\I containing the R
missing or corrupted observations and the N − R valid observations, respectively. The
notation (·)\∗ denotes ’without element ∗’.

The primary objective of this paper is to recover ym from yo. This can be achieved
in various ways, e.g., by using MAP/MMSE estimate w.r.t. the posterior distribu-
tion p(ym|yo) or by drawing a sample from p(ym|yo). The MAP-based interpola-
tion produces the most probable interpolants. For audio and speech signals, however,
MAP/MMSE-based interpolation tends to produce over-smoothed interpolants in the
sense that they do not agree with the stochastic part of the valid observations [16]. A
more typical interpolant can be obtained by drawing a single sample from p(ym|yo) [4].
The posterior distribution for the missing samples given the valid samples is given by

p(ym|yo) =
∫
p(ym|SI , σ2

w)p(S,θ|yo)dSdθ . (D.5)

We are not able to draw a sample directly from p(ym|yo) since we are not able to
integrate the nuisance parameters S and θ out analytically. However, we can obtain a
sample from p(ym|yo) by taking a single sample from the joint posterior distribution
p(ym,S,θ|yo) and simply ignore the generated values for S and θ. From the observation
equation of (D.1), we know the distribution of p(ym|SI , σ2

w), so the only problem left
is computing p(S,θ|yo). This distribution is by Bayes’ theorem given by

p(S,θ|yo) =
p(yo,S\1|s1,θ)p(s1,θ)

p(yo) (D.6)

where p(yo,S\1|s1,θ), p(s1,θ) and p(yo) are referred to as the likelihood, the prior and
the model evidence, respectively. Under the above assumption, the likelihood can be
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factored as

p(yo,S\1|s1,θ) =p(yo|S\I , σ2
w)

×
N−1∏
n=1

L∏
l=1

p(sn+1,l|sn,l, ql, ωl, γl) (D.7)

which from (D.1) is seen to be a product of normal distributions. For the prior distri-
bution, we assume the factorisation

p(s1,θ) = p(s1)p(ω)p(γ)p(q)p(σ2
w)

= p(s1)
[
L∏
l=1

p(ωl)p(γl)p(ql)
]
p(σ2

w) (D.8)

where p(s1) has a normal distribution N (s1;µ,P ), p(ωl) has a uniform distribution
U(ωl; 0, π), p(γl) has an exponential distribution Exp(γl;λl), and p(σ2

w) and p(ql) have
inverse gamma distributions Inv-G(σ2

w;αw, βw) and Inv-G(ql;αv,l, βv,l). The model ev-
idence p(yo) is independent of S and θ and is therefore a mere scale factor which can
be ignored in the inference stage.

3 Inference Scheme
In the Bayesian framework, all statistical inference is based on the posterior distribution
over the unknown variables or a marginal posterior distribution over some of these. As
derived in the previous section, we have to generate samples from p(S,θ|yo) in order
to be able to do this. Unfortunately, this distribution has a very complicated form, and
we are therefore not able to sample directly from it. We therefore have to resort to
other sampling techniques in order to enable statistical inference based on this distribu-
tion. One of the simplest and most popular numerical sampling techniques is the Gibbs
sampler [17] which is an MCMC-based algorithm and suitable for this task. The Gibbs
sampler draws samples from a multivariate distribution, say p(x) = p(x1, . . . ,xK), by
breaking it into a number of conditional distributions p(xk|x\k) of smaller dimensional-
ity from which samples are obtained in an alternating pattern. Specifically, for the τ ’s
iteration, we sample for k = 1, . . . ,K from

x
[τ+1]
k ∼ p(xk|x[τ+1]

1 , . . . ,x
[τ+1]
k−1 ,x

[τ ]
k+1, . . . ,x

[τ ]
K ) . (D.9)

After an initial burn-in time during which the sampling scheme converges, the sam-
ples obtained from sampling these lower dimensional conditional distributions can be
regarded as samples from the joint posterior distribution. In this paper, the posterior
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distribution p(S,θ|yo) is broken into the two conditional distributions given by

States: p(S|θ,yo) (D.10)
Model parameters: p(θ|S,yo) (D.11)

The selected grouping of variables in (D.10) and (D.11) leads to a set of conditional
distributions which are fairly easy to sample from. In the next sections, we derive the
particular form of these conditional distributions.

3.1 States
The conditional state distribution in (D.10) can be shown to be a multivariate Gaussian
distribution. However, the dimension of this distribution is 2LN×1 which would render
direct sampling from it infeasible for most applications. Instead, we use the simulation
smoother [18], which is an efficient sampling scheme using standard Kalman smoothing,
for drawing samples from (D.10). Since some of the observations are missing, we have
to modify the simulation smoother slightly. This is easily done by skipping the update
step of the build-in Kalman filter for these observations.

3.2 Model Parameters
Since the model parameter of the observation equation, σ2

w, and the L sets of model
parameters of the state equation, (ωl, γl, ql), are mutually independent conditioned on
the states S, we can factor (D.11) as

p(θ|S,yo) =
[
L∏
l=1

p(ωl, γl, ql|S)
]
p(σ2

w|S,yo) . (D.12)

Thus, sampling from the conditional distribution in (D.11) can be done by sampling the
L+ 1 conditional distributions on the right side of (D.12) independently.

Frequency, Log-damping and State Noise Variance

To our knowledge, it is not possible to sample directly from the conditional distribution
p(ωl, γl, ql|S). A Gibbs sampling scheme is also not straight-forward since it suffers from
poor mixing and since the l’th log-damping coefficient conditioned on the l’th frequency
parameter and state noise variance has a non-standard distribution. In order to improve
mixing of the parameters and lower the overall computational complexity, we therefore
propose sampling from p(ωl, γl, ql|S) by use of a Metropolis-Hastings (MH) sampler [19].
In the MH sampler, samples generated from the desired posterior distribution, say p(x),
which we know up to some normalising constant Z with p(x) = p̃(x)/Z, are generated
by use of a user-defined proposal distribution q(x|x[τ ]), where x[τ ] is the τth generated
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sample. In general, p(x) 6= q(x|x[τ ]) so a proposed sample x′ ∼ q(x|x[τ ]) is only
accepted as a sample from p(x) with probability

α(x[τ ],x′) = min
[
1, p̃(x

′)q(x[τ ]|x′)
p̃(x[τ ])q(x′|x[τ ])

]
. (D.13)

Otherwise, the previous accepted sample is retained, i.e., x[τ+1] = x[τ ].
For p(ωl, γl, ql|S), the proposal samples (ω′l, γ′l, q′l) are generated in two simple steps:

First, we generate a sample for the mean and variance of a bivariate normal-scaled
inverse gamma distribution with isotropic covariance matrix. This is done by sampling
from

q′l ∼ Inv-G(αql , βql) (D.14)
τ ′l ∼ Inv-G(αql , 1/2) (D.15)

a′l =
[
a′1,l a′2,l

]T ∼ N (µa,l, 2βqlτ ′lσ2
a,lI2) (D.16)

where we have defined

ϕl ,
[
sT2,l sT3,l · · · sTN,l

]T (D.17)

φl ,
[
sT1,l sT2,l · · · sTN−1,l

]T (D.18)

φ̃l ,
[
(s⊥1,l)T (s⊥2,l)T · · · (s⊥N−1,l)T

]T (D.19)
Φl ,

[
φl φ̃l

]
(D.20)

σ2
a,l , (φTl φl)−1 (D.21)
µa,l , σ2

a,lΦT
l ϕl (D.22)

αql , αv,l +N − 1 (D.23)
βql , βv,l + (ϕTl ϕl − σ−2

a,lµ
T
a,lµa,l)/2 , (D.24)

and s⊥n,l is obtained by a 90◦ clockwise rotation of sn,l. Second, we transform a′l into
(ω′l, γ′l) by the relations

ω′l = arctan(a′2,l/a′1,l) (D.25)
γ′l = − ln

(
a′Tl a

′
l

)
/2 . (D.26)

Then, if a′2,l ≥ 0, the proposal samples (ω′l, γ′l, q′l) are accepted as samples from p(ωl, γl, ql|S)
with probability

α
(
(ω[τ ]
l ,γ

[τ ]
l , q

[τ ]
l ), (ω′l, γ′l, q′l)

)
= min

[
1, exp

{
(λl − 2)(γ[τ ]

l − γ′l)
}]

. (D.27)
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Otherwise, the previous values (ω[τ ]
l , γ

[τ ]
l , q

[τ ]
l ) are retained. Notice that if the rate

parameter λl of the prior for γl is equal to two, α = 1 for any γ′l. The details of the
derivation of this sampling scheme can be found in [20].

Observation Noise Variance

By Bayes’ theorem, we can write p(σ2
w|S,yo) as

p(σ2
w|S,yo) ∝ p(yo|S\I , σ2

w)p(σ2
w) (D.28)

where p(yo|S\I , σ2
w) is the likelihood of the observation equation in (D.1) and p(σ2

w) is
the prior distribution for σ2

w. Since p(yo|S\I , σ2
w) = N (ST\Ib, σ2

wIN−R) and p(σ2
w) =

Inv-G(αw, βw), the posterior distribution p(σ2
w|S\I ,yo) is an inverse gamma distribu-

tion, Inv-G(σ2
w;ασ2

w
, βσ2

w
), with parameters

ασ2
w

= αw +N/2 (D.29)

βσ2
w

= βw + 1
2(yo − ST\Ib)T (yo − ST\Ib) . (D.30)

3.3 Summary of Inference Scheme
Table D.1 summarises our proposed Gibbs sampler for generating samples from p(S,θ|yo).
The computational complexity of the algorithm is fairly high primarily due to the gen-
eration of the states by the simulation smoother. In our implementation with N = 600
observations and L = 6 sinusoids, it takes approximately 40 ms for generating a state
sample S[τ ]. This corresponds to nearly 97 % of the time consumption of one iteration
of the Gibbs sampler. For the application of interpolation, we only need a single sample
for the states and model parameters from the invariant distribution of the underly-
ing Markov chain of the sampler. Once these have been generated, we may perform
the interpolation by simulating from the observation equation of (D.1). Therefore, the
computational complexity of the algorithm heavily depends on proper initialisation and
the convergence speed of the chain.

4 Simulations
We consider the problem of reconstructing missing or corrupted packets on a packet-
based network. First, we illustrate the reconstruction process and, second, we present
the results of a small-scale listening test.
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1. Select hyperparameters and initialise the Gibbs sampler.

2. Repeat for k = 0, 1, 2, . . . ,K

(a) S[k+1] ∼ p(S|θ[k],yo) (simulation smoother)
(b) Repeat for l = 1, 2, . . . , L

i. q′l ∼ Inv-G(α[τ ]
ql , β

[τ ]
ql )

ii. τ ′l ∼ Inv-G(α[τ ]
ql , 1/2)

iii. a′l ∼ N (µ[τ ]
a,l, 2β

[τ ]
ql τ
′
lσ

2
a,l

[τ ]
I2)

iv. ω′l = arctan(a′2,l/a′1,l)
v. γ′l = − ln

(
a′Tl a

′
l

)
/2

vi. ul = U(0, 1)
vii. if ul ≤ α

(
(ω[τ ]
l , γ

[τ ]
l , q

[τ ]
l ), (ω′l, γ′l, q′l)

)
• (ω[k+1]

l , γ
[k+1]
l , q

[k+1]
l ) = (ω′l, γ′l, q′l)

else
• (ω[k+1]

l , γ
[k+1]
l , q

[k+1]
l ) = (ω[τ ]

l , γ
[τ ]
l , q

[τ ]
l )

(c) σ2
w

[k+1] ∼ Inv-G(α[τ ]
σ2
w
, β

[τ ]
σ2
w

)

Table D.1: Summary of proposed Gibbs sampler for generating samples from p(S, θ|yo).
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Fig. D.1: Plot (a) shows the six traces for the frequencies each consisting of 10,000 samples. Plot (b)
shows the spectrogram for the complete speech signal whereas plot (c) shows the periodogram for the
section indicated in plot (b). The time series corresponding to this section is shown in plot (d) with
the middle section of 25 ms audio missing. The plot also shows the result of the interpolation in terms
of the 95 % credible interval, a sample from the marginal posterior distribution p(ym|yo) and the true
missing observations (dashed).

4.1 Speech Signal Reconstruction
We used a snapshot from a speech signal (see Fig. D.1.d) consisting of N = 600 samples
corresponding to 75 ms of speech at a sampling frequency of 8000 kHz. The speech
signal is generated by a female voice uttering, "Why were you away a year, Roy?"
and its spectrogram in shown in Fig. D.1.b. The periodogram of the 75 ms speech
signal segment is shown in Fig. D.1.c. Prior to running the Gibbs sampler, we removed
the middle section thus emulating a lost audio packet of 25 ms. For the setup of
the Gibbs sampler, we assumed L = 6 sinusoidal components, and we selected the
hyperparameters such that the prior distributions were diffuse. The initial values for
the frequency and the observation noise variance were computed by using a matching
pursuit algorithm. The initial values for the log-damping coefficients and the state noise
covariances were somewhat heuristically set to 0 and σ2

w
[0]
/10, respectively. Fig. D.1

shows the main results of the simulation. Fig. D.1.a shows the six traces of samples
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Fig. D.2: Mean and 95 % confidence intervals for the MUSHRA listening test. The reference signal
was transmitted through four artificial channels with independent packet-loss probabilities of 5 %, 10
%, 20 % and 30 %, respectively. For the anchor signal, the missing packets were interpolated with
zeros while the interpolation for A, B and C were based on p(ym|yo), E{ym|yo} and p(ym|yo, θ

MAP),
respectively.

obtained for the frequency parameters. After a burn-in length of approximately 1000
samples the underlying Markov chain seems to have converged to the true posterior
distribution for the frequencies. Inference for the frequency parameters can thus be
based on histograms formed by the the last approximately 9000 samples. In a similar
way, histograms for the remaining model parameters can be formed. Fig. D.1.d shows
a typical sample obtained for the missing observations compared to the true signal.
Notice, that unlike maximum likelihood- and EM-restoration techniques, the noise is
also modelled when performing the interpolation in the Bayesian framework. Fig. D.1.d
also shows an estimate of the 95 % credible interval for the missing observations.

4.2 Listening Test
We conducted a small-scale MUSHRA listening test [21, 22] to evaluate the performance
of the interpolation scheme. In addition to the speech signal, we also used an excerpt
from a trumpet signal. Both of these signals were partitioned in 25 ms packets and
transmitted through four artificial channels where packets were lost independently with
probabilities of 5 %, 10 %, 20 % and 30 %, respectively. On the receiver side, we
applied our proposed interpolation scheme to the missing packets. For every gap of
one or more consecutive missing packets, we used the valid packet before and after
the gap as in Fig. D.1. We compared the interpolant (A) from p(ym|yo) against the
MMSE interpolant (B) E{ym|yo} and the interpolant (C) from p(ym|yo,θ

MAP). The
MMSE and MAP estimates were computed from the last 9000 generated samples from
the Gibbs sampler. For the anchor signal, we used zeros for the interpolation. Fig. D.2
shows the results obtained by applying the statistical analysis suggested in [21] to the
scores given by ten listeners. The listening test clearly revealed that reconstructing
missing packets of the highly tonal and fairly stationary trumpet signal was much more
successful than for the speech signal. The results also revealed that the interpolation
based on E{ym|yo} performed better than the other methods.
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5 Conclusion
Based on a Gibbs sampler, we have presented a Bayesian inference scheme for the missing
observations, the states and the model parameters of a dynamic sinusoidal model. This
model is able to model some non-stationary signal segments which are often encountered
in music or speech signal processing. In the simulations, we demonstrated that the
algorithm can be used for interpolation of audio and speech signals. This is an integral
part of many signal processing applications such as packet-loss concealment, pitch- and
time-scale modification. Additionally, the inference scheme can also be used for making
inference about the unknown model parameters of the dynamic sinusoidal model.
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Abstract
The filter bank methods have been a popular non-parametric way of computing the com-
plex amplitude spectrum. So far, the length of the filters in these filter banks has been
set to some constant value independently of the data. In this paper, we take the first
step towards considering the filter length as an unknown parameter. Specifically, we
derive a very simple and approximate way of determining the optimal filter length in
a data-adaptive way. Based on this analysis, we also derive a model averaged version
of the forward and the forward-backward amplitude spectral Capon estimators. Through
simulations, we show that these estimators significantly improve the estimation accuracy
compared to the traditional Capon estimators.

1 Introduction
The estimation of the complex amplitude spectrum is an important problem in several
applications such as audio coding and radar imaging (see [1] and the references therein).
Several solutions have been proposed in the literature ranging from simple estimators
based on various windowed Fourier transforms to more complex estimators based on a
parametric model of the observed data. A popular example of such a parametric model
is the sinusoidal model

x(n) =
l∑
i=1

αi exp(jωin) + w(n) , n = 1, 2, · · · , N (E.1)

where αi and ωi are the complex amplitude1 and the frequency of the i’th complex
sinusoid, respectively, and w(n) is a stationary random process with a possibly non-flat
power spectral density (psd). Unfortunately, the parametric methods are usually very
sensitive to modelling errors such as the noise statistics [2] and may also suffer from a
high computational complexity if the model has non-linear parameters such as the fre-
quency. Therefore, non-parametric methods may yield much better estimation results
or lower the computational complexity significantly. For the estimation of the complex
amplitude spectrum, the filter bank methods such as Capon [3] and APES [4] are ex-
amples of such non-parametric estimators which are fast and very robust to modelling
errors. Although the APES method was originally proposed as an approximate maxi-
mum likelihood method, it can also be interpreted as a matched filter bank method like
the Capon method [5]. Under this interpretation, the observed data is passed through
an m-tap FIR-filter which is designed to maximise the signal-to-noise ratio (SNR) of the
filter output subject to the constraint that the filter has a gain of one at some known fre-
quency ω. The complex amplitude α at this frequency is then estimated from the filter

1Note that αi is not an amplitude in the usual sense since it is not a real, positive scaler. However,
in the lack of better words, we refer to it as the complex amplitude.
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output. By designing a filter for all desired frequency points, we get a filter bank whose
outputs are used to estimate the complex amplitudes at all these frequency points. The
statistical properties of the Capon and APES methods have been studied extensively in,
e.g., [5–7]. These studies have shown that the APES amplitude estimates are unbiased
for all filter lengths, but that the Capon estimator gives amplitude estimates which are
biased towards zero. For long filter lengths, this bias increases significantly. On the
other hand, the Capon method has in general a better resolution than APES and is
therefore more practical for estimating frequencies [1]. In [4], the maximum filter length
of m = bN/2c is recommended for the APES method since this maximises the resolu-
tion. For the Capon method, however, there is a trade-off between resolution and bias,
and in [7] a filter length in the interval N/8 < m < N/4 is recommended. To the best
of our knowledge, the filter length m is always selected to be the same for all frequency
points and does not depend on the observed data. In this paper, we take a first step
towards determining the optimal filter length for the Capon method in a data-adaptive
way. Specifically, we give a simple and approximate solution which is based on Djuric’s
asymptotic MAP approach [8].

2 The Amplitude Spectral Capon Estimator
The filter bank methods are a way of bypassing some of the difficulties associated with
the parametric methods. This is achieved by first rewriting (E.1) as

x(n) = α exp(jωn) + z(n) , n = 1, 2, · · · , N (E.2)

where α is the complex amplitude at the known (angular) frequency ω. In practice, we
rarely know the true frequency parameters {ωi}li=1 or the number l of them in (E.1),
and these quantities are typically hard to estimate. In the filter bank methods, this
problem is bypassed by selecting a set Ω of R candidate frequencies for which we wish
to estimate the complex amplitude α. Comparing (E.2) to (E.1), we see that z(n)
models all the l sinusoids and the coloured noise w(n), except for the complex sinusoid
with an unknown complex amplitude α at the known frequency ω. We then pass this
signal through an m-tap FIR filter and obtain

y(n) = α exp(jωn)hHa+ hHz(n) . (E.3)

for n = m, · · · , N where we have defined

a ,
[
1 exp(−jω) · · · exp(−jω(m− 1))

]T (E.4)

h ,
[
h0 h1 · · · hm−1

]H (E.5)

z(n) ,
[
z(n) z(n− 1) · · · z(n−m+ 1)

]T
. (E.6)
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The notation (·)T and (·)H denote transposition and complex transposition, respectively.
Maximising the SNR of the filter output is equivalent to solving [5]

arg min
h∈Cm

hHQh subject to hHa = 1 (E.7)

whose solution is
h = (aHQ−1a)−1Q−1a . (E.8)

The covariance matrix Q , E{z(n)zH(n)} is unknown and must be estimated in some
way. For C , E{x(n)xH(n)} where x(n) is defined analogously to z(n), we have that

C = |α|2aaH +Q , (E.9)

and a simple estimate of Q is therefore Q̂ = Ĉ − |α̂|2aaH . Inserting this estimate in
(E.7) yields

arg min
h∈Cm

hHĈh subject to hHa = 1 (E.10)

so that the Capon filter is

hCapon = (aHĈ−1
a)−1Ĉ

−1
a . (E.11)

The covariance matrix C of the input vector x(n) is typically estimated in one of two
different ways. If we define K , N −m+ 1 and

X ,
[
x(m) · · · x(N)

]
, (E.12)

the forward estimate is given by

Ĉf = K−1XXH , (E.13)

and the forward-backward (FB) estimate is given by

Ĉfb = (Ĉf + JmĈ
T

f Jm)/2 (E.14)

where Jm is the m × m exchange matrix. Like the true covariance matrix, Ĉfb is
persymmetric and simulation results have shown that it reduces the bias of the complex
amplitude estimate significantly compared to Ĉf [6]. However, the resolution is slightly
better for Ĉf [9]. The APES filter can be derived by using a different estimate of Q,
which can be found in [5], and it also exists in a forward and a FB version [6].

Due to the constraint hHa = 1, we can write the filter output in (E.3) in vector
form as

y = XTh∗ = αb+ e (E.15)
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where (·)∗ denotes complex conjugation and

y ,
[
y(m) · · · y(N)

]T (E.16)
e(n) , hHz(n) (E.17)

e ,
[
e(m) · · · e(N)

]T (E.18)

b ,
[
exp(jωm) · · · exp(jωN)

]T
. (E.19)

The least squares estimate of the complex amplitude is then

α̂m = K−1hHXb∗ (E.20)

where we have used the subscriptm to indicate the length of the filter. When the Capon
filter is used in (E.20), we term the resulting estimator as the amplitude spectral Capon
(ASC) estimator.

3 The Model Averaged ASC Estimator
To estimate the optimal filter length, we first briefly review the asymptotic MAP ap-
proach by Djuric [8]. In his framework, we wish to find the posterior distribution p(m|x)
on the filter length m given the K data points in the vector x. This distribution is by
Bayes’ theorem given by

p(m|x) ∝ p(x|m)p(m) (E.21)

where ∝ denotes ’proportional to’, and p(x|m) is referred to as the model likelihood or
evidence which is given by

p(x|m) =
∫

Θm
p(x|θm,m)p(θm|m)dθm (E.22)

where θm denotes the dm model parameters with support Θm, p(x|θm,m) is the likeli-
hood, and p(θm|m) is the prior on the model parameters under model index m. Unfor-
tunately, the integral in (E.22) can in general not be evaluated analytically, so Djuric
suggests that the integral is approximately evaluated using the Laplace approximation.
Provided that θ is purely complex, the Laplace approximation gives

p(x|m) ≈ f(θ̂m)πdm | −H(θ̂m)|−1 (E.23)

where f(θm) , p(x|θm,m)p(θm|m) is the integrand of (E.22), θ̂m is the MAP estimate
of θm, and

H(θm) = ∂2 ln f(θm)
∂θ∗m∂θ

T
m

(E.24)
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is the Hessian matrix. Djuric also suggests that we simplify (E.23) by neglecting the
terms of order O(1) and by evaluating the determinant of the observed information
matrix −H(θ̂m) using asymptotic considerations. Specifically, for the linear Gaussian
model x = Fmθm + e and for a uniform prior on the model index and the model
parameters, Djuric approximates p(m|x) on the model index by [8]

p(m|x) ∝ (σ̂2)−K |FHmFm|−1 (E.25)

where σ̂2 is the maximum likelihood estimate of the noise variance. The asymptotic
approximation of |FHmFm| depends on the particular structure of Fm.

3.1 Derivation
To construct a simple way of selecting the optimal filter length, we first integrate the
constraint hHa = 1 into the filter vector. Specifically, we write h0 = 1− ãH h̃ with

h̃ ,
[
h1 h2 · · · hm−1

]T (E.26)

ã ,
[
exp(jω) exp(jω2) · · · exp(jωm)

]T (E.27)

so that the constraint hHa = 1 is satisfied for all h̃. This leads to that

y = XTh∗ = x1 − Fmh̃ (E.28)

where we have defined

x1 ,
[
x(m) · · · x(N)

]T (E.29)

Fm ,XT

[
ãH

−Im−1

]
. (E.30)

where Im−1 is the (m − 1)-dimensional identity matrix. We now assume that x1 is
independent of Fm and that y is a white Gaussian noise vector, so that x1 = Fmh̃+y
is our simple linear model. Although this is in direct contradiction with the model of
the filter output in (E.15), it is a necessary assumption to derive the ASC estimator in
our framework. The APES estimator would be obtained instead if y was replaced by
(E.15) and e was assumed to be a white Gaussian noise. Under the assumption that
y ∼ CN (y; 0, σ2IK), where σ2 is the noise variance, the likelihood is approximately
given by

p(x1|x0,h, σ
2) ≈ (πσ2)−K exp

{−K
σ2 S(h)

}
(E.31)

where x0 =
[
x(1) · · · x(m− 1)

]T and

S(h) , hHĈfh = K−1(x1 − Fmh̃)H(x1 − Fmh̃) . (E.32)
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For non-informative and flat priors, the MAP estimates of the noise variance and the
filter coefficient are equal to the maximum likelihood estimates which are

σ̂2 = S(ĥ) = (aHĈ−1
f a)−1 (E.33)

ĥ = hCapon = σ̂2Ĉ
−1
f a . (E.34)

The determinant |FHmFm| can be written as

|FHmFm| = Km−1
∣∣∣∣[ã −Im−1

]
Ĉ
∗
f

[
ãH

−Im−1

]∣∣∣∣ . (E.35)

Since the last factor does not grow with K, the asymptotic approximation is |FHmFm| ≈
Km−1. Thus, (E.25) gives

p(m|x) ∝ S(ĥ)−KK−(m−1) (E.36)

which is the same as the Bayesian information criterion (BIC) or Schwarz criterion [10].
We use the approximate expression for p(m|x) to compute the amplitude estimate

averaged over all models. We call this estimator for the model averaged amplitude
spectral Capon (MAASC) estimator, and it is given by

α̂ =
bN/2c∑
m=1

p(m|x)E{p(α|x,m)} =
bN/2c∑
m=1

p(m|x)α̂m . (E.37)

Thus, the MAASC estimate is a weighted sum of the ASC estimates for each filter
lengths with the weight determined by the probability of each filter length. As with the
ASC estimate, the MAASC estimate can be computed using either the forward or the
forward-backward covariance matrix estimate.

4 Iterative Computation of the Inverse Covariance
Matrix

The major contribution to the computational complexity in the ASC estimator is the
inversion of the covariance matrix estimate. For the MAASC estimator this contribution
is even more pronounced as we have to do the inversion for every filter length. In
this section, we derive an iterative algorithm for computing the inverse of the forward
estimate of the covariance matrix.

For any filter length m, it follows from (E.13) that the forward estimate of the
covariance matrix scaled by a factor of K is XmX

H
m where Xm is defined in (E.12).

This scaled estimate is related to Xm+1X
H
m+1 by

Xm+1X
H
m+1 =

[
qm+1 rHm+1
rm+1 Dm+1

]
(E.38)
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where we have defined

qm+1 , xH1 x1 − |x(m)|2 (E.39)

rm+1 ,
[
0 Xm

] [x∗1
0

]
(E.40)

Dm+1 ,XmX
H
m − x(N)xH(N) . (E.41)

Using blockwise matrix inversion, (Xm+1X
H
m+1)−1 is

(Xm+1X
H
m+1)−1 =

[
λm+1 φHm+1
φm+1 Ψm+1

]
(E.42)

where we have defined

λm+1 , (qm+1 − rHm+1D
−1
m+1rm+1)−1 (E.43)

φm+1 , −λm+1D
−1
m+1rm+1 (E.44)

Ψm+1 ,D−1
m+1 + λ−1

m+1φm+1φ
H
m+1 . (E.45)

The inverse of Xm+1X
H
m+1 is related the inverse of XmX

H
m through D−1

m+1 which can
be written as

D−1
m+1 = [XmX

H
m − x(N)xH(N)]−1 (E.46)

= (XmX
H
m)−1 (E.47)

+ (XmX
H
m)−1x(N)xH(N)(XmX

H
m)−1

1− xH(N)(XmX
H
m)−1x(N)

by using the matrix inversion lemma. Thus, we can iteratively compute the inverse of
the forward estimate of the covariance matrices for all filter lengths without doing any
matrix inversions. Whether a similar algorithm for the FB estimate of the covariance
matrix exists or not is still an open issue.

5 Simulations
We evaluate the f-MAASC and the fb-MAASC estimators on the same synthetic sig-
nal as used in [5]. This signal is the sum of 13 sinusoids at the angular frequencies
2π(0.0625, 0.0875, 0.25, 0.285, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49), and
these frequencies are marked with at dashed line in Fig. E.1. All the sinusoidal compo-
nents have a phase of π/4, and the amplitudes of the sinusoids are 1 for the first three,
0.3 for the fourth, and 0.1 for the rest. Our data set consists of N = 64 observations
from a noise corrupted version of the sinusoidal signal where the noise is complex, white,
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Fig. E.1: The optimal filter length as a function of the frequency.
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Fig. E.2: The amplitude estimate for various estimators. The filter length for the fb-ASC and the
fb-APES was K = 32.

and Gaussian with variance σ2. As in [5], we define the signal-to-noise ratio (SNR) of
the signal as the local SNR of the first sinusoid

η , 10 log10(|α1|2σ−2) . (E.48)

Fig. E.1 shows the MAP estimate m̂ of the model index as a function of the frequency
ω. We see that m̂ is large when ω is close to one of the sinusoidal components whereas
m̂ is small when ω is either at a sinusoidal component or far away from one of the
sinusoidal components. This is reasonable as a very long filter is necessary to filter
out a sinusoidal component close to ω. On the other hand, a short filter length at a
sinusoidal component means that the output vector y has more elements so that we
may estimate the complex amplitude with a higher accuracy.

In Fig. E.2, an example of the estimated amplitude spectrum is shown at the first
sinusoidal component for an SNR of 20 dB. Despite the fact that the f-MAASC and
fb-MAASC estimators are model averaged estimators, their resolution is only slightly
worse than the resolution of the fb-ASC estimator with a maximum filter length of
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Fig. E.3: The mean squared error (MSE) for various estimators based on 500 Monte Carlo iterations.
The filter length for the f-ASC, the fb-ASC, the f-APES, and the fb-APES was K = 32.

K = 32. However, the resolution was better than for the fb-APES estimator.
Based on 500 Monte Carlo iterations, the mean squared errors (MSE) at the first

sinusoidal component for the estimates of the real and complex part of the complex
amplitude, the amplitude, and the phase are shown and compared to the asymptotic
Cramer-Rao lower bound (CRLB) in Fig. E.3. Clearly, the f-MAASC and fb-MAASC
estimators significantly reduce the MSE of the corresponding f-ASC and fb-ASC esti-
mators. Other simulations have shown that this reduction comes from a reduction in
both the bias and the variance. Although the maximum filter length of K = 32 is
not a recommended length of the ASC-filters (see Sec. 1), we used this length in our
simulations to see how much the bias was lowered by the MAASC-estimators while still
having nearly the same resolution as demonstrated in Fig. E.2. If the filter length is
reduced, the MSE-performance of the ASC-filters also improves significantly, but at the
expense of a coarser resolution.

Note that the f-APES and the fb-APES can also be cast in a model averaged frame-
work. However, we observed only minor improvements in the MSE at the cost of a
slightly worse resolution and a higher computational complexity. On the other hand,
the model averaging attenuates the line-splitting (see Fig. E.2) in the APES estimate
of the amplitude spectrum.
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6 Conclusion
In this paper, we have proposed a data-adaptive way of determining the filter length
of the Capon filter. The adaptation was based on the approximate MAP approach
by Djuric, and it led to a very simple way of computing an approximate posterior
distribution for the filter length. Based on this posterior distribution, we also derived
a model averaged amplitude spectral Capon estimator for both the forward and the
forward-backward estimate of the covariance matrix. For nearly the same resolution,
simulations on a synthetic signal showed that the f-MAASC and fb-MAASC significantly
lowered the mean squared error of the complex amplitude estimates as compared to
the traditional forward and forward-backward amplitude spectral Capon estimators,
respectively.
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Abstract
Compressed sensing (CS) has in recent years become a very popular way of sampling
sparse signals. This sparsity is measured with respect to some known dictionary con-
sisting of a finite number of atoms. Most models for real world signals, however, are
parametrised by continuous parameters corresponding to a dictionary with an infinite
number of atoms. Examples of such parameters are the temporal and spatial frequency.
In this paper, we analyse how CS affects the estimation performance of any unbiased
estimator when we assume such infinite dictionaries. We base our analysis on the
Cramer-Rao lower bound (CRLB) which is frequently used for benchmarking the es-
timation accuracy of unbiased estimators. For the popular sensing matrices such as
the Gaussian sensing matrix, our analysis shows that compressed sensing on average
degrades the estimation accuracy by at least the down-sample factor.

1 Introduction
For a wide range of applications such as compression, enhancement, identification, and
separation, sparse decompositions have been a very useful tool. Mathematically speak-
ing, a sparse decomposition of an N -dimensional complex vector x ∈ CN can be written
as the linear model

x = Ψs+ e (F.1)

where Ψ ∈ CN×D is referred to as the basis or dictionary, s is a D-dimensional S-
sparse vector, and e ∈ CN is an error vector modelling noise and model inaccuracies.
By S-sparse, we mean that s contains exactly S non-zero coefficients and D − S zeros.
Moreover, we say that x is an S-sparse or a compressible signal in the basis Ψ if e = 0 or
e ≈ 0, respectively. Traditionally, the non-zero coefficients of s are found by greedy or `1
optimisation algorithms such as matching pursuit [1] or basis pursuit [2]. In the usual
cases where N � S, however, these methods may suffer from a large computational
overhead as they have to work directly on x. In compressed sensing (CS) [3], this
overhead is decreased considerably by utilising the sparsity during the data acquisition.
That is, instead of acquiring x by sampling at the Nyquist rate, we acquire y ∈ CM
with S < M ≤ N by only collecting an amount of data close to the sparsity level
S. Thus, CS may enable a faster computation of the parameters, data acquisition at
a lower sample rate, and less demanding storage requirements. These properties are
very important for most signal processing algorithms, and CS has therefore become
very popular. Mathematically speaking, we model the relationship between x and y by
y = Φx where Φ ∈ CM×N is referred to as the sensing matrix. If x is compressible, and
Φ is chosen appropriately, the vector s can be computed directly from y provided that
the Restricted Isometry Property (RIP) holds [3, 4]. Until recently [5], the recovery was
only shown to hold for the orthogonal or incoherent dictionaries Ψ. Consequently, much



182 Paper F.

attention has been directed towards finding sensing matrices which make M as small
as possible given an incoherent dictionary [6, 7]. The dictionary Ψ in (F.1) consists of
D column vectors {ψd}Dd=1 which are often referred to as atoms, and popular choices
of the dictionary are the Fourier basis and a wavelet basis. Typically, the atoms can be
represented by a parametric function f(φ), and each atom is constructed by selecting
a specific value ψd = f(φd) for the parameter of this function. For example, the atoms
of the incoherent Fourier basis is formed by sampling the frequency parameter φ = ω
on the Fourier grid φd = 2π(d − 1)/D with D = N . For most real world signals,
however, the parameter φ is a continuous parameter corresponding to highly coherent
dictionaries with D → ∞. A sparse decomposition with a finite dictionary is therefore
in direct contradiction with the physics behind most signal models of the form

x = A(φ)α+w (F.2)

where w ∈ CN is a noise vector, and A(φ) ∈ CN×S is parametrised by φ ∈ CK−S
and contains the S true atoms with the amplitudes α ∈ CS . The scalar K is the total
number of variables in φ and α. Comparing the models in (F.2) and (F.1), we see
that A(φ)α ≈ Ψs with equality if the true atoms in A(φ) are included in Ψ. As
demonstrated in [8], we obtain an inferior compression scheme by using the model in
(F.1) rather than (F.2) when equality does not hold. CS has been developed under the
assumption that equality holds. In other words, φ is assumed to be a discrete parameter
whose possible values are used to construct the atoms of the dictionary. When CS is
viewed in this light, we may interpret the RIP as a requirement to the distance between
adjacent values that φ may take.

In this paper, we do not assume that φ is a discrete parameter. For various popular
sensing matrices [4, 9], we instead investigate the accuracy with which we can estimate
the continuous parameters of the model in (F.2) when we are giving y instead of x. For
the MUSIC algorithm, we noted a significant loss in the estimation accuracy in [10].
Here, however, we do not consider a specific estimation algorithm, but only the best
possible performance that any unbiased estimation algorithm can obtain. We therefore
base the analysis on the Cramer-Rao lower bound (CRLB) which has previously [11, 12]
been used to assess the estimation accuracy of the non-zero elements of s, assuming
a finite dictionary. In this paper, however, we work directly with the model in (F.2),
corresponding to an infinite dictionary. The paper is organised as follows: In Sec. 2,
we present the CRLB for the model in (F.2). The CRLB is used to benchmark the
performance of unbiased estimators, and we modify it to the situation in which CS is
used in Sec. 3. In Sec. 4, we establish a connection between the CRLB with and without
CS by deriving a lower bound on the expected CRLB for some of the popular sensing
matrices. An illustrative simulation is presented in Sec. 5, and Sec. 6 concludes this
paper.
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2 Cramer-Rao Lower Bound
Consider the general problem in which we observe N random data points x which we
mathematically describe by a family of probability density functions p(x;θ). Without
loss of generality, we assume that this model is parametrised by the real1 parameter
vector θ which we wish to estimate based on the data. In order to do this, we construct
an unbiased estimator θ̂ which maps the data into an estimate. For the covariance
matrix C θ̂ of any unbiased estimator, the CRLB guarantees that C θ̂ − I−1(θ) ≥ 0
where the inequality denotes positive semi-definitiveness. Thus, for the variance of the
estimator for the k’th parameter, we have that

var(θ̂k) =
[
C θ̂
]
kk
≥
[
I−1(θ)

]
kk

(F.3)

where [·]kk denotes the (k, k)’th element. The matrix I(θ) is the Fisher information
matrix (FIM), and it is given by [13]

I(θ) = E

{
∂ ln p(x;θ)

∂θ

∂ ln p(x;θ)
∂θ

T
}

(F.4)

where (·)T denotes matrix transpose. It can be shown that if x has a multivariate
complex normal distribution whose mean and covariance are parametrised by θ, i.e.,
x ∼ CN (µ(θ),C(θ)), then the (k, l)’th element of the FIM is given by [13]

[I(θ)]kl = 2Re
[
∂µH(θ)
∂θk

C−1(θ)∂µ(θ)
∂θl

]
+ tr

[
C−1(θ)∂C(θ)

∂θk
C−1(θ)∂C(θ)

∂θl

]
. (F.5)

where (·)H denotes complex transposition, tr(·) denotes matrix trace, and Re[·] takes
the real part of a complex number. For the model in (F.2) with w ∼ CN (0, σ2

wIN ), the
(K + 1)-dimensional parameter vector is θ ,

[
φT αT σ2

w

]T , and we have that

x ∼ CN (A(φ)α, σ2
wIN ) (F.6)

where IN is the N -dimensional identity matrix. Using (F.5) and (F.6), the FIM is given
by

I(θ) =
[
2σ−2

w Re(QHQ) 0
0T Nσ−4

w

]
(F.7)

1If the model is parametrised by complex parameters ξ = ξr + jξi, say, then θ is defined as θ ,[
ξT

r ξT
i

]T .
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where we have defined

qk ,
∂µ(θ)
∂θk

for k = 1, 2, . . . ,K (F.8)

Q ,
[
q1 q2 · · · qK

]
. (F.9)

3 The Expected Projection Matrix
As mentioned in the introduction, we observe y instead of x in compressed sensing.
Incorporating this into (F.2) yields

y = Φx = ΦA(φ)α+ Φw (F.10)

from which we see that

y|Φ ∼ CN (ΦA(φ)α, σ2
wΦΦH) . (F.11)

In the following sections, we investigate how the sensing matrix affects the CRLB derived
in Sec. 2.

3.1 Fisher Information Matrix in Compressed Sensing
For k, l ≤ K, we obtain from (F.5) and (F.11) that

[ICS(θ)]kl = 2σ−2
w Re

[
qHk ΦH(ΦΦH)−1Φql

]
= 2σ−2

w Re
[
qHk Πql

]
(F.12)

where we have defined Π , ΦH(ΦΦH)−1Φ which is an N × N orthogonal projection
matrix of rank M . For k = l = K + 1, we can rewrite (F.5) as

[ICS(θ)]kl = tr
{
σ−2
w (ΦΦH)−1ΦΦHσ−2

w (ΦΦH)−1ΦΦH
}

= tr
{
σ−4
w IM

}
= Mσ−4

w . (F.13)

Thus, the FIM is given by

ICS(θ) =
[
2σ−2

w Re(QHΠQ) 0
0T Mσ−4

w

]
. (F.14)

Compared against the FIM in (F.7), we see that ICS(θ) differs in terms of the scaling
factor of the (K+1,K+1)’th element and the inclusion of the projection matrix Π inside
the inner matrix product QHQ. The interpretation of the latter is straightforward; we
project the columns of Q onto the subspace spanned by ΦH . Therefore, the diagonal
elements of ICS(θ) decrease compared against the corresponding elements of I(θ) unless
Q is spanned by ΦH .
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3.2 Typical Sensing Matrices
As alluded to in the introduction, the choice of sensing matrix Φ is vital in CS; we wish
to find a sensing matrix that obeys the RIP for as few measurements M as possible.
Perhaps surprisingly, stochastic sensing matrices have been shown to be nearly optimal
for almost any choice of basis Ψ [14]. Some of the most popular choices are listed
below [4].

1. Select the entries of Φ as i.i.d. samples from a normal distribution with variance
1/M .

2. Sample N N -dimensional i.i.d. vectors from a normal distribution with unit vari-
ance. Find an orthonormal basis of these N random vectors and select the rows
of Φ as M random rows from this orthonormal basis.

3. Sample N M -dimensional i.i.d. vectors uniformly at random from the unit sphere.

4. Select the entries of Φ as i.i.d. samples from a symmetric Bernoulli distribution
with outcomes ±1/M .

Once the sensing matrix has been selected, the FIM is easy to calculate. Since the
sensing matrix is often selected at random, however, it is not particularly useful to say
something about a specific realisation of the sensing matrix. Therefore, the next logical
step in our analysis is to investigate the statistics of the inverse FIM when the sensing
matrix is selected at random from some matrix variate distribution. Unfortunately,
this is in general a very hard problem, and we therefore consider the simpler task of
investigating the expected FIM for the various sensing matrices. We use this to derive
a lower bound on the expected inverse FIM in Sec. 4.

Since the unknown parameters θ are assumed to be deterministic variables, it readily
follows from (F.14) that the expected FIM is given by

E {ICS(θ)} =
[
2σ−2

w Re[QHE{Π}Q] 0
0T Mσ−4

w

]
. (F.15)

Thus, in order to find the expected FIM, we have to find the expected projection matrix
E{Π} = E{ΦT (ΦΦT )−1Φ}. For this purpose, we use the following theorem.
Theorem 1
Let Φ be a random M ×N matrix with M < N , rank M almost everywhere, and the
probability density function (pdf) fΦ(Φ). Furthermore, let Π = ΦT (ΦΦT )−1Φ be the
N ×N orthogonal projection matrix of rank M onto the subspace spanned by the rows
of Φ and denote the space of points corresponding to all such projection matrices by
PM,N−M . If fΦ(Φ) is invariant under the right-orthogonal transformation Φ → ΦR
for any N × N orthogonal matrix R, then the PDF of Π is uniform on PM,N−M and
E{Π} = (M/N)IN .
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Sketch of the Proof. It follows from [15, Th. 2.4.3] that H = (ΦΦT )−1/2Φ is uni-
formly distributed on the Stiefel manifold VM,N if fΦ(Φ) is invariant under any right-
orthogonal transformation. It then follows from [15, Th. 2.2.1] that QHTHQT is
uniformly distributed on PM,N−M for any orthogonal Q independent of HTH. Now,
since Π = HTH, it therefore follows that Π is uniformly distributed on PM,N−M .
Moreover, if follows that

E{Π} = QE{Π}QT =⇒ E{Π} ∝ IN (F.16)
tr(E{Π}) = E{tr(Π)} = M (F.17)

Eq. (F.17) follows from the fact that a projection matrix of rank M has exactly M
ones and N −M zeros as its eigenvalues. Combining (F.16) and (F.17) readily gives
E{Π} = (M/N)IN .

By use of Theorem 1, we can show that the sensing matrices of type 1 and 2 from above
result in an expected projection matrix of E{Π} = (M/N)IN . As shown in Sec. 5,
empirical evidence also suggests that this is the case for the sensing matrices of type
3 and 4. Interestingly, for the simplest possible sensing matrix, the Kronecker sensing
matrix which is the identity matrix with N − M random rows removed, we obtain
the same expected projection matrix. To see this, consider that the projection matrix
corresponding to such a Kronecker sensing matrix K is given by Π = KTK which is a
diagonal matrix with M ones and N −M zeros uniformly distributed on the diagonal.
Thus, there are

NCM =
(
N
M

)
= N !
M !(N −M)! (F.18)

distinct projection matrices each with probability 1/NCM . The expected value of the
projection matrix is therefore

E{Π} = 1
NCM

NCM∑
i=1

Πi = N−1CM−1

NCM
IN = M

N
IN (F.19)

where the second equality follows from the fact that there are N−1CM−1 projection
matrices Π with a one on the k’th diagonal element.

4 A Bound on the Expected CRLB
Inserting the expected projection matrix of E{Π} = (M/N)IN into (F.15) yields

E {ICS(θ)} = M

N
I(θ) . (F.20)
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Thus, on average, the elements of the FIM with CS is M/N times the elements of the
FIM without CS. The expected inverse FIM can be bounded as

E
{

I−1
CS(θ)

}
≥ (E {ICS(θ)})−1 = N

M
I−1(θ) . (F.21)

Since M < N in CS, the expected CRLB with CS increases as compared to the case
without CS. Interestingly, the popular Gaussian and nearly orthogonal sensing matrices
do not on average perform better than the Kronecker sensing matrix from an estimation
theoretic point of view. Thus, on average, the Gaussian and the nearly orthogonal sens-
ing matrices of the form outlined above decrease the estimation accuracy by an amount
equal to the case where random samples are simply thrown away. Furthermore, the
expected estimation accuracy decreases inversely proportional to at least the number of
samples that we retain in the data acquisition step of CS. This was also demonstrated
in [10] in which the direction-of-arrival estimation accuracy for a varying M was com-
pared to the CRLB. Can we do any better than this? That is, can we select a sensing
matrix such that the elements of the inverse FIM with CS are closer to the elements
of the CRLB without CS? To answer this question, we first take a closer look at the
orthogonal projection matrix Π. From (F.17), we have that the trace of an expected
projection matrix must be equal toM . All projection matrices must fulfil this constraint
so if we wish to construct a diagonal expected projection matrix with equal elements,
we therefore have that E{Π} = (M/N)IN . This result is the same as the expected
projection matrix for the popular sensing matrices presented above. However, as we
saw in Sec. 3.1, it is possible to design a sensing matrix such that the CRLB is unaf-
fected provided that the columns of Q are spanned by the rows of Φ. Unfortunately,
since the design of such a sensing matrix requires that we know the parameters we wish
to estimate, it is infeasible, unless we have a strong prior knowledge about the values
of the missing parameters. In this case, however, it may be better to employ Bayesian
inference methods which offer a unified way of incorporating prior knowledge.

5 Simulations
We demonstrate the validity of our analysis on a simple but well-known example. In
the example, we consider a complex sinusoid in complex white Gaussian noise, i.e.,

xn = αe(jωn+jϕ) + wn , for n = 0, . . . , N − 1 (F.22)

where α > 0, ϕ ∈ [−π, π] and ω ∈ [−π, π] are the amplitude, phase and (angular)
frequency, respectively. The noise variance is σ2

w. The CRLB for this signal is well-
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E-CRLB-CS Type 1 Type 2 Type 3 Type 4 Kron
E{var(α̂)} 3.125 3.363 3.366 3.365 3.371 3.125
E{var(φ̂)} 12.21 13.42 13.41 13.40 13.41 13.31
E{var(ω̂)} 0.0092 0.0101 0.0101 0.0101 0.0101 0.0101

Table F.1: The mean value for the CRLB based on 100,000 Monte Carlo runs. In each run, sensing
matrices of type 1-4 and the Kronecker matrix all of size 16× 64 were generated. All values are scaled
by a factor of 1000.

known and given by [13]

var(α̂) ≥ σ2
w

2N var(ϕ̂) ≥ σ2
w(2N − 1)

α2N(N + 1)

var(ω̂) ≥ 6σ2
w

α2N(N2 − 1) var(σ̂2
w) ≥ σ4

w

N

and the k’th row of Q is

[Q]k: =
[
e(jωn+jϕ) jαe(jωn+jϕ) jαne(jωn+jϕ)] . (F.23)

For each of the four types of sensing matrices and for the Kronecker matrix, we ran
100,000 Monte Carlo runs in which we calculated the inverse FIM given by the inverse
of (F.14). The size2 of the sensing matrices was 16 × 64. For the diagonal elements
of the inverse FIM corresponding to the amplitude, phase and frequency, we calculated
their 500 bins normalised histograms and mean values. Fig. F.1 shows the normalised
histograms of the CRLB for the frequency parameter. Clearly, the histograms are almost
coinciding with the exception of the histogram corresponding to the Kronecker sensing
matrix. Fig. F.1 also shows the CRLB without CS as well as the lower bound for
the expected CRLB with CS. Table F.1 lists the mean values of the CRLB with CM
corresponding to the amplitude, phase and frequency. The lower bound for the expected
CRLB is also listed. Again, we see the same pattern; the mean values for the type 1-4
sensing matrices were more or less the same while the mean value for the Kronecker
sensing matrix was slightly different. All values were on or above the lower bound for
the expected CRLB.

6 Conclusion
In this paper, we have analysed compressed sensing (CS) from an estimation theoretic
point of view by use of the Cramer-Rao lower bound (CRLB). Not surprisingly, our

2As a rule of thumb, the value of M should be approximately four times the number of unknown
parameters [4].
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Fig. F.1: Estimated pdf of the CRLB for the frequency parameter based on 100,000 Monte Carlo runs.
In each run, sensing matrices of type 1-4 and the Kronecker matrix all of size 16× 64 were generated.

analysis have shown that CS on average degrades our ability to estimate continuous
parameters. For some of the popular sensing matrices such as the Gaussian sensing
matrix, we quantified the expected degradation by showing that the ratio between the
expected CRLB with CS and the CRLB without CS is lower bounded by the ratio
between the number of columns N and the number of rows M of the sensing matrix.
Perhaps more surprisingly, we also showed that the bound is the same for the Kronecker
sensing matrix. That is, from an estimation theoretic point of view some of the popular
sensing matrices degrade on average our estimation accuracy by an amount equal to the
situation in which we throw N −M random samples away.
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Abstract
In this paper, we consider the problem of joint direction-of-arrival and order estima-
tion in array processing with compressed sensing. In particular, we show how to solve
these problems jointly using a subspace approach based on the notion of angles between
subspaces. In the process, we also discuss the conditions on the measurement matrix
and demonstrate how to implement the estimator algorithm efficiently when using com-
pressed sensing. Our simulation results show that it is indeed possible to solve these
problems and that good performance can be obtained, although the use of compressed
sensing does have an impact on the performance of the estimator.

1 Introduction
A classical problem in array signal processing is that of determining the direction-of-
arrival (DOA) of sources impinging on the array, and many methods have been proposed
throughout the history, including such prominent work as [1–3]. We are here also inter-
ested in this problem, but in a new context, namely that of compressed sensing [4, 5],
wherein measurements are formed as random linear combinations of the sensor inputs.
In this context, the parameter estimation and signal reconstruction problems are most
often dealt with by solving convex problems, typically equality constrained 1-norm min-
imization problems, and such approaches have also been applied to array signal process-
ing, e.g., [6–8]. In both DOA estimation and compressed sensing, the number of sources,
i.e., the model order, is often assumed known, or, is assumed to have been found in some
other way. The number of sources may of course vary over time, and the question is,
however, how to deal with this both in DOA estimation and in compressed sensing, since
the design of an appropriate measurement matrix requires that the number of sources
is known, i.e., that the level of spatial sparsity is known a priori.

The problem under consideration can be formally defined as follows. Let yk(n) be
the observed signal at time n for sensor k of a uniform linear array (ULA), and let K be
the total number of sensors and N the total number of snapshots. For L narrowband
sources (the model order) and complex spatial noise e(n) impinging on the array, the
spatial signal model can be expressed as

y(n) = ΦAx(n) + Φe(n) (G.1)

where x(n) contains the individual signals of the sources impinging on the array and
y(n) contains yk(n) for k = 1, . . . ,M . The noise is here assumed to be colored, i.e.,
E
{
e(n)eH(n)

}
= Q with Q being the noise covariance matrix, E {·} the expecta-

tion operator and (·)H the conjugate transpose. We here assume that Q is known
or estimated in some other way and that it is invertible. Moreover, A ∈ CK×L is a
Vandermonde matrix containing the steering vectors of the L < K incoherent sources,
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with unknown spatial frequencies {ωl}, defined as A =
[

a(ω1) · · · a(ωL)
]
where

a(ωl) = [ 1 e−jωl · · · e−jωl(K−1) ]T is the steering vector of source l. We then seek to
find the spatial frequencies {ωl} and the number of sources L. The spatial frequencies
are related to the DOAs as ωl = Ωld sin θl/c with Ωl being the center frequency of the
lth source, θl its DOA, d the sensor spacing, and c the propagation velocity. Assuming
that the spatial frequencies are distinct, the columns of A are linearly independent.
The matrix Φ ∈ RM×K with M ≤ K is the so-called measurement or sensing matrix
of compressed sensing (see, e.g., [4, 5]), which here operates across the array exploiting
spatial sparsity. We will return to the matter of how to choose M later. This matrix
is constructed as a realization of a random process but is assumed known and constant
over the N snapshots.

In this paper, we present a subspace-based approach for determining the direction-
of-arrivals as well as the number of sources, i.e., the model order. The method is based
on a modified covariance matrix model that takes the presence of compressed sensing
into account. At this point, it should be stressed that we are not here arguing for
the relevance of using compressed sensing in this context, but rather investigating how
the associated problems can be solved in a consistent manner (for some applications of
compressed sensing, we refer the reader to [5]). The proposed method is based on the
concept of angles between subspaces (see, e.g., [9, 10]), which has recently been shown
to be applicable to the problem of model order estimation [11].

The remainder of this paper is organized as follows: In Section 2 we develop the
covariance matrix for signals of the form (G.1) and discuss the implications of using
compressed sensing on the model. We then proceed to present the proposed joint DOA
and order estimator in Section 3 and present some results in Section 4. Finally, we
conclude our work in Section 5.

2 Modified Covariance Matrix Model
We will now proceed to derive the modified covariance matrix for the compressed sensing
scenario. The M ×M covariance matrix of the observed signal is then

R = E
{
y(n)yH(n)

}
= ΦAPAHΦT + ΦQΦT . (G.2)

Assuming that the signals of the individual sources in the vector x(n) are indepen-
dent and zero-mean, the matrix P is diagonal and contains the expected power of the
individual sources.

From (G.2), it can be observed that the measurement matrix generally changes the
covariance matrix of the noise, rendering even white noise colored, and this must be
addressed before we proceed. We will here do this by introducing a pre-whitener that
takes the presence of colored noise and compressed sensing into account as follows. Let
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C be the Cholesky factor such that(
ΦQΦT

)−1
= CHC, (G.3)

with C being a square, upper triangular matrix. We note that ΦQΦT is square, positive
definite and has full rank and thus invertible with probability close to one. Note that
the Cholesky factor is generally complex due to Q being complex. Then, by multiplying
y(n) by C, we obtain a pre-whitened signal whose covariance matrix is given by

R̃ = CΦAPAHΦTCH + I. (G.4)

Note that the noise variance can vary and be unknown without affecting the derivations
that follow. Let UΛUH be the eigenvalue decomposition (EVD) of R̃. Then, U con-
tains the M orthonormal eigenvectors um, and Λ is a diagonal matrix containing the
corresponding eigenvalues, λm, with λ1 ≥ . . . ≥ λM . Let S be formed from the eigen-
vectors corresponding to the L most significant eigenvalues, the range R (·) of which
we refer to as the signal subspace. Similarly, let G be formed from the eigenvectors
corresponding to the M −L least significant eigenvalues, i.e., G =

[
uL+1 · · · uM

]
,

and R (G) is referred to as the noise subspace. It can then be shown that the columns
of CΦA span the same space as the columns of S, and that CΦA therefore also must
be orthogonal to G, i.e.,

AHΦTCHG , AHΞ = 0, (G.5)

or, equivalently, A should be orthogonal to Ξ. This result is an extension of the basic
result used in the MUSIC algorithm as originally proposed in [1], here modified to
account for compressed sensing. In practice, G is of course unknown and an estimate
can be obtained from the EVD of the sample covariance matrix. From the above, it
can then be seen that to estimate G, we must require that M > L. Additionally, we
observe that it is required that rank (ΦA) = L, which essentially means that we must
construct a measurement matrix Φ that, regardless of what the spatial frequencies
{ωl} are, must have rows that capture or are likely to capture the column space of
A, i.e., R (A) ∈ R

(
ΦT
)
. This is essentially also what the so-called restricted isometry

property (RIP) of compressed sensing says, and some ways of constructing matrices (and
choosingM) that obey this have been proposed in the literature [12]. Until recently [13],
these conditions were only shown to hold for what has been referred to as incoherent
dictionaries, but such conditions are in direct contradiction with the physics of the
considered problem as the individual spatial angles can occur on a continuum of values,
corresponding to a highly coherent dictionary. The question still remains, however, how
to choose M when L is unknown. We here propose to simply put an upper bound on it
and choose M accordingly (see, e.g., [5, 13] for details), and hence facilitate estimating
the exact L number of sources as long as it is lower than this bound. Regarding the
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number of snapshots N , it must be at least as high as the number of sources, L, to allow
identification of the signal subspace and its orthogonal complement, i.e., N ≥ L. Note
that the covariance matrix need not be full rank for this approach to work.

On a related note, the issue of the coherence of the dictionary is also closely related to
an advantage that the proposed method holds over methods like basis pursuit [14], since
such methods are inherently restricted to finite dictionaries, while the proposed method
can (finite precision effects aside) find underlying continuous parameters, corresponding
to an infinite and highly coherent dictionary.

3 Measuring Orthogonality
The question is now how to measure the orthogonality between the two matrices A and
Ξ. In answering this question, we will turn to the notion of angles between subspaces
in linear algebra. Let ΠΞ be the projection matrix for the subspace R(Ξ) and ΠA

the projection matrix for the subspace R(A). The principal angles between the two
subspaces are defined recursively as (see, e.g., [9])

cos (θk) = max
y∈CM

max
z∈CM

yHΠAΠΞz
‖y‖2‖z‖2

(G.6)

, yHk ΠAΠΞzk = ξk, (G.7)

for k = 1, . . . , κ and orthogonal vectors yHyi = 0 and zHzi = 0 for i = 1, . . . , k − 1.
Furthermore, κ is the minimal dimension of the two subspaces, i.e., κ = min{L,M−L}.
As can be seen, {ξk} are the singular values of the matrix product ΠAΠΞ. As was shown
in [11], a convenient and accurate scalar measure of the angles is the average over cosine
to the angles squared, i.e.,

1
κ

κ∑
k=1

cos2(θk) = 1
κ
‖ΠAΠΞ‖2F . (G.8)

For computing this, we need to determine the two projection matrices. For Ξ this is not
problem as it has to be calculated only once for each set of snapshots and candidate L.
It is, however, more problematic for A, as it depends on all the DOAs—this is also the
reason that Φ and C are multiplied onto G rather than A. Noting that the columns in
A are asymptotically orthogonal, i.e., limK→∞KΠA = limK→∞KA

(
AHA

)−1 AH =
AAH , we see that the projection matrix can be simplified significantly. Let Γ be an
orthogonal basis for R(Ξ). Then its projection matrix is given by ΠΞ = ΓΓH and (G.8)
can be expressed as

1
κ

κ∑
k=1

cos2(θk) = 1
κ
‖AHΓ‖2F . (G.9)
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This measure can now be used to determine the model order L as well as the spatial
frequencies {ωl} as the parameters that combine to minimize the average angle between
the two subspaces, i.e., (see [11] for details)

(
L̂, {ω̂l}

)
= arg min

L

1
κ

L∑
l=1

min
ωl
‖aH(ωl)Γ‖2F , (G.10)

which follows from the additivity of the Frobenius norm over the columns of A. Note
that both A and Γ depend on L while only A depends on {ωl}. Hence, (G.10) is not
equivalent to simply estimating the order by identifying peaks in the pseudo-spectrum.
(G.10) is a practical measure as the minimization over {ωl} is decoupled into L mini-
mizations over one nonlinear parameter. Moreover, the inner products involved in the
computation of aH(ωl)Γ can be efficiently computed using FFTs, or, alternatively, using
standard polynomial rooting methods. We note that it can be seen from the definition
of angles between subspaces that the measure used in the original MUSIC algorithm is
only correct when both the involved matrices consist of orthogonal columns.

4 Results
We will now report some experimental results in the form of root mean square estima-
tion errors (RMSEs) for the spatial frequencies as well as the percentage of correctly
estimated model orders. The results were obtained using Monte Carlo simulations with
100 runs for each data point. The dependencies of the RMSE on various factors have
been investigated by varying the signal-to-noise ratio (SNR), the number of measure-
mentsM retained in the compressed sensing, and the number of snapshots N in separate
experiments. As reference, the Cramér-Rao lower bound (CRLB) is reported as well,
and we compare to another method capable of joint DOA and order estimation, namely
ESPRIT [2] extended to order estimation as proposed in [15]. Measurement matrices
generated as realizations of a Gaussian i.i.d. process with M = 4L as has been reported
to work well in practice [5] are used, except in the experiment in which M is varied.
These were randomized in each Monte Carlo run and were then also compared to the
performance without compressed sensing. That is, by setting the measurement matrix
equal to the identity matrix, the proposed method reduces to MUSIC, except that it
also determines the model order. In the figures to follow, we refer to the case with
compressed sensing as CS and the proposed method based on angles between subspaces
as AbS. For all the experiments, additive, white, Gaussian noise was used along with
L = 5 narrowband sources, impinging on the array from different angles. For simplic-
ity in the experiment (and for retaining the same SNR for all sources), these sources
were generated having distinct spatial frequencies {ωl}, namely 0.7966, 2.2467, 3.1414,
4.4963, and 6.2727, identical power and i.i.d. uniformly distributed phases. Except when
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Fig. G.1: RMSE as a function of the SNR.
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Fig. G.2: Percentage of correctly estimated model orders as a function of the SNR.

otherwise stated, an SNR of 10 dB was used, along with K = 50 and N = 50. In Fig-
ures G.1-G.6, the RMSE and the percentage of correctly estimated model orders are
shown as functions of the various parameters. First of all, it can be observed that the
MUSIC method performs close to the CRLB when compressed sensing is not used. This
is, however, not the case when compressed sensing is used, as a gap can be observed.
Interestingly, we observe that this gap is approximately equal to the ratio between K
and M , i.e., the performance obtained with compressed sensing is identical to what one
would have obtained by simply using M sensors instead of K. It can also be observed
that the proposed method determines the correct model order, except under adverse
conditions with very low SNRs and low M , and, as M is increased, its performance
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Fig. G.3: RMSE as a function of measurements M .
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Fig. G.4: Percentage of correctly estimated model orders as a function of the number of measurements
M .

approaches the CRLB. Note that several of the methods exhibit identical performance
over some intervals in Figures G.4 and G.6, for which reason the curves fall on top of
each other. An interesting observation from these experiments is that the threshold be-
havior changes with the use of compressed sensing, meaning that the estimator breaks
down earlier than without compressed sensing. Another observation is that even with
compressed sensing, the proposed method outperforms the ESPRIT algorithm in terms
of RMSE.
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Fig. G.5: RMSE as a function of the number of snapshots N .
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Fig. G.6: Percentage of correctly estimated model orders as a function of the number of the snapshots
N .

5 Conclusion
In this paper, we have considered the problem of jointly determining the direction-of-
arrivals and the number of sources jointly in arrays employing compressed sensing. We
have shown how this problem can be solved using a novel subspace approach based on
angles between subspaces. The method was demonstrated to have good performance,
resulting in both accurate estimates of the spatial frequencies and the number of sources.
Moreover, despite the introduction of compressed sensing it is possible to implement
the algorithm using FFTs or root methods provided that a re-orthogonalization step is
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introduced. Interestingly, the results show, that the threshold behavior of the method
changes with the use of compressed sensing, with the method still outperforming the
ESPRIT algorithm.
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